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Abstract  122 

Coronary artery disease (CAD) is a leading cause of death, yet its genetic determinants are not 123 

fully elucidated. We report a multi-ethnic genome-wide association study of CAD involving 124 

nearly a quarter of a million cases, incorporating the largest cohorts to date of Whites, Blacks, 125 

and Hispanics from the Million Veteran Program with existing studies including 126 

CARDIoGRAMplusC4D, UK Biobank, and Biobank Japan. We verify substantial and nearly 127 

equivalent heritability of CAD across multiple ancestral groups, discover 107 novel loci 128 

including the first nine on the X-chromosome, identify the first eight genome-wide significant 129 

loci among Blacks and Hispanics, and demonstrate that two common haplotypes are largely 130 

responsible for the risk stratification at the well-known 9p21 locus in most populations except 131 

those of African origin where both haplotypes are virtually absent. We identify 15 loci for 132 

angiographically derived burden of coronary atherosclerosis, which robustly overlap with the 133 

strongest and earliest loci reported to date for clinical CAD. Phenome-wide association 134 

analyses of novel loci and externally validated polygenic risk scores (PRS) augment signals 135 

from the insulin resistance cluster of risk factors and consequences, extend previously 136 

established pleiotropic associations of loci with traditional risk factors to include smoking and 137 

family history, and confirm a substantially reduced transferability of existing PRS to Blacks. 138 

Downstream integrative genomic analyses reinforce the critical role of endothelial, fibroblast, 139 

and smooth muscle cells within the coronary vessel wall in CAD susceptibility. Our study 140 

highlights the value of a multi-ethnic design in efficiently characterizing the genetic 141 

architecture of CAD across all human populations. 142 



Introduction 143 

Remarkable progress in the prevention and treatment of coronary artery disease (CAD) has 144 

been made over the last half century. Yet, the rate of decrease in the age-adjusted prevalence 145 

of CAD has slowed substantially in the last decade, and CAD remains the leading cause of 146 

death worldwide1. Sizeable differences in the age-adjusted fatality rates of CAD persist 147 

between men and women and among the major racial/ethnic groups in the US with non-148 

Hispanic Black men persistently demonstrating the highest risk of fatal CAD2. Although 149 

health care disparities play an important role in explaining these differences3, the degree to 150 

which genetics contribute remains unclear, in part due to limited genome-wide studies in non-151 

White populations4,5. A persistent need exists to further understand both the between-152 

population and the population-specific genetic causes of CAD as an avenue towards improved 153 

risk prediction and the development of novel therapies. 154 

Large-scale population genetic studies provide an opportunity to improve our 155 

understanding of the inherited basis of complex traits. Twin studies report a heritability of 40-156 

60% for fatal CAD6,7 and genome-wide association studies (GWAS) to date have identified 157 

208 susceptibility loci8,9. These loci explain a modest fraction (~15%) of this heritability, have 158 

largely been identified in European populations, and are exclusively autosomal8,9. 159 

Approximately one half of established loci appear to confer risk through effects on traditional 160 

risk factors8-10. A preponderance of these loci implicates lipids and blood pressure with fewer 161 

links to other risk factors8,10. Several loci discovered in Europeans have also reached genome-162 

wide significance (GWS) in South and East Asian populations suggesting an overlap in the 163 

genetic architecture of CAD across these three racial/ethnic groups9,11,12. Yet, 14 years after 164 

the discovery of the first susceptibility locus at 9p21, no region has reached GWS in Black or 165 

Hispanic populations, which represent a sizable and growing proportion of the US 166 

population13,14.  167 

New multi-ancestry DNA biobanks are poised to fulfill this knowledge gap. Here we 168 

describe results from analyses of the Million Veteran Program (MVP)15, a nationwide cohort 169 

drawn from an integrated health care system serving a diverse population including a large 170 

number of Blacks and Hispanics. Using these large-scale, multi-ethnic GWAS data meta-171 

analyzed with extant GWAS of CAD from public resources, we extend discovery of CAD loci 172 

within and across racial/ethnic groups for both the autosomes and the X-chromosome (X-chr). 173 

In addition, we incorporated data from a national registry of cardiac catheterization 174 

procedures16,17 in the discovery of novel CAD loci, to better interpret of downstream 175 

mechanism of action of established loci, and the study of polygenic risk scores.  176 

Results 177 

Racial/ethnic diversity in the MVP population 178 

Fig. 1a summarizes new and existing cohorts included in our analyses stratified by 179 

racial/ethnic groups and the analytic approach for the clinical CAD phenotype. A majority 180 

(90.8%) of veteran participants are male with 95,151 cases and 197,287 controls being 181 

classified as non-Hispanic White, hereinafter referred to as White, (73.1%), 17,202 cases and 182 

59,507 controls as non-Hispanic Blacks, hereinafter referred to as Black, (19.2%), and 6,378 183 

and 24,270 as Hispanic (7.7%) (Supplemental Table 1). A majority of cases (85.6%) showed 184 

evidence of CAD at the time of enrollment in the MVP (i.e., “prevalent”). The mean age at 185 

first evidence of CAD in the electronic health record (EHR) was 63 years with a mean 186 

combined EHR follow-up either prior to and/or after enrollment of 10 years. 187 

Equivalent heritability across multiple racial/ethnic groups 188 

We first estimated the SNP-based heritability using GREML-LDMS-I18 in equally sized 189 

subsets of Whites, Blacks with the least European admixture, and Hispanics with the least 190 



African admixture from MVP, as well as Japanese participants from Biobank Japan after 191 

matching on the age of onset and severity of disease of cases and the age of controls observed 192 

among Hispanics (Methods, Fig. 1b, Supplementary Table 2). Assuming a prevalence of 193 

CAD of 8.2%, 6.5%, 4.9%, and 6.0% in the same populations19,20, we derived roughly 194 

equivalent heritability on the liability scale of 36.3% (±7.0%), 30.0% (±8.1%), 32.6% 195 

(±3.9%), and 36.0% (±5.4%), respectively (Fig. 1c-d).  196 

GWAS followed by meta-analysis in Whites and trans-ethnic meta-analysis identifies 107 197 

novel loci   198 

We conducted a GWAS of autosomes and X-chr stratified by race/ethnicity of all MVP 199 

participants. The genomic control inflation (l) for these GWAS was 1.360 (Whites), 0.988 200 

(Blacks), and 0.986 (Hispanics). The LD score regression intercept21 for Whites was 1.077 201 

(±0.014), indicating a majority of the inflation was polygenic in nature. We found a high rate 202 

of replication of established loci as of 20198 among Whites with 100% of 163 lead SNPs 203 

being directionally concordant, 85.9% reaching nominal significance (p<0.05), and 36 204 

(22.1%) reaching genome-wide significance (GWS). Effect sizes were also highly correlated 205 

(Pearson rho=0.94) (Supplementary Tables 3).  206 

The GWAS of MVP Whites was followed by a meta-analysis with existing 207 

predominantly European-ancestry GWAS from CARDIoGRAMplusC4D22 and the UK 208 

Biobank8 yielding 37 novel loci at GWS (lead SNP P<5´10-8), including five on the X-chr 209 

(Fig. 2, Supplementary Table 4). Our trans-ethnic meta-analysis further incorporated the 210 

GWAS data in MVP Blacks and MVP Hispanics as well as GWAS in the Biobank Japan23, 211 

yielding an additional 66 novel autosomal loci and four more novel loci on the X-chr (Fig. 2, 212 

Supplementary Table 5).  213 

Trans-ethnic mapping and two-stage joint meta-analysis identifies the first CAD loci in Black 214 

and Hispanic populations   215 

Our GWAS of MVP Blacks and Hispanics did not yield any GWS loci passing quality control 216 

within either population in isolation. However, XPEB24, an empirical Bayes mapping 217 

approach that adaptively incorporates trans-ethnic evidence with an ‘auxiliary base GWAS’ 218 

(CAD meta-analysis in Whites), identified 37 SNPs at 16 loci in MVP Blacks and 157 SNPs 219 

at 38 loci in MVP Hispanics with a local False Discovery Rate (FDR) < 0.05 220 

(Supplementary Table 6). All but one of the loci identified by XPEB were GWS in the base 221 

GWAS (meta-analysis in Whites).  222 

We then extended our GWAS analysis of MVP Blacks and MVP Hispanics to include 223 

additional data from multiple external cohorts for the most promising variants from our 224 

GWAS (P<1´10-5) as well as all SNPs identified by XPEB (Supplementary Text, Tables 6-225 

12). A two-stage joint meta-analysis of all promising SNPs yielded the first five GWS loci in 226 

Blacks and the first three in Hispanics (Fig. 2a, Supplementary Table 11), all of which have 227 

been previously established in Whites13. Three out of five loci in Blacks (LPA, FGD5, and 228 

LPL) included GWS signals generated by low-frequency African specific genetic variation 229 

(Supplementary Fig. 1). The SNPs identified through XPEB and trans-ethnic evidence 230 

include loci with more moderate allelic effects; therefore, a priori, we do not expect all of 231 

them to reach GWS in the much smaller two-stage meta-analysis of Blacks and Hispanics. 232 

