Contents

List of contributors

1. Phytobiotics and their application in poultry and aquaculture industry

Mervat A. Abdel-Latif, Abdelwahab A. Alsenosy, Eman A. Manaa, Samar Abaza, Maryam A. Elshenawi, Asmaa Aboelnour and Mahmoud Alagawany xi

Background	1
Phenolic compounds	1
Terpenes	2
Alkaloids	2
Use of phytobiotics in poultry nutrition	2
Effect of phytobiotics on performance and	
production of poultry	2
Effect of phytobiotics on blood biochemistry	3
Antioxidant and antiinflammatory action of	
phytobiotics	4
Effect of phytobiotics on blood hematology	5
Influence of phytobiotics on gut function and	
morphology	5
Effect of phytobiotics on immune response in	
broilers	6
Phytobiotics in aquaculture production	8
Conclusion	9
References	10

2. Probiotics, prebiotics, and synbiotics in animal and poultry nutrition

Mahmoud Alagawany, Mohamed I. Hegazy, Mayada R. Farag, Nahed Ahmed El-Shall, Sobhy M. Sallam and Kuldeep Dhama

17
17
18
19
19
19
19
20

Prebiotics' historical insights for enhancing	
poultry production	20
Prebiotics used in laying hens and broilers' diet	21
Mode of action of prebiotics in poultry	
nutrition	21
Prebiotics that help increase poultry	
production	22
Fructo-oligosaccharides	22
Galacto-oligosaccharides	22
Enrichment with yeasts	23
Mannan-oligosaccharides	23
Dietary fiber sources and indigestible	
carbohydrates	24
Effects of prebiotics on avian gut physiology	24
An investigation of the gastrointestinal tract	
microbiota of birds	24
Prebiotics' effects on the gut's physiology and	
composition	25
Effects of prebiotics on immune function and	
intestinal morphology	25
Prebiotics and host nutritional benefits	26
Nutritional aspects influencing prebiotics'	
effectiveness	26
Prebiotics' disadvantages related to the health	
and performance of birds	27
Synbiotics	27
The role of synbiotics in physiology of digestion	28
Synbiotics' function in the development of	
poultry	28
Conclusions	28
References	29
Further reading	36

3. Acidifiers and organic acids in livestock nutrition and health

Ahmed E. Kholif, Gouda A. Gouda, Olurotimi A. Olafadehan, Sobhy M. Sallam and Uchenna Y. Anele Introduction

Inorganic acids	44
Organic acids	44
Chemistry of organic acids	44

43

Modes of action of acidifiers and organic acids	44
Role of acidifiers in nutrition	47
Factors affecting the efficacy of organic acids	51
Strategies to enhance organic acid efficacy in	
the gastrointestinal tract	51
Conclusions and futuristic perspective	51
References	52

4. Natural antioxidants in farm animals: an eco-friendly tool for improving fertility

Nesrein M. Hashem, Mahmoud Madkour, Maysara S. El-Salakawy, Doaa A. Ghareeb and Nahed Ahmed El-Shall

Introduction	57
Redox reactions and homeostasis	58
Major classes of phytogenic antioxidants and	
modes of action	58
Polyphenols	58
Alkaloids	60
Carotenoids	61
Effects of phytogenic antioxidants on male	
fertility	61
Effects of phytogenic antioxidants on female	
fertility	62
New trends for manipulation of phytogenic	
antioxidants	63
Hazards and precautions	63
Conclusion	64
References	64

5. Emulsifiers and their applications in farm animals

Mahmoud Alagawany, Mayada R. Farag, Nahed Ahmed El-Shall, Faiz-ul Hassan and Mohamed E. Abd El-Hack

Background	69
Lipotropic factors description	69
Effect of lipotropic factors (lecithin) growth	
performance	70
Poultry	70
Effect of supplementing dietary bile acids on	
body weight changes	73
Aquaculture	73
Effect of lipotropic factors on some blood	
parameters	74
Poultry	74
Effect of dietary bile acids supplementation on	
some blood biochemical changes and immun	e
response	75
Aquaculture	75

