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Abstract 12 

This paper discusses the response of topography and river networks to non-uniform lithology and 13 

tectonic forcing in the Umbria-Marche sector of the Apennines fold and thrust belt. We are able 14 

to control for variable resistance to erosion of rock types and interpret channel steepness data in 15 

terms of rock uplift, discovering a southward increase in the total amount of uplift. Such a trend 16 

appears as the large-scale response to uneven vertical motions of different sectors of the 17 

mountain ridge and foothills. The general coincidence between sector boundaries and 18 

transversal, NE-SW striking faults mapped by seismic interpretation in the outer zone of the fold 19 

and thrust belt, suggests that such faults extend to the SW, beneath the allochthonous thrust 20 

sheets of the mountainous area. Therefore, it may be inferred that such transversal faults 21 

represent long-lived, deeply rooted basement structures compartmentalizing both the axial and 22 

the outer zones of the fold and thrust belt. We suggest that differential uplift was essentially 23 

controlled by variable amounts of basement thrust displacement characterizing the 24 

compartmentalized belt. This interpretation deviates from a more conventional view that uplift of 25 

the central Apennines, particularly prominent in the south, is dynamically supported. Our results, 26 

besides shedding new light into the active tectonic behavior of a large portion of the Italian 27 
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peninsula, also provide general insights into the surface response to the differential behavior of 28 

crustal blocks produced by along-strike segmentation of active mountain belts. 29 

 30 
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1 Introduction 33 

Morphotectonic studies are focused on unraveling the topographic and river network 34 

signature of vertical motion distribution (Bishop, 2007; Bull, 2008; Bull and McFadden, 1977; 35 

Burbank and Anderson, 2011). The morphotectonic approach has been adopted in different 36 

tectonic settings of the world (e.g., Di Biase et al., 2010; Keller and Pinter, 2002; Lanari et al., 37 

2022; Obaid and Allen, 2019; Schildgen et al., 2012; Scotti et al., 2014). The recent development 38 

of several GIS and MATLAB based analyses on digital elevation models (Jaiswara et al., 2020; 39 

Schwanghart and Kuhn, 2010; Schwanghart and Scherler, 2014; Whipple et al., 2007) has 40 

strongly contributed to the large diffusion of morphotectonic analysis at the orogen scale. Several 41 

indicators and parameters, such as swath profiles, Ksn index, river long profile and chi plots, 42 

have been used to infer the spatial distribution of surface motion in mountain belts (Basilici et 43 

al., 2020; Eizenhöfer et al., 2019; Forte et al., 2014; Gallen and Wegmann, 2017; Racano et al., 44 

2021; Pazzaglia and Fisher, 2022). Quantitative analyses of the topography and river network 45 

have been applied to the reconstruction of the orogenic growth of the Apennines (e.g., Ascione et 46 

al., 2008; Calderoni et al., 2010; D'Agostino et al., 2001; D'Alessandro et al., 2003; Delchiaro et 47 

al., 2024; Della Seta et al., 2008; Ferrarini et al., 2021; Lanari et al., 2023; Mayer et al., 2003; 48 

Miccadei et al., 2017; Pazzaglia and Fisher, 2022; Piacentini and Miccadei 2014; Racano et al., 49 

2020; Sembroni et al., 2020; Vannoli et al., 2004). Among the main findings of these works is 50 

the identification of an uneven uplift along the strike of the mountain range. Multiple datasets 51 

and observations point out that the central Apennines are uplifting faster than the northern 52 

sectors of the belt, at least since Quaternary times. These datasets include stable isotopes (San 53 

Jose et al., (2020), U-Th-He cooling ages (Fellin et al., 2022), geophysical and geodetic datasets 54 

(Faccenna et al., 2014; Serpelloni et al., 2013) and linear inversion of river long profiles 55 

(Pazzaglia and Fisher, 2022; Racano et al., 2024). The uneven uplift in the Apennines is related 56 

to deep processes (e.g., Lanari et al., 2023; Racano et al., 2024). This suggests that the 57 

topography of the Apennines is dynamically sustained, thus implying a major role of deep (i.e., 58 
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mantle-related) geodynamic processes (D'Agostino et al., 2001; Faccenna et al., 2014; Fellin et 59 

al., 2022). In this study, we challenge the idea that large-scale geodynamics is driving non-60 

uniform uplift in the Apennines and suggest that lithospheric, rather than sub-lithospheric mantle 61 

processes, are dominant in this active plate boundary setting. 62 

With the aim of obtaining further constraints on the pattern of the long-term uplift of the 63 

central Apennines, we performed a large-scale morphotectonic analysis of the topography and 64 

river network features of the Adriatic slope of the Umbria-Marche Apennines. The Umbria-65 

Marche Apennines and Foothills (UMAF) are characterized by a marked lithological variability 66 

and an almost systematic association of carbonate rocks and arenaceous-marly-clayey deposits 67 

with the main ridges and topographic lows, respectively. Bearing in mind that the recognition of 68 

active tectonic perturbations rests on the identification of the control exerted by lithology on the 69 

parameters of topography and drainage network (e.g., Bernard et al., 2019; Clementucci et al., 70 

2022; Pazzaglia et al., 1998; Seagren and Schoenbohm, 2019; Stock and Montgomery, 1999), we 71 

compared the results of our morphotectonic analysis with the spatial distribution of outcropping 72 

rock types and tectonic structures. The comparison allowed us to define the extent to which the 73 

lithological inhomogeneity affects the morphometric parameters of the drainage network. The 74 

resulting, unmasked tectonic signal reveals much of the pattern of the large scale along-strike 75 

variability of vertical motions. This, in turn, may have implications on seismicity distribution, 76 

thus providing new insights into the active tectonic behavior of a large sector of the Italian 77 

peninsula. 78 

2 Tectonic framework of the study area 79 

The study area is located in the central–eastern sector of the Italian peninsula (Fig. 1), 80 

within the UMAF, which forms part of the peri-Mediterranean Alpine orogenic belt. The 81 

Apennines are an arcuate, mostly NW-SE striking fold and thrust belt (Calamita et al., 1994), 82 

which evolved during the Neogene in the frame of Africa-Eurasia plate convergence since the 83 

Late Cretaceous (Dewey et al., 1989; Mazzoli and Helman, 1994; Turco et al., 2021). Since the 84 

Late Miocene, back-arc extension in the hinterland (Tyrrhenian Sea) was coeval with thrusting in 85 

the frontal part of the belt (e.g., Butler et al., 2004). Therefore, the Apennines represent a 86 

mountain belt characterized by diverse, active geodynamic processes. Defining the relative 87 

importance of dynamic (circulating sub-lithospheric, ductile mantle) and tectonic (lithospheric) 88 
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processes to the building of topography may be difficult (Faccenna et al., 2014). Extension and 89 

crustal thinning in the western side of the orogen are well established, as are tectonic accretion 90 

and crustal thickening in the eastern side (Butler et al., 2004). However, variable uplift rates and 91 

building of topography along the strike of the mountain belt appear to be associated with 92 

differential vertical motion of crustal blocks bounded by transversal faults (Calamita et al., 1994; 93 

Calamita and Pizzi, 1994). These, in turn, could be variably related with deeper geodynamic 94 

processes such as the lateral and vertical propagation of lithospheric tears, slab segmentation and 95 

break-off (Ascione et al., 2012; Chiarabba, 1995; Cinque et al., 1993; Lucente et al., 1999; Mele 96 

et al., 1998; Montuori et al., 2007; Spakman, 1990; Spakman and Wortel, 2004; Westaway, 97 

1993; Wortel and Spakman, 2000; Piromallo and Morelli, 2003).  98 

2.1 Geological and morphostructural setting 99 

The tectonic evolution of the study area consists of three main stages:  100 

(1) Pre-orogenic stage (Trias-Paleogene): the Adria rifted continental margin hosted a 101 

carbonate platform that was dissected by faulting during the second part of the Early Jurassic, 102 

leading to the development of a series of horsts and grabens/half grabens accompanied by 103 

transversal oblique-slip transfer faults segmenting the extensional system (Centamore et al., 104 

2002; Centamore and Rossi, 2009; Mazzoli et al., 2005; Pierantoni et al., 2013; Scisciani et al., 105 

2014). Rifting followed by thermal subsidence allowed the deposition of the well-bedded, 106 

calcareous-marly Umbria-Marche sedimentary succession (Centamore et al., 2002). 107 