However, this group of SNPs exhibits significantly higher proportion of directional 233 

consistency and correlation of effect sizes between the MVP discovery cohort and the external 234 

cohorts, for both Blacks (13 out 15 loci with available data in external cohorts were 235 

directionally consistent, binomial P=0.0032, Pearson’s rho=0.82) and Hispanics (33 out of 36 236 

loci directionally consistent, P=1.1´10-7, rho=0.80).  237 



GWAS of angiographically determined degree of CAD identifies 15 genome-wide significant 238 

loci  239 

We conducted the largest GWAS to date of angiographically determined burden of coronary 240 

atherosclerosis, defined by number of significantly obstructed coronary arteries, in an analysis 241 

of 41,507 MVP participants (Methods, Supplementary Tables 13-14). A total of 15 loci 242 

reached GWS in the trans-ethnic meta-analysis of which 12 also reached GWS in Whites 243 

alone and 1 (LPL) in Blacks alone (Fig. 2b, Supplementary Table 15). All 15 loci have been 244 

previously reported for clinical CAD, and eight (CDKN2-AS, SORT1, CXCL12, WDR12, 245 

PHACTR1, LDLR, KCNE2, ADAMTS7) were among the 12 earliest loci associated with 246 

clinical CAD by GWAS and all but TGFB1 were identified prior to 201313.  247 

Local ancestry and haplotype analysis reveals a protective haplotype at the 9p21 susceptibility 248 

locus that is virtually absent among chromosomes of African descent  249 

The well-established susceptibility locus at 9p21 did not reach GWS among Blacks nor 250 

among Hispanics even after two-stage meta-analysis involving >27,000 and >12,100 CAD 251 

cases, respectively. We explored whether the ancestral origin of the high-risk haplotype block 252 

at 9p21 among Blacks influences the observed magnitude of association with CAD 253 

(Methods). Using RFMix25, we stratified MVP Blacks into three subgroups based on whether 254 

they had inherited two (Black_AFR = +/+, 66.8%), one (Black_AFR = +/-, 29.6%), or zero 255 

(Black_AFR = -/-, 3.6%) chromosomal 9p21 segments from African (AFR) ancestry when 256 

compared to European (EUR) ancestry through admixture (Supplementary Fig. 2a). Only the 257 

first two of these three  subgroups had adequate power to detect an association at 9p21. 258 

Between these two, we found notably stronger associations with CAD among Blacks with one 259 

AFR segment (Black_AFR = +/-, lowest P=6.4´10-7) despite a sample size of less than one 260 

half of Blacks with two AFR segments (Black_AFR = +/+, lowest P=1´10-3) 261 

(Supplementary Fig. 2b, Supplementary Table 16). Haplotype analysis at 9p21 (Methods) 262 

revealed a largely non-overlapping set of haplotypes when comparing Whites to Blacks with 263 

zero 9p21 segments derived from EUR (Fig. 3a, Supplementary Table 17). Two haplotypes 264 

(AACATT, GGTTCA) account for a large majority (87%) of observed haplotypes among 265 

Whites but these same two haplotypes are virtually absent (<0.5%) among the majority of 266 

Blacks with no EUR admixture at 9p21. Our haplotype trend regression analysis suggests the 267 

second most common haplotype (GGTTCA) is associated with an increased risk for CAD 268 

when compared to the most common haplotype among Whites (AACATT) and these two 269 

haplotypes are largely responsible for the risk-stratifying potential of this locus within this 270 

group (Fig. 3b-c, Supplementary Table 17). Analyses of the frequency of the same 271 

haplotypes in the 1000G populations suggest that these 2 haplotypes likely provide a majority 272 

of the risk-stratifying potential in all but West African populations where both haplotypes are 273 

virtually absent (Supplementary Table 18). Supporting these observations, we found that a 274 

single SNP (rs1333050) reaches GWS among Hispanics when GWAS analysis is restricted to 275 

the subgroup of Hispanics with no AFR admixture at 9p21 despite a very substantial 276 

reduction in sample size (Supplementary Table 19). 277 

Pleiotropy assessment of novel loci strengthens and extends links to traditional risk factors   278 

We explored the potential mechanisms of action of our novel loci by performing an extended 279 

phenome-wide association study (PheWAS)26,27 in MVP of all 107 lead novel SNPs 280 

(Methods). All but five (95%) of these SNPs were associated with one or more non-CAD 281 

phenotypes at an FDR<0.05. A total of 62 (57%) were associated with ≥ 1 traditional risk 282 

factor (TRF) for CAD, defined by blood lipid levels/hyperlipidemia (38 loci), blood 283 

pressure/hypertension (26 loci), diabetes mellitus (16 loci), body mass index/obesity (14 loci), 284 

and/or smoking/tobacco use disorder (eight loci) (Fig. 4, Supplementary Table 20-22). Of 285 

these 62 loci, 33 (53% of TRF loci, 31% overall) were also associated with one or more TRFs 286 

even after excluding CAD cases. The five most pleiotropic loci (TCF7L2, FTO, PNPLA3, 287 



CDK12, and TDGF1P3) were linked to a range of 135 to 353 phenotypes while six additional 288 

loci (BPTF, DSTYK, NPC1, IL1F10, SETDB1 and WWP2) were associated with >50 289 

phenotypes. Of these 11 highly pleiotropic loci, five (FTO, IL1F10, PNPLA3, TCF7L2, 290 

TDGF1P3) were linked to a family history of the same dominant TRF even among MVP 291 

participants without CAD. Other phenotypes found to associate frequently with our novel loci 292 

included white blood cell related counts (26 loci), cancer (21 loci), renal function (17 loci), 293 

platelets (16 loci) and height (14 loci). 294 

Gene and pathway-based association analyses highlight importance of cell cycle, replication, 295 

and growth gene-sets as well as endothelial, fibroblast, and smooth muscle cells within the 296 

coronary artery in the pathogenesis of CAD 297 

Almost all genes implicated by four gene-based analyses (Methods) fell within or very near 298 

previously or our newly implicated loci that have reached GWS (Supplementary Tables 23-299 

25). Comparing the DEPICT28 analyses before and after the addition of MVP GWAS of 300 

Whites, we found a large majority (95.6%) of the 19,460 genes tested were not implicated in 301 

either analyses. Among the 437 genes at FDR<0.05 in the previously published analysis8, 302 

73% had a similar or lower FDR after the addition of MVP data while the remainder had a 303 

higher FDR or were no longer implicated. Adding MVP data also implicated 189 new genes 304 

at FDR<0.05. While the probability of a gene being implicated within a tissue relevant to 305 

CAD in our predicted gene expression analyses (MetaXcan29) increased in tandem with the 306 

fraction of the remaining three algorithms that implicated the gene, the proportion was still 307 

very low with only 9.3% of the 321 genes implicated by DEPICT, MAGMA30-32, and RSS-308 

E33 also being implicated by MetaXcan. 309 

Gene-set enrichment analyses using MAGMA, RSS-E and DEPICT highlight the 310 

involvement of many of the same pathways identified through similar analyses in previous 311 

large-scale GWAS of CAD (Supplementary tables 26-28). A sizable fraction of the most 312 

significant curated gene-sets tested by MAGMA, RSS-E, as well as the protein-protein 313 

interaction subnetworks tested by DEPICT involve basic cellular processes/gene networks 314 

responsible for cell cycle, division/replication, and growth. For at least some of these gene-315 

sets/networks, the ‘hub gene’ includes a gene mapped to either one of our novel loci (e.g., 316 

CDKN1A) or within previously established loci (e.g., TCF21).  317 

We implemented MAGMA and DEPICT to prioritize cells and systems/tissues based 318 

on our GWAS meta-analysis of Whites (Methods, Fig. 5, Supplementary Tables 29-32). 319 

MAGMA identified 15 of 54 (27%) GTEx tissues, 95 of 729 (13%) Mouse Atlas cell types, 320 

27 of 119 (22%) Tubula Muris FACS, and 19 out of 75 (25%) Tubula Muris Droplet cells as 321 

enriched in the expression of genes associated with CAD. A total of 35 out of 209 tissues/cell 322 

types reached an FDR<0.05 in DEPICT. MAGMA gene property analyses of a wide range of 323 

single-cell RNA datasets from mice as well as a more restricted set of cell types in humans 324 

highlight the relevance of the endothelial, stromal/fibroblast, and smooth muscle cells in the 325 

pathogenesis of CAD (Fig. 5a-b) with DEPICT reinforcing these findings and further 326 

delivering strong signals for hepatocytes and adipocytes (Fig 5d). The most significant 327 

system/tissue for both algorithms involved arteries, with MAGMA producing a top signal 328 

specifically for the ‘coronary artery’, a tissue almost exclusively made up of endothelial, 329 

stromal/fibroblast, and smooth muscle cells (Fig. 5c, f). In DEPICT, these findings were 330 

supported by significant associations in related vasculature (e.g., veins, portal system). 331 

Additional tissues prioritized across both algorithms included: i. components of the female 332 

reproductive system rich in smooth muscles (e.g., uterus, cervix, and the fallopian tube) with 333 

DEPICT implicating the myometrium specifically, ii. the esophagus and the sigmoid colon 334 

