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It is well known that superconductivity in quasi-one-dimensional (Q1D) materials is hindered by
large fluctuations of the order parameter. They reduce the critical temperature and can even destroy
the superconductivity altogether. Here it is demonstrated that the situation changes dramatically
when a Q1D pair condensate is coupled to a higher-dimensional stable one, as in recently discovered
multiband Q1D superconductors. The fluctuations are suppressed even by vanishingly small pair-
exchange coupling between different band condensates and the superconductor is well described by
the mean field theory. In this case the low-dimensionality effects enhance the coherence of the system
instead of suppressing it. As a result, the critical temperature of the multiband Q1D superconductor
can increase by orders of magnitude when the system is tuned to the Lifshitz transition with the
Fermi level close to the edge of the Q1D band.

It is a common knowledge that superconductivity in
1D systems is suppressed due to large fluctuations of the
order parameter. The superconducting state can still be
achieved when several 1D structures (parallel chains of
molecules or atoms) are coupled one to another, creat-
ing a weakly coupled matrix. Earlier theoretical stud-
ies demonstrated that such Q1D materials can super-
conduct [1–4] but the fluctuations are still large, reduc-
ing the critical temperature Tc significantly [1]. These
predictions were confirmed by the discovery of the low-
temperature superconductivity in Bechgaard salts - or-
ganic Q1D superconductors [5, 6].

Subsequent theoretical efforts were focused on finding
the conditions under which the critical temperature of
the Q1D superconductors could be increased rather than
reduced. In particular, it was suggested that such an
increase can be achieved in the vicinity of the Lifshitz
transition at which the chemical potential approaches the
edge of the Q1D single-particle energy band [7–11]. How-
ever, the fluctuations, that are already very large in the
presence of the Q1D effects, are additionally enhanced
due to the Bose-like character of the pairing which tends
to further deplete the condensate. The enhancement of
Tc was found for weakly interacting stripes, formed due
to a particular transformation of the antiferromagnetic
insulator [12, 13]. The effect requires, however, a sub-
tle balance of different interplaying physical mechanisms,
relevant for superconducting cuprates.

Recently the interest in Q1D superconductors has been
boosted by the discovery of Cr2As3-chain based materi-
als [14–17]. Results of the first principle calculations of
the electronic band structure of those compounds led to

a conclusion that they are multiband systems with some
of the contributing bands being Q1D [17, 18] - multiband
Q1D superconductors. For example, K2Cr3As3 [18] and
KCr3As3Hx [17] have two Q1D sheets coexisting with
one 3D sheet in the Fermi surface. Furthermore, it was
demonstrated that in KCr3As3Hx the Fermi level can be
shifted by changing the H-intercalation [17], which gives
rise to alterations in topology of the Fermi surface man-
ifested in the Lifshitz transitions.

In this work we show that the advent of multiband
Q1D superconductors opens up a fundamental opportu-
nity to achieve superconductivity at high temperatures.
It has already been demonstrated that the presence of
the pair-exchange coupling between different bands can
reduce the fluctuations due to the multiband screening
mechanism [19–21]. Motivated by this result as well
as by the recent experimental advances, here we inves-
tigate a two-band material with the coupled Q1D and
3D Bardeen-Cooper-Schrieffer (BCS) condensates and
demonstrate that under fairly general conditions, it is a
robust mean-field superconductor whose critical temper-
ature can be significantly increased by tuning the Lifshitz
transition at the edge of the Q1D band.