(2) Syn-orogenic stage (Miocene-Pliocene): the various sectors of the study area were 108 

progressively involved in the fold and thrust belt from west to east, as shown by synorogenic 109 

siliciclastic deposits filling a migrating foreland basin system (Centamore et al., 2002). The 110 

basement is also involved in the thrust system (e.g., Coward et al., 1999). Transversal faults 111 

(probably inherited from the pre-orogenic stage) also controlled differential shortening in 112 

adjacent crustal sectors (Calamita et al., 1994; Calamita and Pizzi, 1994). 113 

(3) Late-orogenic stage: a general eastward migration of the thrust front toward the foreland 114 

characterized the Pliocene to present time (Barchi et al., 2012; Patacca et al., 1990). The 115 

hinterland and then the axial zone of the Umbria-Marche Apennines were affected by extension 116 

generating NW-SE-striking crustal normal faults (Barchi and Mirabella, 2009; Dewey, 1988; 117 

Doglioni, 1995; Keller et al., 1994). Extensional basins host continental deposits (e.g. Gubbio, 118 
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Norcia and Colfiorito basins; Brogi et al., 2014; Cipollari et al., 1999; Cosentino et al., 2017; 119 

Doglioni et al., 1998; Galadini and Messina, 2001; Mancini et al., 2005; Martini and Sagri, 120 

1993), while active thrusts in the Adriatic offshore are buried by thick Pliocene-Quaternary 121 

foreland basin deposits (e.g., Santini et al., 2021; Fig. 2) whose sedimentation rate largely 122 

exceeds thrust slip rates (e.g., Basili and Barba, 2007; Pezzo et al., 2024). 123 

The western (i.e., inner) sector of the UMAF includes two anticlinal ridges known as the 124 

Umbria-Marche ridge (UMR) and the Marche ridge (MR) (Fig. 1). These ridges expose the 125 

Mesozoic-Paleogene Umbria-Marche succession (a calcareous and marly succession with 126 

thickness ranging between 1000 and 2000 m) at elevations locally exceeding 2000 m. The 127 

intervening valley is a broad synclinorium cored by Upper Miocene terrigenous deposits (Fig. 1). 128 

In the eastern (i.e., outer) sector of the UMAF, folds and thrusts exposed at the surface involve 129 

mainly the Messinian siliciclastic succession (ranging in thickness from a few hundred meters to 130 

the north to 3000 m to the south) and marine to continental Plio-Pleistocene terrigenous deposits 131 

of the Marche foothills (Fig. 2). 132 

Located along the eastern edge of the MR, the Apennines Mountain front is bounded 133 

eastward by the Umbria-Marche-Sabina Thrust Zone (UMSTZ; Fig. 1). The UMSTZ is a major 134 

thrust fault consisting of several WNW-ESE to NE-SW striking, right-stepping en-échelon 135 

segments. Generally, the UMSTZ is composed of two main thrust portions with an overlap zone 136 

10 to 20 km wide between the Potenza River and the Chienti River valleys (Fig. 1). The 137 

northern, Belforte-Urbino thrust segment has a general NW-SE trend, changing to WNW-ESE 138 

north of the Metauro River valley (Fig. 1). The Belforte-Urbino thrust is imaged in two seismic 139 

profiles (including the CROP03 deep seismic reflection profile; Barchi et al., 1998; Calamita, 140 

1991). It shows offsets ranging from 2 km to 4.5 km (Mazzoli et al. 2005). The latest thrust 141 

activity in this section is attributable to the late Messinian (Deiana et al., 2003). The southern, 142 

Sibillini Mts. - Accumoli segment (Fig. 1) experienced the maximum horizontal displacements 143 

along the UMSTZ, with values of about 10 km (Mazzoli et al. 2005; Fig. 2). This thrust 144 

controlled the mountain front during the Messinian deposition of the Laga Fm. The late stages of 145 
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activity of this thrust occurred during post-evaporitic late Messinian time, with local slip 146 

continuing into the Pliocene (Mazzoli et al. 2005, and references therein). 147 

 148 

 149 
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 150 

Fig. 1. Structural map of the UMAF and offshore area (modified from Costa et al., 2021 and Pierantoni et al., 2019). 151 

Cross-section traces of Fig. 2 are shown (A-A’, B-B’ and B’-B” segments). 152 
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 153 

 154 

Fig. 2. Regional geological sections across the UMAF. Northern section (A-A’) modified after Santini et al., 2016. 155 

The composite southern section includes segments B-B’ (modified after Barchi et al., 1998) and B’-B” (modified 156 

after Pace et al., 2015). Section traces are in Fig. 1. 157 

The foothills and coastal areas are traversed by nearly equally-space transverse rivers 158 

with headwaters that are subsequent to structure. The river network consists of NE-SW oriented, 159 
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NE flowing main trunks and related tributaries, flowing within a couple of kilometers to tens 160 

kilometers spaced transverse valleys. Most of the NE-SW trending rivers cut the anticline 161 

carbonate ridges forming very deeply incised gorges, and locally follow the syncline structures 162 

(e.g., the upper Esino River valley) for several kilometers. The long-term evolution of the river 163 

network was characterized by superimposition and stream-piracy phenomena in the axial zone of 164 

the fold-and-thrust belt, and in the formation of a staircase of strath and fill terraces in the outer 165 

zone (i.e., the foothills; Mayer et al, 2003; Nesci et al., 2012; Wegmann and Pazzaglia, 2009). 166 

Valley evolution in the foothills followed the mechanism of diverging drainage initially formed 167 

on either the top depositional surface of fans or the correlative erosional glacis, whose cone-168 

shaped morphology caused the divergence from the primitive channel (Nesci and Savelli, 2003). 169 

Quaternary normal faults are well known to exert a major control on the topography of the study 170 

area, particularly in the southern part of the region (e.g., Gentili et al., 2017). Indeed, Della Seta 171 

et al. (2008) has highlighted the role of tectonics in shaping the landscape, as several structurally 172 

controlled landforms (e.g., rectilinear ridges and valleys, fluvial capture, beheaded valleys, 173 

faceted spurs) and offset alluvial terraces suggest a Late Pleistocene activity of NW-SE, WNW-174 

ESE and NE-SW striking fault segments. 175 

 176 

2.2 Seismicity 177 

The UMAF are the locus of moderate to intense tectonic activity, as shown by (i) 178 

instrumental baseline seismicity, (ii) the occurrence of several historical strong earthquakes (e.g. 179 

the Mw 6.92, 1703 Valnerina earthquake, which formed part of a 3-earthquakes sequence that 180 

struck the whole central Italy; the Mw 6.17, 1741 Fabriano earthquake; the Mw 6.51, 1781 Cagli 181 

earthquake and the Mw 6.18, 1799 Camerino earthquake - Castelli and Monachesi, 2001; 182 

Monachesi et al., 1991; Rovida et al., 2022; Stucchi et al., 1991), and (iii) recent seismic 183 

sequences (e.g. the 1997-1998 Colfiorito seismic sequence with Mw 6.0 main shock - Chiaraluce 184 

et al., 2004; the 2016-2017 Amatrice-Visso-Norcia seismic sequence with maximum magnitude 185 

6.5 - Civico et al., 2018; EMERGEO working group, 2016). Some of these earthquakes, 186 

including the recent Amatrice-Visso-Norcia seismic sequence, are clearly linked to normal faults 187 

in the topographic axis of the chain while others, like the Cagli earthquake or Fabriano 188 

earthquake that are located further east, are not associated with any clear emergent fault.  189 
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The seismicity of the Marche foothills and Adriatic offshore is characterized by moderate 190 

historical events. The seismotectonic behavior of this sector is consistent with the activity of a 191 

highly segmented thrust system (Coward et al., 1999) dominantly including NW-SE striking 192 

thrust faults and WSW-ENE striking strike-slip faults (e.g., Basili and Barba, 2007; Costa et al. 193 

2021; Mazzoli et al. 2014; Vannoli et al., 2015; Fig. 3). 194 

 195 

 196 

3 Material and Methods 197 

A GIS-aided analysis of both topography and river network has been carried out to 198 

unravel vertical motion distribution within the UMAF. The 30 m NASA ASTER GDEM V2 199 

(https://asterweb.jpl.nasa.gov/gdem.asp, last access on 8 December 2022) provided the dataset 200 

for morphotectonic analysis through ArcGis 10.8 © and Matlab © software. To compare the 201 

results of the morphotectonic analysis with the lithological and active tectonics framework of the 202 

