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Abstract: Spectral analysis extends the theory of eigenvectors and eigenvalues of a square matrix to a broader theory involving
operators. In particular, a branch of spectral analysis is devoted to Sturm-Liouville (SL) problems, which are eigenvalue problems
for differential operators. In this study, we propose a numerical method to solve SL problems. This method uses a simple
perturbative approach. Starting from an SL problem having differential operator L0 and known eigensystem, the proposed
iterative algorithm considers M SL problems having differential operators Lm, m = 1, 2, . . . ,M , such that Lm is a perturbation
of Lm−1, and LM is the differential operator of the SL problem that we want to solve. Each step of this algorithm is based on
the well-known Jacobi orthogonal component correction method, which acts on the refinement of approximated eigensystems.
Moreover, the proposed method depends on the choice of L0 and the representation basis for the eigenfunctions, thus giving rise
to different approximation schemes. We show the performance of the proposed method both in the solution of some selected
SL problems and the refinement of approximated eigensystems computed by other numerical methods. In these numerical
experiments, the perturbative method is compared with a classical approximation technique and the obtained results are strongly
promising in terms of accuracy.
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1. Introduction
Spectral analysis is a very important tool in applied

mathematics and engineering computations. It is strictly
connected to vibrations, and objects like violin strings, drums,
bridges, and skyscrapers can swing. The natural frequencies
of a musical instrument are related to the quality of the
sound produced by the instrument itself [2, 9, 18]. In the
case of buildings, the frequencies of the mechanical structure
are related to their resistance with respect to external forces
like wind, earthquake, traffic of heavy vehicles, and so on,
[4, 5, 7, 10, 12, 16]. Another important application in
applied mathematics is also the solution of time-dependent
problems for partial differential equations by the separation of
variables, see [1, 14, 19] for details. SL problems provide the
most simple example of eigenvalue problems for differential
equations. So they can be used to set up numerical methods

for the spectral analysis of more complex operators like partial
differential operators.

We define some basic notations. Let N be the set of positive
integers, and R be the set of real numbers. Let RN , N ∈ N,
be the N -dimensional real Euclidean space, let RN×N , be the
space of square matrices of order N ∈ N. Let x ∈ RN , N ∈
N, we denote with xT its transpose and with ||x|| =

√
xTx

its norm. Let x ∈ RN , x 6= 0, and A ∈ RN×N we denote
with ρA(x) = xTAx

xT x
the Rayleigh quotient. We denote with

δn,m, n,m ∈ N, the Kronecker delta. Let (a, b) be an open
interval of R and let Ł2(a, b) be the space of square-integrable
functions from (a, b) to R. We denote with 〈·, ·〉 the scalar
product on Ł2(a, b), and with | · | the norm on Ł2(a, b).



47 Nadaniela Egidi et al.: A Perturbative Approach for the Solution of Sturm-Liouville Problems

We consider the SL problem{
Ly = λy, a < x < b,
y(a) = y(b) = 0,

(1)

where Ly = −(p(x)y′)′ + q(x)y is a symmetric differential
operator determined by functions p(x) and q(x), such that
p(x) > 0, p′(x) and q(x) ≥ 0 are continuous. For
the SL problem (1) there exists an infinite sequence of
nonnegative eigenvalues 0 ≤ λ1 < λ2 < λ3 . . . ;
the corresponding eigenfunctions {yn(x)}n∈N are twice
continuously differentiable, and satisfy the orthogonality
relations 〈yn, ym〉 = δn,m, n,m = 1, 2, . . . ; moreover the
nth eigenfunction has n− 1 distinct zeros in (a, b), see [3] for
a proof.

We propose a numerical method to solve (1) by using
a perturbative approach similar to that introduced in [6].
This is an iterative method that starts from an SL problem
with operator L0 whose eigensystem is known. At
each step, m = 1, 2, . . . ,M , the method computes the
approximated eigensystem of the SL problem with operator
Lm as a perturbation of the approximated eigensystem of
the SL problem with operator Lm−1, where Lm is a small
perturbation of Lm−1, and LM = L. This method is based
on the Jacobi orthogonal component correction, see [11, 17].
For the convenience of the reader, we sketch this method.
The Jacobi orthogonal component correction is a numerical
method to improve an approximation of an eigenpair, x ∈ RN
eigenvector and λ ∈ R eigenvalue, of a symmetric matrix
A ∈ RN×N . Let u ∈ RN , with ||u|| = 1, be an approximation
of the eigenvector x, the correction t ∈ RN of u must satisfy

t ⊥ u, A(u+ t) = λ(u+ t). (2)

The solution t ∈ RN of problem (2) is computed as follows

(I − uuT )(A− θI)(I − uuT )t = −r (3)

where I is the identity matrix, θ = ρA(u) is the approximation
of λ, and r = (A−θI)u. Note that equation (3) is consistent if
A− θI is nonsingular, in fact ||u|| = 1 and r ⊥ u. Let t be the
solution of equation (3), the new approximation of eigenvector
x is given by u+ t.

