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It is known that there are infinitely many distinguishability metrics for mixed quantum states.
This freedom, in turn, leads to metric-dependent interpretations of physically meaningful geometric
quantities such as complexity and volume of quantum states.

In this paper, we first present an explicit and unabridged mathematical discussion on the relation
between the Sjöqvist metric and the Bures metric for arbitrary nondegenerate mixed quantum states,
using the notion of decompositions of density operators by means of ensembles of pure quantum
states. Then, to enhance our comprehension of the difference between these two metrics from a
physics standpoint, we compare the formal expressions of these two metrics for arbitrary thermal
quantum states specifying quantum systems in equilibrium with a reservoir at non-zero temperature.
For illustrative purposes, we show the difference between these two metrics in the case of a simple
physical system characterized by a spin-qubit in an arbitrarily oriented uniform and stationary
external magnetic field in thermal equilibrium with a finite-temperature bath. Finally, we compare
the Bures and Sjöqvist metrics in terms of their monotonicity property.

PACS numbers: Quantum Computation (03.67.Lx), Quantum Information (03.67.Ac), Riemannian Geome-
try (02.40.Ky).

I. INTRODUCTION

The role played by geometric techniques in describing and, to a certain extent, comprehending interesting clas-
sical and quantum physical phenomena of relevance in Hamiltonian dynamics and statistical physics is becoming
increasingly important [1, 2]. For instance, the concepts of complexity [3] and phase transition [4] are two illustrative
examples of physical phenomena being intensively investigated with tools of information geometry [5], i.e. differential
geometry combined with probability calculus. For example, the singularities of a metric tensor of a manifold of cou-
pling constants that parametrize a quantum Hamiltonian can be shown to be linked to the quantum phase transitions
specifying the corresponding physical system [6–8]. Moreover, the induced curvature of the parameter manifold con-
structed from the metric tensor can also be viewed to encode relevant information on peculiar characteristics of the
system. Specifically, the change in sign of the curvature, its discontinuities and, finally, its possible divergences can
be argued to be associated with different (critical) regions of the parameter manifold where the statistical properties
of the physical system exhibit very distinctive behaviors [9–11].
In this paper we focus on the physics of quantum systems specified by mixed quantum states because there exist

infinitely many distinguishability distances for mixed quantum states [12]. This freedom in the choice of the metric
implies that these geometric investigations of physical phenomena are still open to metric-dependent interpretations
since a unifying and complete conceptual understanding of these geometric tool (along with their connections to
experimental observations) has yet to be achieved. In particular, given the non-uniqueness of such distinguishability
distances, understanding the physical relevance of considering either metric remains a goal of great conceptual and
practical interest [9–11]. Furthermore, for a chosen metric, comprehending the physical significance of its corresponding
curvature is essential and deserves further investigation [7, 8, 13].
An information geometric theoretical construct has recently been discussed [14] to describe and, to a certain extent,

comprehend the complex behavior of evolutions of quantum systems in pure and mixed states. The comparative study
was probabilistic in nature, i.e., it involved a complexity measure [15, 16] based on a temporal averaging procedure
along with a long-time limit, and it was limited to examining expected geodesic evolutions on the underlying manifolds.
More specifically, the authors studied the complexity of geodesic paths on the manifolds of single-qubit pure and mixed
quantum states equipped with the Fubini-Study [17–19] and the Sjöqvist metrics [20], respectively. They analytically
showed that the evolution of mixed quantum states in the Bloch ball is more complex than the evolution of pure
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states on the Bloch sphere. They also verified that the ranking based on their proposed measure of complexity,
representing the asymptotic temporal behavior of an averaged volume of the region explored on the manifold during
system evolutions, agreed with the geodesic length-based ranking. Finally, targeting geodesic lengths and curvature
properties in manifolds of mixed quantum states, they observed a softening of the complexity on the Bures manifold
(i.e., a manifold of density operators equipped with the Bures metric [21–23]) compared to the Sjöqvist manifold.
Motivated by the above-mentioned importance of choosing one metric over another one in such geometric charac-

terizations of physical aspects of quantum systems and, in addition, intrigued by the different complexity behaviors
recorded with the Sjöqvist and Bures metrics in Ref. [14], we report in this paper a complete and straightforward
analysis of the link between the Sjöqvist metric and the Bures metric for arbitrary nondegenerate mixed quantum
states. Our presentation draws its original motivation from the concise discussion presented by Sjöqvist himself in
Ref. [20], and it relies heavily on the concept of decompositions of density operators by means of ensembles of pure
quantum states [24]. To physically deepen our understanding about the discrepancy between these two metrics, we
provide a comparison of the exact expressions of these two metrics for arbitrary thermal quantum states describing
quantum systems in equilibrium with a bath at non-zero temperature. Finally, we clarify the difference between these
two metrics for a simple physical system specified by a spin-qubit in an arbitrarily oriented uniform and stationary
external magnetic field vector in thermal equilibrium with a finite-temperature environment.
The layout of the rest of the paper is as follows. In Section II, we revisit the Sjöqvist metric construction for

nondegenerate spectrally decomposed mixed quantum states as originally presented in Ref. [20]. In Section III,
inspired by the helpful remarks in Ref. [20], we make explicit the emergence of the Bures metric from the Sjöqvist
metric construction extended to nondegenerate arbitrarily decomposed mixed quantum states. In Sections II and III,
we especially stress the role played by the concept of geometric phase and the parallel transport condition for mixed
states in deriving the Sjöqvist and Bures metrics, respectively. In Section IV, focusing on the physically relevant class
of thermal quantum states and following the works by Hubner in Ref. [23] and Zanardi and collaborators in Ref.
[8], we cast the Sjöqvist and Bures metrics in two forms suitable for an insightful geometric comparison between the
metrics. We end Section IV with a discussion of an illustrative example. Specifically, we study the difference between
the Sjöqvist and the Bures metrics in the case of a physical system defined by a spin-qubit in an arbitrarily oriented
uniform and stationary external magnetic field in thermal equilibrium with a finite-temperature environment. In
Section V, we discuss monotonicity aspects of the Sjöqvist metric. Our conclusive remarks along with a summary of
our main findings appear in Section VI. Finally, for ease of reading, further technical details appear in Appendices A,
B, and C.

II. THE SJÖQVIST METRIC CONSTRUCTION: SPECTRAL DECOMPOSITIONS

In this section, we revisit the Sjöqvist metric construction for nondegenerate spectrally decomposed mixed quantum
states as originally presented in Ref. [20]. Before starting, we remark that the Sjöqvist metric can be linked to
observable quantities in suitably prepared interferometric measurements. For this reason, it is sometimes termed
“interferometric” metric [9, 20].
Let us consider two neighboring rank-N nondegenerate density operators ρ (t) and ρ (t+ dt) specified by the fol-

lowing ensembles of pure states,

ρ (t)
def
=
{

√

pk (t)e
ifk(t) |nk(t)〉

}

, and ρ (t+ dt)
def
=
{

√

pk (t+ dt)eifk(t+dt) |nk(t+ dt)〉
}

, (1)

respectively, with 1 ≤ k ≤ N . Assume that 〈nk(t) |nk′(t) 〉 = δkk′ and the phases fk (t) ∈ R for any 1 ≤ k ≤ N . Using
Eq. (1), ρ (t) and ρ (t+ dt) can be recast in terms of their spectral decompositions as

ρ (t) =

N
∑

k=1

pk (t) |nk(t)〉 〈nk(t)| , and ρ (t+ dt) =

N
∑

k=1

pk (t+ dt) |nk(t+ dt)〉 〈nk(t+ dt)| , (2)

respectively. The Sjöqvist metric d2Sjöqvist (t, t+ dt) between the two mixed quantum states ρ (t) and ρ (t+ dt) in Eq.

