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Simple Summary: Simple Summary: In this work, we documented the presence of two neurotrophins
NGF (Nerve Growth Factor) and BDNF (Brain-Derived Neurotrophic Factor) in the pancreas of two
species of marine mammals, Tursiops truncatus (common bottlenose dolphin) and Otaria flavescens
(South American sea lion). Pancreas samples were provided by the Mediterranean Marine Mammal
Tissue Bank of the Department of Comparative Biomedicine and Food Science of the University of
Padua (Italy). These two growth factors are well-known mediators for maintaining the survival of
neurons but also exert a metabotrophic effect. The localization in the pancreas of bottlenose dolphins
and sea lions of these neurotrophins could help to better understand how these marine animals
handle metabolic challenges in their adaptation to ocean life.

Abstract: In this study, we have investigated the immunolocalization of NGF (Nerve Growth Factor)
and BDNF (Brain-Derived Neurotrophic Factor) in the pancreas of two species of marine mammals:
Tursiops truncatus (common bottlenose dolphin), belonging to the order of the Artiodactyla, and
Otaria flavescens (South American sea lion), belonging to the order of the Carnivora. Our results
demonstrated a significant presence of NGF and BDNF in the pancreas of both species with a wide
distribution pattern observed in the exocrine and endocrine components. We identified some differ-
ences that can be attributed to the different feeding habits of the two species, which possess a different
morphological organization of the digestive system. Altogether, these preliminary observations open
new perspectives on the function of neurotrophins and the adaptive mechanisms of marine mammals
in the aquatic environment, suggesting potential parallels between the physiology of marine and
terrestrial mammals.

Keywords: Nerve Growth Factor; Brain-Derived Neurotrophic Factor; pancreas; common bottlenose
dolphin; South American sea lion; marine mammals

1. Introduction

Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF) along
with neurotrophin (NT) 3 and NT4/5 belong to the family of neurotrophins, a family of
structurally related growth factors [1–4]. Neurotrophins are secreted proteins that promote
the development, survival, and function of the central and peripheral nervous system [1].
The signaling of each neurotrophin is mediated by a specific tyrosine kinase receptor of
the Trk family (Trk A, Trk B, and Trk C). In addition, all neurotrophins activate the p75
neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily [5,6].
Neurotrophins and their Trk receptors are phylogenetically preserved from invertebrates
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to mammals playing an essential role in the nervous system development and serving
important functions in certain non-nervous tissues [7]. NGF is a neurotrophic factor
that promotes the growth of neuritis during development and provides trophic support to
sensory neurons, sympathetic neurons, and some cholinergic neurons [8,9], presents trophic
actions in the cells of the endocrine and immune system, participates in acute inflammatory
responses [10], and responds to stress to regulate the functions of the anterior pituitary
cells [11]. Different studies have shown that NGF was implicated in the morphogenesis
and ontogeny of pancreatic islets [12,13] while the integrity of the NGF/NGF receptor
and NGF bioavailability participate in controlling β-cell survival in culture [14]. In adults,
NGF increases glucose-stimulated insulin secretion [15]. In fact, it modifies the physiology
of β-cells that synthesize and secrete NGF in response to increased extracellular glucose
concentrations and this implies its autocrine/paracrine role in the pancreas [16,17]. BDNF
not only serves as a powerful pro-survival factor for neurons in both the central and
peripheral nervous system, as well as a strong modulator of synaptic plasticity [18], but
it also plays a crucial role in the regulation of body weight, energy expenditure, and
glucose metabolism [19]. When brain BDNF levels are depleted, it can lead to excessive
nutrition and increased body weight, which are often accompanied by metabolic syndrome
characterized by hyperleptinemia, hyperglycemia, and hyperinsulinemia [20]. BDNF is
involved in β-cell survival by binding to TrkB [21]. With regard to glucose metabolism, it
has been shown that plasma BDNF is inversely related to plasma glucose, which raised the
possibility that elevated plasma glucose levels adversely affected BDNF production [22].
Hanyu and coworkers demonstrated that BDNF is also involved in the secretion of glucagon
by the alpha cells of the pancreas [19]. Moreover, BDNF enhances insulin sensitivity in
peripheral tissues, boosts energy expenditure in db/db mice, and reduces their food
intake [23,24].