Effect of lipotropic factors on carcass quality	76
Poultry	76
Aquaculture	77
Impact of dietary bile acids enrichment on the	
intestinal morphology and characteristics of	
carcass	77
Poultry	77
Effect of lipotropic factors on intestinal	
histopathology of poultry	78
Aquaculture	78
Effect of lipotropic factors on immune	
response	79
Poultry	79
Aquaculture	79
Effect of lipotropic factors on gene	
expression	79
Poultry	79
Aquaculture	80
Effect of lipotropic factors on egg production	
and quality	80
The influence of dietary bile acids	
supplementation on the production and	
quality of eggs	80
Conclusion	80
References	80

6. Bee pollen, from the flower to the harvest, and its potential therapeutic properties

Evelina Serri, Livio Galosi, Giacomo Rossi, Alessandro Di Cerbo, Alessandra Roncarati and Alessio Angorini

The function of pollen and propolis in nature	85
Pollen and bees propolis	87
How bees collect pollen	87
How bees collect propolis	89
The use of propolis in the beehive	89
Quality and variety of bee pollen and	
propolis	90
Pollen sampling technique	90
Propolis sampling technique	92
Conservative processes	93
Pollen	93
Propolis	94
Composition	95
Pollen	95
Propolis	96
Nutraceutic and curative properties of pollen	
and propolis	97
Propolis	99
Adverse effects of pollen and propolis	
consumption	100
-	

Conclusion	100
Conflict of interest statement	100
Consent of publication	100
Acknowledgment	100
References	100
Further reading	105

7. Use of macro- and microalgae in animal nutrition

Mahmoud Madkour, Ibrahim A. Matter, Abdel Rahman Y. Abdelhady, Ahmed M. ALaqaly, Nafisa A. Abd El-Azeem and Mohamed Shafey Elsharkawy

Introduction	107
General aspects of algae: classification,	
cultivation systems, harvesting	108
Algae: macro and micro	108
Macroalgae	108
Microalgae	108
Classification	109
Macroalgae classification	109
Microalgae classification	109
Cultivation systems of algae	109
Seaweeds cultivation	109
Microalgae cultivation	110
Open ponds (outdoor ponds)	110
Photobioreactors	111
Harvesting	111
Seaweeds harvesting	111
Microalgae harvesting	111
Nutritional values	112
Nutritional values of seaweeds	112
Nutritional values of microalgae	113
Effective materials in algae and their	
importance	116
Phenolic compounds	116
Polysaccharides	116
Pigments	117
Vitamins	117
Micro- and macroelements	117
Examples of some algae	117
Enteromorpha prolifera	117
Spirulina	118
Brown seaweed	118
Sargassum latifolium	118
Ascophyllum nodosum	118
Undaria pinnatifida	119
Ulva	119
Algae and economic aspects in animal diets	119
Using microalgae in poultry feed	120
Algae harmful and toxins	120
References	121

8. The use of bile acids supplement in poultry feed

Ayman H. Abd El-Aziz, Mahmoud M. Abo Ghanima, Mahmoud Kamal, Mohamed E. Abd El-Hack and Mahmoud Alagawany

Introduction	127
Growth performance	129
Carcass attributes and meat quality	131
Hematological and biochemical parameters	131
Intestinal morphology and health status	132
Future perspectives	133
Conclusion	134
References	135

9. Nanoclay in animal diets: properties, structure, applications, and toxicity

Amr E. El-Nile, Sobhy M. Sallam, Mohamed E. Abd El-Hack, Ayman S. Salah and Mahmoud Alagawany

Introduction	139
Physical properties of nanoclays	140
Structural features of nanoclays	140
Effect of nanoclays on animal productivity	141
Effect of nanoclays on animal health	143
Nanoclays as a natural antibiotic	143
Nanoclays as a mycotoxin adsorbent agent	143
Nanoclay's toxicity	144
Conclusion	145
References	145

10. Antibiotic and antimicrobial feed additives

Livio Galosi, Shakira Ghazanfar, Maliha Rashid and Alessandro Di Cerbo

Introduction	149
Antibiotics' toxicity	150
Antibiotics in livestock	155
Antibiotics in aquaculture	157
Antimicrobial feed additives in livestock	158
Conclusion	158
Conflict of interest statement	158
Consent of Publication	158
Acknowledgment	158
References	158