(1) is formally defined as [20],

d2Sjöqvist (t, t+ dt) = min
{fk(t), fk(t+dt)}

N
∑

k=1

∥

∥

∥

√

pk (t)e
ifk(t) |nk(t)〉 −

√

pk (t+ dt)eifk(t+dt) |nk(t+ dt)〉
∥

∥

∥

2

, (3)

that is, after some algebra,

d2Sjöqvist (t, t+ dt) = 2− 2

N
∑

k=1

√

pk (t) pk (t+ dt) |〈nk(t) |nk(t+ dt) 〉| . (4)
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A From spectral to arbitrary decompositions 3

It is important to point out that in transitioning from Eq. (3) to Eq. (4), the minimum is obtained by choosing
phases {fk (t) , fk (t+ dt)} such that

ḟk (t) dt+ arg
[

1 + 〈nk (t) |ṅk (t) 〉 dt+O
(

dt2
)]

= 0. (5)

Recall that an arbitrary complex number z can be expressed as z = |z| ei arg(z). Then, noting that e〈nk(t)|ṅk(t) 〉dt =
1 + 〈nk (t) |ṅk (t) 〉 dt + O

(

dt2
)

is such that arg
[

e〈nk(t)|ṅk(t) 〉dt
]

= −i 〈nk (t) |ṅk (t) 〉 dt, Eq. (5) can be recast to the
first order in dt as

ḟk (t)− i 〈nk (t) |ṅk (t) 〉 = 0. (6)

Eq. (6) is the parallel transport condition
〈

ψk (t)
∣

∣

∣
ψ̇k (t)

〉

= 0 with |ψk (t)〉 def
= eifk(t) |nk (t)〉 associated with individual

pure state paths in the given ensemble that specifies the mixed state ρ (t) [25]. For completeness, we recall here that
a state ρ (t) = U (t) ρ (0)U (t) evolving in a unitary fashion is parallel transported along an arbitrary path when at
each instant of time t the state ρ (t) is in phase with the state ρ (t+ dt) = U (t+ dt)U † (t) ρ (t)U(t)U † (t+ dt) at an
infinitesimal later time t + dt. Moreover, the parallel transport conditions for pure (with ρ (t) = |ψ (t)〉 〈ψ (t)|) and

mixed states evolving in a unitary way are given by
〈

ψ (t)
∣

∣

∣
ψ̇ (t)

〉

= 0 and tr
[

ρ (t) U̇(t)U † (t)
]

= 0, respectively [26].

For a discussion on the parallel transport condition for mixed quantum states evolving in a nonunitary manner, we
refer to Ref. [27]. Interestingly, using clever algebraic manipulations and expanding to the lowest nontrivial order in
dt, d2Sjöqvist (t, t+ dt) in Eq. (4) can be rewritten as

d2Sjöqvist (t, t+ dt) =
1

4

N
∑

k=1

dp2k
pk

+

N
∑

k=1

〈ṅk |(I− |nk〉 〈nk|)| ṅk〉 dt2, (7)

with I in Eq. (7) denoting the identity operator. It is worth observing that ds2k
def
= 〈ṅk |(I− |nk〉 〈nk|)| ṅk〉 dt2

in Eq. (7) can be expressed as ds2k = 〈∇nk |∇nk 〉 where |∇nk〉 def
= P

(k)
⊥ |ṅk〉 is the covariant derivative of |nk〉

and P
(k)
⊥

def
= I − |nk〉 〈nk| is the projector onto states perpendicular to |nk〉. Furthermore,

∑

k ds
2
k is the nonclassical

contribution in d2Sjöqvist (t, t+ dt) and represents a weighted average of pure state Fubini-Study metrics along directions

defined by state vectors {|nk〉}1≤k≤N . This weighted average, in turn, can be regarded as a generalized version of
the Provost-Vallee coherent sum procedure utilized to define a Riemannian metric on manifolds of pure quantum
states in Ref. [17]. The derivation of Eq. (4) ends our revisitation of the original Sjöqvist metric construction for
nondegenerate mixed quantum states. It is important to emphasize that d2Sjöqvist (t, t+ dt) in Eq. (4) was obtained

by using the spectral decompositions of the two neighboring mixed states ρ (t) and ρ (t+ dt). Therefore, the metric
was calculated for a special decomposition of neighboring density operators expressed in terms of ensembles of pure
states.

III. THE SJÖQVIST METRIC CONSTRUCTION: ARBITRARY DECOMPOSITIONS

In this section, we make explicit the emergence of the Bures metric from the Sjöqvist metric construction (presented
in Section II) extended to nondegenerate arbitrarily decomposed mixed quantum states. In particular, we emphasize
the role played by the concept of geometric phase and the parallel transport condition for mixed states in this derivation
of the Bures metrics. Our discussion is an extended version of the abridged presentation in Ref. [20].

A. From spectral to arbitrary decompositions

It is well-known in quantum information and computation that a given density matrix can be expressed in terms of
different ensembles of quantum states. In particular, the eigenvalues and eigenvectors of a density matrix just denote
one of many possible ensembles that may generate a fixed density matrix. This flexibility leads to the so-called theorem
on the unitary freedom in the ensembles for density matrices [28]. This theorem implies that ρ =

∑

i pi |ψi〉 〈ψi| =
∑

j qj |ϕj〉 〈ϕj | for normalized states {|ψi〉} and {|ϕj〉} and probability distributions {pi} and {qj} if and only if√
pi |ψi〉 =

∑

j uij |ϕj〉 for some unitary matrix uij, and we may fill the smaller ensemble with zero-probability entries
in order to get same-size ensembles. In what follows, we shall see the effect on metrics for mixed quantum states
produced by this unitary freedom in the ensembles for density matrices.
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A From spectral to arbitrary decompositions 4

Let us consider arbitrary decompositions of two rank-N neighboring density operators ρ (t) and ρ (t+ dt) in terms
of statistical ensembles of pure states. Let us start by defining the following set {|sk (t)〉}1≤k≤N of quantum states

|sk (t)〉 def
=
√

pk (t) |nk (t)〉 , (8)

with 〈sk (t) |sk (t) 〉 = pk (t) for any 1 ≤ k ≤ N . Then, given ρ (t)
def
=
{

eifk(t) |sk (t)〉
}

, the spectral decomposition of
ρ (t) is

ρ (t) =

N
∑

k=1

|sk(t)〉 〈sk(t)| . (9)

Consider a unitary matrix V (t) satisfying the unitary condition V † (t)V (t) = V (t)V † (t) = I, with I being the N×N
identity matrix. In terms of complex matrix coefficients {Vhk (t)}1≤h, k≤N , the unitary condition can be expressed as

N
∑

h=1

Vhk (t)V
∗
hl (t) = δkl. (10)

Using the set {|sk (t)〉}1≤k≤N in Eq. (8) and the unitary matrix V (t), we define a new set of normalized state vectors

{|uh (t)〉}1≤h≤N as

|uh (t)〉 def
=

N
∑

k=1

Vhk (t) |sk (t)〉 . (11)

Given the set {|uh (t)〉}1≤h≤N with |uh (t)〉 in Eq. (11), we observe that we have constructed a set of unitarily

equivalent representations of the mixed state ρ (t). Indeed, we have

N
∑

h=1

|uh (t)〉 〈uh (t)| =
N
∑

h,k,l=1

Vhk (t)V
∗
hl (t) |sk (t)〉 〈sl (t)|

=

N
∑

k,l=1

(

N
∑

h=1

Vhk (t)V
∗
hl (t)

)

|sk (t)〉 〈sl (t)|

=

N
∑

k,l=1

|sk (t)〉 〈sl (t)| δkl

=
N
∑

k=1

|sk (t)〉 〈sk (t)|

=

N
∑

k=1

pk (t) |nk(t)〉 〈nk(t)|

= ρ (t) (12)

that is, ρ (t) can be generally decomposed as

ρ (t) =

N
∑

h=1

|uh (t)〉 〈uh (t)| . (13)

Let us consider now two neighboring nondegenerate states ρ (t) and ρ (t+ dt) specified by the following ensembles of
pure states,