(MAGMA) as well as other components of the upper GI track including the liver and the 335 

pancreas (DEPICT), iii. the steroidogenic endocrine tissues of the ovary (MAGMA) and the 336 

adrenal cortex (DEPICT), iv. the lung, v. the bladder, and vi. multiple sources and types of 337 

adipose tissue (DEPICT). Findings unique to DEPICT include a signal involving the ‘aortic 338 



valve’ second only to ‘arteries’ in strength, the spleen, and a cluster of four signals involving 339 

joint related tissues.  340 

Externally validated polygenic risk scores associate with CAD and burden of coronary 341 

atherosclerosis, but show variable degradation of performance across racial/ethnic groups  342 

Four externally derived polygenic risk scores (PRS) of CAD (Methods) predicted clinical 343 

CAD status in all racial/ethnic groups (Fig. 6a, Supplementary Tables 33-34). The LDPred34 344 

and MetaGRS35 PRSs generated the highest odds ratios (ORs) per standard deviation (SD) 345 

increase of PRS with differences between the four scores least evident among Blacks. ORs 346 

were higher among the subset of cases with EHR evidence of myocardial infarction and/or a 347 

revascularization procedure and subjects with an age of onset of CAD below the median. The 348 

former subgroup also allowed for a direct comparison of the performance of the LDPred and 349 

the MetaGRS PRS to that observed in the validation cohorts in the UK Biobank Whites. 350 

Based on the ratio of the log ORs, this comparison demonstrated a relative efficiency of the 351 

PRS of 75% to 80% when transferred to MVP Whites and as low as ~30-35% when 352 

transferred to Blacks consistent with prior studies35,36. ORs were notably lower among the 353 

subset of cases with first evidence of CAD after enrollment in MVP (i.e., incident cases) as 354 

compared to cases with first even prior to enrollment (i.e., prevalent), a finding that is also 355 

consistent with prior studies35,36. The four PRSs were also near linearly associated with 356 

burden of CAD among Whites with a similar ranking of performance to that observed for 357 

clinical events (Fig. 6b). Overall, we found the MetaGRS slightly but consistently 358 

outperformed LDPred PRS on the basis of the point estimate of the OR with the most notable 359 

difference between the two observed among Hispanics.  360 

Phenome-wide association study of PRS among controls in MVP extends links between 361 

polygenic risk scores and risk factors of CAD to all risk factors including smoking and family 362 

history  363 

We explored factors through which a PRS mediates susceptibility to CAD by conducting a 364 

PheWAS of the MetaGRS among MVP participants. To minimize ascertainment bias of risk 365 

factors, the PheWAS was restricted to MVP White controls with further exclusion of subjects 366 

with evidence of peripheral arterial disease (PAD) or ischemic stroke (IS). After excluding 367 

only subjects with CAD, we found evidence that a higher PRS of CAD was associated with a 368 

higher risk of non-coronary related atherosclerosis complications (stroke, PAD, abdominal 369 

aneurysm, erectile dysfunction) and all TRFs (Supplementary Tables 35). When further 370 

excluding subjects with PAD or IS, associations with all TRFs were sustained (Fig. 6c, 371 

Supplementary Tables 36). In addition to ‘tobacco use disorder’, we found evidence of a 372 

more widespread predisposition to substance abuse. Extending the PheWAS to self-reported 373 

family history revealed not only an association with a family history of CAD but also with a 374 

family history of high cholesterol, hypertension, and diabetes. Extending the PheWAS to 375 

physical exam measures and laboratory measurements not only reinforce our Phecode 376 

findings through robust associations with analogous quantitative traits but also linked the PRS 377 

to renal function. Additional non-TRF associations included three lab indices derived from a 378 

complete blood count and several other commonly measured chemistries as well as 379 

hypothyroidism, viral hepatitis C, multiple common disorders of the eyes (cataract, glaucoma, 380 

blindness/low vision), and shorter height. 381 

Discussion 382 

We report the largest multi-ethnic GWAS for CAD to date incorporating nearly a quarter of a 383 

million cases from four racial/ethnic groups. We increase the total number of GWS loci for 384 

CAD by ~50% to 315 through the identification of 107 novel loci including nine X-385 

chromosome loci. Our analysis in large numbers of participants from multiple racial/ethnic 386 

groups provides several important insights on the genetic architecture of CAD.  387 



First, we document a largely equivalent degree of heritability of CAD across multiple 388 

ancestries using a uniform and unbiased approach of estimation among unrelated individuals. 389 

Our results suggest the balance between genetic and environmental determinants of CAD is 390 

equivalent across all major racial/ethnic groups in developed countries such as the US and 391 

Japan. Our absolute estimates of heritability are somewhat lower than the range previously 392 

reported in twin studies for fatal CAD6,7, but the remaining heritability may be captured 393 

through future large-scale whole genome sequencing association studies of more severe 394 

disease37.  395 

Second, the CAD susceptibility loci of populations with a high proportion of either 396 

African and/or Native American ancestry are likely to overlap substantially with those 397 

identified to date in other populations, as the first eight loci reaching GWS in our African and 398 

Hispanic American populations have all been previously identified among the initial GWAS 399 

involving White, South Asian, and/or East Asian populations. Further supporting the presence 400 

of such overlap is the number of established loci implicated by XPEB and the degree of 401 

replication/correlation observed for these loci in our external Stage-2 Black and Hispanic 402 

cohorts. As these cohorts expand in size, many of the XPEB loci may reach GWS.  403 

Third, GWAS in admixed populations may be leveraged to better understand the 404 

source of heterogeneity of effects across racial/ethnic groups at some CAD loci. We show this 405 

for the widely replicated susceptibility locus at 9p2138. The high-risk region harbors a 50kb 406 

haplotype block containing many common SNPs with allele frequencies near 50% in 407 

Whites39. Common SNPs in the same haplotype block are GWS in South and East Asians11,12 408 

but not in Blacks or Hispanics. Taking advantage of the admixture among our Black and 409 

Hispanic populations, we provide compelling evidence for the presence of a protective 410 

haplotype at this locus which is common in all but African descent chromosomes where it is 411 

virtually absent. Further, the presence of an association signal among Blacks and Hispanics at 412 

9p21 is dependent on the inheritance of non-African haplotypes in the region. Thus, the 9p21 413 

locus is unlikely to ever serve as a key risk stratifying locus among populations with a high 414 

proportion of African ancestry at this locus, in stark contrast to its prominent risk-stratifying 415 

role in all other ancestral populations. As the number of CAD loci reaching GWS grows over 416 

time in admixed populations, similar approaches may be useful to gain insight on causal 417 

haplotypes and heterogeneity of effects across major racial/ethnic groups. 418 

The degree to which genetic variation underlies sex differences in the incidence of 419 

CAD remains unclear. Initial GWAS of CAD did not detect sex differences in the magnitude 420 

of effects of autosomal susceptibility loci between men and women40 but more recent GWAS 421 

of adiposity-related traits such as waist-to-hip ratio as well as a study examining a PRS of 422 

CAD in the UK biobank have identified compelling sex differences41,42. While gonadal 423 

hormones undoubtedly serve as a major determinant of sex-differences in obesity and related 424 

traits, the X-chr may further contribute to sex differences in the rates of CAD through dosage 425 

effects on adiposity, lipid level and inflammation-related traits43. Determining the 426 

contribution, if any, of the novel and X-chr loci to sex-differences in the rates of CAD will 427 

require the study of additional very large populations of females with CAD. 428 

Our GWAS of angiographically derived burden of coronary atherosclerosis did not 429 

identify novel CAD loci. Larger sample sizes may prove more fruitful, and our current results 430 

suggest that a large fraction of the initial loci uncovered for CAD increase risk of clinical 431 

disease by promoting coronary plaque rather than predisposing to plaque rupture or 432 

thrombosis. That hypothesis is consistent with prior reports examining the relationship 433 

between early GWAS loci for CAD and subclinical coronary atherosclerosis44.  434 

 PheWAS for our 107 lead novel SNPs continue to suggest that about one half of CAD 435 

loci influence risk through risk factors8-10. We note a more prominent role of highly 436 

pleiotropic loci operating through the obesity, insulin resistance, and diabetes risk axis among 437 

our novel loci including the top GWAS signals for obesity (FTO)45, diabetes (TCF7L2)46, and 438 



non-alcoholic fatty liver disease (PNPLA3)47, as well as the previously known lipid loci 439 

TDGF1P3 and NPC1 which are also associated with metabolic indices48,49. Furthermore, we 440 

note the appearance of loci associated with smoking status. These findings for single novel 441 

SNPs were consistent with our PheWAS of the externally derived MetaGRS35 which now 442 

provides evidence that a genome-wide PRS for CAD incorporates a strong readout for 443 

predisposition to every well-established TRF including a family history of not only CAD but 444 

also risk factors for CAD. 445 

Our gene-based association analyses expand on prior efforts to identify the most likely 446 

causal gene within a susceptibility locus. Despite substantially larger sample sizes and an 447 

improvement in analytic methods, it remains a challenge to unambiguously identify a causal 448 

gene within susceptibility loci. Our results highlight the need for integrative and orthogonal 449 

genomic methods to reliably identify the most likely causal gene and its putative mechanism 450 

within specific tissues50. 451 

Our gene-set enrichment analyses continue to highlight well-established relevant 452 

biology in CAD such as lipoprotein metabolism/transport, vessel wall 453 

development/structure/remodeling, cellular migration/interactions with the extra-cellular 454 

matrix, and bleeding/coagulation. The results also point to an enrichment of pathways related 455 

to basic cellular processes/gene networks responsible for cell cycle, division/replication, and 456 

growth. This observation is buttressed by our PheWAS findings which link nearly ~1/3 of the 457 