11. Methyl donors and their roles in poultry nutrition

Indrajit Kar, Ayan Mukherjee and Amlan K. Patra

Introduction161Types and sources of methyl donors161

Methylation process and its significance in	
poultry	162
Role of methyl donors in DNA methylation	
and gene expression regulation	163
Essential methyl donors for poultry	164
Methionine	164
Betaine	165
Choline	167
Other methyl donors in poultry nutrition	168
Balancing methionine, choline, and betaine	
levels	169
Environmental factors affecting methyl donor	
utilization	169
Technological advancements and their impact	
on methyl donor supplementation	170
Conclusion	170
References	170

12. Fibrolytic enzymes in animal and fish nutrition

M.S. Mahesh, Hujaz Tariq and Amlan K. Patra

Introduction	175
Characteristics of fiber in feedstuffs	175
Exogenous enzymes: types and sources	176
Mode of action of exogenous enzymes	
Ruminants	178
Nonruminants	179
Pigs and poultry	183
Zoo-technical responses to enzyme addition	180
Ruminants	180
Effect on dry matter intake and digestibility	181
Effects on lactational performance	181
Effects on growth performance	182
Other effects	182
Nonruminants	183
Pigs and poultry	183
Aquaculture	184
Economic implications	185
Practical considerations	185
Conclusions	186
References	186

13. Yeast and its derivatives in animal and fish nutrition

Faiz-ul Hassan, Maryam Mehboob, Rana Muhammad Bilal, Faisal Siddique and Mahmoud Alagawany

Introduction	195
Yeast as probiotics for fish	196
Yeast as immunostimulants for fish	198
Mechanism of yeasts as immunostimulants	200

Yeast impact on growth performance of fish	200
Yeast impact on gut health of fish	202
Summary	204
References	204

14. Chelates and organic minerals

Faiz-ul Hassan, Maryam Mehboob, Rana Muhammad Bilal and Muhammad Uzair Akhtar

Introduction	211
The role of chelates and organic minerals in	
animal nutrition	211
Mineral digestion and utilization	213
Application of chelates and organic minerals in	
animal nutrition	219
Effects of minerals on milk production and	
composition	221
Role of chelates in stress resistance and	
immune function	221
Role of chelates in digestive health and gut	
microbiota	221
Role of chelates on reproductive performance	
and health of animals	222
Effects of chelates on growth performance of	
monogastric animals	222
Recent applications of chelates and organic	
minerals for human benefits	223
Use of manganese in drug development	224
Use of chelates as a promising method for	
food fortification	224
Use of iron as chelating mineral for treatment	
of various diseases	224
Chelates as antioxidants	225
Role of chelates in heavy metal detoxification	225
Conclusions	226
References	226

15. Shedding light on developments in finfish nutrition

Norhan E. Saleh and Hany M.R. Abdel-Latif

Introduction	235
Applications of nutritional biotechnology in	
aquaculture	235
Nutrigenomics	236
Biomarkers	236
Epigenetics	236
Programming the fish through nutrition	236
Fish nutritional requirements and application	
of biotechnology	237
Protein	237
Lipids	240
Carbohydrates	241

Vitamins and minerals	241
Feed additives	
Exogenous enzymes	242
Biopreservatives and toxin binders	243
Feed attractants	244
Hormones	244
Nutraceuticals	244
Carotenoids	245
Biotechnological production of colorants	245
Antioxidant agents	245
Immunostimulants	246
Probiotics	246
Prebiotics	247
Algal constituents	247
Applications of biotechnology in hatcheries	
Broodstock/egg stages	248
Larval stages	248
Types of microdiets and applications of	
biotechnology	248
07	

Applications of biotechnology in aquatic	
ecosystem	249
Biofloc Technology	249
Periphyton-based aquaculture Technology	249
Nanobiotechnology	250
Nanobiotechnology in fish nutrition	250
Nanoencapsulation technology for	
enhancing bioavailability	250
Metal nanoparticle delivery through the food	
chain	251
Nanotechnology applications in the fish	
processing industry	251
Funding	251
Declaration of competing interest	251
References	251
Index	261