These two neurotrophins have been extensively studied in the pancreas of terrestrial
mammals [25–29] as well as in birds and reptiles [30] but they have never been investigated
in marine mammals.

Marine mammals, with their anatomy and physiology adapted to aquatic life [31,32],
offer an interesting context to explore the distribution and role of neurotrophins in or-
gans critical to metabolic regulation, such as the pancreas. The pancreas is a key organ
in the regulation of glucose metabolism and energy homeostasis [33,34] and may pro-
vide valuable insights into the evolutionary adaptive mechanisms of marine mammals in
aquatic environments.

In this study, we focused on Tursiops truncatus (common bottlenose dolphin), belonging
to the order of Artiodactyla, and Otaria flavescens (South American sea lion), belonging to
the order ofCarnivora. These two species have evolved different feeding habits and related
morphological gastro-enteric apparatus, with peculiar metabolic adaptations [31,32]. For
instance, the bottlenose dolphin has metabolic conditions that can be compared to human
pre-diabetes, displaying hyperinsulinemia, hyperlipidemia, and prolonged postprandial
hyperglycemia [35,36]. Despite these metabolic conditions, bottlenose dolphins do not
develop ketosis during prolonged fasting periods, suggesting the existence of unique
physiological adaptation mechanisms [37] and making them natural models in metabolic
adaptation mechanisms in response to energy challenges. On the other hand, sea lions
have the ability to maintain metabolic homeostasis and normal neurological function
under extreme conditions: they face extended periods of prolonged fasting linked to
their reproductive season, during which they must manage energy reserves and maintain
neurological function despite the lack of food availability [38].

Over the last years, our research group has turned research interest toward the gastro-
entero-pancreatic system of marine mammals by identifying key morphological traits, also
in terms of immunolocalization of neuropeptides [39–42]. This short communication aims
to add further comparative morphological aspects of two different marine mammal species.



Animals 2024, 14, 2336 3 of 10

2. Materials and Methods

Mediterranean Marine Mammal Tissue Bank (MMMTB) of the Department of Com-
parative Biomedicine and Food Science of the University of Padua (Italy) kindly supplied
pancreas samples of common bottlenose dolphins Tursiops truncatus and South America
sea lion Otaria flavescens. Ethical approval was not required for this work because tissue
stored at MMMTB (CITES institution IT020) was derived from stranded animals or from
marine mammals who died in captivity and were referred for postmortem.

Samples were first fixed in 10% buffered formalin, then paraffin included and finally
cut into 8 µm-thick serial sections.

The sections were stained with Harris’s hematoxylin and eosin (HE) for the histological
evaluation at the optic level.

The distributions of NGF and BDNF were studied by single immunohistochemistry.
Briefly, the sections were dewaxed and incubated with 0.3% hydrogen peroxide for 30 min
at room temperature (RT) to block endogenous peroxidase activity. Then, the sections
were rinsed in 0.01 M phosphate-buffered saline (PBS), pH 7.4, for 15 min and subse-
quently incubated for 20 min at RT with normal goat serum (NGS, 1:5 in 0.01 M PBS) (MP
biomedicals LLC, Irvine, CA, USA cat# 191356). Then, sections were incubated overnight
at 4 ◦C with primary antisera, respectively, rabbit polyclonal antibody against NGF diluted
at 1:200 (H-20, sc-548 Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) and rabbit
polyclonal antibody against BDNF diluted at 1:200 (N-20, sc-546 Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA) [43]. The next day, the sections were rinsed in PBS for 15 min
and incubated for 30 min at RT with EnVision + System-HRP, Labelled Polymer anti-rabbit
(Dako, Santa Cruz, CA, USA). Subsequently, the sections were rinsed in PBS for 15 min and
then incubated for 30 min at RT with avidin-peroxidase complex. Peroxidase activity was
detected using a solution of 3-3′ diaminobenzidine tetrahydrocloride (Sigma-Aldrich, cat#
D5905, St. Louis, MO, USA) of 10 mg in 15 mL 0.5 M Tris buffer, pH 7.6, containing 0.03%
hydrogen peroxide.