We assume the s-wave pairing in both Q1D and
3D bands with the Josephson-like interband transfer
of Cooper pairs. Superconductivity in this system is
described by the standard two-band model introduced
in Refs. [22, 23]. The intraband and interband pair-
exchange couplings are determined by the real matrix
ǧ, with the elements gνν′ = gν′ν (ν = 1, 2). For sim-
plicity we consider the parabolic dispersion of the single-
particle energy in both bands. For the same reason the
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Fermi surface of the 3D band (ν = 1) is taken spherically
symmetric. The principal axis of the Q1D band (ν = 2)
is chosen parallel to the z-axis. In the x and y directions
the Q1D energy dispersion is degenerate and we assume
the effective finite integral of the density of states (DOS)
for both these directions. The band-dependent single-
particle energies, shifted by the chemical potential µ, are
thus given by

ξ
(1)
k = ε0 +

~2k2

2m1
− µ, ξ

(2)
k =

~2k2z
2m2

− µ, (1)

where m1,2 are the effective band masses and k =
(kx, ky, kz). The energy and µ are measured relative to
the bottom of the Q1D band. The lowest energy of the
3D band is negative ε0 < 0 and, to have a BCS-like con-
densate in the 3D band, we assume |ε0| � µ. Our study
is focused on the superconducting state near the Lifshitz
transition at µ = 0. The system is considered in the clean
limit, where the role of impurities is neglected. In what
follows we set kB = 1 for the Boltzmann constant.

Following Refs. [22, 23], the mean-field Hamiltonian of
the two-band superconductors is written as

H =

∫
d3r
{ ∑
ν=1,2

[∑
σ

ψ̂†νσ(r)Tν(r) ψ̂νσ(r)

+
(
ψ̂†ν↑(r)ψ̂†ν↓(r) ∆ν(r) + h.c.

)]
+ 〈~∆, ǧ−1~∆〉

}
, (2)

where ψ̂†νσ(r) and ψ̂νσ(r) are the field operators for the
carriers in band ν, Tν(r) is the single-particle Hamilto-
nian with the single-particle energies given by Eq. (1),
and ∆ν(r) is the superconducting gap function for band

ν. We also use the vector notations ~∆ = (∆1,∆2) with
〈., .〉 the scalar product in the band vector space, and
ǧ−1 is the inverse of the coupling matrix. The band-
dependent superconducting gap functions satisfy the self-
consistency condition given by the matrix gap equation

~∆ = ǧ ~R, (3)

where components of ~R are the anomalous Green func-
tions Rν = 〈ψ̂ν↑(r)ψ̂ν↓(r)〉.

The model based on Eqs. (2)-(3) is used to calcu-
late the mean-field critical temperature Tc0 and then the
fluctuation-shifted Tc. Tc0 is obtained by solving the lin-
earized variant of the gap equation (3). The fluctuations
are investigated by using the expansion for the free en-
ergy functional for the two-band system with respect to
the band superconducting gap functions, which essen-
tially gives the two-band Ginzburg-Landau (GL) free en-
ergy functional.

Assuming that Tc0 is known, one expands the r.h.s. of
Eq. (3) with respect to ∆ν . The lowest order terms of
this expansion are given by [24–30]

Rν [∆ν ] =(Aν − aν)∆ν − bν∆ν |∆ν |2

+
∑

i=x,y,z

K(i)
ν ∇2

i∆ν , (4)

where the coefficients Aν , aν , bν , and K(i)
ν are to be cal-

culated using the microscopic model for each band, and
external fields are assumed to be zero.

For the 3D BCS-like band with the spherically sym-
metric Fermi surface one obtains the standard expres-
sions

A1 = N1 ln

(
2eγ~ωc
πTc0

)
, a1 = −τN1, b1 =

7ζ(3)

8π2

N1

T 2
c0

,

K(x)
1 = K(y)

1 = K(z)
1 =

~2v21
6

b1, (5)

where τ = 1−T/Tc0, ~ωc is the energy cutoff (assumed to
be the same for both bands), γ is the Euler constant, ζ(x)
is the Riemann zeta function, the DOS of the 3D band at
the Fermi energy is N1 = m1kF /2π

2~2 and the 3D band
Fermi velocity v1 = ~kF /m1 is determined by the corre-
sponding Fermi wavenumber kF =

√
2m1(µ− ε0)/~.