UMAF, we constructed a lithological map of the study area and analyzed seismicity distribution 203 

using all available instrumental seismic data.  204 

3.1 Topography analysis 205 

Topography is quantified using topographic envelope and sub-envelope maps, which 206 

have been coupled with the analysis of seven swath profiles. The spatial distribution of elevation 207 

depends on both the resistance to erosion of the outcropping rocks and tectonics (e.g., surface 208 

uplift). The maximum elevation mainly reflects the spatial distribution of rock-types, while mean 209 

elevation is representative of surface uplift distribution (England and Molnar, 1990) and 210 

minimum elevation reflects valley floor distribution (Valente et al., 2019). In addition, spatial 211 

variations in uplift may be revealed by local relief distribution, especially in areas where rock 212 

types with homogeneous resistance to erosion outcrop (Di Biase et al., 2010). Maximum, mean 213 

and minimum elevation maps have been derived by applying a 5x5 km large moving window to 214 

the 30 m DTM, whereas relief map has been derived as the difference between maximum and 215 

minimum elevation. 216 

Swath profiles analysis has been carried out using the SwathProfiler ArcGIS add-in tool (Pérez-217 

Peña et al., 2017). Seven swath profiles, 20 km in width and with different orientations were 218 

constructed: five profiles, with SW-NE orientations, are roughly perpendicular to the trend of the 219 

UMAF; one profile follows the bending of the UMAF arc, thus including both chain and 220 

https://asterweb.jpl.nasa.gov/gdem.asp
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foreland units; one profile, NW-SE trending, moves within the foothills underlain by foredeep 221 

units. 222 

 223 

3.2 Analysis of the river network 224 

River network analysis included the construction of river longitudinal profiles and 225 

transformed river long profiles (chi-plot), which have been coupled with the slope/area analysis 226 

to derive the spatial distribution of the normalized channel steepness index (Ksn). Analyzed 227 

rivers are 18 main trunks that drain from the SW to the NE across the UMAF. 228 

We analyzed the river network by means of the Topotoolbox scripts of Matlab (Schwanghart 229 

and Kuhn, 2010; Schwanghart and Scherler, 2014) and the Run-Chi profiler script (Gallen and 230 

Wegmann, 2017). Slope/area analysis relates channel slope with the drainage area following the 231 

equation: 232 

𝑆 = 𝑘𝑠𝐴−𝛳 (1) 233 

where S is the channel slope, ks is the steepness index, A is the drainage area and θ is the 234 

concavity index. The analysis is synthesized in a log-log slope vs area diagram with θ being the 235 

angle of the regression line and the ks being the y-intercept. Because small variation in θ may 236 

provide significant variation in the y-intercept, to compare basins with different drainage areas a 237 

reference concavity must be defined. We determined a reference concavity (θref) of 0.59 that 238 

derives from averaging concavity values between each of the 18 analyzed drainage basins. 239 

Furthermore, a smoothing window of 500 m and a reference drainage area A0 =1 km2 have been 240 

adopted. The resulting steepness index is named Ksn (normalized steepness index).  241 

The dependence of the Ksn index from bedrock lithology is well established in various 242 

climatic environments (e.g., Bernard et al., 2019; Das et al., 2022; Fadul et al., 2022). We 243 

evaluated such dependency by means of a statistical analysis of the Ksn values as a function of 244 

lithology and presented the results as a box and whisker plot. The lithological control on 245 

parameters of topography and river network may be quantified by defining erodibility value (K) 246 

of equation 2. Assuming a simple stream power model where n=1, the Ksn values could be 247 

converted to erodibility values (K) using K=E/Ksn. This analysis would require compiling all 248 

available erosion rate data for the study area (Pazzaglia and Fisher, 2022). 249 

Bedrock variability at the drainage basin scale may also control the formation of convex 250 

upward reaches in the long profiles named knickpoint. These have been classified according to 251 
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their proximity to contacts between different rock types following the method proposed by 252 

Buscher et al. (2017): knickpoints that are less than 200 m far from lithological contacts have 253 

been classified as “lithology-controlled knickpoints”, whereas knickpoints that are more than 200 254 

m far from lithological contact have been classified as “non-lithology-controlled knickpoints”. 255 

Further information about the rivers’ response to external perturbations (i.e., tectonics) may 256 

be revealed by transformed river long profiles (Perron and Royden, 2013; Royden and Perron, 257 

2013). Transformed river long profiles dissecting a uniform rock-type and equilibrated with 258 

uplift have a linear shape, with ks being the slope of the transformed profiles. To obtain 259 

transformed river long profiles (chi plots), Equation 1 can be rewritten as follows: 260 

𝑆 = (
𝑈

𝐾
)

1

𝑛
𝐴−

𝑚

𝑛  (2) 261 

where U is the rock uplift rate, K is an erodibility coefficient, A is the drainage area, and m and n 262 

are constants. Under constant U and K, separating variables in Equation 2 and integrating them, 263 

produces  264 

𝑧(𝑥) = 𝑧(𝑥𝑏) + (
𝑈

𝐾𝐴0
𝑚)

1

𝑛
𝜒 (3) 265 

with 266 

𝜒 =  ∫ ⬚
𝑥

𝑥𝑏
(

𝐴0

𝐴(𝑥)
)

−𝑚
𝑛

𝑑𝑥 (4) 267 

 268 

where z(x) is the elevation of an observation point along the river long profile, z(xb) is the 269 

elevation of the local base level, A(x) is the drainage area at the observation point z(x), A0 is a 270 

reference drainage area, and m/n is the reference concavity. We set the reference drainage area 271 

(A0) to 1 km2 whereas the smoothing window is 500 m. 272 

In the chi-plot analysis it is crucial the recognition of the best-fit m/n ratio (θ, reference 273 

concavity) at the drainage basin scale, whereas to compare rivers with different drainage areas a 274 

reference concavity must be defined, which derives from averaging the m/n values of all the 275 

analyzed rivers (Perron and Royden, 2013). The best fit m/n ratio at the basin scale has been 276 

derived by the Bayesian optimization script of Topotoolbox (Schwanghart and Kuhn, 2010; 277 

Schwanghart and Scherler, 2014). To compare chi-plots among the 18 investigated rivers we 278 

derived an average reference concavity value of 0.59. 279 
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  280 

4 Results 281 

4.1 Distribution of seismicity in the UMAF 282 

 283 

The instrumental seismic data recorded since 1985 from the Italian Seismological 284 

Instrumental and Parametric Data-Base (http://terremoti.ingv.it/iside ISIDe -INGV, last access 285 

on 24 January 2023) and the re-localized earthquakes by INGV Ancona (Cattaneo et al., 2017) 286 

have been downloaded and merged together in a new database to analyze seismicity distribution. 287 

In this regard, a dataset of 4016 earthquakes data have been selected among more than 70.000 288 

events upon the horizontal error (erh < 2.5 km), vertical error (erz < 2.5 km) and number of 289 

phases of the seismogram (> 8), which are considered reliable to avoid uncertainties due to 290 

epicenters position. In this dataset the 2016-2017 Amatrice-Visso-Norcia seismic sequence and 291 

the 1997 Colfiorito seismic sequence are also present and differentiated from the baseline 292 

seismicity (Fig. 3) through the ZMAP decluster algorithm (Wiemer, 2001).  293 

 294 

 295 

http://terremoti.ingv.it/iside
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 296 

Fig. 3 – Historical (white boxes) and instrumental seismicity with magnitude higher than 3 (circles) for the eastern 297 

central Italy and surrounding area. Red circles show the 2016-2017 Amatrice-Visso-Norcia seismic sequence whereas 298 

yellow stars highlight the main shocks. Blue circles and green stars represent the 1997 Colfiorito seismic sequence 299 

and main shock (Mw 5.8) respectively. Gray circles show other seismic events included in the ISIDe database. Focal 300 

mechanism solutions (black: dominant normal faulting; green: dominant strike-slip faulting; red: dominant reverse 301 
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faulting) are from ISIDe database (ISIDe Working Group, 2007) and from Mazzoli et al. (2014) and Santini et al. 302 

(2011). White squares represent historical seismic events with M > 5 (Rovida et al., 2022).  303 

 304 

The map of Fig. 3 shows that earthquakes are mainly clustered in the SW sector of the 305 

UMAF (i.e., the Sibillini Mts.), which was struck by the 2016-2017 Amatrice-Visso-Norcia 306 

seismic sequence. Both the location of the major historical earthquakes and the spatial 307 

distribution of instrumental seismicity confirm the intense tectonic activity along the UMR and 308 

the MR. Here, the highest magnitude concentrated in the southern sector, as highlighted by the 309 