Positive controls were performed by sections of zebrafish taste buds [44]. Inter-
nal reaction controls were performed by replacing primary or secondary antisera with
phosphate-buffered saline or normal serum in the specific phase [45]. Control images are
reported in Supplementary Figure S1.

All the stained sections were photographed using a Leica DMRA2 microscope. The
digital raw images were optimized for contrast and illumination by using Adobe Photoshop
CS5 (Adobe Systems, San Jose, CA, USA).

3. Results
3.1. Morphological Remarks

The pancreas of Otaria flavescens is divided into lobules separated by bands of loose
fibrous connective tissue of varying thickness (connective septa), in which abundant pres-
ence of scattered fat lobules is observed. Many exocrine acini (Figure 1A) and a variable
number of randomly distributed Langerhans islets are observed in the pancreatic lobules.
The islets of Langerhans exhibit different morphology; they can be very large (Figure 1A)
or showing medium oval-shaped (Figure 1B) or elongate shape. Within the lobules and in
the connective septa, the presence of blood vessels (Figure 1C) and ganglion with neurons
(Figure 1D) is observed.

The pancreas of Tursiops truncatus is divided into lobules separated by loose connective
septa. In the pancreatic lobules, there are numerous exocrine acini and Langerhans islets of
different sizes, mainly small (Figure 1E–G) and medium (Figure 1F) delimited by a thin
septum of loose fibrous tissue while rarely very large islets have been found. Most of
the islets exhibit an irregular contour and shape; however, a small number of islets are
oval-shaped. Within the lobules and in the connective septa the presence of blood vessels
is observed (Figure 1G–H).
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Figure 1. Hematoxylin eosin staining of the pancreas of Otaria flavescens and Tursiops truncatus. (A–
D) Otaria flavescens. Cells in the parenchyma and large elongate islet (arrow) (A); Langerhans islets 
of medium size and ovoid shape (arrow) and blood vessels (arrowhead) (B); blood vessels in the 
interconnective septa (arrowhead) (C); ganglion with neurons in the parenchyma (dotted arrow) 
(D). (E–H) Tursiops truncatus. Exocrine cells in the parenchyma and islet of Langerhans of small size 
with ovoid shape (arrow) (E); islets of Langerhans of medium size (arrow) (F); islet of Langerhans 
small size (arrow) and blood vessels (arrowhead) (G); blood vessels (arrowhead) (H). Scale bar 100 
µm. 

3.2. Immunohistochemical Observations 
NGF was distributed in the pancreas of both species. The labeling was always ob-

served in the cytoplasmic compartment of the positive cells. In the exocrine component of 
Otaria flavescens, a strong immunoreactivity was observed in a limited number of dissem-
inated cells in the parenchyma (Figure 2A). In the endocrine component, a strong immu-
noreactivity was detected in almost all the cells of the islet of Langerhans (Figure 2B). In 

Figure 1. Hematoxylin eosin staining of the pancreas of Otaria flavescens and Tursiops truncatus.
(A–D) Otaria flavescens. Cells in the parenchyma and large elongate islet (arrow) (A); Langerhans
islets of medium size and ovoid shape (arrow) and blood vessels (arrowhead) (B); blood vessels in the
interconnective septa (arrowhead) (C); ganglion with neurons in the parenchyma (dotted arrow) (D).
(E–H) Tursiops truncatus. Exocrine cells in the parenchyma and islet of Langerhans of small size with
ovoid shape (arrow) (E); islets of Langerhans of medium size (arrow) (F); islet of Langerhans small
size (arrow) and blood vessels (arrowhead) (G); blood vessels (arrowhead) (H). Scale bar 100 µm.