ρ (t)
def
=

{

N
∑

k=1

Vhk (t)
√

pk (t) |nk (t)〉
}

= {|uh (t)〉} (14)
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B Emergence of the Bures metric 5

and,

ρ (t+ dt)
def
=

{

N
∑

k=1

Vhk (t+ dt)
√

pk (t+ dt) |nk (t+ dt)〉
}

= {|uh (t+ dt)〉} , (15)

respectively. For completeness, we note that Vhk (t) = |Vhk (t)| ei arg[Vhk(t)] ∈ C for any 1 ≤ h, k ≤ N . In particular,
one recovers the original construction proposed originally by Sjöqvist when

Vhk (t) = δhke
ifk(t), and |uh (t)〉 =

√

ph (t)e
ifh(t) |nh(t)〉 . (16)

Using the decompositions in Eqs. (14) and (15), the generalization d̃2Sjöqvist (t, t+ dt) of d2Sjöqvist (t, t+ dt) in Eq. (3)
becomes

d̃2Sjöqvist (t, t+ dt)
def
= min

{V (t), V (t+dt)}

N
∑

h=1

‖|uh (t)〉 − |uh (t+ dt)〉‖2 , (17)

that is,

d̃2Sjöqvist (t, t+ dt) =

N
∑

h=1

∥

∥

∥

∥

∥

N
∑

k=1

Vhk (t)
√

pk (t) |nk (t)〉 −
N
∑

k=1

Vhk (t+ dt)
√

pk (t+ dt) |nk (t+ dt)〉
∥

∥

∥

∥

∥

2

. (18)

To obtain a more compact expression of d̃2Sjöqvist (t, t+ dt), we note that

N
∑

h=1

‖|uh (t)〉 − |uh (t+ dt)〉‖2 = 2− 2Re

[

N
∑

h=1

〈uh (t) |uh (t+ dt) 〉
]

= 2− 2Re





∑

h,k,k′

V ∗
hk (t) 〈sk (t) |sk′ (t+ dt) 〉Vhk′ (t+ dt)





= 2− 2Re





∑

h,k,k′

Skk′Vhk′ (t+ dt)V ∗
hk (t)





= 2− 2Re tr
[

St (dt)V (t+ dt)V † (t)
]

, (19)

that is,

N
∑

h=1

‖|uh (t)〉 − |uh (t+ dt)〉‖2 = 2− 2Re tr
[

St(dt)V (t+ dt)V † (t)
]

. (20)

The matrix St (dt) in Eq. (20) is an overlap matrix with coefficients Skk′ defined as

Skk′

def
= 〈sk (t) |sk′ (t+ dt) 〉 =

√

pk (t) pk′ (t+ dt) 〈nk (t) |nk′ (t+ dt) 〉 . (21)

Combining Eqs. (17) and (20), we finally get

d̃2Sjöqvist (t, t+ dt) = min
{V (t), V (t+dt)}

{

2− 2Re tr
[

St(dt)V (t+ dt) V † (t)
]}

. (22)

In what follows, we shall see the emergence of the Bures metric by explicitly evaluating the minimum that specifies
d̃2Sjöqvist (t, t+ dt) in Eq. (22).

B. Emergence of the Bures metric

We begin by observing that the polar decomposition of St(dt) is given by [28],

St(dt) = |St(dt)|Ut (dt) , (23)
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B Emergence of the Bures metric 6

where |St(dt)| def
=

√

St(dt)S
†
t (dt) and Ut (dt) is a unitary matrix. Then, we note that minimizing

2 − 2Re tr
[

St(dt)V (t+ dt)V † (t)
]

is equivalent to maximizing 2Re tr
[

St(dt)V (t+ dt)V † (t)
]

with respect to
{V (t) , V (t+ dt)}. Furthermore, we make two remarks. First of all, Re (z) ≤ |z| for any z ∈ C. Second of all,

tr|A| ≥ |tr (AUA)| for any operator A and unitary UA with max
UA

|tr (AUA)| = tr|A| obtained by choosing UA = V †
A

where A = |A|VA is the polar decomposition of A [28, 29]. Given this set of preliminary observations, we have that

Re tr
[

St(dt)V (t+ dt) V † (t)
]

= Re tr
[

|St(dt)|Ut (dt)V (t+ dt)V † (t)
]

≤
∣

∣tr
[

|St(dt)|Ut (dt)V (t+ dt) V † (t)
]∣

∣

≤ tr |St(dt)| , (24)

that is,

max
{V (t), V (t+dt)}

Re tr
[

St(dt)V (t+ dt)V † (t)
]

= tr |St(dt)| (25)

is obtained by choosing {V (t) , V (t+ dt)} such that the following condition is satisfied,

Ut (dt) V (t+ dt)V † (t) = I. (26)

Interestingly, we point out that the maximization procedure in Eq. (25) is similar to the use of the variational
characterization of the trace norm that one employs to prove Uhlmann’s theorem (see, for instance, Lemma 9.5 in
Ref. [28] and Property 9.1.6 in Ref. [29]). We also remark that Eq. (26) is a constraint equation that can be regarded
as the operator-analogue of the parallel transport condition in Eq. (6). For more details on this point, we refer to
Appendix A. Finally, employing Eqs. (22) and (25), we get

d̃2Sjöqvist (t, t+ dt) = 2− 2tr |St(dt)| . (27)

We shall now show that d̃2Sjöqvist (t, t+ dt) in Eq. (27) is indeed the Bures metric d2Bures (t, t+ dt) defined as [12, 28],

d2Bures (t, t+ dt)
def
= 2− 2tr

[

√

ρ1/2 (t) ρ (t+ dt) ρ1/2 (t)

]

. (28)

Observe that |St(dt)|2 = St(dt)S
†
t (dt), where

[

St(dt)S
†
t (dt)

]

kk′′

=

N
∑

k′=1

〈sk (t) |sk′ (t+ dt) 〉 〈sk′ (t+ dt) |sk′′ (t) 〉 . (29)
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A Suitable recast of metrics 7

After some algebra, we note that ρ1/2 (t) ρ (t+ dt) ρ1/2 (t) = |St(dt)|2. Indeed, we have

ρ1/2 (t) ρ (t+ dt) ρ1/2 (t) =

(

N
∑

k=1

√

pk (t) |nk(t)〉 〈nk(t)|
)(

N
∑

k′=1

pk′ (t+ dt) |nk′ (t+ dt)〉 〈nk′(t+ dt)|
)

(

N
∑

k′′=1

√

pk′′ (t) |nk′′(t)〉 〈nk′′(t)|
)

=
N
∑

k,k′,k′′=1





|nk(t)〉
(

√

pk (t) pk′ (t+ dt) 〈nk(t) |nk′(t+ dt) 〉
)

(

√

pk′ (t+ dt) pk′′ (t) 〈nk′(t+ dt) |nk′′ (t) 〉
)

〈nk′′ (t)|





=

N
∑

k,k′,k′′=1

|nk(t)〉 (〈sk (t) |sk′ (t+ dt) 〉) (〈sk′ (t+ dt) |sk′′ (t) 〉) 〈nk′′ (t)|

=

N
∑

k,k′′=1

|nk(t)〉
[

N
∑

k=1

〈sk (t) |sk′ (t+ dt) 〉 〈sk′ (t+ dt) |sk′′ (t) 〉
]

〈nk′′(t)|

=

N
∑

k,k′′=1

|nk(t)〉
[

St (dt)S
†
t (dt)

]

kk′′

〈nk′′(t)|

=
N
∑

k,k′′=1

[

St (dt)S
†
t (dt)

]

kk′′

|nk(t)〉 〈nk′′(t)|

= St (dt)S
†
t (dt)

= |St(dt)|2 . (30)

In conclusion, we arrive at the following relations

d2Bures (t, t+ dt) = d̃2Sjöqvist (t, t+ dt) 6= d2Sjöqvist (t, t+ dt) . (31)

More specifically, we have d̃2Sjöqvist (t, t+ dt) ≤ d2Sjöqvist (t, t+ dt) since the minimization procedure that specifies

d̃2Sjöqvist (t, t+ dt) is extended to arbitrary unitary {V (t) , V (t+ dt)} while, instead, the minimization procedure that

specifies d2Sjöqvist (t, t+ dt) is limited to unitary matrices of the form {V (t) , V (t+ dt)} with Vhk (t) = δhke
ifk(t).