2016-2017 seismic sequence. Seismic events with magnitude ranging between 3 and 6.5 are 310 

generally located along the chain axis and associated with NW-SE striking normal faults, 311 

including the Monte Vettore and Monte Gorzano faults. The 2016-2017 aftershocks are confined 312 

between the Chienti River valley to the north and the Vomano River valley to the south. 313 

Earthquake focal mechanism solutions available from the ISIDe database (ISIDe Working 314 

Group, 2007) indicate a predominant normal faulting along the Apennines  (Fig. 3), with NE-SW 315 

oriented T-axis in agreement with the Quaternary tectonics of this sector (Frepoli and Amato, 316 

1997). 317 

The Marche foothills and Adriatic offshore are characterized by moderate historical 318 

events and low to moderate instrumental seismicity (e.g., Mw 5.83, 1930 Senigallia earthquake, 319 

Mw 4.68, 1972 Ancona earthquake, Mw 4.90, 1987 Porto San Giorgio earthquake, Mw 4.00, 320 

2022 Costa Marchigiana-Picena earthquake; ISIDe Working Group, 2007; Monachesi et al., 321 

1991; Rovida et al., 2022). Earthquake focal mechanism solutions include NW-SE striking thrust 322 

faulting and WSW-ENE oriented strike-slip faulting (e.g., Basili and Barba, 2007; Costa et al. 323 

2021; Costa et al. 2023; Mazzoli et al. 2014; Vannoli et al., 2004, 2015; Fig. 3). 324 

 325 

4.2 Lithological map of the UMAF 326 

Detecting the lithological signature on topography and drainage network metrics is 327 

crucial to avoid errors in interpreting the spatial distribution of these parameters as due only to 328 

tectonics. For this reason, we modified the 1:250.000 geologic map of the northern Apennines 329 

(Conti et al., 2020), and lithostratigraphic units have been grouped in eleven categories according 330 

to their lithology and stratigraphical position. The derived simplified geological map (Fig. 4) has 331 
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been used as a reference frame for interpreting the results of topography and river network 332 

analyses.  333 

In the northernmost sector of the UMAF, highly allochthonous tectonic units belongto the 334 

Ligurian domain. These units are represented by the Val Marecchia ‘chaotic’ units (unit 11 in 335 

Fig. 4; Cornamusini et al., 2017; Veneri, 1986). In the footwall of the Valmarecchia ‘chaotic’ 336 

units, rock types exposed to the west of the UMSTZ (refer to Fig. 1) include the carbonate to 337 

marly deposits accreted within the orogenic wedge. The outcropping stratigraphic succession 338 

starts with the Calcare Massiccio Fm. (carbonate platform limestone, Upper Triassic - Lower 339 

Jurassic) that represents the oldest formation exposed within the study area. This unit (unit 10 in 340 

Fig. 4) is overlain by the Jurassic-Lower Cretaceous series that is mainly composed of cherty 341 

limestone (Corniola Fm; unit 9 in Fig. 4) and pelagic micritic limestones (Maiolica Fm; unit 8 in 342 

Fig. 4). Calcareous-marly sediments deposited during the Late Cretaceous to Oligocene consist 343 

of marls (Marne a Fucoidi Fm; unit 7 in Fig. 4) and the Scaglia Group (unit 6 in Fig. 4). These 344 

sediments are covered by Miocene, hemipelagic deposits of the Bisciaro Fm. (Aquitanian -345 

Burdigalian) and the Schlier Fm. (Langhian-Tortonian), both of which are mainly composed of 346 

alternating marly limestones, marls and shales (unit 5 in Fig. 4). Unit 4 includes turbiditic 347 

deposits that represent the fill of the Messinian foredeep, which developed to the east of the 348 

UMSTZ in response to the eastward migration of the thrust front (Ricci Lucchi, 1986). The 349 

deformed Messinian foredeep basin fill is presently preserved in the Marche foothills (Fig. 4). To 350 

the east, Plio-Quaternary strata composed of clays and sands (unit 3) and conglomerates (unit 2) 351 

cover the Messinian foredeep deposits, or locally rest unconformably directly on the calcareous-352 

marly succession (Bigi et al., 1997; Cantalamessa et al., 1986; Cantalamessa and di Celma, 2004; 353 

Ori et al., 1991). The contact between the Plio-Quaternary foreland basin succession and the 354 

older stratigraphic units is locally controlled by high angle faults (Deiana et al., 2002; Fig. 4).  355 

 356 

 357 

 358 
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 359 

Fig. 4 - Geological sketch of UMAF (modified from Conti et al., 2020). The geologic units were grouped into 11 rock 360 

categories according to their lithology and stratigraphical position. Dotted black line limits the high Ksn value area of 361 

Fig. 11 (see Section 4.4). 362 

 363 
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 364 

4.3 Features of topography 365 

In the UMAF, the low elevation and low-gradient foothills (to the east of the UMSTZ) pass 366 

to the mountainous landscape of the chain (to the west of the UMSTZ, Fig. 5). The location of 367 

the UMSTZ is marked, in the swath profiles of Fig. 6, by the sudden drop in the maximum, mean 368 

and the minimum elevation curves. This drop occurs at around 40 km in profiles 1, 2 and 3, and 369 

at around 30 km and 20 km in profiles 4 and 5, respectively. The foothills exhibit a smooth 370 

topography in the north (Fig. 5 and profiles 1 - 2 in Fig. 6) and a relatively rugged topography in 371 

the south (Fig. 5 and profiles 3 to 5 in Fig. 6). Valleys to the south are narrower and Pleistocene 372 

conglomerate deposits (unit 2 in Fig. 4), that are the stratigraphic cap of the foredeep section, are 373 

preserved in some remnants of paleosurfaces. Parallel to the foothills, the chain exhibits lower 374 

elevations and a smooth topography in the north. Here the highest peaks (e.g., Mt. Paganuccio, 375 

976 m a.s.l.; Mt. Catria, 1702 m a.s.l.; Mt. Cucco, 1566 m a.s.l.; Mt. Murano, 882 m a.s.l.; Fig. 5 376 

and profiles 1 - 2 in Fig. 6) correspond with the MR and the UMR formed by the Scaglia 377 

carbonate units (unit 6 in Fig. 4). The ridges are aligned along two distinct NNW-SSE trends that 378 

are separated by a large area where arenaceous and calcareous, marly, and clayey units crop out 379 

(units 4 and 5, respectively, in Fig. 4). Towards the south, the chain is more elevated and rugged. 380 

The MR and the UMR are separated by the Camerino Basin, where Messinian arenaceous 381 

deposits crop out, in the area spanning from the Esino R. to the Chienti R. valleys (Fig. 5 and 382 

profiles 2 - 3 in Fig. 6). The ridge to the NE (the MR) is carved in the Scaglia units (unit 6 in Fig. 383 

4) and reaches a maximum elevation of 1021 m a.s.l. at Mt. Letegge (Fig. 5 and profile 3 in Fig. 384 

6). To the SW, the UMR is carved both in the Scaglia and the Calcare Massiccio units (units 6 385 

and 10, respectively, in Fig. 4) and its highest peak is Mt. Pennino (1571 m a.s.l.: Fig. 5 and 386 

profile 3 in Fig. 6). Towards the south (from the Chienti R. to the Aso R. valleys) the MR and the 387 

UMR converge, and the chain exhibits its highest elevation with the peaks of Mt. Priora (2333 m 388 

a.s.l.) and Mt. Vettore (2467 m a.s.l.; Fig. 5 and profiles 4 -5 in Fig. 6), which are carved in the 389 

Scaglia and the Calcare Massiccio units (units 6 and 10 , respectively, in Fig. 4). To the west of 390 

Mt. Vettore peak (profile 5 in Fig. 6), high values in the maximum, mean and minimum 391 

elevation curves are coupled with low values in the relief curve. This feature is associated with 392 

the Castelluccio Quaternary basin in the hanging wall of the Mt. Vettore normal fault (Pierantoni 393 

et al., 2013). The southernmost portion of the investigated area (e.g., from the Tronto R. to the 394 
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Vomano R. valleys), where Messinian arenaceous deposits crop out (unit 4 in Fig. 4), exhibits 395 

high to very high elevations that culminate in the peak of Mt. Gorzano (2458 m.a.s.l.; Fig. 5).  396 