3.2. Immunohistochemical Observations

NGF was distributed in the pancreas of both species. The labeling was always ob-
served in the cytoplasmic compartment of the positive cells. In the exocrine component
of Otaria flavescens, a strong immunoreactivity was observed in a limited number of dis-
seminated cells in the parenchyma (Figure 2A). In the endocrine component, a strong
immunoreactivity was detected in almost all the cells of the islet of Langerhans (Figure 2B).



Animals 2024, 14, 2336 5 of 10

In the connective septa, the presence of positive fibers along the wall of blood vessels
(Figure 2C) and positive neurons in a ganglion (Figure 2D) was observed.
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Figure 2. NGF immunoreactivity in the pancreas of Otaria flavescens and Tursiops truncatus. (A–D) 
Otaria flavescens. Positive exocrine cells (A); positive islets of Langerhans (B); positive fibers in the 
vessel wall (arrow) in the interconnective septa (C); ganglion with positive neurons (asterisk) and 
fibers (arrowhead) (D). (E–H) Tursiops truncatus. Positive exocrine cells in parenchyma (E); small 
islets of Langerhans (F); immunoreactivity in fibers along blood vessels wall (arrow) (G); positive 
fibers bundle (arrowhead) (H). Scale bar 100 µm. 

Figure 2. NGF immunoreactivity in the pancreas of Otaria flavescens and Tursiops truncatus. (A–D) Otaria
flavescens. Positive exocrine cells (A); positive islets of Langerhans (B); positive fibers in the vessel wall
(arrow) in the interconnective septa (C); ganglion with positive neurons (asterisk) and fibers (arrowhead)
(D). (E–H) Tursiops truncatus. Positive exocrine cells in parenchyma (E); small islets of Langerhans (F);
immunoreactivity in fibers along blood vessels wall (arrow) (G); positive fibers bundle (arrowhead) (H).
Scale bar 100 µm.

In Tursiops truncatus, a moderate NGF signal was seen in disseminated cells in the
exocrine component (Figure 2E). In the endocrine component, NGF immunoreactivity
was observed in a few islets of Langerhans (Figure 2F). Immunoreactivity to NGF was
also found in fibers along the walls of the blood vessels (Figure 2G) and fibers along the
connective septa (Figure 2H).
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BDNF immunolocalization was observed in the pancreas of both species. The labeling
was always observed in the cytoplasmic compartment of the positive cells. In Otaria
flavescens, numerous disseminated moderate immunoreactive cells (ic) were observed in
the exocrine pancreas (Figure 3A). In the endocrine component, strong BDNF-ic were
distributed in large (Figure 3B) and medium islets with elongated shapes (Figure 3C).
Moreover, the presence of positive fibers along the wall of the blood vessels and a few
fibers with some positive neurons in the connective septa were also observed (Figure 3D).
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Figure 3. BDNF immunoreactivity in the pancreas of Otaria flavescens and Tursiops truncatus.
(A–D) Otaria flavescens. BDNF immunorectivity of exocrine cells in parechima (A); positive large
islet of Langerhans (B); positive medium islet of Langerhans (C); positive fibers in the wall of blood
vessels (arrow), positive neurons (asterisk) and fibers (arrowhead) in the parenchyma (D); (E–H) Tur-
siops truncatus. Immunoreactivity of exocrine cells in parenchyma (E); positive islet of Langerhans
(F); positive fibers in the wall of blood vessels (arrow) (G); immunoreactive fibers (arrowhead for
fiber bundle) (H). Scale bar 100 µm.
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In the exocrine component of Tursiops truncatus, moderate BDNF immunolocaliza-
tion was displayed in numerous disseminated cells in the exocrine acini (Figure 3E). In
the endocrine component, however, strong positive cells were detected in some islets of
Langerhans (Figure 3F). Moreover, immunopositivity was observed in the walls of blood
vessels (Figure 3G) and fibers (Figure 3H).

4. Discussion

Herein, we investigated the presence of the neurotrophins NGF and BDNF in the
pancreas of two species of marine mammals, Otaria flavescens (South American sea lion)
belonging to the order of the Carnivora and Tursiops truncatus (common bottlenose dolphin)
belonging to the order of the Artiodactyla.