107 novel loci to either a cancer or to height, traits directly relevant to these basic cellular 458 

processes. Intriguingly, others have recently documented the genetic basis of longstanding 459 

epidemiologic correlations between height, CAD, and cancer51,52. We suspect that these links 460 

reflect the prominence of these processes in tissues and cell types most relevant to CAD such 461 

as the de-differentiation, proliferation, and migration of vascular smooth muscle cells, 462 

fibroblasts, and fibromyocytes within the vascular wall in response to the development of 463 

coronary atherosclerosis50,53,54.  464 

Cell types prioritized for CAD include endothelial cells, fibroblasts, smooth muscle 465 

cells, hepatocytes, and adipocytes using two independent analytic algorithms. The first three 466 

comprise the vast majority of the cells in the normal vasculature55 consistent with top tissue 467 

signals observed for these tissues as well as the vessel rich lung. Strong signals involving the 468 

aortic valve, joints, joint capsule, synovial membrane, and cartilage may reflect shared gene 469 

networks expressed in these subtypes of connective tissue55. The aortic valve is not only 470 

primarily made up of fibroblast-like interstitial cells, but also enveloped by a single layer of 471 

endothelial cells55. Signals involving the female reproductive tract, the GI tract, and the 472 

bladder may reflect the smooth muscle cell make up in these tissues55 with signals in the 473 

pancreas and the small intestine possibly further amplified by the key role these tissues play in 474 

the digestion and absorption of dietary lipids and cholesterol56. Lastly, strong signals in the 475 

liver, adrenal gland, and serum likely reflect the dominance of cholesterol-related gene 476 

networks within these tissues.   477 

Our testing of externally derived PRSs of CAD in multi-ethnic MVP participants 478 

confirms previously observed patterns with greater precision and some additional insights. 479 

First, genome-wide PRSs of CAD substantially outperform genetic risk scores restricted to 480 

genome-wide significant loci. Second, higher ORs are observed for prevalent vs. incident, 481 

younger vs. older onset, and more severe (e.g., acute myocardial infarction and/or 482 

revascularization procedure) vs. less severe manifestations of CAD. These patterns likely 483 

reflect a higher average burden of CAD in one subgroup of cases when compared to the other 484 

with a proportional increase in the mean PRS for that subgroup. This hypothesis is supported 485 

by the strong linear relationship we observed between the same PRSs and the number of 486 

obstructed coronary arteries, a proxy for burden. Third, we observe a reduction in predictive 487 

performance of PRSs derived and validated externally among largely European participants 488 

when these scores are transferred to MVP. The reduction in performance is most evident 489 



among MVP Blacks but is also observed to a smaller degree among MVP Whites and 490 

Hispanics, consistent with previous validation reports in smaller multi-ethnic EHR 491 

cohorts36,57. Overall, our results underscore the need to develop data and/or methods that 492 

eradicate such differences in performance to minimize the potential for exacerbating existing 493 

health disparities as PRSs are implemented into clinical practice5. 494 

In conclusion, our large-scale multi-ethnic GWAS provides important new insights 495 

into the genetic basis of CAD. We confirm similar heritability across multiple racial/ethnic 496 

groups, substantially extend discovery particularly through the addition of non-White 497 

populations, compare and contrast the genetic determinants of disease between admixed and 498 

non-admixed groups, and strengthen genetic links between established risk factors and CAD. 499 

This progress brings us closer to precision medicine approaches for CAD across the diversity 500 

spectrum, but follow-up studies are needed to improve the transferability of PRS for CAD, to 501 

identify and understand mechanisms of causal genes, and to develop trans-ethnic and 502 

racial/ethnic-specific novel therapies based on this understanding.  503 

Online Methods 504 

Design 505 

The design of the MVP has been previously described15. Briefly, active users of the Veterans 506 

Health Administration (VA) of any age have been recruited from more than 60 VA Medical 507 

Centers nationwide since 2011 with current enrollment at >800,000. Informed consent is 508 

obtained from all participants to provide blood for genomic analysis and access to their full 509 

EHR within the VA prior to and after enrollment including inpatient International 510 

Classification of Diseases (ICD9/10) diagnosis codes, Current Procedural Terminology (CPT) 511 

codes, clinical laboratory measurements, and reports of diagnostic imaging modalities. The 512 

EHR is continuously being integrated with MVP genomic data and access to these linked 513 

coded data is provided to approved investigators. All participants are also asked to optionally 514 

complete two short surveys, the Baseline and Lifestyle questionnaires, designed to augment 515 

data contained in the EHR. The study received ethical and study protocol approval from the 516 

VA Central Institutional Review Board. 517 

Genetic Data and Quality Control  518 

We genotyped 468,961 multi-ethnic participants who enrolled in MVP between 2011 and 519 

2017 with a customized Affymetrix Axiom array in two batches. The first batch including 520 

359,964 unique samples and the second batch including 108,997 unique samples. Quality 521 

control (QC) is extensively described elsewhere58. We initially imputed to the 1000 Genomes 522 

phase 3 version 5 reference panel (1000G)59 in each batch of genotyped data separately using 523 

EAGLE v2.360  and Minimac361 before joint imputation was performed in the two batches 524 

combined using EAGLE v2.4 and Minimac4. Prior to imputation, variants that were poorly 525 

called (genotype missingness > 5%) or that deviated from their expected allele frequency 526 

observed in the reference data (1000G) were excluded. Genotyped SNPs were interpolated 527 

into the imputation file.  528 

Assignment of Racial/Ethnic Groups  529 

We assigned racial/ethnic group to participants using HARE62, an algorithm that integrates 530 

genetically inferred ancestry with self-identified race/ethnicity. HARE assigned >98% of 531 

participants with genotype data to one of four non-overlapping groups: non-Hispanic Whites 532 

(Europeans), non-Hispanic Blacks (Africans), Hispanics, and non-Hispanic Asians. The 533 

sample size of Non-Hispanic Asians was too small for discovery and was excluded from 534 

further analyses62.  535 



Additional Quality Control for X-chromosome 536 

We implemented additional QC steps for analyses involving the X-chr to minimize risk of 537 

false positive associations due to sex-specific genotype calling errors. First, we excluded 538 

subjects with suspected XXY (n = 350) and XYY (n = 850) karyotypes based on an analysis 539 

of the median logR ratios of nonPAR X and Y chromosome SNP intensities. Second, we 540 

quarantined 6,707 out of 17,809 genotyped X-chr SNPs that met one or more of the following 541 

criteria: i. out of Hardy-Weinberg equilibrium among females (P<1´10-6); ii. demonstrated 542 

differential missingness between cases and controls and/or between males and females 543 

(P<1´10-6); iii. demonstrated differential minor allele frequencies between males and females 544 

(P<1´10-6); iv. high homology to another chromosome (mostly for the Y-chr within the 545 

pseudo-autosomal 3 region). Lastly, we phase and re-imputed the X-chr across all genotyped 546 

subjects combined using only the remaining 11,102 SNPs before proceeding with association 547 

analyses.  548 

Phenotype  549 

Clinical CAD 550 

We used inpatient and outpatient ICD diagnostic and CPT procedure codes to identify 551 

subjects with clinical CAD in MVP. EHR data was available retrospectively before 552 

enrollment going back to October 1999 and prospectively after enrollment until mid-August 553 

2018. An individual was classified as a case if he or she had: 1) any admission to a VA 554 

hospital with a discharge diagnosis of acute myocardial infarction (AMI) or 2) any procedure 555 

code for revascularization of the coronary arteries, or 3) two or more ICD codes for CAD 556 

(410 to 414) in at least two different encounters. Individuals with only one ICD code for CAD 557 

in a single encounter and no discharge diagnoses for AMI or revascularization procedures 558 

were excluded from the analyses. The remaining subjects were classified as controls.  559 

 We accessed individual level genetic and phenotypic data for the UK Biobank and 560 

implemented the same case-control definitions for clinical CAD used by others8 to conduct 561 

association analyses involving the X-chr.  562 

Angiographic burden of CAD based on number of obstructed vessels 563 

We linked MVP participants to the Veterans Affairs Clinical Assessment, Reporting, and 564 

Tracking (CART) Program, a national quality and safety organization for invasive cardiac 565 

procedures, to reliably estimate the burden of atherosclerosis among participants who had 566 

undergone at least 1 coronary angiogram by October 201816. Data were available 567 

retrospectively starting in 2004 in select sites and from all sites by 201017. A total of 31,658 568 

non-Hispanic White, 7,313 non-Hispanic Black, and 2,536 Hispanic participants, a majority 569 

of which were subjects with clinical CAD, were found to have at least one evaluation of the 570 

degree of angiographically defined coronary atherosclerosis. For each angiogram, we 571 

classified an individual’s extent of disease to one of the following categories of disease of the 572 

native vessels: normal, non-obstructive, 1 vessel, 2 vessel, 3 vessel and/or left main coronary 573 

artery disease. Obstructive disease of a native vessel was defined as the presence of at least 574 

one lesion >50% or a prior revascularization procedure involving that vessel. Non-obstructive 575 

disease of a native vessel was defined as a vessel with at least one stenosis >20% of luminal 576 

diameter but no lesion >50%. We modified a previously validated algorithm to derive these 577 

classifications by decreasing the threshold of significant disease in a vessel from at least one 578 

lesion >70% to one lesion >50%63. Entries were filtered to remove those where disease 579 

severity was missing or listed as “other”, then subjects were removed if they were missing a 580 

