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A B S T R A C T   

Biodiversity is changing rapidly, and ecologists use various measures to monitor and conserve it, but not all are 
equally effective. In the European temperate forests, ecologists are tasked with assessing the impact of global 
changes on plant species richness; however, this fails at capturing vital information about plant interactions. 
Using a chronosequence of beech forest stands, spanning 600 years of growth, we demonstrate the application of 
a different measure of diversity compared to classical species richness in the understorey. This measure, called 
compositional diversity (CD), considers the number of species combinations and their relative frequency within a 
community. The response of both classical species richness and CD along with succession, corresponded with our 
expectations based on ecological theory’s U-shape prediction of diversity along the successional gradient. 
However, after 300 years, there was a significant decoupling between the two measures’ responses. While species 
richness remained low and constant across old-growth and primeval forests, CD peaked in primeval forests, 
implying that the same number of late-successional species generated more diverse assemblages. This new in
formation emphasises the need to protect old-growth and primeval forests not only to conserve species richness 
but also to preserve their unique network of species co-occurrence patterns – a factor not well represented by the 
classical species richness measure.   

1. The use of classical diversity measures in forests 

Nowhere on earth can such consistently high levels of biodiversity be 
found than under the canopy of a forest (Sabatini et al., 2022). 
Ecological theory corroborates the concept that such high levels of di
versity are supported by the high number of ecological niches and biotic 
interactions (Messier et al., 2015), allowing species to coexist in space 
and time. Under the dappled light stratified by the forest canopy, the 
irregular distribution of decomposing fallen trees, and natural processes, 
a mosaic of heterogeneity emerges. This mosaic constitutes the axes 
along which species percolate within this hypervolume, generating a 
complex adaptive system (Levin, 1998). Unfortunately, the arrival of 
humans on the geological clock determined impressive direct (e.g., 
logging, pollution, fire) and indirect (climate) changes in forest 

ecosystems and their diversity (Ammer et al., 2018). 
In temperate forests, a mere 1 % of the total biomass represents 

almost 80 % of the understorey plant richness; this vegetation is 
essential for maintaining a properly functioning forest ecosystem 
(Landuyt et al., 2019). Despite the increasing number of diversity 
indices (e.g., Pavoine, 2020), studies focusing on forest understorey 
generally attribute changes in the number of species or their relative 
abundance (i.e., species richness or Shannon diversity) to management 
practices (e.g., Govaert et al., 2020), the input of pollutants such as ni
trogen and sulphur (e.g., Dirnböck et al., 2014), and changes in climatic 
conditions (e.g., Govaert et al., 2021). These diversity measures are 
prevalent as biological indicators of sustainable forest management (e. 
g., SFM; Forest Europe, 2020) applied for conservation and restoration 
purposes (Paillet et al., 2010; Crouzeilles et al., 2016) and are deeply 
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entrenched in policy (e.g., European Commission, 2020). 
The use of species richness and Shannon diversity as measures for 

assessing ecological diversity may not always be the most appropriate 
choice as underscored by Hillebrand et al. (2018). This concern arises 
due to the assumption of consistent directional trends in species richness 
resulting from the application of different management strategies 
(Burrascano et al., 2018), progressive thermophilisation (De Frenne 
et al., 2013), and increased eutrophication (Verheyen et al., 2012) in 
European temperate forests. In a comprehensive meta-analysis, it was 
found that there is no significant overall change in species richness, 
however, the majority of individual studies contained therein demon
strated complete turnover of species over time (Hillebrand et al., 2018). 
This underscores the need to explore novel methodologies for quanti
fying shifting diversity in the Anthropocene epoch. 

2. The importance of plant interactions 

Ecologists study network connections among organisms, including in 
forest ecosystems (Filotas et al., 2014). These interactions, within and 
between species, profoundly influence diversity (Callaway & Walker, 
1997). For example, epiphytic plants benefit from growing on evergreen 
trees for moderated light, while plant–soil feedbacks affect soil suit
ability for other species (e.g., Stanek et al., 2020). Gilbert & Lechowicz 
(2004) suggest that neutral processes, like random ecological drift, have 
minimum impact on diversity patterns in temperate forests. Larger 
interaction networks enhance ecosystem complexity, providing services 
like pollination and invasion resistance (Lurgi et al., 2014; IPBES, 2019). 
Unfortunately, classical alpha and beta diversity measures based solely 
on plot-level species occurrence and abundance fail to capture the 

intricate biological information arising from complex biotic 
interactions. 