A numerical experiment is used to compare the performance
of the proposed method and a classical approximation
technique like the finite difference method.

In Section 2 we describe the finite difference method to
solve SL problems. In Section 3 we present the proposed
algorithm. In Section 4 we present the numerical results
obtained with the two methods described in Sections 2, 3. In
Section 5 we give some conclusions and future developments.

2. The Finite Difference Method

In this section, we recall the finite difference method for the
solution of the SL problem. This is a very classical method
where the SL problem is approximated by an eigenvalue

problem for a symmetric matrix.
The finite difference method for two-point boundary value

problems can be easily adapted to reduce SL problem (1) into
an eigenvalue problem for a symmetric matrix. Let J be a
positive integer, and

xj = a+ jh, j = 0, 1, . . . , J + 1, h =
b− a
J + 1

,

by using central difference operators with nodes xj , j =
0, 1, . . . , J + 1, problem (1) can be approximated by the
following one{

Lhuj = h2Λuj , j = 1, 2, . . . , J,
u0 = uJ+1 = 0,

(4)

where
Lhuj = (αjuj−1 + βjuj + γjuj+1),

αj = −p
(
xj −

h

2

)
, γj = −p

(
xj +

h

2

)
,

βj = −αj − γj + h2q(xj),

uj is the approximation of eigenfunction y at node xj , and Λ
is the approximation of the corresponding eigenvalue λ. Let
u = (u1, u2, . . . , uJ)T ∈ RJ and A = (ai,j) ∈ RJ×J given
by

aj,j−1 = αj , j = 2, 3, . . . , J,
aj,j = βj , j = 1, 2, . . . , J,
aj,j+1 = γj , j = 1, 2, . . . , J − 1,
ai,j = 0, if |i− j| > 1,

(5)

problem (4) becomes

Au = h2Λu. (6)

This is an eigenvalue problem for a symmetric tridiagonal
and positive definite matrix A. Taking advantage of the
properties of matrix A, very efficient methods can be
considered for the solution of (6), see [8] for details. The
eigenvalues ofA provide an approximation for the eigenvalues
of L, in particular, we have the following theorem [13].

Theorem 1. For each fixed eigenvalue λ of Sturm-Liouville
problem with corresponding eigenfunction y(x), there exists
an eigenvalue, say h2Λ, of matrix A given in (5) such that for
h sufficiently small

|Λ− λ| ≤ ||τ{y}||
||y||

,

where the jth component of the truncation error τ{y} is
Lh(y(xj))− (Ly)(xj), j = 1, 2, . . . , J .

Note that a similar result holds between the eigenvectors
of A and the eigenfunctions of L. From standard arguments
on approximation theory, we have that τ is proportional to
h2 and to the fourth order derivative of eigenfunction y. So,
from the properties of the zeros of eigenfunctions, we have
the usual loss of accuracy for high-order eigenvalues and
eigenfunctions.
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3. The Perturbative Method

In this section, we describe the method proposed to solve
the SL problem, and some results that justify this choice.

Lemma 3.1. Let L be the differential operator of an SL
problem, with eigensystem λn, yn(x), n = 1, 2, . . . , x ∈
(a, b), where Lyn = λnyn, 〈yn, ym〉 = δn,m, m, n =
1, 2, . . . . Let λ = λm for some m ∈ N, f : [a, b] → R be
a given function. The following boundary value problem:{

Lv − λv = f, x ∈ (a, b),
v(a) = v(b) = 0,

(7)

has a solution if and only if 〈ym, f〉 = 0, and

v(x) =
∑
n 6=m

〈yn, f〉
λn − λ

yn(x), x ∈ (a, b). (8)

Proof The proof follows from the orthogonality of
eigenfunctions of SL problems, and (8) is the least norm
solution.