With this last remark, we end our mathematical discussion on the emergence of the Bures metric from a generalized
version of the Sjöqvist original metric construction. However, to better grasp the physical differences between the
Sjöqvist and Bures metrics, we focus on thermal mixed states in the next section.

IV. SJÖQVIST AND BURES METRICS FOR THERMAL STATES

In this section, we cast the Sjöqvist and the Bures metrics in two forms that are especially convenient for an
insightful geometric comparison. In particular, we illustrate this comparison with an explicit example in which the
physical system is specified by a spin-qubit in an arbitrarily oriented uniform and stationary magnetic field in thermal
equilibrium with a finite-temperature reservoir.

A. Suitable recast of metrics

We begin by observing that, in the Sjöqvist case (see Eq. (7)), the metric (infinitesimal line element) can be
decomposed in terms of a classical and a nonclassical contribution,

ds2Sjöqvist =
(

ds2Sjöqvist
)c

+
(

ds2Sjöqvist
)nc

. (32)

It happens that
(

ds2Sjöqvist
)c

and
(

ds2Sjöqvist
)nc

can be conveniently written as [20],

(

ds2Sjöqvist
)c def

=
1

4

∑

n

dp2n
pn

, and
(

ds2Sjöqvist
)nc def

=
∑

n

pn 〈dn|(I− |n〉 〈n|)|dn〉 , (33)
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respectively. To recast
(

ds2Sjöqvist
)nc

in Eq. (33) in a suitable manner for thermal states ρ
def
=
∑

n pn |n〉 〈n| where
{|n〉} denotes the eigenbasis of ρ with eigenvalues {pn} and 1 ≤ n ≤ N , we note that

〈dn |dn 〉 = 〈dn |n 〉 〈n |dn 〉+
∑

k, k 6=n

〈dn |k 〉 〈k |dn 〉 . (34)

Furthermore, assuming that the Hamiltonian operator H satisfies the relation H|n〉 = En |n〉 with {En} and {|n〉}
being eigenvalues and eigenvectors of H, respectively, we find after some clever algebraic manipulations that

〈k |dn 〉 〈dn |k 〉 =
∣

∣

∣

∣

〈k |dH|n〉
En − Ek

∣

∣

∣

∣

2

. (35)

Then, exploiting Eqs. (34) and (35),
(

ds2Sjöqvist
)nc

in Eq. (33) can be finally expressed as

(

ds2Sjöqvist
)nc

=
∑

n6=k

e−βEn + e−βEk

2Z

∣

∣

∣

∣

〈n|dH |k〉
En − Ek

∣

∣

∣

∣

2

. (36)

In Eq. (36), Zdef
=tr

(

e−βH
)

is the partition function of the system, pn
def
=e−βEn/Z, β

def
= (kBT )

−1
, and kB is the

Boltzmann constant. Eq. (36) is an interesting result of our work and denotes the suitable recast of
(

ds2Sjöqvist
)nc

for

thermal quantum states we were looking for. We need to find now the analog of Eq. (36) for the Bures case.
In the Bures case, the metric (infinitesimal line element) can be decomposed in terms of a classical and a nonclassical

contribution,

ds2Bures =
(

ds2Bures

)c
+
(

ds2Bures

)nc
. (37)

Focusing on thermal quantum states ρ
def
=
∑

n pn |n〉 〈n| as pointed out earlier, it can be shown that
(

ds2Bures

)c
=

(

ds2Sjöqvist
)c

in Eq. (33) and
(

ds2Bures

)nc
can be expressed as [8, 23],

(

ds2Bures

)nc
=
∑

n6=k

e−βEn + e−βEk

2Z

(

e−βEn − e−βEk

e−βEn + e−βEk

)2 ∣
∣

∣

∣

〈n|dH |k〉
En − Ek

∣

∣

∣

∣

2

. (38)

For completeness, note that a general expression of ds2Bures in Eq. (37) can be obtained by replacing e−βEn/Z with an
arbitrary pn as remarked in Ref. [8]. We observe that Eq. (38) is, modulo a clever rewriting that suits our comparative
discussion between the Sjöqvist and the Bures metrics here, equivalent to Eq. (6) in Ref. [8]. The difference between
the Sjöqvist and the Bures metrics ds2Sjöqvist and ds2Bures appears in their non-classical metric components gncSjöqvist

and gncBures. In particular, focusing on Eqs. (36) and (38), the difference between these components, in turn, tends to
vanish when the minimum separation between the modulus of two distinct quantum-mechanical energy levels En and
Ek of the system is much greater than the characteristic thermal energy kBT , i.e.

min
n6=k

|En − Ek| ≫ kBT . (39)

Clearly, Eq. (39) is satisfied when the temperature T approaches zero (i.e., asymptotic limit of β approaching infinity)
with |En − Ek| finite (and nonzero) for any n 6= k. In this case, mixed quantum states tend to become pure states
and, in particular, both metrics (i.e., Sjöqvist and Bures) reduce to the Fubini-Study metric.

B. Illustrative example

To better grasp the difference between these two metrics as reported in Eqs. (36) and (38), we discuss an explicit ex-
ample. Let us take into consideration a spin-1/2 particle specified by an electron of m, charge −e with e ≥ 0 immersed

in an external magnetic field ~B (t). The Hamiltonian of this system can be quantum-mechanically specified by the Her-

mitian operator H (t)
def
= −~µ· ~B (t), where ~µ

def
= − (e/m)~s is the electron magnetic moment operator and ~s

def
= (ℏ/2)~σ

is the spin operator. Naturally, ℏ
def
= h/(2π) denotes the reduced Planck constant and ~σ

def
= (σx, σy , σz) represents

the Pauli spin vector operator. If we consider a time-independent, uniform, and arbitrarily magnetic field given by

Approved for Public Release; Distribution Unlimited: PA# AFRL 2023-1054



B Illustrative example 9

~B
def
= Bxx̂ + Byŷ + Bz ẑ and introduce the frequency vector ~ω

def
= (ωx, ωy, ωz) = ((e/m)Bx, (e/m)By, (e/m)Bz), the

spin-1/2 qubit (SQ) Hamiltonian becomes

HSQ (~ω)
def
=

ℏ

2
(~ω · ~σ) . (40)

Note that with the sign convention used for HSQ (~ω) in Eq. (40), when ~ω = ωz ẑ with ωz > 0, we have that |1〉
(|0〉) represents the ground (excited) state of the system with energy −ℏωz/2 (+ℏωz/2). Furthermore, let us suppose
that the system specified by the Hamiltonian HSQ in Eq. (40) is in thermal equilibrium with a reservoir at non-zero
temperature T . Then, quantum statistical mechanics [30] specifies that the system has temperature T and its state
is characterized by a thermal state [31] specified by a density matrix ρ given by

ρSQ (β, ~ω)
def
=

e−βHSQ(~ω)

tr
(

e−βHSQ(~ω)
) . (41)

In Eq. (41), β
def
= (kBT )

−1
is the so-called inverse temperature, while kB denotes the Boltzmann constant. Using Eqs.

