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Cavity optomechanics is a suitable field to explore quantum effects on
macroscopic objects and develop quantum technology applications. A perfect
control of the laser noise is required to operate the system in such extreme
conditions necessary to reach the quantum regime. In this paper, we consider a
Fabry–Perót cavity, driven by two laser fields, with two partially reflective SiN
membranes inside it. We describe the effects of amplitude and phase noise on the
laser introducing two additional noise terms in the Langevin equations of the
system’s dynamics. Experimentally, we add an artificial source of noise on the
laser. We calibrate the intensity of the noise, inject it into the system, and check the
validity of the theoretical model. This procedure provides an accurate description
of the effects of a noisy laser in the optomechanical setup and allows for
quantifying the amount of noise.
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1 Introduction

In cavity optomechanics, a number of mechanical degrees of freedom is coupled by a
dispersive parametric coupling, typically due to the radiation pressure interaction, to one or
more driven modes of an optical cavity [1]. Such a configuration can be realized on a large
variety of platforms, with different cavity geometries, as well as very different kinds of
mechanical modes, ranging from vibrational modes of 1D, 2D, or 3D systems to the center-
of-mass motion of trapped nanoparticles and to bulk and surface acoustic waves of properly
designed materials. Despite their macroscopic nature, these devices can now be operated in a
quantum regime for a number of relevant applications in quantum technologies and for
answering fundamental physics questions. For example, entangled states of radiation modes
[2, 3] and mechanical modes [4, 5] and hybrid optomechanical entanglement [6], as well as
squeezed states of optical [7–9] and mechanical [10] modes, have been generated. Detection
of displacements and forces below the standard quantum limit (SQL) has been demonstrated
[11], and also, microwave-optical transduction with added noise very close to the quantum
limit has been demonstrated [12, 13].

In all these experiments, the required effective interaction between the mechanical and
the cavity modes is obtained by engineering the amplitudes and the frequencies of the driving
sources, which have to be phase-locked and stabilized as much as possible. In fact, as can be
easily expected, both the amplitude and phase noise of the laser driving are detrimental for
any quantum effects, as it has already been theoretically suggested [14, 15] and
experimentally verified. In fact, analyses of the effect of the laser phase noise on the
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cooling of the mechanical mode appeared in [16–18], while its effect
on squeezing was analyzed in [19]. On the one hand, one has to
minimize these technical noise sources as much as possible, for
example, by using filter cavities or moving to higher mechanical
resonance frequencies where these noises become less relevant; on
the other hand, it would be useful to develop a procedure for
modeling and quantifying the effect of these noises in a simple
way. Here, we provide such a procedure by considering a multimode
cavity optomechanical system in which two silicon nitride (SiN)
membranes are placed within a Fabry–Perót cavity and driven by
two laser fields, which has been considered for a large number of
physical processes, such as synchronization of mechanical modes
[20, 21], mechanical state swapping [22], heat transfer [23],
cooperativity competition [24], and enhancement of single-
photon optomechanical coupling [25, 26]. Here, we artificially
add amplitude and phase noise to one of the driving fields, the
pump beam controlling the interaction in the linearized regime of
cavity optomechanics [1], and show how one can calibrate and
quantify the corresponding noise spectra and describe it in terms of
the size of the noise spectra of additional amplitude and phase noise
terms in the Langevin equations describing the dynamics.

The calibration and modelization of the laser noise presented
here is general and can be applied to a generic optomechanical
system. For its experimental verification, we consider here the so-
called “membrane-in-the-middle” [27, 28] configuration of cavity
optomechanics, which has been employed by many groups since
2008 [17, 20–23, 27, 28] and presents many advantages. In fact, thin
semitransparent Si3N4 membranes are commercially available and
present a very high mechanical quality factor due their intrinsic high
stress [29]. Moreover, they are characterized by a negligible
absorption at optical wavelengths [30] so that if they are placed
near the waist of an optical Fabry–Perót cavity, losses due to
scattering are negligible, and the cavity decay rate is mostly
determined by the empty cavity finesse only [17, 27, 28, 30].
Furthermore, the single-photon optomechanical coupling with a
given optical cavity mode can be fine-tuned by controlling the
longitudinal and transversal positions of the membrane within
the cavity [27, 28, 31]. These facts make membrane-in-the-
middle optomechanical setups particularly suitable for operating
in the resolved sideband regime and for reaching a very large
optomechanical cooperativity, which are fundamental conditions
for the realization and manipulation of quantum states of the cavity
mode and of the mechanical resonator [1] and witnessed, for
example, by the results of [3, 9, 11, 12]. Recent advances have
shown that SiN membranes are particularly suitable for further
engineering and suppression of clamping losses, either via the use of
the on-chip seismic filtering stage [32] or phononic bandgap crystal
designs [33], which have allowed very large mechanical quality
factors, even at room temperature [33, 34].