We propose a perturbation method, for the computation
of the eigensystem of an SL problem. This is an
iterative algorithm based on the Jacobi orthogonal component
correction. In particular, we have the following.

Theorem 2. Let L(ε) = L0 + εS, where 0 < ε � 1, and L0, S be symmetric differential operators. Let λn,ε ∈ R, yn,ε,
n = 1, 2, . . . be the eigensystem of the SL problem associated to L(ε) and λ(0)n ∈ R, y(0)n , n = 1, 2, . . . be the eigensystem of the
SL problem associated with L0. If there exist λ(k)n ∈ R, αn > 0 and functions y(k)n , n, k ∈ N, such that

y(k)n (a) = y(k)n (b) = 0, n, k ∈ N, (9)

λn,ε =

∞∑
k=0

λ(k)n εk, yn,ε = αn

∞∑
k=0

y(k)n εk, n ∈ N. (10)

Then, for k = 1, 2, . . . ,

λ(k)n = 〈y(0)n , Sy(k−1)n 〉, n ∈ N, (11)

y(k)n =
∑
m 6=n

〈y(0)m ,
∑k−1
h=1 λ

(h)
n y

(k−h)
n − Sy(k−1)n 〉

λ
(0)
m − λ(0)n

y(0)m n ∈ N. (12)

Moreover, we can write

yn,ε(x) = αn

(
y(0)n (x) + vn,ε(x)

)
, (13)

where αn > 0 is the normalization factor and vn,ε is a function orthogonal to y(0)n , such that also Lvn,ε is orthogonal to y(0)n
and |vn,ε| → 0 as ε→ 0. In particular, for n ∈ N,

vn,ε =
∑
m 6=n

〈y(0)m + vm,ε, rn,ε〉+ ε〈y(0)n , Svn,ε〉〈vm,ε, y(0)n 〉
ρL(ε)(y

(0)
m )− ρL(ε)(y

(0)
n ) + ε〈y(0)m , Svm,ε〉 − ε〈y(0)n , Svn,ε〉

ym,ε, (14)

where rn,ε = −L(ε)y
(0)
n + ρL(ε)(y

(0)
n )y

(0)
n , and ρL(ε)(f) = 〈f,L(ε)f〉

|f |2 is the Rayleigh quotient.
Proof From (10) we have

L(ε)yn,ε = αn (L0 + εS)

( ∞∑
k=0

y(k)
n
εk

)
= αn

(
λ(0)n y(0)n +

∞∑
k=1

(
L0y

(k)
n + Sy(k−1)n

)
εk

)
, (15)

λn,εyn,ε = αn

( ∞∑
k=0

λ(k)n εk

)( ∞∑
k=0

y(k)n εk

)
= αn

(
λ(0)n y(0)n +

∞∑
k=1

(
k∑
h=0

λ(h)n y(k−h)n

)
εk

)
. (16)

By equalizing (15) and (16), we obtain

L0y
(k)
n − λ(0)n y(k)n = −Sy(k−1)n +

k∑
h=1

λ(h)n y(k−h)n , k = 1, 2, . . . . (17)

From Lemma 3.1, problem (9), (17) has solution if and only if〈
y(0)n ,−Sy(k−1)n +

k∑
h=1

λ(h)n y(k−h)n

〉
= 0, k = 1, 2, . . . , (18)
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and so formulas (11), (12) follow from (17), (18) and Lemma
3.1. Let n be a generic positive integer. Let vn,ε =∑∞
k=1 y

(k)
n εk, let yn,ε be the function defined in (13), we have

that vn,ε is orthogonal to y(0)n , and also Lyn,ε is orthogonal

to y
(0)
n , moreover vn,ε(a) = vn,ε(b) = 0. Let P⊥n be

the projection operator on the space of functions that are
orthogonal to y(0)n , that is P⊥n (f) = f − 〈f, y(0)n 〉y(0)n . Then,
from L(ε)yn,ε = λn,εyn,ε and formula (13), we have

P⊥n

(
L(ε)

(
y(0)n + vn,ε

)
− λn,ε

(
y(0)n + vn,ε

))
= 0,

P⊥n (L(ε)vn,ε − λn,εvn,ε) = −P⊥n
(
L(ε)y(0)n − λn,εy(0)n

)
,

L(ε)vn,ε − λn,εvn,ε − 〈L(ε)vn,ε, y
(0)
n 〉y(0)n = −P⊥n

(
L(ε)y(0)n

)
,

L(ε)vn,ε − λn,εvn,ε = ε〈Svn,ε, y(0)n 〉y(0)n − L(ε)y(0)n + ρL(ε)