Comparison of the profiles of Fig. 6 points to an overall increase of the elevation values 397 

towards the south (i.e., from swath 1 to swath 5). Such a trend is also evident by swaths 6 and 7 398 

(Fig. 6), which run parallel to the foothills and to the outer sector of the orogenic belt, 399 

respectively. The highest peaks in the maximum elevation curves correspond with carbonate 400 

units, and this trend is mirrored by the mean elevation curves. The minimum elevation curve is 401 

smooth in the north (swaths 1, 2 and 3) with values not exceeding 500 m a.s.l., whereas in the 402 

south (swaths 4 and 5) it exhibits two relevant peaks exceeding 1000 m a.s.l. These peaks 403 

correspond with Mt. Priora (swath 4) and with the area to the west of Mt. Vettore (swath 5). 404 

The relief curve mirrors the elevation curves, with the relief peaks that correspond with the 405 

highest elevation peaks, and with increasing local relief towards the south (i.e., from profile 1 to 406 

profile 5). Furthermore, swath profile 7 enhances the occurrence of three asymmetric, down to 407 

the north, broad paleovalleys that are now dissected by the more narrowly spaced transverse 408 

river valleys. The paleovalley to the north is centered around the Foglia River basin, the central 409 

one spans from the Metauro River basin to Mt. San Vicino, and the southernmost one extends 410 

from the Potenza River basin to Mt. Vettore. 411 

 412 
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 413 

Fig. 5. Elevation map of the UMAF with location of the investigated main trunks, and correlative hydrographic 414 

basin. Black dotted boxes are the traces of swath profile in Fig. 6. 415 

 416 

 417 
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 419 

Fig. 6. Swath profiles within the Umbria-Marche Apennines and foothills (see Fig. 5 for the location). Swath 420 

profiles 1 to 5 are SW-NE trending and run perpendicular to the chain. Swath profiles 6 and 7 are parallel to the 421 

mountain front and perpendicular to river valleys. Black line indicates maximum elevation curve, gray line indicates 422 

mean elevation curve, light gray line indicates minimum elevation curve, and red line indicates relief curve. The 423 

colored bars above long river profiles represent the lithology of the bedrock reported in Fig. 4. Red crosses in swath 424 

profile 7 indicate location of the transverse faults mapped in Fig. 1. 425 

 426 

The above-described topography setting is also highlighted by the maximum (Fig. 7a), 427 

minimum (Fig. 7b), and mean (Fig. 7c) elevation maps, as well as the local relief map (Fig. 7d). 428 

All these maps point to the presence of a locus of high elevations and high relief to the south of 429 

the investigated area (e.g., in the area between Mt. Vettore and Mt. Gorzano). This high 430 

elevation area spans from the west of the UMSTZ to the east of it and includes different rock-431 

types, such as the carbonates of the Calcare Massiccio (unit 10 in Fig. 4) and the Messinian 432 

arenaceous deposits (unit 4 in Fig. 4). 433 

 434 
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 435 

Fig. 7. Elevation maps of the study area. (a) Maximum elevation map. (b) Minimum elevation map. (c) Mean 436 

elevation map. (d) Local relief map. 437 

 438 

4.4 River long profiles and chi-plot analysis 439 

Fig. 8 shows river long profiles and chi-plots of the eighteen investigated rivers. To 440 

construct the chi-plots, we adopted the best fit m/n ratio at the basin scale (Section 3.2). River 441 

long profiles and chi-plots exhibit variable features along the strike of the UMAF. In the northern 442 

sector, e.g., in the area between the Uso River and the Foglia River (rivers 1 to 5 in Fig. 8), chi-443 
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plots are rectilinear to slightly convex upward with the only exception of the Foglia River that 444 

exhibits a concave upward chi plot. Several knickpoints are identified. Using as a reference the 445 

lithological map of Fig. 4, some of the knickpoints have been classified as lithology-controlled 446 

knickpoints because of their proximity to contacts. These knickpoints occur along the Uso River, 447 

the Marecchia River and the Marano River (river 1, 2 and 3 in Fig. 8, respectively). On the 448 

opposite, knickpoints along the Conca River and the Foglia River (rivers 4 and 5 in Fig. 8) are 449 

not associated with lithological contacts (Figs. 8 and 9). 450 

In the central sector of the investigated area, between the Metauro River and the Potenza 451 

River (rivers 6 to 10; Fig. 8), the chi plots are characterized by convex shapes with knickpoints 452 

that appear not associated with lithological contacts. However, a control by lithology may be 453 

hypothesized for the knickpoint that occurs along the Candigliano River (a right tributary of the 454 

Metauro River, 6; Fig. 8) to the west of Mt. Nerone (Fig. 9). Here the Calcare Massiccio (unit 455 

10) outcrops in a deep gorge and passes laterally to marls, marly limestone and clay deposits of 456 

the Bisciaro, Schlier and Cinerea Fms. (unit 5). 457 

Rivers in the southern sector of the study area (rivers 11 to 18 in Fig. 8) show chi-plots with 458 

shapes that vary from rectilinear and steep (11 - Fiastra River, a tributary of the Chienti River), 459 

to convex or slightly convex (15 - Vibrata River; 11 - Chienti River; 14 - Tronto River) and to 460 

rectilinear in the lower reach to convex upward in the upper reach (rivers 12, 13, 16, 17 and 18 in 461 

Fig. 8). Most of the widespread knickpoints identified along these rivers have been classified as 462 

non-lithology controlled knickpoints. Among the non-lithology controlled knickpoints, some in 463 

the upper reaches of the Chienti, Salinello, Tordino and Vomano Rivers (rivers 11, 16, 17 and 18 464 

in Fig. 8), occur at short distances from normal faults. Knickpoints classified as lithology 465 

controlled are located along the Chienti (river 11, east of Mt. Letegge) and Aso (river 12, 466 

northeast of Mt. Vettore) rivers at contacts between units 6 and 4, and along the Tenna River 467 

(river 13, east of Mt. Priora) at the contact between units 5 and 6. 468 

 469 
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 470 

Fig. 8. Longitudinal profiles and chi plot of the 18 rivers analyzed in the present work. Chi-plots have been 471 

constructed using the best fit m/n ratio at the basin scale. The colored bars above long river profiles represent the 472 

lithology of the bedrock reported in Fig. 4. 473 

 474 
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Fig. 9 shows the spatial distribution of knickpoints. Most of the non-lithology controlled 475 

knickpoints are clustered in the southern sector of the UMAF (e.g., in the area spanning from the 476 

Tenna River to the Vomano River), and are mainly located to the east of the UMSTZ, where the 477 

Messinian arenaceous rocks (unit 4) crop out. Non-lithology controlled knickpoints located in 478 

the chain units to the south of the UMAF occur only along the Tenna River and the Aso River 479 

(number 12 and 13, respectively, in Figs. 8 and 9). On the opposite, to the north of the Chienti 480 

River valley, non-lithology controlled knickpoints are clustered to the west of the UMSTZ. Such 481 

knickpoints occur within the carbonate units, whereas knickpoints to the east of the UMSTZ 482 

affect just the Uso, Foglia and Musone rivers (number 1, 5 and 9, respectively, in Figs. 8 and 9).  483 

 484 

 485 
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Fig. 9. Topographic map showing the knickpoints/knickzones spatial distribution along the 18 river channels 487 

analyzed in the study area. The identified knickpoints are distinguished in lithology-controlled knickpoints and non-488 

lithology-controlled ones, using as a reference the geological map of Fig. 4. In this regard, red stars represent sharp 489 

change in channel slope due to lithological contrast while yellow ones are the knickpoints related to possible base 490 

level perturbation. 491 

 492 

Fig. 10 shows chi-plots obtained with the average m/n value of 0.59. Chi-plots of rivers in 493 

the northern UMAF (sector A in Fig. 10) have mainly rectilinear shapes (rivers 1 to 6) with some 494 

slight convex upward segment in the upper reaches of rivers 2 and 4. In the central UMAF 495 

(sector B in Fig. 10, and rivers 7 to 10), chi-plots have rectilinear to slightly convex upward 496 

shapes. Rivers to the south of the UMAF (sector C in Fig. 10, and rivers 11 to 18) are 497 

characterized by overall steeper chi-plots, which show enhanced convex upward segments that 498 

locally pass to steep rectilinear segments in the lower reaches (rivers 11, 12, 13, 14, 16 and 17). 499 