HARE assignment, date of birth, sex, or had previously received a cardiac transplant. For 581 

subjects with multiple angiograms over follow up where at least one reported disease, we 582 

assigned severity based on the procedure reporting the most advanced disease. If more than 583 

one angiogram reported the same advanced disease, we used the earliest one. Age was 584 



calculated on the date of the cardiac catheterization with the most severe disease for cases and 585 

the last normal angiogram for controls. 586 

Statistical Analysis 587 

Genetic Relatedness 588 

We used KING, version 2.0, to identify 20,881 related participants at a 3rd degree or closer58. 589 

Among these individuals, we preferentially retained 5,289 unrelated cases and 4,909 unrelated 590 

non-cases in analyses and excluded the remaining individuals (1,023 cases and 9,601 non-591 

cases). 592 

Analyses of heritability across racial/ethnic groups 593 

We used GREML-LDMS-I as implemented in Genome-wide Complex Trait Analysis 594 

(GCTA) 1.93.0beta to estimate the multicomponent narrow sense heritability of CAD in our 595 

three HARE-define MVP groups and in the Biobank Japan dataset18. GREML-LDMS-I 596 

method was adopted because it has been shown to be one of most accurate methods of 597 

estimation of heritability when considering common factors that may bias such estimates64. 598 

To minimize the confounding effects of admixture, we ran heritability analyses in minimally 599 

admixed subsets of individuals in each of the HARE groups identified through PCA of MVP 600 

data with the 1000G data and selection of White, Black, and Hispanic subjects clustering most 601 

closely with the 1000G European, African and Peruvian populations, respectively. Restricted 602 

by computing memory requirements, we next selected a random subset of 19,400 subjects 603 

from our smallest group of least-admixed Hispanics to run through GREML-LDMS after first 604 

implementing additional stringent QC of SNPs for binary traits65,66. To minimize the influence 605 

of differences in the severity of the cases and the age of controls between racial/ethnic groups 606 

on the estimates of heritability, we then selected an approximately equal number of MVP 607 

Blacks, MVP Whites, and Japanese from Biobank Japan matched to the Hispanic group on 608 

the case-control status, EHR-based estimated age of onset of CAD, the type of case 609 

(MI/revascularization versus other), and the age of controls. These sample sizes provided us 610 

with >80% power to detect a heritability of at least 7% on the liability scale and 100% of at 611 

least 11% assuming a prevalence of disease of 8%67. We then ran heritability analyses in each 612 

group after applying identical QC procedures. First, SNP dosages were converted to hard-call 613 

genotypes, and SNPs that were multi-allelic, had MAC < 3, or genotyping call-rate < 95% 614 

were removed. Since CAD case status is a binary trait, SNPs with p < 0.05 for Hardy-615 

Weinberg equilibrium or differential missingness in cases vs controls were also removed. LD 616 

scores were computed on each autosome using GCTA default settings with an r2 cutoff of 617 

0.01, and the genome-wide LD score distribution was used to assign SNPs to 1 of 4 LD 618 

quartile groups, where groups 1-4 represented SNPs with progressively higher LD scores. 619 

Within each LD group, SNPs were further stratified into 6 MAF bins ([0.001, 0.01], [0.01, 620 

0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]) and a genetic relatedness matrix (GRM) was 621 

constructed from each bin, ultimately creating 24 GRMs. Finally, GCTA --reml was used to 622 

fit a model of CAD case status based on the 24 GRMs, with age and sex as covariates. Total 623 

observed heritability estimates were transformed to estimate disease liability49 across a range 624 

of presumed CAD prevalence estimates in the general population. 625 

Genome-wide association study in MVP 626 

We performed a GWAS of autosomes for clinical CAD and for coronary angiographic burden 627 

of disease within each of the three ethnic groups using logistic and linear regression, 628 

respectively, implemented in PLINK 2.0 alpha. Models assumed an additive genetic effect 629 

adjusted for sex and the respective first 10 ancestry-specific principal components (PCs). For 630 

burden of disease, we further adjusted models for age at the time of angiography. Association 631 

tests were performed within each HARE group and across 2 tranches of MVP genotyped data. 632 

Thus, six GWAS were performed for each phenotype. Each set of results was filtered 633 



separately using PLINK and EasyQC which removed SNPs with i. racial/ethnic specific 634 

imputation r2 < 0.4, ii. invalid OR, p-value and/or SE; iii. multi-allelic SNPs, and iv. SNPs 635 

with minor allele count (MAC) <6. METAL68 (classical standard error approach) was then 636 

used to apply a genomic control to each input dataset and meta-analyze GWAS results across 637 

genotype releases within each HARE group. For Whites, we also ran METAL with genomic 638 

control turned off to create a dataset suitable for LD score regression21.  639 

X-chr association testing in MVP for both phenotypes was conducted stratified by sex 640 

in addition to HARE group. We implemented a standard logistic regression model assuming 641 

presence of X-chr inactivation (males coded as 0/2, females as 0/1/2). In the UK Biobank, X-642 

chr analyses were restricted to unrelated subjects of White/European descent (34,541 CAD 643 

cases and 261,984 controls).  644 

Meta-analysis with external datasets  645 

We used METAL to conduct 2 fixed-effect meta-analyses for the clinical CAD phenotype12. 646 

The first involved the MVP Whites with the CARDIoGRAMplusC4D 1000G study2 and the 647 

UK Biobank CAD study3 and the second further incorporated the MVP Blacks, MVP 648 

Hispanics, and Biobank Japan23. Genomic control was applied to each input dataset by 649 

METAL. This second trans-ethnic meta-analysis was also performed using MR-MEGA13. 650 

METAL and MR-MEGA were also used to conduct a trans-ethnic meta-analysis of the CART 651 

derived burden of CAD. For the X-chr, we used GWAMA69 to perform a meta-analysis of 652 

males and female strata within each HARE group followed by METAL to conduct a meta-653 

analysis of the X-chr data in MVP Whites with the UK Biobank and the X-chr study by 654 

CARDIoGRAMplusC4D70 . Lastly, we used MR-MEGA to conduct a trans-ethnic meta-655 

analysis of the X-Chr through further inclusion of the MVP Blacks, MVP Hispanics, and 656 

Biobank Japan. 657 

Definition of a locus including parameters for lead and candidate genetic variants    658 

We used FUMA30 to define genomic risk loci including independent, lead, and candidate 659 

variants. First, independent genetic variants were identified as variants with a P below a 660 

specific threshold and not in substantial linkage disequilibrium (LD) with each other (r2 < 661 

0.6). Second, variants in LD (r2 ≥ 0.6) with an independent variant and with p < 0.05 were 662 

retained as candidate variants to form an LD block. Third, LD blocks within 500kb of each 663 

other were merged into one locus. Lastly, a second clumping of the independent variants was 664 

performed to identify the subset of lead SNPs with LD r2 < 0.1 within each locus. For our 665 

meta-analyses of Whites alone and our trans-racial/ethnic meta-analyses, we used a UK 666 

Biobank release 2b EUR reference panel of genotype data imputed to the UK10K/1000G 667 

SNPs created by FUMA including ~17 million SNPs. This panel includes a random subset of 668 

10,000 unrelated subjects among all subjects with genotype data mapped to the 1000G 669 

populations based on the minimum Mahalanobis distance. We used the 1000G AFR reference 670 

panel of 661 subjects with ~43.7 million SNPs for our Blacks, and the AMR reference panel 671 

of 347 subjects with ~29.5 million SNPs for our Hispanics.  672 

Two-stage joint analysis of most promising findings in non-Europeans 673 

We sought replication of all promising genomic risk loci in our MVP Black and MVP 674 

Hispanic GWAS for clinical CAD in multiple external datasets. Replication was attempted 675 

not only for all lead SNP(s) with P<1´10-5 but also for all other independent and candidate 676 

genetic variant members of these loci. In the same external datasets, we also sought 677 

replication for all SNP with local FDR < 0.05 from our XPEB analyses as described below.     678 

Definition of a significant and novel locus 679 

A locus was considered GWS if at least one lead genetic variant within it reached a P<5´10-8 680 

in any of the terminal meta-analyses. For meta-analyses involving METAL, the variant also 681 

had to lack any significant heterogeneity (P>5´10-8 for test of heterogeneity). A GWS locus 682 



was considered novel if none of its lead, independent, or candidate SNPs overlapped with a 683 