(
y(0)n

)
y(0)n . (19)

Note that, for the problem defined by (19) and vn,ε(a) = vn,ε(b) = 0, hypoteses of Lemma 3.1 are satisfied, in fact

〈y(0)n + vn,ε, ε〈Svn,ε, y(0)n 〉y(0)n − L(ε)y(0)n + ρL(ε)

(
y(0)n

)
y(0)n 〉 =

= ε〈Svn,ε, y(0)n 〉 − ρL(ε)
(
y(0)n

)
+ ρL(ε)

(
y(0)n

)
− ε〈vn,ε, Sy(0)n 〉 = 0, (20)

and

L(ε)
(
y(0)n + vn,ε

)
= λn,ε

(
y(0)n + vn,ε

)
,

〈L(ε)
(
y(0)n + vn,ε

)
, y(0)n 〉 = λn,ε

〈(
y(0)n + vn,ε

)
, y(0)n

〉
,

λn,ε = ρL(ε) (yn,0) + 〈L(ε)vn,ε, yn,0〉 = ρL(ε) (yn,0) + ε〈Svn,ε, yn,0〉. (21)

Hence, formula (14) follows from (19), (20), (21) and
Lemma 3.1.

We note that this theorem defines the eigensystem of
the perturbed operator L(ε) in terms of the eigensystem
of the unperturbed operator L, where the correction term

vn,ε is computed by the Jacobi orthogonal component
correction method. In the proposed method, we consider the
approximation Yn,ε of yn,ε obtained by neglecting the O(ε2)
terms in (14), that is

Vn,ε =
∑
k 6=n

〈y(0)k , rn,ε〉

ρL(ε)

(
y
(0)
k

)
− ρL(ε)

(
y
(0)
n

)y(0)k .

So the corresponding approximated eigenfunctions of L(ε) are

Yn,ε =
y
(0)
n + Vn,ε

||y(0)n + Vn,ε||
, n = 1, 2, . . . .

These are the fundamental formulas in the following recursive method.
Given an SL problem with operator L we choose an operator L0 close, in some sense, to operator L, and having a known

eigensystem, we define
S = L− L0.

Starting from L0, an iterative algorithm considers M , SL problems with different operators Lm, where

Lm = L0 +mεS = Lm−1 + εS, m = 1, 2, . . . ,M, (22)

and ε = 1/M . At each step, m = 1, 2, . . . ,M , the proposed algorithm computes the approximated eigensystem of Lm from the
approximated eigensystem of Lm−1.

Algorithm 1. Given the SL problem with operator L, determined by functions p(x), q(x); given M ∈ N, and the SL problem
with operator L0, determined by functions p0(x), q0(x), and with orthonormal eigenfunctions yn,0, n ∈ N. Compute the
approximated eigenvalues λn,M and the approximated eigenfunctions yn,M , n = 1, 2, . . . , of the SL problem associated to L in
the following way:
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ε = 1/M , S = L− L0,
for m = 1, 2, . . . ,M

Lm = L0 +mεS,

rn,m = −Lmyn,m−1 + ρLm
(yn,m−1) yn,m−1, n ∈ N,

wn,m = yn,m−1 +
∑

k∈N,k 6=n

〈yk,m−1, rn,m〉
ρLm

(yk,m−1)− ρLm
(yn,m−1)

yk,m−1, n ∈ N,

yn,m = wn,m/|wn,m|, n ∈ N,

end for
λn,M = ρL (yn,M ) , n ∈ N.

Note that in a practical implementation of this algorithm,
the computation is truncated to a finite upper bound N of n.
Moreover the eigenfunctions yn,m, n = 1, 2, . . . , N , m =
0, 1, . . . ,M , are expressed in terms of a finite basis havingNB
elements. So, this scheme depends on the choice of the basis
and of the initial SL problem.

Some variants of the above algorithm can be considered.
The simplest one is obtained by introducing an internal
iteration within the main iteration of Algorithm 1. More

precisely at each step of this internal iteration, multiple Jacobi
orthogonal component correction steps can be performed for
the same differential operator Lm. This simple modification of
Algorithm 1 allows a substantial improvement in the accuracy
of the final eigensystem by performing only one or two steps in
the internal iteration. In the following algorithm, we describe a
variant of Algorithm 1 where the discretization step ε is chosen
automatically by a simple adaptive strategy.