This paper is organized as follows. In Section 2, we present the
model Hamiltonian and show how one can modify the standard
QLE treatment in order to include the effects of laser noise. In
Section 3, we describe the experimental setup and show the detected
noise spectra, either the output spectrum in transmission and the
homodyne detection of the mechanical motion of the two
membranes. In addition, we show how one can reconstruct and
model the effect of the amplitude and phase noise of the driving
fields. Section 4 presents the concluding remarks.

2 The model

The system is composed of two mechanical resonators which are
effectively coupled through two driven optical cavity modes, as
described in Figure 1, namely, the pump mode that is responsible
for the optomechanical interaction and the probe mode to perform the
spectral analysis. The Hamiltonian, hence, includes several components
as follows:

Ĥ/Z � ∑
k�1,2

ωc,kâk
†âk + ∑

j�1,2
ωm,jb̂

†

j b̂j − g 0( )
jk âk

†âk b̂j + b̂
†

j( )[ ]⎧⎨⎩
+ iEk t( ) âk

†e−i ωL,kt+ϕk t( )[ ] − âke
i ωL,kt+ϕk t( )[ ]( )⎫⎬⎭, (1)

where the first term describes the energy of the cavity modes
represented by the bosonic annihilation operator âk ([âk, âk†] � 1)
at frequencyωc,k, where we consider â1 the operator related to the probe
mode and â2 to the pumpmode; the second term takes into account the
energies of the two mechanical resonators with annihilation operators
b̂j ([b̂j, b̂†j] � 1) at frequency ωm,j for the j-th membrane and the
optomechanical interactions that appear from the dependence of the
optical mode frequencies on the positions of the mechanical resonators
and characterized by a single-photon coupling rate
g(0)
jk � − ���������

Z/2mjωm,j
√ · ∂xjωc,k(xj). The third and last describes the

laser driving fields at frequenciesωL,k.We consider general driving fields
which are affected by fluctuations, both in amplitude and phase. The
amplitude is related to the number of photons that enter into the cavity
every second and can be written asEk(t) � Ek + ϵk(t). Themean value
corresponds to Ek �

����������
Pkκ1k/ZωL,k

√
, where Pk is the laser power of the

k-th optical mode and κ1k is the cavity decay rate for the input mirror,
while the time-dependent term ϵk(t) represents the real, zero-mean
amplitude fluctuations of the k-th driving field.

We considered Ek real, which means that we are choosing the
laser driving field as a phase reference for the k-th optical field.
Similarly, we call ωL,k the average laser frequency, and ϕk(t) denotes
the zero mean fluctuating phase. In order to remove the explicit time
dependence from the Hamiltonian and consequently from the
Langevin equations, one can choose the frame rotating at the
laser frequency. Our case involves the exploitation of a
fluctuating-frequency laser, so we pose in the randomly rotating
frame at instantaneous frequency ωL,k + _ϕk(t). One obtains a new
form for the Hamiltonian devoid of the time-dependent
exponentials of the laser driving term:

Ĥ/Z � ∑
k�1,2

{ Δ 0( )
k − _ϕk( )âk†âk + ∑

j�1,2
ωm,jb̂

†

j b̂j − g 0( )
jk âk

†âk b̂j + b̂
†

j( )[ ]
+ iEk t( ) âk

† − âk( )}, (2)

where we defined the detuning Δ(0)
k � ωc,k − ωL,k. From the latter

expression for the Hamiltonian, we are able to derive the quantum
Langevin equations for the optical and mechanical modes as follows:

_̂ak � − κk
2
+ i Δ 0( )

k − _ϕk( )[ ]âk + i ∑
j�1,2

g 0( )
jk b̂j + b̂

†

j( )âk + Ek

+ ���
κ1k

√
âin,1k + ϵk( ) + ���

κ2k
√

âin,2k, (3)
_̂bj � − γm,j

2
+ iωm,j( )b̂j + i ∑

k�1,2
g 0( )
jk âk

†âk + ���
γm,j

√
b̂in,j. (4)
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The Langevin equation for the optical mode takes into
account the optical noise operators related to the input
mirror âin,1k, characterized by decay rate κ1k, and the output
mirror âin,2k, which loses photons at rate κ2k, meaning that the
whole cavity has a total decay rate κk = κ1k + κ2k + κl, where κl
takes into account the other loss mechanisms. Note that the laser
amplitude noise is added to the optical noise; the system is
indeed affected by the vacuum optical noise as well as the laser
amplitude fluctuations. Differently, the phase frequency noise
affects the optical mode acting as a multiplicative noise, similar
to the position fluctuations of the mechanical resonators that
appear because of the optomechanical interaction. Technical
noise effects can be negligible or relevant depending on the
quality of the laser itself. In fact, as will be shortly outlined, the
features of the laser in connection with the frequency region of
interest determine the significance of the laser noises. The
Langevin equation for the j-th mechanical mode is governed
by thermal noise b̂in,j and damping rate γm,j and shows an
optomechanical interaction proportional to the number of
intracavity photons. We consider the following Markovian
correlation functions for the optical and mechanical input
noise operators:

〈âin,lk t( )â†in,lk′ t′( )〉 � δkk′δ t − t′( ), (5)
〈b̂†in,j t( )b̂in,j′ t′( )〉 � nthj δjj′δ t − t′( ), (6)
〈b̂in,j t( )b̂†in,j′ t′( )〉 � nthj + 1( )δjj′δ t − t′( ), (7)

where the l index refers to the input or output port of interest. Both
optical and mechanical noises are thermal and, hence, proportional
to the thermal boson number given by the Bose–Einstein statistics
nth � (eZω/KBT − 1)−1. Specifically, at room temperature and at the
cavity frequency Zωc,k/KBT ≫ 1, the optical noise can be treated as
vacuum noise, and the only relevant correlation is Eq. 5; differently,
at the mechanical resonant frequencies, one can consider
nthj ≃ KBTj/Zωj. The correlation functions for the amplitude and
phase noises have the following expressions:

〈ϵk t( )ϵk t′( )〉 � Γϵ,kγϵ,ke−γϵ,k |t−t′|, (8)
〈 _ϕk t( ) _ϕk t′( )〉 � ΓL,kγϕ,ke−γϕ,k |t−t′|, (9)

where Γϵ,k is a dimensionless parameter that quantifies the intensity
of the laser amplitude fluctuations and γϵ,k corresponds to the
bandwidth of the amplitude noise spectrum; analogously, ΓL,k
denotes the strength of the laser phase noise but has the
dimension of a frequency, and γϕ,k represents the bandwidth of
the phase noise. More precisely, ΓL,k stands for the linewidth of the
laser that characterizes the laser spectrum itself, and typical values
span in the range ~ (1–100) kHz [15]. Performing the Fourier
transform of such correlations, one obtains the following spectra for
the noises:

Sϵ,k ω( ) � Γϵ,k
2γ2ϵ,k

γ2ϵ,k + ω2
, (10)

Sϕ,k ω( ) � ΓL,k
2γ2ϕ,k

γ2ϕ,k + ω2
. (11)

Therefore, we consider the amplitude and phase noises as
colored noises with a Lorentzian spectrum that are different from
the Markovian vacuum optical and thermal mechanical noises,
which have a flat frequency noise spectrum. Indeed, a flat
spectrum tends to overestimate the effect of laser noises [14].
However, we note that when γϵ ≫ ωm,j or γϕ ≫ ωm,j, we recover
a flat frequency spectrum situation.

2.1 Linearized quantum Langevin equations

We focus on the stationary state of the system, and our purpose
is to investigate the dynamics of the membranes around the
equilibrium positions due to several noise sources. Hence, we
consider the annihilation operators of the quantum Langevin
equations as composed by a mean amplitude term and a
fluctuation term around that value, so that the optical
annihilation operator can be written as â � α + δâ and the
mechanical one results in b̂ � β + δb̂. Disregarding the noises, by
inserting this decomposition for the operators into Eqs 3, 4 and
retaining the zero-th order terms, we obtain the steady-state values
as follows:

αk � Ek

κk/2 + iΔk
, (12)

�xj � βj + βpj �
2∑kg

0( )
jk |α|2ωm,j

γ2m,j/4 + ω2
m,j

≃
2∑kg

0( )
jk |α|2

ωm,j
. (13)

Here, we introduced a new detuning Δk � Δ(0)
k − ∑jg

(0)
jk �xj which

is influenced by the stationary position of both mechanical resonators
and an effective coupling rate gjk � g(0)

jk αk. The final expression for the
mean position of each mechanical resonator is valid in the case of the
damping rate beingmuch lower than the resonant frequency γm,j≪ ωm,j,
a condition satisfied in optomechanical devices. Now, taking into
account the first-order fluctuation terms, we obtain the linearized
quantum Langevin equations for the annihilation operators as follows:

δ _̂ak � − κk
2
+ iΔk( )δâk + i ∑

j�1,2
gjk δb̂j + δb̂

†

j( ) + ���
κ1k

√
âin,1k + ϵk( )

+ iαk
_ϕk +

���
κ2k

√
âin,2k, (14)

FIGURE 1
Two SiN membranes within a Fabry–Perót cavity. The two
mechanical resonators b̂1 and b̂2, having masses m1 and m2,
resonance frequencies ωm,1 and ωm,2, and damping rates γm,1 and γm,2,
interact with an optical mode â. The cavity is characterized by
decay rate κ1 for the input port, κ2 for the output port, and κl that takes
into account losses due to absorption or scattering.
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δ
_̂bj � − γm,j

2
+ iωm,j( )δb̂j + i ∑

k�1,2
g 0( )
jk αk*δâk + αkδâ

†
k( ) + ���

γm,j

√
b̂in,j.