(40) and (41), one obtains after some algebra that the formal expression of the thermal state ρSQ (β, ~ω) is given by

ρSQ (β, ~ω) =
1

2

[

I− tanh

(

β
ℏω

2

)

~ω · ~σ
ω

]

, (42)

with ω
def
=
√

ω2
x + ω2

y + ω2
z denoting the magnitude of the frequency vector ~ω and I in Eq. (42) being the identify

operator. Finally, assuming to keep ωx-fixed6= 0, ωy-fixed6= 0 and, at the same time, tuning only the two parameters
β and ωz, the Sjöqvist and the Bures metrics specifying the distance between the two neighboring mixed states ρSQ
and ρSQ + dρSQ can be analytically shown to be equal to

gSjöqvistij (β, ωz) =
ℏ2

16

[

1− tanh2
(

β
ℏω

2

)]

(

ω2 βωz

βωz β2
(

ωz

ω

)2
+ 4

ℏ2

ω2
x+ω2

y

ω4
1

1−tanh2(β ℏω
2 )

)

, (43)

and

gBures
ij (β, ωz) =

ℏ2

16

[

1− tanh2
(

β
ℏω

2

)]

(

ω2 βωz

βωz β2
(

ωz

ω

)2
+ 4

ℏ2

ω2
x+ω2

y

ω4

tanh2(β ℏω
2 )

1−tanh2(β ℏω
2 )

)

, (44)

respectively, with 1 ≤ i, j ≤ 2 (where 1 ↔ β and 2 ↔ ωz). For explicit technical details on how to analytically
calculate the Sjöqvist and the Bures metrics, we refer to Ref. [32]. From Eqs. (43) and (44), it is clear that the
Sjöqvist and the Bures metrics only differ in the non-classical contribution [g22 (β, ωz)]nc of their g22 (β, ωz) metric
component. Specifically, we observe that

0 ≤
[

gBures
22 (β, ωz)

]

nc
/
[

gSjöqvist22 (β, ωz)
]

nc
= tanh2

(

β
ℏω

2

)

≤ 1. (45)

Interestingly, for a two-level system with E1 = ℏω/2 and E2 = −ℏω/2, the factor
[(

e−βE1 − e−βE2
)

/
(

e−βE1 + e−βE2
)]2

in Eq. (38) becomes exactly tanh2 [β (ℏω/2)] (i.e., the ratio in Eq.
(45)).
We note that, in the limiting case in which ~ω = (0, 0, ωz), setting kB = 1, β = t−1, and ωz = t, our Eq. (44) reduces

to the last relation found by Zanardi and collaborators in Ref. [8]. In Ref. [8], the limiting scenario considered by
Zanardi and collaborators corresponds to the case of a one-dimensional quantum Ising model in a transverse magnetic
field h ≡ Bz with |h| ≫ 1. When |h| ≫ 1, the lowest order approximation of the quantum Ising Hamiltonian
is H= h

∑

i σ
z
i . In this approximation, the Bures metric between two neighboring thermal states parametrized by

{β, h} and emerging from this approximated Hamiltonian vanishes. In our analysis, the degeneracy of the Bures
metric appears when the spin-qubit is immersed in a magnetic field oriented along the z-axis. In particular, the
metric has in this case only one nonvanishing eigenvalue, its determinant vanishes, and no definition of connection
and curvature exists. In summary, no Riemannian structure survives at all when the metric is degenerate. In Ref.
[8], the degeneration of the metric can be removed by considering higher order approximations of the quantum Ising
Hamiltonian. In our case, instead, the degeneracy of the Bures metric can be removed by considering more general
orientations of the external magnetic field. Interestingly, the degenerate scenario can be given a clear interpretation,
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despite the absence of any Riemannian structure. Indeed, given that the eigenvectors of the Bures metric tensor define
the directions of maximal and minimal growth of the line element ds2Bures [8], the eigenvector of the metric related
to the highest eigenvalue defines at each point of the two-dimensional parametric plane the direction along which the
Uhlmann fidelity between two nearby states decreases most quickly, i. e., the direction of highest distinguishability
between two neighboring thermal states. Therefore, when proceeding along the direction specified by an eigenvector
corresponding to the vanishing eigenvalue, one can conclude that no change in the state of the system takes place.
For completeness, we reiterate that in this paper we limited our theoretical discussions to nondegenerate density

matrices for which Sjöqvist’s original metric is nonsingular. In particular, our explicit illustrative example was specified
by an Hamiltonian with nondegenerate eigenvalues yielding nondegenerate density operators. However, degenerate
thermal states that emerge from degenerate-spectrum Hamiltonians are pervasive in physics [33]. In these latter
scenarios, insights on the physics of quantum systems can be generally obtained by studying the geometry of thermal
state manifolds equipped with a generalized version of Sjöqvist’s original metric. This generalized metric is also
suitable for degenerate mixed quantum states and was proposed by Silva and collaborators in Ref. [9].
In conclusion, we point out that for pure quantum states

(

ρ = ρ2
)

and for mixed quantum states
(

ρ 6= ρ2
)

for which
the non-commutative probabilistic structure underlying quantum theory is invisible (i.e., in the classical scenario with
[ρ, ρ+ dρ] = 0), the Bures and the Sjöqvist metrics are essentially the same. Indeed, in the former and latter cases,
they reduce to the Fubini-Study and Fisher-Rao information metrics, respectively. Instead, when considering mixed
quantum states for which the non-commutative probabilistic structure of quantum mechanics is visible (i.e., in the
non-classical scenario with [ρ, ρ+ dρ] 6= 0), the Bures and the Sjöqvist metrics are generally different. This latter
scenario has been explicitly illustrated in our proposed example.
In the next section, we shall investigate the monotonicity aspects of the Sjöqvist metric for mixed states.

V. MONOTONICITY OF THE SJÖQVIST METRIC

In this section, we discuss the monotonicity of the Sjöqvist metric in the single-qubit case. Unlike the Bures metric,
we shall see that the Sjöqvist metric is not specified by a proper Morozova-Chentsov function and is not a monotone
metric. For some technical details on the monotonicity of the Bures metric, see Appendix B.

A. Preliminaries

If a distance between classical probability distributions or quantum density matrices expresses statistical distin-
guishability, then this distance must not increase under coarse-graining. In particular, a metric that does not grow
under the action of a stochastic map is called monotone [12]. In the classical setting, the Fisher-Rao information
metric is the unique [34, 35], except for a constant scale factor, Riemannian metric that is invariant under Markov
embeddings (i.e., stochastic maps). In the quantum setting, instead, there are infinitely many monotone Riemannian
metrics on the space of quantum states [12]. In the quantum case, quantum stochastic maps are represented by com-
pletely positive and trace preserving (CPTP) maps. If Dmon (ρ, σ) represents the distance between density matrices
ρ and σ that originates from a monotone metric, it must be

Dmon (Λ (ρ) , Λ (σ)) ≤ Dmon (ρ, σ) , (46)

for any CPTP map Λ. Morozova and Chentsov originally considered the problem of finding monotone Riemannian
metrics on the space of density matrices [36]. However, although they proposed several candidates, they did not
present a single explicit example of a monotone metric. It was Petz, building on the work of Morozova and Chentsov,
who showed the abundance of monotone metrics by exploiting the concept of operator monotone function in Ref. [37].
A scalar function f : I → R is said to be matrix (or, operator) monotone (increasing) on an interval I ⊂ Df ⊂ R,
with Df denoting the domain of definition of f , if for all Hermitian matrices A and B of all orders whose eigenvalues
lie in I, A ≥ B ⇒ f (A) ≥ f (B). Observe that A ≥ B if and only if A − B is a positive matrix. We point of that
the concept of an operator monotone function can be subtle. For instance, there are examples of monotone functions
that are not operator monotone (for instance [12], f (t) = t2). For more details on the notion of operator monotone
functions along with suitable techniques to construct them, we refer to Refs. [38–43]. The key contribution by Petz in
Ref. [37] was that of using operator monotone functions to construct explicit examples of monotone metrics. The joint
work of Morozova-Chentsov-Petz (MCP) led to the much appreciated MCP theorem [36, 37]. Roughly speaking, this
theorem states that every monotone metric on the space of density matrices can be recast in a suitable form specified
by a so-called Morozova-Chentsov (MC) function. A scalar function f : R+ → R+ is called Morozova-Chentsov if it
satisfies three conditions: (i) f is operator monotone; (ii) f is self inversive, that is f (1/t) = f (t) /t for any t ∈ R+;
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and (iii) f (1) = 1. Condition (ii) is necessary to have a symmetric mean A#B between two Hermitian operators

A and B [12]. Recall that A#B
def
=

√
Af
(

1√
A
B 1√

A

)√
A, where A > 0 and f is an operator monotone function on

[0, ∞) with f(1) = 1. Finally, condition (iii) is a normalization condition which helps to avoid a conical singularity
of the metric at the maximally mixed state.
In the next subsection, we do not discuss the non-monotonicity of the Sjöqvist metric by providing the existence of

a CPTP map that violates the inequality in Eq. (46). Rather, we argue that the Sjöqvist metric is not a monotone
metric because it violates the MCP theorem since it is not specified by a proper Morozova-Chentsov function.