Algorithm 2. Given the SL problem with operator L, determined by functions p(x), q(x); given ε0 < 1, and the SL problem
with operator L0, determined by functions p0(x), q0(x), and having orthonormal eigenfunctions yn,0, n = 1, 2, . . . . Compute
the firstN approximated eigenvalues Λn and the approximated eigenfunctions Yn, n = 1, 2, . . . , N , of the SL problem associated
to L in the following way.
t = ε0, S = L− L0, m = 0
while t < 1 do

m = m+ 1

C = max
1≤n≤N


N∑

k=1,k 6=n

(
〈yk,m−1, Syn,m−1〉

ρLm−1(yk,m−1)− ρLm−1(yn,m−1)

)2


ε = min{1/C, ε0, 1− t}
t = t+ ε

Lm = Lm−1 + εS,

for n = 1, 2, . . . , N

rn,m = −Lmyn,m−1 + ρLm
(yn,m−1) yn,m−1,

wn,m = yn,m−1 +

N∑
k=1,k 6=n

〈yk,m−1, rn,m〉
ρLm

(yk,m−1)− ρLm
(yn,m−1)

yk,m−1,

yn,m = wn,m/||wn,m||,
end for

end while
Yn = yn,m, Λn = ρL (Yn) , n = 1, 2, . . . N.
Note that in this algorithm the adaptive procedure to choose ε is based on the following observation. At each step m, when

k 6= n we have

〈yk,m−1, rn,m〉 = 〈yk,m−1,−Lmyn,m−1 + ρLm(yn,m−1) yn,m−1〉 ≈ −ε〈yk,m−1, Syn,m−1〉,

so the norm of the correction of the eigenfunction yn,m−1 satisfies∣∣∣∣∣∣
N∑

k=1,k 6=n

〈yk,m−1, rn,m〉
ρLm(yk,m−1)− ρLm(yn,m−1)

yk,m−1

∣∣∣∣∣∣
2

≤ Cε,
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where C is the constant defined in Algorithm 2. Note that the eigenfunctions have a unit norm, so a reasonable requirement is
that Cε ≤ 1, from which arises the adaptive procedure.

We conclude this section with another algorithm, where the same perturbative technique is used to correct a given
approximation of an SL problem.

Algorithm 3. Given the SL problem with operator L, determined by functions p(x), q(x); givenM ≥ 1, and eigensystem λn,0,
yn,0, n = 1, 2, . . . , N . Compute the approximated eigenvalues Λn and the approximated eigenfunctions Yn, n = 1, 2, . . . N , of
the SL problem associated to L in the following way:
ε = 1

M ,
for m = 1, 2, . . . ,M

for n = 1, 2, . . . , N

ρn,m = (1− ε)λn,m−1 + ε〈yn,m−1, Lyn,m−1〉,

wn,m = yn,m−1 − ε
N∑

k=1,k 6=n

〈yk,m−1, Lyn,m−1〉
ρk,m − ρn,m

yk,m−1,

λn,m = ρn,m + ε〈yn,m−1, Lwn,m〉, n ∈ N,
yn,m = wn,m/||wn,m||,

end for

end for
Yn = yn,M , Λn = λn,M , n = 1, 2, . . . N.
Note that when λn,0, yn,0, n = 1, 2, . . . , N is a good approximation of the eigensystem of L then we can usually choose

M = 1.

4. Numerical Results
We present two numerical experiments with the methods described in the previous sections. These experiments aim to compare

the accuracy of the numerical solutions obtained by these methods.
In the first experiment, we consider the numerical results obtained by these methods for two particular SL problems with

known analytical solutions. The first problem is the following one{
−((1 + x)2y′)′ = λy, 0 < x < 1,
y(0) = y(1) = 0,

(23)

whose eigensystem, for n ∈ N, is

λn = (nπ/ ln 2)2 +
1

4
, yn(x) =

√
2

ln 2

sin
(
nπ ln(1+x)

ln 2

)
√

1 + x
. (24)

The second problem is the following one{
−((1 + x2)2y′)′ − (1 + 2 x2)y = λy, 0 < x < 1,
y(0) = y(1) = 0,

(25)

whose eigensystem, for n ∈ N, is

λn = 16n2, yn(x) =
sin (4n arctanx)√

1 + x2
. (26)

In the finite difference method, the eigenvalue problem (6)
is solved by the QR method implemented in routine F08JEF of
NAG library [15].