(15)

We have omitted all the second-order terms, which are
negligible when |α|≫ 1. From these equations, it is evident that
in the linearized regime, the effect of the laser phase noise can be
more relevant than that of the amplitude noise, since it is
multiplied by the intracavity amplitude α. By switching to the
frequency domain by performing the Fourier transform of Eqs 14,
15, we obtain

χc,k ω( )[ ]−1âk � i ∑
j�1,2

gjk b̂j + b̂
†

j( ) + ���
κ1k

√
âin,1k + ϵk( ) + iαk _ϕk

+ ���
κ2k

√
âin,2k, (16)

χc,k* −ω( )[ ]−1â†k � − i ∑
j�1,2

gjk* b̂j + b̂
†

j( ) + ���
κ1k

√
â†in,1k + ϵk( ) − iαk* _ϕk

+ ���
κ2k

√
â†in,2k, (17)

χm,j ω( )[ ]−1b̂j � i ∑
k�1,2

gjk* âk + gjkâ
†
k( ) + ���

γm,j

√
b̂in,j, (18)

χm,k* −ω( )[ ]−1b̂†j � − i ∑
k�1,2

gjk* âk + gjkâ
†
k( ) + ���

γm,j

√
b̂
†

in,j. (19)

The previous equations refer to the fluctuation operators, and
we dropped out the fluctuation symbol δ for convenience. We
introduced the optical and mechanical bare susceptibilities
which are

χc,k ω( )[ ]−1 � κk
2
− i ω − Δk( ), (20)

χm,j ω( )[ ]−1 � γm,j

2
− i ω − ωm,j( ). (21)

In particular, for the probe field, we consider from now
on a detuning Δ1 = 0. By inserting Eqs 16, 17 into Eq. 18,
one obtains the equation for one mechanical annihilation
operator as a function of the other mechanical operators and
noises:

χm,j′ ω( )[ ]−1b̂j � − i ∑
k�1,2

g 0( )
jk σk ω( ) g 0( )

jk b̂
†

j + g 0( )
3−jk b̂3−j + b̂

†

3−j( ) + _ϕk[ ]
+ i ∑

k�1,2
g 0( )
jk αk*χc,k ω( ) ���

κ1k
√

âin,1k + ϵk( ) + ���
κ2k

√
âin,2k[ ]{

+ αkχc,k* −ω( ) ���
κ1k

√
â†in,1k + ϵk( ) + ���

κ2k
√

â†in,2k[ ]} + ���
γm,j

√
b̂in,j,

(22)

where we have defined σk(ω) � i|αk|2[χc,k* (−ω) − χc,k(ω)] and
[χm,j′ (ω)]−1 � [χm,j(ω)]−1 + i∑kσjk(ω) with σjk(ω) � g(0)2

jk σk(ω).
We now choose to work in a rotating-wave approximation,
valid in the red detuned regime (Δ > 0), weak coupling, and
resolved sideband limit (gj < κ ≤ ωm,j); hence, we neglect the
counter-rotating mechanical term b̂

†
and obtain the following

equation for the j-th mechanical annihilation operator, which
depends solely on the noise terms:

χrwam,j ω( )[ ]−1b̂j � − i ∑
k�1,2

g 0( )
jk σk ω( ) −i ∑

k′�1,2
g 0( )
3−jkg

0( )
3−jk′σk′ ω( )χm,3−j′ ω( ) _ϕk′ + _ϕk

⎡⎢⎢⎣ ⎤⎥⎥⎦
+ ∑

k�1,2
g 0( )
jk ∑

k′�1,2
σk ω( )g 0( )

3−jkg
0( )
3−jk′χm,3−j′ ω( )⎧⎨⎩

αk′* χc,k′ ω( ) ���
κ1k′

√
âin,1k′ + ϵk′( ) + ���

κ2k′
√

âin,2k′( )[
+ αk′χc,k′* −ω( ) ���

κ1k′
√

â†in,1k′ + ϵk′( ) + ���
κ2k′

√
â†in,2k′( )]

+ i αk*χc,k ω( ) ���
κ1k

√
âin,1k + ϵk( ) + ���

κ2k
√

âin,2k( )[
+ αkχc,k* −ω( ) ���

κ1k
√

â†in,1k + ϵk( ) + ���
κ2k

√
â†in,2k( )]}

− i ∑
k�1,2

g 0( )
jk g

0( )
3−jkσk ω( )χm,3−j′ ω( ) �����

γm,3−j
√

b̂in,3−j + ���
γm,j

√
b̂in,j,

(23)
where the effective susceptibility in rotating-wave approximation is

χrwam,j ω( )[ ]−1 � χm,j′ ω( )[ ]−1 + ∑
k,k′�1,2

g 0( )
j,k g

0( )
j,k′σkσk′g

0( )
3−j,kg

0( )
3−j,k′χ3−j ω( ).