B. Discussion

Consider two neighboring single-qubit density matrices ρ and ρ+ dρ in the Bloch ball, with ρ given by

ρ =
1̂ + ~r · ~σ

2
=

1

2

(

1 + r cos (θ) r sin (θ) e−iϕ

r sin (θ) eiϕ 1− r cos (θ)

)

, (47)

and a diagonal form specified by ρdiag = (1/2) diag (1 + r, 1− r). In Eq. (47), ~r denotes the polarization vector given

by ~r
def
= rn̂ with n̂

def
= (sin (θ) cos (ϕ) , sin (θ) sin (ϕ) , cos (θ)). Observe that for mixed quantum states, 0 ≤ r < 1 and

det (ρ) = (1/2)
(

1− ~r2
)

≥ 0 because of the positiveness of ρ. For pure quantum states, instead, we have r = 1 and
det (ρ) = 0. According to the MCP theorem, any Riemannian monotone metric between ρ and ρ + dρ in the Bloch
ball with ρ in Eq. (47) can be recast as [12]

ds2 =
1

4





dr2

1− r2
+

1

f
(

1−r
1+r

)

r2

1 + r
dΩ2



 , (48)

with 0 < r < 1. In Eq. (48), dΩ2 def
= dθ2 + sin2 (θ) dϕ2 specifies the metric on the unit 2-sphere while f : R+ → R+

is the so-called Morozova-Chentsov function f = f (t). Note that at the maximally mixed state where r = 0, t is

defined as t (r)
def
= (1− r) /(1 + r) ∈ [0, 1] and becomes t (0) = 1. Therefore, the constraint (iii) (i.e., f (1) = 1 6= 0) is

necessary to bypass a conical singularity in the metric. In the case of the Bures metric,

ds2Bures =
1

4

[

dr2

1− r2
+ r2dΩ2

]

. (49)

From Eqs. (48) and (49),

1

fBures

(

1−r
1+r

)

r2

1 + r
= r2. (50)

Then, recalling that r (t)
def
= (1− t) /(1 + t), we find from Eq. (50) that that

fBures (t)
def
=

1+ t

2
. (51)

Clearly, fBures (t) satisfies conditions (i), (ii), and (iii) [12]. In the case of the Sjöqvist metric, we have

ds2Sjöqvist =
1

4

[

dr2

1− r2
+ dΩ2

]

. (52)

From Eqs. (48) and (52), we find that [14]

fSjöqvist (t)
def
=

1

2

(1− t)
2

1 + t
. (53)

For a brief comparative discussion on Eqs. (49) and (52) along with remarks on finite lengths of geodesics connecting
mixed quantum states in the Bures and Sjöqvist geometries, we refer to Appendix C. We observe now that although
fSjöqvist (t) is self inversive since fSjöqvist (1/t) = fSjöqvist (t) /t, fSjöqvist (1) = 0 6= 1. Therefore, as pointed out in Ref.
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[20], the Sjöqvist metric in Eq. (52) is singular at the origin of the Bloch ball where r = 0 (i.e., t ≡ t (0) = 1) and
the angular components of the metric tensor diverge because fSjöqvist (1) = 0. For this reason, the original Sjöqvist
metric is limited to non-degenerate mixed quantum states. Alternatively, the emergence of the singular behavior of

the Sjöqvist metric expressed in the form of Eq. (48) can be understood by noting that 1/fSjöqvist

(

1−r
1+r

)

= (1+ r)/r2

diverges as r approaches zero. To properly understand the monotonicity property of the Sjöqvist metric, we need to
also check if fSjöqvist (t) in Eq. (53) is an operator monotone function.
To address this point, we start by recalling that in spherical coordinates the normalized volume element on the

manifold of single-qubit mixed states equipped with the most general Riemannian monotone metric is given by [12, 44]

dV
def
= p (r, θ, ϕ) drdθdϕ = N r2 sin (θ)

f
(

1−r
1+r

)

(1− r2)
1/2

(1 + r)
drdθdϕ, (54)

where N is a constant such that the probability density function (pdf) p (r, θ, ϕ) in Eq. (54) is normalized to unity.
For instance, in the Bures and Sjöqvist metric cases, we have

pBures (r, θ, ϕ)
def
=

1

π2

r2 sin (θ)√
1− r2

, and pSjöqvist (r, θ, ϕ)
def
=

1

2π2

sin (θ)√
1− r2

, (55)

respectively. Note that from Eqs. (54) and (55), NBures
def
= 1/π2 and NSjöqvist

def
= 1/(2π2). In Ref. [45], Zyczkowski-

Horodecki-Sanpera-Lewenstein (ZHSL) introduced a “natural measure” in the space of density matrices specifying
N -dimensional quantum systems to compute the volume of separable and entangled states. The probability measure
µunitary used by ZHLS to describe the manner in which N×N random density matrices ρ that describe N -dimensional
quantum systems are drawn, is specified by means of a product µunitary = ∆1 × νHaar. The quantity νHaar denotes
the Haar measure in the space of unitary matrices U(N) [46–49], while ∆1 is the uniform measure on the (N − 1)-

dimensional simplex defined by the constraint
∑N

i=1 di = 1 (where {di}1≤i≤N are the N positive eigenvalues of ρ)

[50]. ZHLS proposed the product µunitary = ∆1 × νHaar motivated by the rotational invariance of both terms ∆1

and νHaar. In Ref. [51], Zyczkowski discussed the measure-dependence of questions concerning the separability of
randomly chosen mixed quantum states expressed as a mixture of pure states in an N -dimensional Hilbert space. In
Ref. [52], focusing on the two-dimensional case with N = 2, Slater showed that the pdf that characterizes the ZHSL
volume element equals

pZHSL (r, θ, ϕ)
def
=

Γ
(

1
2 + ν

)

2π3/2Γ (ν)

(

1− r2
)ν−1

sin (θ) , (56)

where Γ (ν) is the Euler gamma function and ν > 0 is the usual concentration parameter that appears in probability

theory [53]. Recasting dVZHSL
def
= pZHSL (r, θ, ϕ) drdθdϕ as in Eq. (54) and following Slater’s work, we get

fZHSL (t; ν)
def
= NZHSL (ν) ·

2π3/2Γ (ν)

Γ
(

1
2 + ν

) · 1
2

(1− t)
2

1 + t
·
(

4t

(1 + t)
2

)
1
2
−ν

. (57)