By the diagrams it is evident that in sector C non-lithology controlled knickpoints occur at 500 

elevations  750 m and, however, higher than knickpoints in sectors A and B. 501 

 502 

 503 
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 504 

Fig. 10. Geological sketch of Umbria-Marche Apennines and foothills (modified from Conti et al., 2020) with the 505 

major transversal structures (modified from Costa et al. 2023 and Pierantoni et al., 2019). On the right, chi plots of 506 

the main rivers of hydrographic basins (locations and numbering in Fig. 5), constructed using a best fit m/n value of 507 

0.59. Non-lithology-controlled knickpoints are also reported. 508 

 509 

We have also derived a  map of the study area, which is shown in Supplementary Fig. 1. Details 510 

on the spatial distribution of this index are reported in the caption of this figure.  511 

 512 

4.5 Ksn index 513 

Ksn values tend to increase towards the southwest, i.e., from the coastline to the foothills 514 

and to the mountain range (Fig. 11). Overall, the spatial distribution of the Ksn values follows 515 

the main features of the regional-scale topography. Low values are associated with the less 516 

elevated and low relief foothills, while the highest values are associated with areas characterized 517 

by high elevation and high local relief (Figs. 6 and 7). High Ksn values in the northern part of the 518 
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study region are associated with the MR and the UMR. Between the ridges, areas with low Ksn 519 

values occur locally in correspondence of some tectonic depressions where arenaceous and 520 

Quaternary continental deposits outcrop.  521 

 522 

 523 

 524 
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Fig. 11. Spatial distribution of Ksn index. Dashed black line limits the high Ksn value area. The sectors A, B and C of Fig. 10 525 

are also reported.  526 

 527 

Considering the dependence of the Ksn on bedrock erodibility (Section 3.2), and to better 528 

investigate the relationship between the outcropping rocks and drainage properties inferred from 529 

the long-profile analyses (Section 4.2), we constructed box plots of the Ksn values as a function 530 

of lithology, using as a reference the rock groups distinguished in Fig. 4 (Fig. 12). 531 

 532 

 533 

 534 

Fig. 12. Box plots showing distribution of the Ksn value as a function of lithology. The mean of the distribution is shown by the 535 

horizontal line within the box and it is repeated as the number above the top whisker. The top and bottom of the box are the 75th 536 

and 25th percentiles and the whiskers are the 95th and 5th percentiles. 537 

 538 

By the compared box plots it appears that Ksn values respond to the lithological variability 539 

(Fig. 12). Although a net signature of each rock type is not identified, an association of the Ksn 540 

values with the lithological groups is evident. Overall, very low values are associated with the 541 

clastic deposits that outcrop in the foothills (units 2 and 3), with the lowest median value being 542 

associated with the clays and sands. Higher values characterize the mountain range units. For 543 

instance, in the entire study region, the highest Ksn values are associated with the carbonate 544 

rocks of the Maiolica and Corniola Fms. (units 8 and 9) and particularly, with the massive 545 

limestones of the Calcare Massiccio Fm. (unit 10). The marly and clayey rock-types (namely, 546 

units 5, 6 and 7) that are part of the Mesozoic-Cenozoic succession are coupled with lower Ksn 547 
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values. The Messinian arenaceous deposits (unit 4) exhibit low Ksn values that are comparable 548 

with those of the marls, marly limestone, and clays of the Schlier, Bisciaro and Cinerea. Fms. 549 

(unit 5).  550 

The map of Fig. 11 also shows that the Ksn values are affected by an along-strike variability 551 

and, particularly, increase from sector A to sector C. To analyze the pattern of the along-strike 552 

Ksn variability, we applied the box plot analysis as a function of lithology to each of the three 553 

sectors identified by the chi plot analysis (Fig. 13). The comparison of box plots constructed for 554 

sectors A, B and C indicates that, substantially, the statistical distribution of Ksn as a function of 555 

the lithological groups outcropping in the entire study area (and, particularly, the trend of the 556 

median values) is maintained in each of the sectors. In addition, the comparison between sectors 557 

A, B and C indicates that, for each rock type, the median value increases from sector A to sector 558 

C.  559 

 560 

 561 

Fig. 13. Box plots showing Ksn value as a function of lithology. Numbers on top of each box plot indicate the median value.  562 

 563 
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4.6 Spatial variation of the erodibility parameter (K) 564 

Values of the erodibility parameter (K) are reported in Tab. 1 and Fig. 14. This index has 565 

been calculated only for the drainage basins for which erosion rate estimation are reported in 566 

literature. The analysis points to a similar average Ksn value from the Marecchia River to the 567 

Chienti River (i.e., Ksn between 30 and 40), with the only exception of the Musone River that 568 

exhibits the lowermost value (Ksn value of 10.8). The Tronto River is characterized by the 569 

highest average Ksn value, this being almost double the value of rivers to the north of it. Erosion 570 

rate values range between 0.2 mm/yr (Musone R.) and 0.38 mm/yr, with the highest values in the 571 

Tronto River basin (0.6 m/yr-3). The erodibility (K) parameter exhibits similar values among all 572 

the analyzed drainage basins except for the Musone River, where it doubles the other values. 573 

 574 

Drainage 

basin 

Average 

Ksn 

(m0.18) 

Erosion 

rate 

(mm/yr) 

Error 

K 

(m1.18/yr x 

10-3) 

Error Source 

Marecchia 

River 
31.25 0.21 ± 0.03 0.00672 ± 0.00096 Guerra and Lazzari (2020) 

Metauro 

River 
39.65 0.38 ± 0.03 0.009584 ± 0.000757 Nesci et al. (2012) 

Esino  

River 
34.13 0.25 ± 0.05 0.007325 ± 0.001465 Nesci et al. (2012) 

Musone 

River 
10.8 0.2 ± 0.002 0.018519 ± 0.000185 

Wegmann and Pazzaglia 

(2009) 

Chienti River 38.44 0.35 ± 0.03 0.009105 ± 0.00078 

Wegmann and Pazzaglia 

(2009); Coltorti et al. 

(1991) 

Tronto River 60.69 0.6 ± 0.02 0.009886 ± 0.00033 Sembroni et al. (2020) 

Tab. 1. Values of the erodibility parameter (K) for some of the investigated drainage basins, 575 

 576 

 577 
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 578 

Fig. 14. Distribution of the Ksn, erosion rate and erodibility (K) among the selected drainage basins. Drainage basins 579 

are listed from north to south. 580 

 581 

5 Discussion 582 

In our study, we performed an analysis of topography and river network of the Adriatic 583 

slope of the Umbria-Marche Apennines using multiple metrics and indices. We calculated the 584 

spatial distribution of elevation and parameters of the drainage network, i.e., river steepness and 585 

 index, and compared these metrics with the outcropping rock types. Such an approach 586 

provided us with a key to unravel the tectonic vs. lithological signals and to identify areas with 587 

different behaviors in terms of vertical motions. 588 
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 589 

5.1 Lithological control on topography and drainage network features 590 

The spatial coincidence of high vs. low values of parameters such as elevation and local 591 

relief with outcrops of carbonate rocks (e.g., along the MR and the UMR) and clayey and/or 592 

arenaceous rocks (e.g., the Camerino basin; Figs. 6 and 7), respectively, is a feature that the 593 

UMAF share with other sectors of the Apennines. Like the central and southern Apennines 594 

(Ascione and Cinque, 1999; Ascione et al., 2008; Buscher et al., 2017; Lanari et al., 2023; 595 

Pazzaglia and Fisher, 2022), it appears that bedrock lithology exerts a strong control on the 596 

features of topography of the UMAF mountain range.  597 

The same is also inferred from the analysis of river long-profiles, which are well known to 598 

respond to the control exerted by lithology (e.g., Duvall et al., 2004; Pazzaglia et al., 1998; Stock 599 

and Montgomery, 1999).  The extent to which the nature of the bedrock affects the features of 600 

the drainage is inferred from the statistical analysis of the Ksn values (Fig. 12). This analysis, 601 

consistently with findings from various morphoclimatic and morphotectonic settings (Bernard et 602 

al., 2019; Clementucci et al., 2022; Seagren and Schoenbohm, 2019), indicates that such a 603 

parameter is influenced by the resistance to erosion of the bedrock. In our instance, the Ksn box-604 

plot analysis allows a net distinction between the carbonate rocks of the Maiolica, Corniola and 605 

Calcare Massiccio Fms. (units 8, 9 and 10; Fig. 12), which are all characterized by high Ksn 606 

values, and rocks composed of arenaceous and marly-clayey lithologies (unit 4; Fig. 12). 607 