(24)
The first term of Eq. 23 takes into account the phase noise

contributions for both the probe and pump laser beams, and the
second one refers to the vacuum optical and amplitude laser noises
for the input and output ports, while the latter term is related to the
mechanical thermal noise.

2.2 Output quadrature spectrum

We detect the noise spectrum of the general amplitude
quadrature X̂k � i(â†keiφ + âke−iφ)/

�
2

√
. In particular, if we are

interested in monitoring the pump field signal (which we
denoted as optical mode 2) in transmission (hence measured
from the output port 2), using the input–output relation,
we obtain X̂out,22 � ���

κ22
√

X̂2 − X̂in,22, where X̂in,22 � (â†in,22eiφ+
âin,22e−iφ)/

�
2

√
. The expression for the output amplitude

quadrature is

X̂out,22 �
���
κ22
2

√ ⎧⎨⎩ − i α2
*χc,2* −ω( )eiφ − α2χc,2 ω( )e−iφ( ) ∑

j�1,2
g 0( )
j2 b̂j + b̂

†

j( ) + _ϕ2
⎛⎝ ⎞⎠

+ ���
κ12

√
χc,2* −ω( )eiφ â†in,12 + ϵ2( ) + χc,2 ω( )e−iφ âin,12 + ϵ2( )[ ]

+ ���
κ22

√
χc,2* −ω( ) − 1

κ22
( )eiφâ†in,22 + χc,2 ω( ) − 1

κ22
( )e−iφâin,22[ ]}

(25)

so that inserting Eq. 23 for the mechanical annihilation and creation
operators in Eq. 25, one gets the full, but cumbersome, expression in
terms of the noises. The related spectrum can be calculated as
SXout(ω) � ∫∞

−∞ 〈X̂out(ω)X̂out(ω′)〉dω′ (see [1]). Hence, in order
to derive the expression for the auto-correlation of the output optical
quadrature, one needs to insert in the calculation the auto-
correlation for each noise source, which is reported in Eqs 5–9 in
the time domain. However, since we are working in the frequency
domain, it is necessary to perform the Fourier transform of such
quantities.

Similarly, the general phase quadrature Ŷk � i(â†keiφ − âke−iφ)/
�
2

√
can be obtained for the probe field signal (which we denoted as optical
mode 1) in reflection (hence measured from the output port 1). From
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the input–output relation, we have Ŷout,11 � ���
κ11

√
Ŷ1 − Ŷin,11, where

Ŷin,11 � i[(â†in,11 + ϵ1)eiφ− (âin,11 + ϵ1)e−iφ]/
�
2

√
. The expression is

Ŷout,11 � i

���
κ11
2

√ ⎧⎨⎩ − i αp1χc,1* −ω( )eiφ + α1χc,1 ω( )e−iφ( ) ∑
j�1,2

g 0( )
j1 b̂j + b̂

†

j( ) + _ϕ1
⎛⎝ ⎞⎠

+ ���
κ11

√
χc,1* −ω( ) − 1

κ11
( )eiφ â†in,11 + ϵ1( ) − χc,1 ω( ) − 1

κ11
( )e−iφ âin,11 + ϵ1( )[ ]

+ ���
κ21

√
χc,1* −ω( )eiφâ†in,21 − χc,1 ω( )e−iφâin,21( )}

(26)

One can derive the expression in terms of the noises and the
related spectrum through the aforementioned method.

3 Materials and methods

3.1 Description of the experimental setup

The optomechanical setup is constituted by two Si3N4 square
membranes within an optical cavity [21, 25, 35, 36]. A laser beam at
wavelength λ = 1064 nm is split into a probe beam and a pump
beam. The first one has power Ppr = 3.8 µW, and it is modulated by
using an electro-optical modulator (EOM). It is locked to the cavity
resonance frequency by means of the Pound–Drever–Hall (PDH)
technique. The fraction of the beam reflected by the cavity is revealed
by homodyne detection, yielding an effective measurement of the
motion of the membranes. The pump beam is more intense, and its
power can be controlled. It is employed to realize the
optomechanical interaction. The pump beam is also suitable to
inject the amplitude and phase noise into the system and scan the
cavity linewidth.

Amplitude and phase noise can be controlled by adding a
modulation to the pump beam. The light modulation is
implemented through an acousto-optic modulator (AOM),
which is driven by a voltage-controlled oscillator (VCO). We
control the frequency and the amplitude of the modulation
feeding the VCO with DC signals. The frequency modulation
(FM) is useful to detune the pump beam with respect to the
cavity. The amplitude and phase modulation is used to introduce
a seed beam into the cavity. We can evaluate the response
function of the system to the amplitude and phase noise
modulation, respectively, by measuring the light transmitted
by the cavity at different frequencies of the seed. A schematic
view of the experimental setup is depicted in Figure 2. The light
transmitted by the cavity is collected on a PIN photodiode. The
photocurrent is then amplified by using a FEMTO DHPCA-100
transimpedance amplifier with 1 × 106 V/A gain and 3.5 MHz
bandwidth.