From the morphological standpoint, the pancreas of the South American sea lion
appears prevalently characterized by very large islets with elongated shapes and a few small
ovoid-shaped islets. It more resembles that of the bear seal and is thus closer to the terrestrial
canine organ [46]. Whereas the pancreas of bottlenose dolphins is mainly organized in
several ovoid shape islets of medium and small size, resembling more than that of terrestrial
ungulates [47,48]. This is in line also with the different organization of the gastro-enteric
apparatus of the two species. In South American sea lions, the gastroenteric apparatus
resembles more that of carnivores [49,50], with a unique stomach chamber and a small
and large intestine including the cecum [50]. Whereas, the common bottlenose dolphin
possesses a polycamerate stomach [42,50] and an intestine subdivision into an anterior and
posterior [51]. Notably, the cecum is lacking [50]. Our morphological observations thus
support the theory proposed by Colegrove and collaborators [52], according to which the
architecture of the islets of Langerhans in marine mammals is preserved, with regard to
evolutionary adaptation to a common marine environment and diet.

With regard to the immunolocalization of NGF and BDNF, the two neurotrophins were
widely distributed in both the exocrine and endocrine components of the pancreas of the
two species. It is widely acknowledged that NGF provides trophic support to neurons and
promotes neuritis growth [1]. In the pancreas, this neurotrophin is an important regulator
for the synthesis and secretion of epidermal growth factor and insulin from the β-cells [53]
by modulating electrical activity [17]. Moreover, Houtz and coworkers demonstrated that
glucose homeostasis relies on NGF derived from pancreatic vascular contractile cells, where
this peptide was robustly expressed [54]. Different studies have shown that the intricate
relationship between vascular cells and pancreatic β-cells plays a crucial role in both islet
development and adult islet function through the secretion of growth factors and other
molecules [55]. Hence, the immunoreactivity of NGF along the walls of the blood vessels
of the pancreas of both species makes us hypothesize that there is a regulatory mechanism
similar to terrestrial mammals [56].

The presence of BDNF in the pancreas of both test species may reflect the re-known
role of this molecule in regulating glucose metabolism and controlling appetite and body
weight through the modulation of insulin and glucagon secretion in response to changes
in plasma glucose levels as in terrestrial mammals [19,23,24]. In particular, the ability of
BDNF to improve insulin sensitivity and influence energy expenditure [57] suggests that it
could help mitigate the effects of postprandial hyperglycemia and contribute to the lack of
ketosis during fasting periods in bottlenose dolphins. In South American sea lions, BDNF
could have a key role in modulating the metabolic response during long periods of fasting,
helping to optimize the use of energy reserves and maintain the functionality of the nervous
system [58]. Very interestingly, BDNF was observed in the basal lamina of vessels and
in neurons dispersed in the pancreatic parenchyma of the two species. The influence of
BDNF on the endothelial cells is well known, impacting vessel integrity and increasing
vascular permeability in particular, affecting the passage of molecules across endothelial
barriers [59].
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5. Conclusions

This preliminary study provides evidence of the presence and distribution of NGF
and BDNF in the pancreas of the South American sea lion Otaria flavescens and common
bottlenose dolphins Tursiops truncatus, opening up new perspectives on the understanding
of the anatomy and physiology of these species and the adaptive mechanisms to their
ecological niche. Further studies are needed to explore the functional role of neurotrophins
in the pancreas of marine mammals, including their interaction with specific receptors and
the effect on endocrine and metabolic regulation on the one hand and the comparison of
their distribution between healthy and diseased animals on the other.

In conclusion, this study enriches our understanding of the presence and distribution
of neurotrophins in marine mammals, suggesting potential parallels with the physiology
of terrestrial mammals.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ani14162336/s1: Figure S1. Immunohistochemistry positive and negative
controls. Positive NGF control in zebrafish taste buds (indicated with arrows) (A); positive BDNF
control in zebrafish taste buds (indicated with arrows) (B); negative pancreas control Otaria flavescens
(C); negative pancreas control Tursiops truncatus (D).
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