Consider three hypothetical understorey communities with identical 
number, identity and relative abundance of species (i.e., alpha and beta 
diversity; Fig. 1). The first community has a random distribution of in
dividuals and species (Fig. 1a), while the other two display patchy dis
tributions. In the first patchy community (Fig. 1b), positive associations 
(e.g., facilitation) or micro-environmental heterogeneity, enable species 
coexistence. In the second patchy community (Fig. 1c) negative associ
ations (e.g., competition) or fine-scale environmental heterogeneity, 
prevent species coexistence. Alpha and beta diversity remain constant 
across all three hypothetical scenarios, demonstrating that these mea
sures do not adequately convey the biological information arising from 
the complex network of biotic interactions. 

To further illustrate this concept, consider music. The precise 
arrangement of co-occurring notes can produce a specific composition, 
such as Beethoven’s Fifth Symphony, while randomisation of the same 
notes will result in a different composition, or even noise. Despite having 
the same number and frequency of notes (i.e., the same species richness 
and Shannon diversity), the functions generated by the two musical 
compositions differ. In parallel, neglecting the variability in species 
combinations within communities results in the loss of crucial ecological 
information related to community functions (Juhász-Nagy and Podani, 
1983; Bartha et al., 1998). 

In this context, we introduce the Compositional Diversity (CD) index, 
based on species co-occurrence patterns at fine scale (i.e., within com
munity; Juhász-Nagy and Podani, 1983; Tsakalos et al., 2022). 

Fig. 1. Three example forest understorey communities with the same species composition (three species represented by different letters in each community) and 
abundance distribution (four individuals per species) but contrasting spatial patterns. Community (a) is characterised by a random distribution of individuals and 
species; community (b) is distinguished by aggregation of individuals of different species (positive species associations); community (c) is characterised by aggre
gation of individuals of the same species (negative species associations). 
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3. Compositional diversity as a measure of forest complexity in 
terms of species combinations 

Where classical alpha diversity fails to capture the complexity of 
forest understorey, using beta diversity to describe compositional vari
ation can be advantageous (Anderson et al., 2011). Beta diversity sensu 
Whittaker (1960) is the extent of change in composition between com
munities, or degree of community differentiation, along with an envi
ronmental gradient or a pattern of gradients. Subsequently, studies 
aiming to equate beta diversity changes with any number of covariates 
tend to do so at a coarse scale (i.e., macroecological studies; Kraft et al., 
2011; Konrád et al., 2023) using plots generally larger than the scale at 
which biological interactions occur. Assessing patterns of species co- 
occurrences within a community can benefit from the concept of beta 
diversity; however, it requires different data sets and methods that can 
be used to calculate the exact diversity number for a specific spatial 
scale. 

Here, we propose to use one beta diversity measure from Juhász- 
Nagy’s (1967, 1984a, b) information theory models to evaluate within- 
community patterns of species combinations. Specifically, we used the 
recent Tsakalos et al.’s (2022) ‘comspat’ function from the comspat R 
package to calculate one of Juhász-Nagy’s models, namely the Compo
sitional Diversity (CD), as the frequency distribution of realised species 
combinations within a community expressed as the uncertainty to find a 
species combination in a sample: 

Hj(A,B,⋯.,Y) = −
∑2s

k=1
pkj log (pkj)