3.2 Experimental parameters

The twomembranes form themselves an inner cavity Lc = 53.571(9)
μm long, the thickness of the Si3N4 layer is Lm = 106(1) nm, and the
transverse dimensions were estimated from the normal mode spectrum
to be L(1)x � 1.519(6)mm, L(1)y � 1.536(6)mm, L(2)x � 1.522(6)mm,
and L(2)y � 1.525(6)mm.A complete description of the characterization
method allowing to derive the aforementioned membrane parameters is
presented in [25]. We have studied the fundamental vibration mode of
the two membranes by measuring the voltage spectral noise of the
reflected cavity field, revealed by homodyne detection, as shown in
Figure 3.

FIGURE 2
Schematic of the experimental setup. The laser is split into a probe beam and a pump beam. The probe is modulated by an EOM. A fraction of the
reflected component is measured to implement the PDH technique. The remaining field is mixed with a local oscillator to obtain the homodyne signal.
The pump beam, whose path is highlighted by the yellow-dashed poligon, is modulated through an AOM. The AOM is driven by a VCO. The frequency
modulation allows the pump to be detuned in a controlled way from the cavity resonance frequency. The input ports of the VCO allow injecting
amplitude and phase noise into the system. The cavity-transmitted light is detected directly by a PIN photodiode. The photocurrent is amplified using a
FEMTO DHPCA-100 transimpedance amplifier.
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The effective mass of the fundamental mode for both membranes
is meff = 174 ng. The first oscillator is centered around ωm,1 = 2π ×
226.764581(1) kHz, with a bandwidth (i.e., the mechanical damping
rate) γm,1 = 2π × 1.44(1) Hz, yielding a mechanical quality factor
Qm,1 �1.57×105. For the second membrane, we have found ωm,2 =
2π × 231.88732(2) kHz, γm,2 = 2π × 8.8(1) Hz, and Qm,2 �2.63×104.
We evaluated the cavity decay rate by measuring its linewidth, and we
extracted an amplitude decay rate κ = 2π × 119(1) kHz. The detuning
is fixed to Δ = 2π × 240 kHz. The experimental parameters are
presented in Table 1.

3.3 Amplitude and phase noise calibration

We have experimentally verified the theoretical model bymeasuring
the response of the optomechanical system to amplitude noise
modulations on the pump beam. The pump beam transmitted by
the cavity, around the mechanical frequencies, is detected with the
schematic presented in Figure 2. To calibrate the quadrature spectrum,
we have to point out the relationship between the theoretical spectrum,
i.e., the spectrum of Eq. 25, and the measured data. Experimentally, a
lock-in amplifier (LIA) is used to probe the response of the system at the
modulation frequencyΩm. We can calibrate the noise impinging on the
cavity by measuring the ratio between the amplitude of the field
sidebands, generated by the AOM modulation at frequency ±Ωm,
and the amplitude of the field at the carrier frequency. A heterodyne
scheme can be easily obtained by mixing the pump beam and the probe
beam polarizations. The amplitude of the pump field modulated by the
AOM is written as

ϵpu t( ) �
��������������
ϵ2a + ϵ2m cos Ωmt( )

√
ei ωL−Δ( )t, (27)

where ϵa � �������
Ppu/ZωL

√
, with Ppu = 67 µW. Instead, we do not add any

artificial noise to the probe beam, and we can safely neglect the noise
due to the laser (Coherent, Mephisto 500). The field of the probe is

ϵpr t( ) � ϵbeiωLt. (28)

The intensity of the light impinging on the photodiode is
given by

|ϵpu + ϵpr|2 ≃ DC + ϵ2m cos Ωmt( ) + 2ϵaϵb 1 + 1
2
ϵ2m
ϵ2a

cos Ωmt( )[ ]cos Δt( )

� DC + ϵ2m cos Ωmt( ) + 2ϵaϵb cos Δt( ) + 2ϵaϵb
ϵ2m
4ϵ2a

cos Ωm + Δ( )t[ ]{
+ cos Ωm − Δ( )t[ ]}, (29)

assuming a small modulation ϵm ≪ϵa. This form clearly reveals a DC
signal and oscillating components at Ωm, Δ, and Ωm ±Δ, respectively.
We canmeasure the amplitude of the signal at different frequencies by
means of an LIA. After the demodulation, the signal is passed through
a fourth-order band-pass filter with 19 Hz bandwidth. We perform
the demodulation at frequencies Δ,Ωm + Δ, andΩm, to measure Vcar,
Vsb, and VΩm, respectively. Eventually, we can calculate the amplitude
of the modulation as