SNP that has previously reached GWS for CAD. Novel GWS loci were identified at three 684 

stages:  i. after the meta-analysis of all GWAS available among Whites, ii. after combining 685 

genome-wide summary statistics in Blacks and Hispanics, respectively, with external 686 

replication data limited to promising loci, and iii. after trans-ethnic meta-analyses of all 687 

summery statistics of GWAS (i.e., not including 2nd-stage data in Blacks and Hispanics). For 688 

the trans-ethnic meta-analysis, we first identified novel loci with lead SNPs with no 689 

significant heterogeneity using METAL and supplemented these with any additional non-690 

overlapping genome-wide findings identified with MR-MEGA.  691 

Cross-population empirical Bayes method 692 

We implemented the trans-ethnic empirical Bayes method, XPEB24, for the clinical CAD 693 

phenotype. XPEB takes as input P-value summary statistics from two GWAS, a target-694 

GWAS that is typically a smaller non-European population of primary interest and a base-695 

GWAS that is typically a much larger GWAS of Europeans and adaptively reprioritizes 696 

variants in the target population to compute local false discovery rates. We ran XPEB with the 697 

MVP Blacks as the target GWAS and the meta-analysis of MVP Whites, 698 

CARDIoGRAMplusC4D, and the UK Biobank as the base-GWAS. We then ran it a second 699 

time with the MVP Hispanics as the target GWAS. For both runs, analyses were restricted to 700 

genotyped SNPs in the target populations. 701 

Calculation of Polygenic Risk Scores  702 

We derived four PRS for CAD of increasing complexity: i. a weighted PRS restricted to a 703 

curated list of up to 163 independent SNPs having reached GWS among predominantly 704 

populations of European ancestry as of 2019, ii. the best performing weighted PRS in the UK 705 

Biobank calculated from a standard pruning & thresholding method of the 706 

CARDIoGRAMPplusC4D 1000G summary statistics involving 1.5 million SNPs34, iii. the 707 

metaGRS, a 1.7 million-SNP PRS consisting of a weighted average of three standardized risk 708 

scores followed by LD pruning35; and iv. the best performing PRS in the UK Biobank derived 709 

from applying the LDPred algorithm onto the CARDIoGRAMPplusC4D 1000G summary 710 

statistics involving 6.6 million SNPs but assuming 0.1% of SNPs are causal34. All scores were 711 

standardized to a mean of zero and standard deviation (SD) of one within each HARE group.  712 

Risk prediction 713 

We estimated the increase in risk of clinical CAD associated with a 1 SD increase in PRS for 714 

each of the four PRSs within each of the three HARE groups using logistic regression 715 

adjusting for imputation release batch, age, sex and the first 10 HARE specific PCs where age 716 

was defined as the age at the time of first ICD code for cases and age at the time of last visit 717 

to the VA for controls. We also estimated Similarly, we estimated the increase in the burden 718 

of disease per 1 SD increase in PRS using linear regression where age was defined as age at 719 

time of coronary angiography.  720 

Phenome-wide association study 721 

We conducted a PheWAS for each of the lead SNPs at all novel loci, for the 163 SNP PRS, 722 

and for the genome-wide PRS with the highest OR for CAD in MVP. We adopted the 723 

standard PheWAS protocol26,27 and augmented this basic approach by including phenotypes 724 

derived from the physical exam (e.g., measured weight, height, blood pressure, and heart 725 

rate), laboratory results (e.g., blood cell counts and biochemistries), and select variables 726 

derived from the MVP questionnaires (family history, smoking status, and alcohol use). For 727 

individual novel SNPs, we ran the PheWAS in each HARE group separately in both cases and 728 

controls combined and controls alone, with associations considered significant if their FDR 729 

was < 0.05 by the Benjamini-Hochberg method. For the PheWAS PRS, we restricted 730 

association analyses to Whites and ran analyses in i. all subjects; ii. after excluding CAD 731 



cases; and iii. after further excluding subjects with other manifestations of atherosclerosis 732 

including peripheral arterial disease and ischemic stroke.  733 

We generated a network plot with the Yifan Yu proportional multi-level layout and 734 

Atlas 2 layout algorithms implemented in Gephi Software using the subset of significant 735 

individual novel SNP PheWAS associations. The node size was defined using the weighted 736 

in-degree network statistic with the directionality from SNP to phenotype. The edge size was 737 

defined by the number of connections between two nodes (SNPs and phenotypes) and only 738 

include associations between SNP and phenotype represent by the z-score statistic of the 739 

SNP-phenotype association. The size of the label of the node was proportional to the weighted 740 

degree statistic. The color of the edges was define using the modularity matrix, a network 741 

statistic for unfolding communities in large network.  742 

Local ancestry inference and haplotype analysis at susceptibility loci of interest 743 

We used RFMix25 to derive the most likely ancestral origin of the chromosomal segment 744 

encompassing loci of interest in MVP Blacks and Hispanics. The YRI, MEL and IBR 745 

populations from the 1000G project as the African reference, and the GBR, CEU and TSI 746 

populations as the European reference to infer the most likely sequence of ancestry within the 747 

locus. The results allowed us to subdivide the MVP Blacks into three groups: i. subjects with 748 

a high probability of African ancestry on both chromosomes (homozygote Africans), ii. 749 

subjects with high probability of one African and one European ancestry chromosome 750 

(heterozygotes), and iii. subjects with a high probability of European ancestry on both 751 

chromosomes. For haplotype analyses within loci of interest, we identified all common 752 

(MAF>10%) SNPs in linkage equilibrium (r2<0.05) in our homozygote Africans Blacks 753 

among all SNPs reaching GWS (P<5´10-8) in our meta-analysis of Whites and used these 754 

SNPs to construct haplotypes and perform a haplotype trend regression of this region using 755 

the R package haplo.stats.  756 

Downstream analyses to prioritize genes, pathways, cells, and tissues/systems relevant to 757 

CAD 758 

We conducted downstream analyses to prioritize genes, pathways, and tissues involved in the 759 

pathogenesis of CAD based on the results of our meta-analyses. We applied four analytic 760 

algorithms to the summary statistics including Multi-marker Analysis of GenoMic Annotation 761 

(MAGMA) v1.09 for gene, gene-set, and gene-property analysis, as implemented in FUMA30-762 
32, a model-based enrichment method for GWAS summary data using biological pathways to 763 

define gene-sets, Regression with Summary Statistics exploiting	Enrichments (RSS-E)33, 764 

Data-driven Expression Prioritized Integration for Complex Traits (DEPICT)28, and 765 

MetaXcan29. Gene and cell/tissue/system specificity/prioritization analyses incorporating 766 

gene-expression data into their algorithms were restricted to Whites given a majority of the 767 

gene-expression data incorporated into these analyses are derived from Whites. We 768 

harmonized gene level results by MAGMA, RSS-E, DEPICT, and MetaXcan, and compared 769 

to the DEPICT analyses performed on the CARDIoGRAMplusC4D and UK Biobank meta-a 770 

alone8. MAGMA gene-set analyses were run on 10,678 gene sets (curated gene sets: 4,761, 771 

GO terms: 5,917) from MSigDB v6.2 while gene-property analyses were conducted on GTEx 772 

V8 and multiple single cell RNA-seq databases incorporated into the FUMA bioinformatic 773 

pipeline including the Mouse Cell Atlas, the Tabula Muris dataset (FACS and droplet) and 774 

several datasets of human brain, pancreas, and blood. For RSS-E, gene-sets were derived from 775 

nine databases (BioCarta, BioCyc, HumanCyc, KEGG, miRTarBase, PANTHER, PID, 776 

Reactome, WikiPathways) that are archived by four repositories: Pathway Commons v7, 777 

NCBI Biosystems, PANTHER (v3.3), and BioCarta. We downloaded preprocessed pathway 778 

and gene data from http://doi.org/10.5281/zenodo.1473807 on October 29, 2018 and used a 779 

list of 3,803 pathways that contains between 2 to 400 autosomal protein-coding genes per 780 

pathway in the present study. 781 
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Fig. 1: Design of multi-ethnic genome wide association study (GWAS) of coronary artery disease (CAD) and estimates of 
heritability of CAD using GREML-LDMS-I for 4 racial/ethnic groups 

 

 

 

 
a, Phenotyping using the EHR in the MVP identified ~120,000 genotyped cases with CAD and ~285,000 genotyped controls. 
GWAS was first performed stratified by racial/ethnic group. GWAS for Whites was then meta-analyzed with 2 existing GWAS for 

initial discovery among Whites. The GWAS for MVP Hispanics and MVP Blacks as well as the Biobank Japan GWAS of CAD was 
further incorporated into a single trans-ethnic meta-analysis. Two-stage joint meta-analysis of the most promising SNPs was 
performed for the Hispanics and Blacks with multiple external cohorts for racial/ethnic specific discovery. b-d, Heritability (h2) 

analyses for CAD in four major racial groups using GREML-LDMS-I. b. Principal component analysis of MVP participants combined 
with 1000 genomes was first performed to identify a random subset of 19,400 Hispanics with the highest proportion of Native 
American ancestry (pink). A random subset of the least admixed Whites (dark green) and the least admixed Blacks (dark blue), 

respectively, were then matched 1:1 on case-control status, age of first EHR evidence of CAD, type of CAD presentation, and age 
of controls to the Hispanics. Similar matching was performed for participants from Biobank Japan study. c, h2 on the observed scale 
stratified by linkage disequilibrium (LD) score quartile blocks minor allele frequency bins (top panel) with corresponding number of 
SNPs in the same block passing stringent quality control for binary trait GREML h2 (bottom panel). d, h2 on the liability scale for 

each racial/ethnic group as a function of the presumed population prevalence of CAD. 
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Fig. 2: Racial/ethnic specific GWAS and trans-ethnic meta-analysis identifies 107 novel loci for clinical CAD including 
nine on the X-chromosome, eight previously known loci among Blacks and Hispanics, and 15 previously known loci 
for angiographically derived burden of coronary atherosclerosis. 