In the perturbative method, we start from the differential
operator L0 having p0(x) = 1, q0(x) = 0, x ∈ (0, 1), the
corresponding SL problem has eigensystem

λn,0 = (nπ)2, yn,0(x) =
√

2 sin(nπx), n ∈ N. (27)

For the sake of brevity, we report only the results obtained
by Algorithm 2, which is implemented by using two different
representation bases. Note that the iterative procedure in
Algorithm 2 can be easily rewritten as an iterative procedure
for the coefficients, with respect to the basis taken into
account, of the eigenfunctions appearing in the algorithm. The
numerical results are reported in Figures 1-4.



Applied and Computational Mathematics 2023; 12(3): 46-54 52

Figure 1. The numerical results obtained by the finite difference method (�) and by Algorithm 2 (?) for problem (23). The diagrams show the relative errors in the eigenvalues for
different choices of the discretization parameters. In Algorithm 2 the eigenfunctions reported in (27) are used also as the representation basis.

In particular, Figures 1, 3 show the results obtained for problems (23) and (25), respectively, with basis {yn,0(x)}n=1,2,...,NB
,

where yn,0 is given by (27). We always choose NB = N . Figures 2, 4 show the results obtained for problems (23) and
(25), respectively, with the piecewise linear basis functions, constructed on a uniform subdivision of interval (0, 1) with step
1/(NB + 1).

Figure 2. The numerical results obtained by the finite difference method (�) and by Algorithm 2 (?) for problem (23). The diagrams show the relative errors in the eigenvalues for
different choices of the discretization parameters. In Algorithm 2 the piecewise linear basis functions are used as the representation basis.

Figure 3. The numerical results obtained by the finite difference method (�) and by Algorithm 2 (?) for problem (25). The diagrams show the relative errors in the eigenvalues for
different choices of the discretization parameters. In Algorithm 2 the eigenfunctions reported in (27) are used also as the representation basis.

Figure 4. The numerical results obtained by the finite difference method (�) and by Algorithm 2 (?) for problem (25). The diagrams show the relative errors in the eigenvalues for
different choices of the discretization parameters. In Algorithm 2 the piecewise linear basis functions are used as the representation basis.
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Figure 5. The numerical results obtained by the finite difference method (�) and by Algorithm 3 (?) for problem (23). The diagrams show the relative errors in the eigenvalues for
different choices of the discretization parameters. In Algorithm 3 onlyM = 1 step is considered and the eigenfunctions reported in (27) are used also as the representation basis.

Figure 6. The numerical results obtained by the finite difference method (�) and by Algorithm 3 (?) for problem (25). The diagrams show the relative errors in the eigenvalues for
different choices of the discretization parameters. In Algorithm 3 onlyM = 1 step is considered and the eigenfunctions reported in (27) are used also as the representation basis.

In the second experiment, we start from the approximated
eigensystems of problems (23), (25), computed by finite
difference scheme, and we correct these approximations by
Algorithm 3. The numerical results are reported in Figures 5,
6; they are relative to problems (23) and (25), respectively, and
the representation basis {yn,0(x)}n=1,2,...,NB

, where NB =
N and yn,0 is given by (27).

We note that Figures 5, 6 are obtained by applying
Algorithm 3 with only M = 1 step; of course with more
correction steps we obtain a further reduction of these relative
errors. Figures 1-6 shows interesting results; in fact, the
approximated eigenvalues computed by the proposed method
are usually more accurate than the ones computed by the
finite difference method. This is always true except for the
last eigenvalues, where the proposed method has abnormal
behavior. From numerical experiments not reported for
brevity, the computational cost of the proposed method is
higher than the cost of the finite difference scheme. So, the
next study should be devoted to improving the efficiency of
this method.

5. Conclusions
A perturbative method for the solution of SL problems has

been proposed. Starting from an initial SL problem for the
differential operator L0 and known eigensystem, at each step,
the proposed method uses the Jacobi orthogonal component
correction to compute the eigensystem of a differential
operator Lm from the eigensystem of Lm−1. This method can
be used to obtain different approximation schemes depending

on the choice of L0 and the basis used in the numerical
implementation. The numerical results obtained with this
method are usually more accurate than the results obtained by
the finite difference method.

Further studies of this method should consider the
improvement of its efficiency and the application of similar
techniques to the solution of different eigenvalue problems,
such as for examples: matrix eigenvalue problems, and
eigenvalue problems for partial differential operators.
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