ϵ2m � 4ϵ2a
Vsb

Vcar
� 4

Ppu

ZωL

Vsb

Vcar
. (30)

The calibration for different values of the modulation input
voltage is presented in Figure 4A. The interference between the
modulated pump and the probe also contains a component at
frequency Ωm, which is proportional to ϵ2m. The amplitude VΩm

is related to ϵ2m by

VΩm � Aϵ2m, (31)
where A takes into account the detection apparatus. We emphasize
that Vsb and Vcar contain the detection term too. When we divide
them to determine the ratio ϵ2m/ϵ2a, the factor A cancels out, but,
nonetheless, it can be calculated from VΩm, Vsb, and Vcar as follows:

A � VΩmVcar

4ϵ2aVsb
. (32)

The measured points for VΩm at different modulation
voltages are shown in Figure 4A, and the estimated A in
Figure 4B. Moreover, we measured the seed transmitted by
the cavity around the mechanical frequencies, injecting noise
with voltage modulation V(pk)

in �30 mV. The measured data are
shown in Figure 4C and compared to the theoretical model given
in Eq. 25. The theoretical curves reproduce the measured data
accurately using a noise amplitude ϵm = 8.2 × 106 Hz1/2 and a
detection factor A � 1.6 × 10−15 VHz−1, both given by the
calibration. Experimentally, each point of the spectrum is obtained
by simulating the effect of white noise within the bandwidth of the
measurement BW= 10 Hz, and the equivalent amplitude noise spectral
density Γϵ, defined in Eq. 10 of the model, can be linked to ϵm through
2Γϵ � ϵ2m/BW ≃ 6.7 × 1012 Hz/Hz. The estimated value of the detection

FIGURE 3
Homodyne voltage spectral noise (VSN) around mechanical
fundamental mode frequencies. The light green curve shows the
thermal noise of the mechanical oscillators. The mechanical
parameters are estimated using the Lorentzian functions
represented in green. The red curve indicates the shot noise level, and
the black one is the electronic noise of the device.

TABLE 1 Optical and mechanical parameters.

Membrane 1 Membrane 2 Cavity

ωm,1 2π × 226.764 kHz ωm,2 2π × 231.887 kHz κ 2π × 119 kHz

γm,1 2π × 1.44 Hz γm,2 2π × 8.8 Hz Δ 2π × 240 kHz

meff,1 174 ng meff,2 174 ng
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factor is valid for the measurement in Figure 4C. In fact, the detection
system used for the calibration and the one employed to measure the
light transmitted by the cavity are analogous. The best-fitting
optomechanical couplings are comparable to what can be evaluated
using the method in [35] and are given by g(0)

12 � 2π ×0.13Hz and
g(0)
22 � 2π ×0.39 Hz.
The spectrum in Figure 4C shows two Fano resonances with

an asymmetric shape, which is a typical manifestation of
interference, and its possible occurrence in optomechanical
systems has been described, for example, in [37, 38]. In this
case, the two dips in correspondence to the mechanical
resonance frequencies of the membranes are due to the
destructive interference between the amplitude noise of the
driving pump directly transmitted by the cavity and the
optical output associated with the effective response of each
mechanical resonator to the same amplitude noise. In the
experiment, the two oscillators have different bare mechanical
quality factors and optomechanical couplings, resulting in two
distinct effective responses, which appear in the spectrum as
different shapes of the two dips. This output field cancellation is
similar to optomechanically induced transparency (OMIT) [39,
40], stimulated in this case by the amplitude noise term.

Alternatively, we can inject noise on the phase of the pump beam.
We have described previously a method to evaluate the amount of
amplitude noise on the beam and introduced the factor A to take into
account the detection. Using the experimental apparatus represented in
Figure 2, we also measured the cavity output when the phase noise is
injected into the system. In Figure 5, we show the spectrum of the light
intensity transmitted by the cavity, near the mechanical resonances. In
this case, the single-photon optomechanical couplings are
g(0)
12 � 2π ×0.42Hz and g(0)

22 � 2π ×0.51 Hz. The value of the
detection factor is already determined, and it is given by A �1.6 ×
10−15 VHz−1. We can estimate the intensity of the phase noise seed by

fitting the amplitude of the experimental data and obtain _ϕ �5.6 ×
105 Hz. This result yields the equivalent phase noise spectral density
2ΓL � _ϕ

2
/BW ≃ 3.1 × 1010 Hz2/Hz, which can be intended as the

linewidth of the noisy simulated laser.
The two dips in Figure 5 are again addressed to an OMIT-like

behavior, here stimulated by the phase noise seed.