For the Q1D band the expressions for the coefficients
are given by the integrals to be evaluated numerically. At
|µ| < ~ωc (near the Lifshitz transition) the coefficients
can be written as

A2 = N2

1∫
−µ̃

dy
tanh

(
y/2T̃c0

)
y
√
y + µ̃

,

a2 = −τ N2

2T̃c0

1∫
−µ̃

dy
sech2

(
y/2T̃c0

)
√
y + µ̃

,

b2 =
N2

4~2ω2
c

1∫
−µ̃

dy
sech2

(
y/2T̃c0

)
y3
√
y + µ̃

[
sinh

( y

T̃c0

)
− y

T̃c0

]
,

K(z)
2 = ~2v22

N2

8 ~2ω2
c

1∫
−µ̃

dy

√
y + µ̃

y3
sech2

(
y/2T̃c0

)
×
[
sinh

(
y

T̃c0

)
− y

T̃c0

]
, K(x,y)

2 = 0, (6)

where we use the scaled quantities T̃c0 = Tc0/~ωc and
µ̃ = µ/~ωc, and the effective band velocity v2 is deter-
mined by the cutoff energy as v2 =

√
2~ωc/m2 (indepen-

dent of µ). The effective DOS of the Q1D band is given
by N2 = σxy/4π~v2, where the factor σxy accounts for
the contribution to DOS by the x, y dimensions.

The mean-field critical temperature Tc0 is obtained by
solving the linearized gap equation which reads as [see
Eqs. (3) and (4)]

Ľ~∆ = 0, Ľ = ǧ−1 −
(
A1 0
0 A2

)
. (7)

This is the matrix equation with the solution in the form

~∆ = ψ(r)~η, (8)

where ~η is an eigenvector of Ľ corresponding to its zero
eigenvalue while ψ(r) is a coordinate dependent GL order
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parameter of the system [29, 30]. A non-trivial solution
to Eq. (7) exists only when the determinant of Ľ is zero,
which gives the equation

(g22 −GA1)(g11 −GA2)− g212 = 0, (9)

with G = g11g22 − g212. Of the two solutions to Eq. (9),
one chooses the maximal Tc0. The corresponding eigen-
vector ~η can be adopted in the form

~η =

(
S
1

)
, S =

g11 −GA2

g12
. (10)

Notice that this choice is unique up to the normalization
factor which is absorbed by ψ(r).

The actual critical temperature Tc is lower than its
mean field value Tc0 due to fluctuations [31]. The
fluctuation-induced correction to Tc0 is obtained by using
the standard Gibbs distribution exp(−F/T ), where the
free energy functional writes as (see e.g. [25, 26])

F =

∫
d3r
[ ∑
ν=1,2

fν + 〈~∆, Ľ~∆〉
]
, (11)

with

fν = aν |∆ν |2 +
bν
2
|∆ν |4 +

∑
i=x,y,z

K(i)
ν |∇i∆ν |2 . (12)

The stationary condition for the functional given by
Eqs. (11) and (12) yields the gap equation (3).

The calculations of the fluctuation corrections are sim-
plified by representing ~∆ as a linear combination of the
vectors ~η and ~ξ = (1,−S)T [one can see that 〈~η, ~ξ〉 = 0]

~∆(r) = ψ(r)~η + ϕ(r)~ξ, (13)

where ϕ(r) is the second fluctuation mode. The free en-
ergy functional is then expressed in terms of ψ and ϕ
as

F =

∫
d3r(fψ + fϕ + fψϕ), (14)

where fψ and fϕ have the same structure given by
Eq. (12), where ∆ν is replaced by ψ(r) and ϕ(r), re-
spectively, and the set of the coefficients {αν , bν ,Kν} is
changed to {αψ, bψ,Kψ} and {αϕ, bϕ,Kϕ}. In addition,
fψϕ in Eq. (14) represents the coupling between the two
modes ψ(r) and ϕ(r). The coefficients in fψ one obtained
as

aψ = S2a1 + a2, bψ = S4b1 + b2,

K(i)
ψ = S2K(i)

1 +K(i)
2 , (15)

whereas the coefficients in fϕ are given by

aϕ = a(0)ϕ + a1 + S2a2, bϕ = b1 + S4b2,

K(i)
ϕ = K(i)