In Ref. [52], Slater noticed that the one-parameter family of functions fZHSL (t; ν) in Eq. (57) are such that

fZHSL (1; ν) = 0 6= 1, for any ν > 0. Therefore, these functions are not normalizable as required by a proper
Morozova-Chentsov function. However, since fZHSL (1/t; ν) = fZHSL (t; ν) /t, fZHSL (t; ν) is self inversive. Further-
more, although fZHSL (t; ν) is monotone decreasing for t ∈ [0, 1] and monotone increasing for t > 1, they are not
operator monotone [52]. Thus, dVZHSL is not proportional to the volume element of a monotonic metric. As a con-
sequence, any metric associated with the ZHSL measure would lack the statistically meaningful feature of decreasing
under the action of stochastic mappings [52, 54]. Comparing Eqs. (53) and (57), for ν = 1/2 we have

fZHSL (t; 1/2) = fSjöqvist (t) , (58)

where NZHSL (1/2) = 1/(2π2) = NSjöqvist. Thus, exploiting the finding of Slater in Refs. [52, 54], we conclude that
for N = 2 the Sjöqvist metric is not a monotone metric (unlike the Bures metric). For completeness, we point out
that one can explicitly verify that fSjöqvist (t) in Eq. (53) on [0, 1] is not operator monotone since there exist positive
matrices A, B such that B−A is positive but fSjöqvist(B)− fSjöqvist(A) is not. To see this, take B = I and A = I/2
with I being the 2 × 2 identity matrix. The discovery of the link in Eq. (58) between the family of ZHSL metrics
and the Sjöqvist metric is intriguing in its own right and, we believe, goes beyond the monotonicity aspects being
discussed here. We are now ready for our summary and concluding remarks.
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VI. CONCLUSION

In this paper, we presented an explicit mathematical discussion on the link between the Sjöqvist metric and the
Bures metric for arbitrary nondegenerate mixed quantum states in terms of decompositions of density operators via
ensembles of pure quantum states. Furthermore, to deepen our physical understanding of the difference between
these two metrics, we found and compared the formal expressions of these two metrics for arbitrary thermal quantum
states describing quantum systems in equilibrium with an environment at non-zero temperature (Eqs. (36) and (38)).
Finally, we illustrated the discrepancy (Eq. (45)) between these two metrics (Eqs. (43) and (44)) in the case of a
simple physical system defined by a spin-qubit in an arbitrarily oriented uniform and stationary magnetic field in
thermal equilibrium with a finite-temperature reservoir. Our main conclusive remarks can be summarized as follows:

[i] Motivated by the original considerations presented in Ref. [20], we have explicitly clarified that the Sjöqvist
metric d2Sjöqvist (t, t+ dt) in Eq. (4) is generally different from the Bures metric d2Bures (t, t+ dt) in Eq. (28).

[ii] Building on the quantitative analysis that appeared in Ref. [20], we have explicitly verified that the generalized

Sjöqvist metric d̃2Sjöqvist (t, t+ dt) in Eq. (27) coincides with the Bures metric d2Bures (t, t+ dt) in Eq. (28).

[iii] We have explicitly stated that d2Bures (t, t+ dt) = d̃2Sjöqvist (t, t+ dt) ≤ d2Sjöqvist (t, t+ dt). This inequality is a
consequence of the fact that in the generalized Sjöqvist metric construction, the minimization procedure occurs
in a larger space of unitary matrices (Eq. (17)) that includes the smaller space of unitary matrices (Eq. (3))
explored in the original Sjöqvist construction.

[iv] Inspired by the work in Ref. [20], we have explicitly point out that either d2Sjöqvist (t, t+ dt) or d̃2Sjöqvist (t, t+ dt)
can be obtained starting from a common general minimization procedure. However, these two metrics are
generally different since they correspond to different minima (i.e., different choices of the unitary matrix V (t) ↔
[Vhk (t)]1≤h,k≤N with Vhk (t) ∈ C introduced in Eq. (14)).

[v] For the class of thermal states in an arbitrary finite-dimensional setting, we stressed the difference between the
Sjöqvist and the Bures metrics in terms of their non-classical metric components (Eqs. (36) and (38)).

[vi] For single-qubit mixed states, we argued that unlike the Bures metric (with the MC function in Eq. (51)), the
Sjöqvist metric (with the MC-like function in Eq. (53)) is not a monotone metric.

For the set of pure states there is no room for ambiguity and the (unitary-invariant) Fubini–Study metric leads to
the only natural choice for a measure that defines “random states”. For mixed-state density matrices, instead, the
geometric structure of the state space is more intricate [12, 55]. There is a variety of different metrics that can be
employed, each of them with a different physical justification, advantages, and drawbacks that can depend on the
specific application one might examine. In particular, both basic geometric quantities (i.e., path, path length, volume,
and curvature) and more involved geometric concepts built out of these basic entities (i.e., complexity) happen to
depend on the measure chosen on the space of mixed quantum states that specify the physical system being studied
[14, 51]. For these reasons, our work carried out in this paper can be especially relevant in providing a clearer
comparative analysis between the (younger) Sjöqvist interferometric geometry and the (older) Bures geometry for
mixed quantum states. Interestingly, the relevance of this type of comparative analysis was recently remarked in Refs.
[11] and [14] as well.
It would be interesting to investigate the monotonicity of the Sjöqvist metric for N > 2. In particular, keeping

N = 2, it would be intriguing to identify an explicit counterexample of a CPTP map for single-qubits for which
the Sjöqvist distance does not decrease under its action (see, for instance, Ref. [56] for the existence of an explicit
counterexample exhibiting the non-monotonicity of the Hilbert-Schmidt distance). Finally, thanks to Eq. (58), we
found for N = 2 and ν = 1/2 that the metric associated with the ZHSL measure is equal to the Sjöqvist metric in Eq.
(52). This connection deserves further investigation, we believe. For the time being, we leave a deeper quantitative
understanding of these lines of investigation to forthcoming scientific efforts.
Despite its relative simplicity, we hope this work will inspire other scientists to strengthen our mathematical and

physical comprehension of this intriguing link among geometry, statistical mechanics, and quantum physics.
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Appendix A: Parallel transport condition for mixed quantum states

In Appendix A, to better grasp the significance of the relation Ut (dt)V (t+ dt)V † (t) = I in Eq. (26), we recall
the concept of parallel transport for pure [25] and mixed [26, 27] quantum states.

Remember that a unitarily evolving mixed quantum state ρ (t)
def
= U (t) ρ (0)U † (t) is said to gain a geometric

phase with respect to ρ (0) if arg {tr [ρ (0)U (t)]} is nonzero [26]. Then, the parallel transport condition of ρ (t)
along an arbitrary path is specified by the condition that the state ρ (t) must be, at each temporal interval, in

phase with the state ρ (t+ dt)
def
= U (t+ dt) ρ (0)U † (t+ dt) = U (t+ dt)U † (t) ρ (t)U (t)U † (t+ dt). Being in phase

requires, in turn, that arg
{

tr
[

ρ (t)U (t+ dt)U † (t)
]}

must vanish, that is, tr
[

ρ (t)U (t+ dt)U † (t)
]

must be real

and positive. However, noting that U(d + dt) = U(t) + U̇ (t) dt + O
(

dt2
)

, the parallel transport condition can be

recast as arg
{

tr
[

ρ (t) U̇ (t)U † (t)
]}

= 0. Finally, since ρ (t) U̇ (t)U † (t) is a purely imaginary number since ρ = ρ†

(Hermiticity) and UU † = U †U = I (unitarity), the parallel transport condition reduces to tr
[

ρ (t) U̇ (t)U † (t)
]

=

0. For a characterization of the mixed state geometric phase in the case of nonunitary evolutions, we refer to

Ref. [27]. For a pure state density operator ρ (t)
def
= |ψ (t)〉 〈ψ (t)|, the parallel transport condition is given by

〈

ψ (t) |ψ̇ (t)
〉

= 0 [25]. Therefore, setting for example |ψ (t)〉 def
= eifk(t) |nk (t)〉, the condition

〈

ψ (t) |ψ̇ (t)
〉

= 0

yields the scalar constraint ḟk (t) − i 〈nk (t) |ṅk (t)〉 = 0 which was obtained by Sjöqvist in his original derivation
of the metric tensor for mixed quantum states. Given this background information, we point out that the relation
Ut (dt)V (t+ dt)V † (t) = I in Eq. (26) is a constraint equation that can be regarded as the operator-analogue

of the parallel transport condition ḟk (t) − i 〈nk (t) |ṅk (t)〉 = 0. In particular, it is straightforward to check that
when the polar decomposition of the overlap matrix Mt (dt) is given by |Mt (dt)|Ut (dt) with matrix coefficients

[Mt (dt)]kl
def
=
√

pk (t) pl (t) 〈nk (t) |nl (t+ dt)〉 that are diagonalizable with real and positive eigenvalues, the relation

Ut (dt)V (t+ dt)V † (t) = I leads to the constraint tr
[

ρ (t) V̇ (t) V † (t)
]

= 0. This latter relation can be explicitly

verified by exploiting the fact that tr[ρ (t)] = 1 and, in addition, the unitary matrix V (t) satisfies the relation

V (t+dt) = V (t)+ V̇ (t) dt+O
(

dt2
)

. For a rigorous mathematical discussion on the notion of parallel transport along
density operators, we suggest Refs. [22, 57–60].