FIGURE 4
Calibration of the noise and transmitted seed spectrum around themechanical frequency. (A) The green dots represent themeasured ratio between
sideband and carrier amplitudes, while the red squares are the amplitude of the signal at frequency Ωm. The calibration is performed for different input
voltages. (B) Calculated detection factors for different seed amplitudes. The horizontal line indicates the average of the points, with the shadow area
representing ± 10% of variation from themean value. (C) The seed is injected as the amplitudemodulation of the pump beam, using an input voltage
V(pk)
in �30 mV, highlighted by the vertical dashed line in (A,B). The component transmitted by the cavity is detected. The interference between the seed

directly transmitted by the cavity and the pump photons scattered by the oscillators gives rise to cancellations at the mechanical frequencies. The
theoretical model, shown as a darker line on the experimental data, is calculated using the calibrated parameters. The single-photon optomechanical
couplings g(0)

12 � 2π ×0.13Hz and g(0)
22 � 2π ×0.39Hz, respectively, optimize the fitting.

FIGURE 5
Seed is injected as phase modulation of the pump beam, and the
output of the optical cavity is detected. The lighter curve represents
the experimental data, with the darker one representing the best-
fitting function. Knowing the detection factor A �1.6 ×
10−15 VHz−1, we can estimate the noise amplitude _ϕ �5.6 × 105 Hz. The
single-photon optomechanical couplings g(0)

12 � 2π ×0.42Hz and
g(0)
22 � 2π ×0.51Hz, respectively, optimize the fitting. The values of

single-photon optomechanical couplings are different from those of
the amplitude noise case of the previous figure because the
membranes have been displaced along the cavity axis from the
previous positions, yielding a different coupling situation, as illustrated
in [25].

Frontiers in Physics frontiersin.org07

Marzioni et al. 10.3389/fphy.2023.1222056

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1222056


3.4 Noise cancellation

Eventually, we can detect the mechanical displacement noise by
means of homodyne detection of the reflected probe beam while
injecting amplitude noise in the system through the pump beam.
The detection reveals the phase quadrature of the probe field in the
presence of amplitude noise on the pump. The same detection can be
carried out also by adding phase noise, obtaining almost identical results
for the detected spectra. The noise calibration described in the previous
section remains valid. The first excitedmodes of onemembrane, labeled
as (12) and (21), have resonance frequencies ω(12)

m � 366.8525(2)kHz
and ω(21)

m � 367.3389(2)kHz and mechanical damping rates γ(12)m �
11.9(5)Hz and γ(21)m � 8.6(4)Hz, respectively. The characterization of
the mechanical parameters has been performed by fitting the
mechanical displacement spectrum with Lorentzian peaks, as shown
in Figure 6. Closer resonance frequencies, compared to the previous
case of the fundamental modes of two distinct membranes, facilitate the
observation of a cancellation window within them. Amplitude noise
cancellation in a bandwidth between the two resonances is observed,
and the theoretical result in Eq. 26 describes the measured data with an
excellent agreement.

The orange and blue curves in Figure 6 refer to the case when
amplitude noise is much larger than the other noise sources. As a
consequence, the two mechanical modes are excited via radiation
pressure by the same fluctuating force. In the spectral region between
the resonances, the two mechanical responses are out of phase and
destructively interfere, yielding visible noise cancellation. Similar noise
cancellation phenomena have been observed in different experimental
setups, and these features can be engineered to improve the sensitivity
of the measurement within the cancellation’s bandwidth [41, 42].

4 Conclusion

In this work, we considered a multimode cavity optomechanical
system in which two SiN membranes are placed within a
Fabry–Perót cavity and driven by two laser fields. We provided a
description of the effects of the laser’s amplitude and phase noises,
which are introduced in the system’s equations of motion as an
additive term and a multiplicative term, respectively. Moreover, we
have used an artificial source of white noise to prove experimentally
the validity of the model. We evaluated the equivalent noise spectral
density when the artificial noises overwhelm the other sources of
noise. Finally, the effective displacement spectral noise of the
membranes in the presence of amplitude noise has been
measured; a cancellation window within the mechanical
resonance frequencies arises due to the opposite sign of the
phases in the mechanical response. The theoretical model with
the calibrated value of the noise provided an accurate description
in this case as well.
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FIGURE 6
Homodyne voltage spectral noise around the first excited
mechanical mode frequencies of one membrane. The lighter curves
represent the measured data, and the solid darker lines represent the
theoretical best-fitting functions. The green curve represents the
thermal noise of the membrane, i.e., the homodyne signal spectrum
when the pump beam is switched off. We estimate the mechanical
parameters by fitting it with Lorentzian peaks. The orange and blue
lines are measured injecting a seed of intensity ϵ2m �6.7 × 1013 Hz and
ϵ2m �1.1 × 1014 Hz, respectively, through the pump beam amplitude. By
sweeping the frequency of the seed, we obtain the spectra. A noise
cancellation window can be noted within the two thermal peak
frequencies. The shot noise is presented in red, and the electronic
noise is presented in gray.
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