1 + S2K(i)
2 , (16)

with

α(0)
ϕ =

(1 + S2)2

SGg12
. (17)

Here α
(0)
ϕ 6= 0 since S is real. This means that only fψ

represents the critical fluctuations in the vicinity of the
superconducting transition because αψ → 0 in the limit
T → Tc0. The contribution fϕ describes non-critical fluc-
tuations and can be safely omitted [21]. Thus, the fluc-
tuations are determined by the GL functional fψ, with
the single component order parameter ψ(r). Due to the
presence of the Q1D band, this functional is anisotropic

with K(x,y)
ψ 6= K(z)

ψ .
With this simplification, we can apply the known re-

sults for the fluctuation-driven shift of the critical tem-
perature in the single-component GL theory. Using the
renormalization group approach, one obtains [31] that
the actual 3D critical temperature is related to the mean-
field one by

Tc0 − Tc
Tc

=
8

π

√
Gi, (18)

where Gi is the Ginzburg number (Ginzburg-Levanyuk
parameter). For the 3D anisotropic system it reads [31]

Gi =
1

32π2

Tc0b
2
ψ

a′ψK
(x)
ψ K

(y)
ψ K

(z)
ψ

, (19)

with a′ψ = daψ/dT . Using Eq. (15), the above expression
can be rearranged as

Gi = Gi3D

(
b2/b1 + S4

)2(
a2/a1 + S2

)(
K(z)

2 /K(z)
1 + S2

)
S4
, (20)

where Gi3D is the Ginzburg number of the uncoupled
(standalone) 3D band, given by Eq. (19) with the substi-

tution {aψ, bψ,K(i)
ψ } → {a1, b1,K

(i)
1 }.

Using the obtained expressions, we can now calculate
both the mean-field Tc0 and fluctuation-shifted Tc critical
temperatures. Essential parameters of the model are the
three coupling constants gνν′ and the band DOSs Nν ,
while the cutoff ~ωc sets the energy scale. It is conve-
nient to introduce the dimensionless coupling constants
λνν′ = gνν′

√
NνNν′ . The parameter S, which controls

Eqs. (18)-(20) and also Tc0, depends on λ11, λ22, λ12 as
well as on the ratio N2/N1. In the calculations we as-
sume λ22 = 0.2 and λ11 = 0.18, which is in the range of
typical values of the dimensionless couplings in conven-
tional weak-coupling superconductors [32]. We also take
N2/N1 = 1 for simplicity. Finally, we need also to specify
N1 which defines Gi3D. We follow a different path and
use an estimate Gi3D = 10−10 by taking into account
that the Ginzburg number of most 3D superconductors
is in the range 10−6÷16 [33], being Gi3D ≈ (Tc1/EF )4,
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FIG. 1. a) The mean-field critical temperature Tc0 versus the chemical potential µ, calculated for λ12 = 0.05 and λ12 → 0;
the insert demonstrates the energy dependent DOSs with the van Hove singularity of the Q1D DOS at the Lifshitz point
µ = 0. b) The fluctuation-shifted critical temperatures Tc as a function of µ, calculated for selected values of the dimensionless
pair-exchange coupling constant λ12 = 0.001, 0.0025, 0.005, 0.05 at the Ginzburg number Gi3D = 10−10 of the uncoupled 3D
band.

with Tc1 the critical temperature of the standalone band
1 and EF = ~2k2F /2m1 (for the stable 3D condensate
Tc1 � EF ). Notice, that our results are not sensitive to
a particular choice of the microscopic parameters unless
the dimensionless intraband coupling of the 3D band is
significantly larger than that of the Q1D band and the
two-band system approaches a routine 3D superconduc-
tor.