Appendix B: Monotonicity of the Bures metric

In this appendix, we report some details on the monotonicity property satisfied by the Bures metric viewed as a
Riemannian metric.
We recall that there exist infinitely many monotone Riemannian metrics on the space of mixed quantum states

[12]. In particular, the monotonicity of the Bures metric d2Bures (t, t+ dt) under stochastic quantum maps {Φ} (i.e.,
completely positive trace preserving (CPTP) maps) is a consequence of the monotonicity of the Bures distance
D2

Bures (ρ1, ρ2) [12],

D2
Bures (ρ1, ρ2)

def
= tr (ρ1) + tr (ρ2)− 2tr(

√

ρ
1/2
2 ρ1ρ

1/2
2 ), (B1)

as a function of the fidelity tr(

√

ρ
1/2
2 ρ1ρ

1/2
2 ). No physical operation expressed in terms of a CPTP map Φ can increase

D2
Bures (ρ1, ρ2),

D2
Bures (Φρ1, Φρ2) ≤ D2

Bures (ρ1, ρ2) . (B2)

To avoid confusion, we point out that the quantity tr(

√

ρ
1/2
2 ρ1ρ

1/2
2 ) is denoted with

√
F (ρ1, ρ2) and called root

fidelity in Ref. [12] (see Eq. (9.33). Instead, tr(

√

ρ
1/2
2 ρ1ρ

1/2
2 ) is denoted with F (ρ1, ρ2) and called fidelity in Ref. [28]

(see Eq. (9.53). Interestingly, the fidelity F (ρ1, ρ2) can be used to define the so-called Bures angle DBures
A (ρ1, ρ2) as

DBures
A (ρ1, ρ2)

def
= arccos

[

tr(

√

ρ
1/2
2 ρ1ρ

1/2
2 )

]

. (B3)

The Bures angle DBures
A (ρ1, ρ2) in Eq. (B3) is a metric [28] that, similarly to the Bures distance D2

Bures (ρ1, ρ2) in
Eq. (B1), satisfies the contractivity property given by

DBures
A (Φρ1, Φρ2) ≤ DBures

A (ρ1, ρ2) , (B4)
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for any CPTP map Φ [12]. Eq. (B4) is a consequence of two facts: i) DBures
A (ρ1, ρ2) in Eq. (B3) is a monotone

decreasing function of the fidelity

√

ρ
1/2
2 ρ1ρ

1/2
2 ; ii) the fidelity F (ρ1, ρ2), expressed as

√

ρ
1/2
2 ρ1ρ

1/2
2 and thanks to

Uhlmann’s theorem, can be shown to fulfill the monotonicity property

F (Φρ1, Φρ2) ≥ F (ρ1, ρ2) , (B5)

for any CPTP map Φ [28]. For proof that fidelity does not decrease under local general measurements (LGMs) and
classical communication (CC), we refer to Ref. [61]. Finally, for an interesting discussion on the relevance of the
contractivity property for distances used to properly quantify entanglement in quantum information science, we refer
to Refs. [62, 63].

Appendix C: Finite lengths of geodesic paths

We begin Appendix C by pointing out that in order to better understand from an intuitive standpoint the difference
between the Bures and the Sjöqvist metrics, in addition to the expressions of their infinitesimal line elements in Eqs.
(49) and (52), respectively, it would be convenient to also have an explicit formula for the finite distance between two
arbitrary qubit mixed states. However, before addressing the problem of finding the finite length of a geodesic path
of suitably parametrized density operators connecting an initial and a final mixed state, we present some preliminary

remarks. First, considering a change of variables defined by r
def
= sin (αr) with 0 ≤ αr ≤ π/2, we obtain that

4ds2Sjöqvist = dα2
r + dΩ2

sphere and 4ds2Bures = dα2
r + sin2 (αr) dΩ

2
sphere with dΩ2

sphere
def
= dθ2 + sin2 (θ) dϕ2. Recalling

that the line element in the standard cylindrical coordinates (ρ, ϕ, z) is given by ds2cylinder = dz2 + dΩ2
cylinder with

dΩ2
cylinder

def
= dρ2 + ρ2dϕ2, one observes that the structure of the Sjöqvist line element rewritten in this alternative

form is evocative of the structure of a line element in the standard cylindrical coordinates once one associates the
pair (αr, dΩsphere) with the pair (ρ, dΩcylinder). Second, after considering this change of variables, one can connect a
cylinder with a constant (varying) radius to the Sjöqvist (Bures) geometry, respectively. In particular, one observes
that the varying radius in the Bures case is upper bounded by the constant value that defines the radius in the
Sjöqvist geometry. These geometric insights would lead one to intuitively expect different lengths of geodesic paths
in the two cases, with the Sjöqvist geometry yielding longer lengths eventually [14]. Returning to the issue of finite
lengths, we consider for illustrative purposes two mixed states ρA and ρB specified by Bloch vectors ~a = ran̂a and
~b = rbn̂b with n̂a

def
= (0, 0, 1) and n̂b

def
= (sin (θb) , 0, cos (θb)), respectively. In other words, ρA and ρB are points in

the Bloch sphere given in spherical coordinates by PA = (ra, θa, ϕa)
def
= (ra, 0, 0) and PB = (rb, θb, ϕb)

def
= (rb, θb, 0),

respectively. Therefore, ρA and ρB are assumed to be points that lie on the xz-plane since ϕa = ϕb = 0. A relatively
straightforward calculation yields expressions of the finite lengths evaluated along the geodesic paths connecting ρA
and ρB in the Bures and Sjöqvist cases, respectively. The lengths are given by

LBures (ra, rb, θb) =



2







1−

√

√

√

√2

[

1 + rarb cos (θb)

4
+

√

1− r2a
4

· 1− r2b
4

]











1/2

, (C1)

and [20],

LSjöqvist (ra, rb, θb) =
1

2

√

θ2b + [arcsin (rb)− arcsin (ra)], (C2)

respectively. To further grasp insights into our discussion and, in addition, to cross-check the consistency of our
calculations with what is expected to happen in the case of neighboring pure quantum states, we set ra = rb = 1.
Then, Eqs. (C1) and (C2) reduce to

LBures (θb) =

[

2

(

1−
√

1 + cos (θb)

2

)]1/2

, and LSjöqvist (θb) =
θb
2
, (C3)

respectively. From Eq. (C3) we observe that 0 ≤ LBures (θb) ≤ LSjöqvist (θb) for any 0 ≤ θb ≤ π. Moreover, for
neighboring quantum states with θb ≪ 1, the second order Taylor expansions in θb of LBures (θb), LSjöqvist (θb),

and LFubini−Study (θb)
def
= (1/2)dFubini−Study (θb) with dFubini−Study (θb)

def
= 2

[

1− cos2(θb/2)
]1/2

being the Fubini-
Study distance [64], coincide. Indeed, when the Wootters angle θb ≪ 1, one finds LBures (θb) ≈ LSjöqvist (θb) ≈
LFubini−Study (θb) ≈ θb/2.
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We defer a more in-depth quantitative comparison between the Sjöqvist and Bures geometries based upon the
difference between the finite lengths of geodesics connecting arbitrary mixed quantum states to a future scientific
endeavor.
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