Where A, B, …, Y are the s species of the community; pkj is the proba
bility of finding a particular species combination (i.e., the kth combi
nation of species) within the sample at a specific sampling unit size j; k 
ranges from 1 to 2 s. By varying j, CD can be calculated as a function of 
the spatial scale, with low CD values at very small or large sampling unit 
sizes, and at least one maximum CD value between these two extremes 
(Bartha et al., 1998). Due to different assembly constraints, the observed 
number of species combinations (number of realised species combina
tions) in natural communities is usually smaller than the theoretical 
maxima (Bartha, 1992). Higher CD values reflect higher uncertainty in 
finding a given species combination in a sample, which mirrors a higher 
variability of species combinations. The method measures the coexis
tence relationships between species within communities (Podani et al., 
1993; Bartha et al., 1998; Tsakalos et al., 2022). It usually relies on 
recording species at fine scale, within transects or grids composed of 
several (i.e., hundreds) adjacent sampling units whose size depends on 
the scale at which biological interactions occur (e.g., resolution of 10 cm 
x 10 cm or 20 cm x 20 cm for forest understorey layer). In order to 
provide a practical indication for the application of this method, we 
estimated that the average sampling time by two trained botanists of a 
100 m transect with 1000 sampling units in forest is 90 min. The ad
vantages of using transects are related to (a) reduced sampling time 
compared to other multiscale or nested sampling designs, (b) minimized 
disturbance to vegetation during sampling, and (c) maximizing the 
sample extent with a given sampling effort (see Bartha et al., 2004). 
Furthermore, with the observation of species presence/absence in 10 
cm x 10 cm micro-quadrats, taxonomic errors are rare. 

4. Example with a beech forest succession 

To evaluate how CD compares to the classical alpha diversity (i.e., 
species richness), we utilised the U-shaped biodiversity model proposed 
for forest succession (see Ujházy et al., 2017; Hilmers et al., 2018; Bartha 
et al., 2020). The model is predicated on the general observation of 
higher biodiversity in the early and late stages of forest succession 
(Ujházy et al., 2017; Hilmers et al., 2018; Bartha et al., 2020). Not only 
this is theoretically interesting, but it is of profound importance to 
practitioners of forest management and informing on conservation 

policy (Hilmers et al., 2018). By studying the variation in biodiversity 
throughout the entire succession process, we can better understand how 
different management strategies affect biodiversity and decouple the 
effect of inherent changes in species as forest develops from climate 
change (Hilmers et al., 2018). 

In our example, we used a successional chronosequence of 30 beech 
(Fagus sylvatica L.) forest stands featuring approximately 5 to about 600 
years of development (Fig. 2). The chronosequence consisted of recently 
logged (0–30 years, n = 8), establishing (30–70, n = 4), early optimum 
(70–100, n = 3), mid–late optimum (100–200, n = 3), planter–old- 
growth (200–300, n = 4), old-growth (>300, n = 6) and primeval (never 
logged, n = 2) stands (structural/age categories modified from Hilmers 
et al., 2018). In each stand, we established a 100 m circular transect 
composed of 1,000 contiguous sample units (sized 10 cm x 10 cm or 20 
cm x 20 cm) where we recorded the presence of understorey (<1.3 m, i. 
e., breast height) vascular plant species, including woody and herba
ceous species. With data derived from the transect, we measured the 
total species richness and the maximum CD value. Indeed, the use of 
maximum CD is suggested to simplify the presentation of community 
patterns and dynamics (Bartha et al., 1998). Along the successional 
gradient, we used simple quadratic regressions to test for the U-shaped 
pattern (Bartha et al., 2020) and visual inspection of the standard error 
distributions to detect differences between the diversity measures. Our 
stands selection is interesting because 63 % occur within UNESCO’s 
world heritage listed ancient and primeval beech forests of the Carpa
thians and other regions of Europe. In detail, the two primeval stands 
were sampled in the Ukrainian relic virgin beech forest of Uholka 
(Trotsiuk et al., 2012), the ten planter–old-growth and old-growth 
stands were sampled in the strict forest Reserves of Valle Cervara and 
Sasso Fratino (respectively in Abruzzo, Lazio and Molise National Park, 
and Foreste Casentinesi National Park; Italy), and the other forest stands 
were sampled in three Italian protected areas (Sibillini National Park, 
Foreste Casentinesi National Park, Torricchio Strict Nature Reserve) as 
well as among the Italian forest monitoring network sites (CON.ECO. 
FOR., Petriccione and Pompei, 2002). 

CD exhibited a significant U-shaped pattern over time, with early 
successional stages and primeval forests displaying higher diversity of 
plant species combinations (Fig. 2). 