 

 
 
 

 
         

a, Circos plot indicating the –log10(P) for association with CAD for racial/ethnic specific and trans-ethnic GWAS meta-analyses. 
The inner track plots the 2-stage meta-analysis association results for MVP Black/African Americans (AFR) in red and the MVP 

Hispanic Americans (HISP) in green while the middle track plots the results for the grand meta-analysis of White/European in 
Black and the trans-ethnic metanalysis further incorporating the MVP AFR, MVP HISP, and Biobank Japan in blue. The red 
line indicates genome-wide significance (GWS) (P = 5.0 × 10−8). The outer track lists the nearest mapped gene to the lead 

SNPs reaching GWS in each of these four meta-analyses including five loci in Blacks (red font), three loci in Hispanics (green 
font), 31 novel loci among Whites (black font), and 71 additional novel loci after the trans-ethnic meta-analysis (blue font). b, 
Manhattan plot (right) of trans-ethnic meta-analysis of GWAS for burden of coronary atherosclerosis as estimated by the 

number of coronary obstructions >50% on coronary angiogram (example left, “angiogram one” by  j l t is licensed under CC 
BY-NC-SA 2.0) where 15 loci reach GWS. All but LPL, COL4A1, and TGFB1 reach GWS in Whites and LPL was the only 
locus to reach GWS in AFR (details not shown). No locus reached GWS in Hispanics alone. 

a 

b 
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Fig. 3: Local ancestry and haplotype analyses reveals a protective haplotype at the 9p21 susceptibility locus for CAD 
that is virtually absent among African chromosomes 

 

 
a-c, Black and Hispanic MVP participants were stratified into groups based on the degree of African ancestry at the 9p21 locus for 
CAD as determined by RFMix. Whites were analyzed as a single non-admixed group. The three subgroups among Blacks formed 
includes subjects with a high probability of having inherited two African (Black_AFR+/+) derived chromosomes in the 9p21 region, 

one African and one European (Black_AFR+/-), or two European chromosomes (Black_AFR-/-). The two subgroups among HA 
generated included those with high probability of having either 1 or 2 African chromosomes (Hisp_AFR+/-|+/+) vs. those without 
any African ancestry in this region but rather only Native and/or European American ancestry (Hisp_AFR-/-). Among SNPs in the 

high-risk region of 9p21 that reached genome wide significance among Whites, six with a minor allele frequency >10% in 
Black_AFR+/+ were used to infer haplotypes in the region. Each column along the x-axis represents a haplotype, named by the 
alleles of the six defining SNPs. a, only 17 out of a possible 32 haplotypes were observed to any appreciable frequency (y-axis). 

The first two haplotypes (AACATT and GGTTCA) dominate in Whites as well as subgroups of Blacks and Hispanics with high 
proportion of European ancestry at 9p21. However, these same 2 haplotypes are virtually absent among chromosomes of African 
descent. Most of the remaining haplotypes are present to an appreciable frequency in Black_AFR+/+ (teal) but are virtually absent 
in Whites. Only one haplotype (AGTTCA) has appreciable frequency in both Whites (~5%) and Black_AFR+/+ (~10%). b-c, 

summarizes the odds ratio (OR) of CAD and -log10(p) value obtained through a haplotype trend regression analyses where 
AACATT is the reference haplotype in b and AGTTCA is the reference haplotype in c. The most common haplotype in Whites 
(AACATT, 47%) is associated with a lower risk of CAD in relation to several other haplotypes but this same haplotype is unable to 

risk stratify among Blacks given it is virtually absent among Black_AFR+/+. Any signal among Blacks is dependent on the 
presence of this haplotype through local admixture with Whites, although analyses among the small subgroup Black_AFR-/- do 
not generate a reliable signal likely because of inadequate power.  

 

a 

 

b 

c 
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Fig. 4: Pleiotropic assessment of 107 novel loci through extended phenome wide association of lead SNPs among 
White/European controls in the Million Veteran Program highlights and strengthens links between CAD and obesity-insulin 
resistance-diabetes axis of risk 

 

 
 
Network plot of genotype-phenotype associations reaching significance at FDR<0.05 among White/Europeans MVP control participants 
for the lead SNPs in the 107 novel loci. Nodes are labelled either with the mapped gene for a lead SNP (purple font) or a phenotype 

tested in the PheWAS (black font). To highlight most pleiotropic SNPs and facilitate interpretation, the plot is restricted to lead SNPs 
associated with at least three distinct phenotypes. Distinct colors of nodes and edges represent a group of genotypes and phenotypes in 
the same dominant network. The thickness of the edges is correlated with the strength of the SNP-phenotype association (z-score). The 

size of the labels is dictated by the number of connections to phenotypes or genes and the strength of association. Network plot was 
created using Yifan Yu proportional and Atlas 2 layout algorithms as implemented in Gephi software. 
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Fig. 5: Downstream analyses to prioritize systems, pathways, tissues, and cells relevant to CAD 
 

 

 
 

 
 

 
 
a-c, MAGMA gene-property analyses to test relationship between expressed genes in specific cells or tissues and genetic 
associations (meta-analysis of Whites) as implemented in FUMA. Data in a is restricted to three mouse single-cell RNA-seq (sc-

RNA) datasets involving a broad range of cell types/organs while data in b is restricted to human datasets mostly involving the 
brain but also the pancreas and blood. Results show only independent cell-type associations based on within-dataset conditional 
analyses ordered by p value across datasets. Data in c shows results for 54 specific tissue from the GTEx RNA-seq dataset v8 in 

order of p-value significance with red bars and font highlighting statistically significant tissues after adjusting for multiple testing 
(horizontal black dashed line) while remaining tissues are in blue. d-f, DEPICT following standard algorithm on the same GWAS 
used for MAGMA analyses in a-c. DEPICT results are separated into d, cells e, tissues, and f, systems. -log10(pvalue) for a false 

discovery rate (FDR) of <0.05 is demarcated by red dashed line while the FDR <0.2 threshold is shown in blue. Only cells/tissues 
reaching an FDR<0.2 are labelled. Endothelial, stromal/fibroblast, smooth muscle cells as well as adipocytes and hepatocytes are 
prioritized as well as multiple tissues rich in these cell types or their derivatives. Please see text for more details on methods, 

summary and interpretation of results. 
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Fig. 6: Testing externally validated polygenic risk scores (PRS) for association with clinical CAD, burden of coronary 
atherosclerosis, and other phenotypes in the Million Veteran Program  
 

 
 

 
 
a, b Four progressively complex weighted polygenic risk scores (PRS) of CAD are constructed, standardized to mean 0 and unit-
variance, and tested for association with clinical CAD and burden of atherosclerosis in MVP using logistic and multinomial 

regression, respectively and reporting the odds ratio of risk associated with 1 standard deviation increase in PRS. The simplest 
score, ‘163 SNPs’, is restricted to lead SNPs of genome wide significant as of 2019 from CARDIoGRAMplusC4D and the UK 
Biobank. The remaining genome-wide PRSs were derived in external datasets using either a standard pruning and thresholding 

strategy, ‘Prun & Thresh’, modeling linkage disequilibrium, ‘LDPred’, or through the meta-analysis of the weights of 3 separate 
scores, ‘metaGRS’. a, PRS were tested in MVP Whites, Blacks, and Hispanics, separately. In addition to all cases combined, 
subgroups of incident only cases (after enrollment), severe cases with evidence of either a myocardial infarction and/or a 

revascularization procedure, and early onset vs older onset cases (divided by median age of onset) were tested. b, PRS are 
tested for burden of coronary atherosclerosis only among Whites. The reference group is subjects with normal coronaries on 
angiography. For progressively higher burdens of disease are tested against the reference group including non-obstructive 

disease (‘Non-obs.’), 1-vessel disease (1V), 2-vessel disease (2V), and 3-vessel or left main disease (3V/LM). c, The best 
performing score in a and b, the meta-GRS, is tested for association with Phecodes, clinical labs and anthropomorphic 
measures, as well as selected components of the baseline questionnaires among whites with no EHR evidence of 

atherosclerosis related complications at the end of EHR follow up. 
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Figures

Figure 1

Design of multi-ethnic genome wide association study (GWAS) of coronary artery disease (CAD) and
estimates of heritability of CAD using GREML-LDMS-I for 4 racial/ethnic groups. a, Phenotyping using the
EHR in the MVP identi�ed ~120,000 genotyped cases with CAD and ~285,000 genotyped controls. GWAS



was �rst performed strati�ed by racial/ethnic group. GWAS for Whites was then meta-analyzed with 2
existing GWAS for initial discovery among Whites. The GWAS for MVP Hispanics and MVP Blacks as well
as the Biobank Japan GWAS of CAD was further incorporated into a single trans-ethnic meta-analysis.
Two-stage joint meta-analysis of the most promising SNPs was performed for the Hispanics and Blacks
with multiple external cohorts for racial/ethnic speci�c discovery. b-d, Heritability (h2) analyses for CAD in
four major racial groups using GREML-LDMS-I. b. Principal component analysis of MVP participants
combined with 1000 genomes was �rst performed to identify a random subset of 19,400 Hispanics with
the highest proportion of Native American ancestry (pink). A random subset of the least admixed Whites
(dark green) and the least admixed Blacks (dark blue), respectively, were then matched 1:1 on case-
control status, age of �rst EHR evidence of CAD, type of CAD presentation, and age of controls to the
Hispanics. Similar matching was performed for participants from Biobank Japan study. c, h2 on the
observed scale strati�ed by linkage disequilibrium (LD) score quartile blocks minor allele frequency bins
(top panel) with corresponding number of SNPs in the same block passing stringent quality control for
binary trait GREML h2 (bottom panel). d, h2 on the liability scale for each racial/ethnic group as a
function of the presumed population prevalence of CAD.