Therefore, it is evident that the carbonate rocks of the Mesozoic-Paleogene Umbria-Marche 608 

succession (namely, the Maiolica, Corniola and Calcare Massiccio Fms.) respond to erosion as 609 

hard rocks relative to the softer marly-clayey portion of the same succession (namely, the 610 

Schlier, Scaglia, and Bisciaro Fms.) and the Messinian sandstones. The only exception is the 611 

very low Ksn values associated with the Calcare Massiccio (unit 10) in sector A. These low 612 

values are due to the limited areal distribution of the Calcare Massiccio that outcrops at low 613 

elevation just in some gorges carved by the Metauro river (river 6). This implies that the low Ksn 614 

values associated with the Calcare Massiccio in sector A are mainly affected by elevation and 615 

local relief rather than lithology.  616 

The coupled variations of the Ksn, elevation and relief parameters with lithology are indicative 617 

of the main role exerted by differential erosion in the formation of the landscape of the uplifting 618 

UMAF, as it has been inferred for the northern Apennines (Erlanger et al., 2021) and Crete (Ott 619 
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et al., 2019). However, the variability of bedrock lithology in the UMAF is much greater across 620 

than along the strike of the investigated region (Fig. 4). This suggests that the along-strike 621 

variation in topography and river network features may be considered as less affected by 622 

outcropping rock types.  623 

Consistently, the erodibility parameter (K) exhibits similar values from north to south 624 

despite the southward increase in the erosion rate and in the average Ksn at the basin scale (Tab. 625 

1 and Fig. 14). Therefore, the jump in Ksn values towards the south appears not merely 626 

correlated with variable bedrock types. The only exception is the Musone River basin that 627 

exhibits low Ksn value, erosion rate like the other investigated basins and the highest erodibility 628 

(Fig. 14). This feature relates to the occurrence of a bedrock mainly composed of foredeep units 629 

(Fig. 4) in contrast with the other investigated basins, which are mainly carved in the chain units. 630 

 631 

5.2 Along strike variation of uplift 632 

Elevation and its derivative parameters described in Section 4.3 all increase towards the 633 

south, with maximum values occurring in the Sibilini Mts. and the Laga Mts (Figs. 5, 6 and 7). 634 

This area corresponds with the high Ksn area shown in Fig. 11. The locus of high elevation, high 635 

relief and high Ksn values to the south of the UMAF includes both carbonate rocks (units 8, 9 636 

and 10 in Fig. 4), which culminate with the peak of Mt. Vettore, and arenaceous rocks that peak 637 

with Mt. Gorzano (unit 4 in Fig. 4). The southward increase in Ksn values is clearly imaged by 638 

the box plots in Fig. 13, which show a jump of this metric for all rock types in the southern 639 

portion of the UMAF. Noteworthy, Ksn values associated with the Messinian arenaceous units 640 

(unit 4) in sector C, besides being much higher than the correlative values in sectors A and B, 641 

approach the Ksn values of calcareous and marly units (units 5, 6, 7 and 8).  642 

This, in turn, supports the idea that lithology is not the first controlling factor in the 643 

southward increasing elevation and in the steepness of the rivers (and chi plot patterns), 644 

consistent with analyses by Lanari et al. (2023)that demonstrated that lithology alone cannot 645 

explain the remarkable differences reported along the Apennines (e.g., elevation, river steepness, 646 

etc.). Therefore, by our datasets it can be inferred that the southern portion of the study area 647 

experienced larger uplift. This agrees with the findings of Racano et al. (2024) that  recognized a 648 

southward increasing trend in rock uplift in the central Apennines, with a maximum in the area 649 

around the Sibillini Mts. 650 
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Focusing on the tectonic evolution of the UMAF (Section 2), the larger uplift recorded in the 651 

southern part of the study area bears components related to both syn-orogenic shortening and 652 

post-orogenic extension (e.g., the high elevation of Mt. Vettore peak). These two components are 653 

not easily isolated, although the distribution of horizontal displacement associated with the 654 

UMSTZ, which shows a marked maximum in the southern Marche region (~ 10 km in the Mt. 655 

Vettore area) and values not exceeding 5 km in the northern Marche region (Mazzoli et al., 656 

2005), suggests that thrusting played a major role in producing structural elevation. Therefore, 657 

the larger uplift experienced by the southern UMAF is partly inherited from pre-Quaternary 658 

times, as it is also observed in the central Apennines more to the south (Ascione et al., 2008). 659 

However, parameters of the drainage net, which is particularly sensitive to recent/active tectonic 660 

perturbations (Kirby and Whipple, 2001; Racano et al., 2021; Whittaker et al., 2008), all support 661 

the idea that the southward increase in surface uplift has continued during the Quaternary times. 662 

Collectively, parameters such as non-lithology controlled knickpoints and Ksn index and their 663 

spatial distribution, and chi-plots (Figs. 9, 10, 11 and 13), all indicate that rivers in the southern 664 

portion of the UMAF are more perturbed relative to other rivers. Within such a regional-scale 665 

trend, the stepped positions – independent from bedrock lithology - of the bottoms of the three 666 

broad paleovalleys identified in swath profile 7 (Fig. 6; Section 4.3) suggest a discrete more than 667 

gradual elevation increase towards the south. Discrete jumps in elevation occur at the boundaries 668 

between sectors (A, B, C; Fig. 10) of the UMAF that feature different drainage net metrics. 669 

Sector A is characterized by the lowest values of Ksn index (Fig. 13) and by rivers (rivers 1 to 6; 670 

Figs. 8 and 10) that feature smooth long-profiles and rectilinear chi plots (Fig. 10), which suggest 671 

that those rivers are substantially keeping pace with subdued uplift. In sector B the Ksn index is 672 

characterized by mean values and river chi-plots (rivers 7 to 10; Figs. 8 and 10) that register only 673 

some minor perturbation and are not far from keeping pace with moderate uplift. Sector C 674 

includes the high Ksn area (Figs. 11 and 13) and river chi-plots that are either overall convex 675 

upward or with convex upper reaches that pass to steep rectilinear lower reaches (Fig. 10). 676 

Considering the large sizes of the convex upward reaches, the variable nature (carbonate and 677 

arenaceous) of the bedrock that is incised, and the abundance of non-lithology controlled 678 

knickpoints, the nature of the transient signals in the rivers that dissect sector C is reasonably 679 

correlated with tectonic signals. These are not merely correlated with extensional faulting, as the 680 

across-strike size of the area subject to faster uplift encompasses the area affected by normal 681 
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faulting and extends eastwards to involve the deformed foredeep. The transformed profiles of 682 

rivers in Sector C, relative to those located more to the north in the UMAF, are generally steeper 683 

even in their straight lower reaches. Such a feature would suggest (e.g., Perron and Royden, 684 

2013) a tendency of rivers 11 to 18 to the attainment of equilibrium with uplift faster than those 685 

one affecting the area to the north of sector C., This is consistent with estimates for the Chienti 686 

and Tronto rivers basins by Sembroni et al. (2020) and Pazzaglia and Fischer (2022). 687 

Accordingly, transient signals in Fig. 10 are clustered at higher elevation ( 750 m) in sector C 688 

compared to sectors A and B. Assuming that knickpoints record the same unsteady base level fall 689 

history, the difference of elevation of transient signals in sectors A and B compared to sector C is 690 

indicative of uplift of sector C greater than uplift of sectors A and B.  691 

Overall, our results are consistent with findings of recent works (e.g., Faccenna et al., 2014; 692 

Fellin et al., 2022; Lanari et al. ,2023; Serpelloni et al., 2013; Racano et al., 2024) pointing to a 693 

southward increase of uplift. These papers interpret the uneven uplift in terms of deep 694 

geodynamic processes, without discussing the role of crustal transverse structures. Dynamic 695 

support may not have a unique topographic fingerprint and if anything, the more parsimonious 696 

explanation is that crustal structure changes significantly across NE-SW oriented zones, and it is 697 

this crustal structure and crustal processes that are a better explanation for the observed 698 

geomorphology. Our data provide new insights in the uplift pattern, being indicative of a 699 

compartmentalization of the UMAF that is consistent with the occurrence of transversal 700 

lineaments controlling differential uplift. Crucial to unravel such a behavior of the UMAF were 701 

the (i) analysis of the along-strike features of elevation (i.e., swath n. 7 of Fig. 6), (ii) mutual 702 

comparison among river network metrics, in particular chi-plot shapes and elevations of transient 703 

signals (Fig. 10), (iii) box plots and whisker plots of Ksn values as a function of lithology (Fig. 704 