In recently logged, open-canopy forests (0–30 years), species rich
ness was notably high. Widely recognized across diverse forest ecosys
tems, recent disturbances trigger a temporary surge in available 
resources. In these forests, this surge results in heightened light avail
ability, accelerated organic decomposition, and improved nutrient 
availability within the forest stand (Chelli et al., 2023). Some plants, 
typically fast-growing and quick to colonise competitive and ruderal 
plants (Grime et al., 1997), capitalise on this short-term resource pulse. 
During these initial stages, it is also not uncommon for species from 
neighbouring vegetation types, such as grasslands, to establish a pres
ence, at least temporarily (Bartha et al., 2008). Consequently, CD was 
also high, likely influenced by the recent disturbance, which reduced 
interspecific competition and favoured diverse species combinations 
(Barkham, 1992). 

The decline of species richness and CD in the second stage of forest 
succession (30–70 years) has been empirically linked to structural 
changes in the tree canopy layer observed in temperate forests (Chelli 
et al., 2023). This transitional phase marks progressive canopy closure 
and thickening, signalling the end of the resource pulse characterising 
early successional stages. These subtle declines in resource availability 
(i.e., light [energy] and nutrients) result in a reduction in competitive 
and ruderal species, allowing for the establishment of species better 
suited to these conditions (i.e., specialist species; Hofmeister et al., 2022; 
Chelli et al., 2023). However, a notable decoupling between the two 
diversity measures occurred after 300 years of forest succession, as 
evidenced by non-overlapping error bars (Fig. 2). In old-growth (>300 
years) and primeval forests, species richness remained relatively low 
and stable, contrary to what was found by Hilmers et al. (2018). This 
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probably depends on the fact that our succession lacks open-canopy 
forests in terminal and decay classes. Unlike species richness, CD 
showed an increasing trend, reaching its peak in primeval forests. This 
pattern suggests that centuries of uninterrupted forest development 
favour a select group of late-successional species. Not only the number of 
these species remains constant (see Fig. 2), but the species composition 
shows no significant differences between stages of forest succession 
(Appendix S1). Overall, these results point to the fine-scale re-arrange
ment of the similar number and identity of species, contributing to more 
diverse assemblages in old-growth and primeval forests compared to 
younger forests (Bartha et al., 2020). 

Regarding the spatial scale at which the maximum CD is reached, we 
demonstrate that it is lower in both young forests (0–30 years; 0.85 m2) 
and old-growth forests (>200 years; 0.45–0.78 m2; Appendix S2). In 
young forests, the high diversity of species combination at low spatial 
scale is likely generated by recent disturbances (i.e., logging), while in 
old-growth and primeval forests, this pattern is probably supported by 
the fine-scale spatial heterogeneity of resources, including light, nutri
ents, and moisture (Bartels and Chen, 2010). However, the challenge of 
identifying underlying mechanisms leading to those patterns remains 
open. Null models should be applied to separate random, intraspecific 
and interspecific effects to assist in detecting and interpreting the spatial 
associations between species and environment (Podani, 1984; Dale and 
Fortin, 2014). For example, Bartha et al.’s (2020) research from beech 
forests used null models to establish that patterns of beta diversity in old- 
growth forests were a product of microhabitat availability for late- 
successional species. 

5. Conclusion 

The adoption of diversity measures that shed light on species in
teractions holds major implications for conservation and restoration 
ecology, enriching the debate on the selection of effective indicators of 
sustainable forest management (SFM; Forest Europe, 2020). Firstly, 

considering the current state of Europe’s forests, predominately in in
termediate stages due to extensive exploitation in the early 20th century 
and subsequent abandonment (Hilmers et al., 2018), it is suggested to 
emphasise the protection of both under-represented old-growth and 
primeval European forests (Ahlström et al., 2022) and the early- 
successional forests (Swanson et al., 2011). The former forests are 
fundamental for safeguarding their unique within-community species 
assemblages, often not reflected in high alpha diversity. The latter may 
play a role in conserving high levels of plant species richness, especially 
where the protection of non-forest, light-demanding species holds local 
priority (see Kopecký et al., 2013). 