Figure 2

Racial/ethnic speci�c GWAS and trans-ethnic meta-analysis identi�es 107 novel loci for clinical CAD
including nine on the X-chromosome, eight previously known loci among Blacks and Hispanics, and 15
previously known loci for angiographically derived burden of coronary atherosclerosis. a, Circos plot
indicating the –log10(P) for association with CAD for racial/ethnic speci�c and trans-ethnic GWAS meta-
analyses. The inner track plots the 2-stage meta-analysis association results for MVP Black/African



Americans (AFR) in red and the MVP Hispanic Americans (HISP) in green while the middle track plots the
results for the grand meta-analysis of White/European in Black and the trans-ethnic metanalysis further
incorporating the MVP AFR, MVP HISP, and Biobank Japan in blue. The red line indicates genome-wide
signi�cance (GWS) (P = 5.0 × 10−8). The outer track lists the nearest mapped gene to the lead SNPs
reaching GWS in each of these four meta-analyses including �ve loci in Blacks (red font), three loci in
Hispanics (green font), 31 novel loci among Whites (black font), and 71 additional novel loci after the
trans-ethnic meta-analysis (blue font). b, Manhattan plot (right) of trans-ethnic meta-analysis of GWAS
for burden of coronary atherosclerosis as estimated by the number of coronary obstructions >50% on
coronary angiogram (example left, “angiogram one” by j l t is licensed under CC BY-NC-SA 2.0) where 15
loci reach GWS. All but LPL, COL4A1, and TGFB1 reach GWS in Whites and LPL was the only locus to
reach GWS in AFR (details not shown). No locus reached GWS in Hispanics alone.



Figure 3

Local ancestry and haplotype analyses reveals a protective haplotype at the 9p21 susceptibility locus for
CAD that is virtually absent among African chromosomes. a-c, Black and Hispanic MVP participants were
strati�ed into groups based on the degree of African ancestry at the 9p21 locus for CAD as determined by
RFMix. Whites were analyzed as a single non-admixed group. The three subgroups among Blacks formed
includes subjects with a high probability of having inherited two African (Black_AFR+/+) derived



chromosomes in the 9p21 region, one African and one European (Black_AFR+/-), or two European
chromosomes (Black_AFR-/-). The two subgroups among HA generated included those with high
probability of having either 1 or 2 African chromosomes (Hisp_AFR+/-|+/+) vs. those without any African
ancestry in this region but rather only Native and/or European American ancestry (Hisp_AFR-/-). Among
SNPs in the high-risk region of 9p21 that reached genome wide signi�cance among Whites, six with a
minor allele frequency >10% in Black_AFR+/+ were used to infer haplotypes in the region. Each column
along the x-axis represents a haplotype, named by the alleles of the six de�ning SNPs. a, only 17 out of a
possible 32 haplotypes were observed to any appreciable frequency (y-axis). The �rst two haplotypes
(AACATT and GGTTCA) dominate in Whites as well as subgroups of Blacks and Hispanics with high
proportion of European ancestry at 9p21. However, these same 2 haplotypes are virtually absent among
chromosomes of African descent. Most of the remaining haplotypes are present to an appreciable
frequency in Black_AFR+/+ (teal) but are virtually absent in Whites. Only one haplotype (AGTTCA) has
appreciable frequency in both Whites (~5%) and Black_AFR+/+ (~10%). b-c, summarizes the odds ratio
(OR) of CAD and -log10(p) value obtained through a haplotype trend regression analyses where AACATT
is the reference haplotype in b and AGTTCA is the reference haplotype in c. The most common haplotype
in Whites (AACATT, 47%) is associated with a lower risk of CAD in relation to several other haplotypes but
this same haplotype is unable to risk stratify among Blacks given it is virtually absent among
Black_AFR+/+. Any signal among Blacks is dependent on the presence of this haplotype through local
admixture with Whites, although analyses among the small subgroup Black_AFR-/- do not generate a
reliable signal likely because of inadequate power.



Figure 4

Pleiotropic assessment of 107 novel loci through extended phenome wide association of lead SNPs
among White/European controls in the Million Veteran Program highlights and strengthens links between
CAD and obesity-insulin resistance-diabetes axis of risk. Network plot of genotype-phenotype
associations reaching signi�cance at FDR<0.05 among White/Europeans MVP control participants for
the lead SNPs in the 107 novel loci. Nodes are labelled either with the mapped gene for a lead SNP
(purple font) or a phenotype tested in the PheWAS (black font). To highlight most pleiotropic SNPs and
facilitate interpretation, the plot is restricted to lead SNPs associated with at least three distinct
phenotypes. Distinct colors of nodes and edges represent a group of genotypes and phenotypes in the
same dominant network. The thickness of the edges is correlated with the strength of the SNP-phenotype
association (z-score). The size of the labels is dictated by the number of connections to phenotypes or
genes and the strength of association. Network plot was created using Yifan Yu proportional and Atlas 2
layout algorithms as implemented in Gephi software.



Figure 5

Downstream analyses to prioritize systems, pathways, tissues, and cells relevant to CAD. a-c, MAGMA
gene-property analyses to test relationship between expressed genes in speci�c cells or tissues and
genetic associations (meta-analysis of Whites) as implemented in FUMA. Data in a is restricted to three
mouse single-cell RNA-seq (sc- RNA) datasets involving a broad range of cell types/organs while data in
b is restricted to human datasets mostly involving the brain but also the pancreas and blood. Results



show only independent cell-type associations based on within-dataset conditional analyses ordered by p
value across datasets. Data in c shows results for 54 speci�c tissue from the GTEx RNA-seq dataset v8 in
order of p-value signi�cance with red bars and font highlighting statistically signi�cant tissues after
adjusting for multiple testing (horizontal black dashed line) while remaining tissues are in blue. d-f,
DEPICT following standard algorithm on the same GWAS used for MAGMA analyses in a-c. DEPICT
results are separated into d, cells e, tissues, and f, systems. -log10(pvalue) for a false discovery rate (FDR)
of <0.05 is demarcated by red dashed line while the FDR <0.2 threshold is shown in blue. Only
cells/tissues reaching an FDR<0.2 are labelled. Endothelial, stromal/�broblast, smooth muscle cells as
well as adipocytes and hepatocytes are prioritized as well as multiple tissues rich in these cell types or
their derivatives. Please see text for more details on methods, summary and interpretation of results.



Figure 6

Testing externally validated polygenic risk scores (PRS) for association with clinical CAD, burden of
coronary atherosclerosis, and other phenotypes in the Million Veteran Program. a, b Four progressively
complex weighted polygenic risk scores (PRS) of CAD are constructed, standardized to mean 0 and
unitvariance, and tested for association with clinical CAD and burden of atherosclerosis in MVP using
logistic and multinomial regression, respectively and reporting the odds ratio of risk associated with 1



standard deviation increase in PRS. The simplest score, ‘163 SNPs’, is restricted to lead SNPs of genome
wide signi�cant as of 2019 from CARDIoGRAMplusC4D and the UK Biobank. The remaining genome-
wide PRSs were derived in external datasets using either a standard pruning and thresholding strategy,
‘Prun & Thresh’, modeling linkage disequilibrium, ‘LDPred’, or through the meta-analysis of the weights of
3 separate scores, ‘metaGRS’. a, PRS were tested in MVP Whites, Blacks, and Hispanics, separately. In
addition to all cases combined, subgroups of incident only cases (after enrollment), severe cases with
evidence of either a myocardial infarction and/or a revascularization procedure, and early onset vs older
onset cases (divided by median age of onset) were tested. b, PRS are tested for burden of coronary
atherosclerosis only among Whites. The reference group is subjects with normal coronaries on
angiography. For progressively higher burdens of disease are tested against the reference group including
non-obstructive disease (‘Non-obs.’), 1-vessel disease (1V), 2-vessel disease (2V), and 3-vessel or left main
disease (3V/LM). c, The best performing score in a and b, the meta-GRS, is tested for association with
Phecodes, clinical labs and anthropomorphic measures, as well as selected components of the baseline
questionnaires among whites with no EHR evidence of atherosclerosis related complications at the end
of EHR follow up.
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