13), and (iv) recognition of the net jumps of those metrics at the well-identified positions. 705 

 706 

5.3 The role of transversal structures 707 

Transversal structures are well known to occur in orogenic systems all over the world, 708 

including the Apennines (Pascucci et al., 2007). The scale of these structures varies from the 709 

common tear faults associated with individual thrust sheets and confined within thrust hanging-710 

wall blocks (Dahlstrom, 1970), to plate-scale transform faults. Within this wide range of scales, 711 

fold and thrust belts may be compartmentalized by crustal or even lithospheric structures that are 712 
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not manifested by discrete fault zones at the surface but are unraveled by geophysical data and/or 713 

geomorphological evidence. Tearing of the subducting slab and related focusing of the slab pull 714 

force could result in transversal lithospheric structures impacting fold and thrust belt geology and 715 

geomorphology (e.g., Handy et al., 2019, and references therein). This may be the case of the 716 

northern-central Apennines, where a southward increasing uplift rate has been attributed to local 717 

slab detachment beneath the central Apennines since late Pliocene/early Pleistocene times 718 

(Faccenna et al., 2014; Fellin et al., 2022). Marked along-strike variations of relief evolution 719 

could also result from delamination of the Adria lithosphere, a process recently inferred by 720 

Menichelli et al. (2023) based on seismic tomography. In this model, belt topography is 721 

dynamically sustained by mantle substitution generated during the delamination process. 722 

According to the latter authors, delamination proceeded with different retreat velocity along the 723 

mountain belt. The resulting irregular geometry could have triggered belt segmentation, 724 

producing different sectors bounded by transversal structures. 725 

The geodynamic processes discussed above may well play a role in along-strike 726 

segmentation of the northern-central Apennines. However, greater uplift in the southern sector of 727 

the UMAF, evidenced by recent literature and the analysis completed here, appears to be 728 

essentially controlled by inherited (Late Miocene to Pliocene) crustal scale shortening rather than 729 

dynamic support. The basement-involved thrust architecture of the mountain belt (Fig. 2) is fully 730 

consistent with such an interpretation. Within our study area, the boundaries among sectors (A, 731 

B, C) characterized by different active tectonic behavior, roughly coincide with major transversal 732 

faults segmenting the outer portion of the fold and thrust belt in the Marche foothills and 733 

adjacent offshore area (Fig. 1). This correlation suggests that such transversal ‘lineaments’ mark 734 

the loci of long-lived, deep-seated fault zones that exert a major control on the active tectonic 735 

behavior of large crustal blocks. The recent reactivation of inherited, transversal crustal faults in 736 

the foreland plate has been unraveled in the southern Apennines by Bitonte et al. (2021). The 737 

latter authors also documented fault propagation into the foreland basin deposits as a result of 738 

basement fault reactivation. A similar process is envisaged to have occurred also in the present 739 

study area, where pre-existing, deep-seated transversal faults of the foreland plate appear to have 740 

controlled fold and thrust belt propagation and related segmentation of the deformed Plio-741 

Pleistocene foredeep (Centamore and Nisio, 2003; Costa et al., 2021; Costa et al. 2023; 742 

Pierantoni et al., 2019). Long-term activity of such transversal faults likely involved: (i) their 743 
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development during Triassic to Early Jurassic times as extensional/oblique-slip faults within the 744 

framework of continental rifting (e.g., Tavarnelli et al., 2019); (ii) their reactivation as strike-745 

slip/oblique-slip faults compartmentalizing the fold and thrust belt during forelandward 746 

migration of shortening (Calamita et al., 1994; Calamita and Pizzi, 1994); and (iii) their 747 

reactivation as extensional/oblique-slip faults in the hinterland of the eastward migrating fold and 748 

thrust belt. Stages (ii) and (iii) above are both Neogene-Quaternary in age, extension following 749 

shortening in both space and time. The results of this study document the influence of the 750 

transversal lineaments on the drainage network and topography of the study area. 751 

The fact that the crustal sectors (A, B, C) characterized by different active tectonic 752 

behavior extend SW-ward into the axial zone of the mountain chain (i.e., also in the hanging wall 753 

of the major thrust – the UMSTZ – that defines the mountain front), further suggests that the 754 

transversal ‘lineaments’ mapped in the frontal part of the fold and thrust belt mark major crustal 755 

structures extending beneath the high mountain chain. As the latter area is presently dominated 756 

by ongoing extension, it may be envisaged that the deep-seated transversal structures interact 757 

with the active normal faults, thus segmenting the Quaternary extensional system in the axial 758 

zone of the chain. This is consistent with seismicity distribution, and with the abrupt northward 759 

truncation of the events associated with the 2016-2017 Amatrice-Visso-Norcia and the 1997 760 

Colfiorito seismic sequences (Fig. 3) along the boundary between block C and block B in Fig. 761 

10. Moreover, recent studies based on instrumental seismicity (Mazzoli et al., 2014, 2015), 762 

seismic interpretation (Costa et al., 2021) and paleoseismological evidence (Materazzi et al., 763 

2022) highlight that major transversal structures can also host moderate to significant seismic 764 

events (e.g., the Mw 6.17, 1741 Fabriano earthquake; the Mw 4.68, 1972 Ancona earthquake). 765 

The transversal structures are a likely source of these large Marche earthquakes that have no 766 

obvious correlation to emergent normal or thrust faults. 767 

 768 

6 Conclusions 769 

A morphotectonic analysis of the topography and drainage network features was applied 770 

in this study to discern the lithological and tectonic signatures on landscape evolution in the 771 

Umbria-Marche Apennines and Foothills (central Italy). Topography and river network features 772 

exhibit along-strike variations that are consistent with a southward increase of surface uplift 773 

rather than bedrock variability. Differential uplift associated with three major crustal blocks was 774 
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identified, with surface uplift reaching its maximum in the southernmost one (Sibillini Mts. – 775 

Laga Mts. area). Crucial to the detection of the UMAF uplift pattern was the identification of 776 

discrete variations in the metrics we analyzed.  777 

In the Marche foothills and Adriatic offshore, the boundaries among crustal blocks 778 

characterized by different active tectonic behavior roughly coincide with major transversal faults 779 

recently mapped by seismic interpretation. Our study indicates that the crustal blocks displaying 780 

differential surface uplift extend westward into the axial zone of the mountain chain, which is 781 

characterized by active extension and associated intense seismicity. Seismicity distribution, 782 

including the pattern of the 2016-2017 earthquake sequence, is consistent with a 783 

compartmentalization of the active extensional fault system in the axial zone of the mountain 784 

chain. Therefore, it may be envisaged that the boundaries among the three major blocks 785 

identified by morphotectonic analysis consist of long-lived, deep basement structures extending 786 

beneath the allochthonous tectonic units located in the hanging wall of the main thrust fault that 787 

controls the mountain front in the region. Such transversal basement structures interact with 788 

extensional seismogenic faults at hypocentral depths, thus playing a major role in the 789 

seismotectonic behavior of the study area. The UMAF are clearly segmented and traversed by 790 

crustal-scale faults. These faults may be seismogenic and responsible for large, deadly 791 

earthquakes that have been historically difficult to attribute to known, emergent faults. 792 

The fact that the more uplifted area extends well beyond the footwall blocks of active 793 

normal faults is consistent with the relief pattern being the result of regional tectonic processes 794 

occurring on a much larger scale with respect to footwall uplift. This large-scale pattern of relief 795 

evolution has been interpreted in terms of deep geodynamic processes affecting the segmented 796 

subducting slab (e.g., Faccenna et al., 2014; Menichelli et al., 2023). Indeed, most of the recent 797 

literature is all about dynamic support of the Apennines, with too little attention afforded to 798 

crustal-scale processes including active extension and shortening. Although the two types of 799 

‘deep’ vs. ‘shallow’ processes are not mutually exclusive, the crustal structures discussed in this 800 

study suggest that the uplift pattern of the UMAF is mostly the result of lithosphere deformation 801 

– and particularly along-strike variations of crustal shortening mostly inherited from Late 802 

Miocene to Pliocene times – rather than dynamic support. 803 

Our results, besides challenging the prevailing paradigm for recent Apennines uplift and 804 

surface strain by providing new insights into crustal-scale, along-strike segmentation of the belt 805 
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(including the axial zone and the extensional system active there), may contribute to a better 806 

understanding of the complex tectonic behavior of active mountain belts in the Mediterranean 807 

region and elsewhere. 808 
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