Secondly, restoring the understorey plant species assemblages of a 
forest to a complex, close-to-nature state necessitates a time scale (i.e., >
200–300 years) distinct from merely restoring alpha diversity. The 
process of reinstating the number and fine-scale spatial configuration of 
plant species combinations that naturally occur in a forest demands 
more time and effort than simply restoring species count, thus encour
aging ecologists to extend the time span of their chronosequences for 
studying forest successions. This phenomenon likely stems from the 
heightened sensitivity of species assemblages to forest structure 
compared to species richness (Burrascano et al., 2018; Thompson et al., 
2022), an aspect which deserves further studies. 

Thirdly, since within-community species combinations offer insights 
beyond alpha diversity, especially beyond the 200–300-year mark, they 
serve as a valuable plant diversity indicator for forest management 
planning and restoration monitoring, especially to assess whether a 
given forest has reached old-growth characteristics (Bartha et al., 2004; 
McCallum et al., 2018; Bartha et al., 2020). 

Lastly, further research endeavours should delve into species in
teractions (e.g., combinations types resulting from competition or 
facilitation) and functional traits to unravel how species with divergent 
life history strategies interact and coexist within assemblages, revealing 
taxonomic and functional-based patterns. Ideally, these future in
vestigations should consider expanding the number of sampling sites 

Fig. 2. The standardised (using the ‘scale’ R function) mean value of Compositional Diversity (CD; in red) and species richness (in blue) from 30 forest stands 
positioned across forest successional classes (modified from Hilmers et al., 2018). The size of the circles increases along with the number of the stands used to 
calculate the age class mean value and range from smallest (n = 2) to largest (n = 8); the solid lines reported for each class represent the standard error of the 
diversity measure. The R2 and p-value of quadratic regressions are reported. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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along the successional gradient – especially the number of primeval 
forests – and evenly distributing them among age classes, aspects that 
limit our study. 
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data collection. 

Funding 

J.L.T., R.C., M.C., and G.C. were supported by the LIFE MODERn 
(NEC) project (LIFE20 GIE/IT/000091) and by the MIMTB project, 
financed by the “National Biodiversity Future Center (NBFC)”, PNRR, 
Missione 4, componente 2, linea di investimento 1.4 – Next Generation 
EU. S.C., Z.Z., G.C., and R.C. were furtherly supported by the RE.DI. 
(Reducing risks of natural Disasters) Consortium. 

Author contributions 

S.C., J.L.T., and G.C. conceived the idea. J.L.T., Z.Z, and L.L.M.D.B. 
performed the analyses. S.C. and J.L.T. wrote the first draft of the 
manuscript. All co-authors contributed to the critical revision of the 
manuscript to produce the final version. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2024.112089. 

References 

Ahlström, A., Canadell, J.G., Metcalfe, D.B., 2022. Widespread unquantified conversion 
of old boreal forests to plantations. e2022EF003221 Earth’s Future 10. https://doi. 
org/10.1029/2022EF003221. 

Ammer, C., Fichtner, A., Fischer, A., Gossner, M.M., Meyer, P., Wagner, S., 2018. Key 
ecological research questions for Central European forests. Basicic and Applied 
Ecology 32, 3–25. https://doi.org/10.1016/j.baae.2018.07.006. 

Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Swenson, N.G., 2011. Navigating 
the multiple meanings of β diversity: a roadmap for the practising ecologist. Ecology 
Letters 14, 19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x. 

Barkham, J.P., 1992. The effect of coppicing and neglect on the performance of the 
perennial ground flora. In: Buckley, G.P. (Ed.), Ecology and Management of Coppice 
Woodlands. Chapman & Hall, London, pp. 115–146. 

Bartels, S.F., Chen, H.Y., 2010. Is understory plant species diversity driven by resource 
quantity or resource heterogeneity? Ecology 91, 1931–1938. https://doi.org/ 
10.1890/09-1376.1. 

Bartha, S., 1992. Preliminary scaling for multi-species coalitions in primary succession. 
Abstracta Botanica 16, 31–41. 

Bartha, S., Czárán, T., Podani, J., 1998. Exploring plant community dynamics in abstract 
coenostate spaces. Abstracta Botanica 22, 49–66. 
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