Numerical results for Tc0 and Tc versus the chemical
potential µ, calculated for several values of the dimen-
sionless pair-exchange coupling λ12, are shown in Fig. 1.
One sees from Fig. 1 a) that when µ is sufficiently below
zero, the Q1D band does not contribute and Tc0 is de-
termined by the uncoupled band 1. In the vicinity of the
Lifshitz transition at µ = 0, Tc0 rises sharply by a factor
of 40. At larger µ, Tc0 decreases, approaching the critical
temperature of the decouple 3D band again. As is well
known, the reason for this sharp rise is the increase in
the energy-dependent Q1D DOS that has the van Hove
singularity at the band edge, as illustrated in the inset
in Fig. 1 a). It is remarkable that Tc0 is almost insensi-
tive to the pair-exchange coupling as long as λ12 � λ11.
Consequently, in the vicinity of the Lifshitz transition,
the superconducting properties of the two-band system
on the mean field level are fully determined by the Q1D
band.

In contrast, the fluctuation-induced shift of the criti-
cal temperature strongly depends on the pair-exchange
coupling. In the limit λ12 → 0 the fluctuations suppress
the superconductivity. However, this suppression ceases
rapidly with increasing the pair-exchange coupling. Fig-
ure 1 b) demonstrates that the presence of even a vanish-
ingly small coupling, λ12 � λνν , is sufficient to quench
the fluctuations and to eliminate the shift. In partic-
ular, Tc approaches Tc0 already at λ12 ' 0.01 and at
λ12 ' 0.05 the two critical temperatures are practically

indistinguishable.

Concluding, our calculations demonstrate that cou-
pling to a stable 3D condensate “screens” out the se-
vere thermal fluctuations of the Q1D superconducting
condensate. This coupling gives rise to a single critical
mode that controls the thermal fluctuations of the con-
densate gap functions ∆1(r) and ∆2(r). In other words
“light” excitations of the Q1D condensate are always ac-
companied by “heavy” excitations of the stable 3D con-
densate. Therefore, such a two-band system becomes a
robust mean-field superconductor.

The superconductivity enhancement, based on the in-
teraction between a Q1D condensate near the Lifshitz
point and a BCS-like condensate, is general and does not
depend on the model details. Thus, it opens a possibility
for a significant amplification (up to orders of magnitude)
of the critical temperature by tuning the Lifshitz transi-
tion. Notice that in addition to the chemical engineer-
ing, Lifshitz transitions can be tuned by an appropriate
doping of multiband superconducting compounds, as e.g.
reported in [17].

Finally, we note that although our results are obtained
for the model with the s-wave pairing, one can expect
that the fluctuations screening mechanism, based on the
coupling of multiple condensates, applies also to materi-
als with the d-wave symmetry and even to the case of the
triplet pairing, having the multicomponent order param-
eter. In this regard we note that first theoretical calcula-
tions of the possible pairing symmetry in Q1D multiband
superconductors A2Cr3As3 (with A = K, Rb, Sc) are in
favour of the triplet pairing [34]. A detailed analysis of
the fluctuations for the triplet pairing requires a separate
investigation.
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[6] D. Jérome, Historical Approach to Organic Supercon-
ductivity, The Physics of Organic Superconductors and
Conductors, Springer Series in Materials Science, ed. A.
Lebed, v. 110, Bollinger Series (Springer, Berlin, 2008).

[7] A. Perali, A. Bianconi, A. Lanzara, N. L. Saini, The gap
amplification at a “shape resonance” in a superlattice of
quantum stripes: a mechanism for high Tc, Solid State
Commun. 100, 181 (1996).

[8] A. Bianconi, A. Valletta, A. Perali, N. L. Saini, High Tc

superconductivity in a superlattice of quantum stripes,
Solid State Commun. 102, 369 (1997).

[9] A. A. Shanenko and M. D. Croitoru, Shape resonances
in the superconducting order parameter of ultrathin
nanowires, Phys. Rev. B 73, 012510 (2006).

[10] A. A. Shanenko, M. D. Croitoru, A. Vagov, and F. M.
Peeters, Giant drop in the Bardeen-Cooper-Schrieffer co-
herence length induced by quantum size effects in super-
conducting nanowires, Phys. Rev. B 82, 104524 (2010).

[11] M. V. Mazziotti, A. Valletta, G. Campi, D. Innocenti,
A. Perali, and A. Bianconi, Possible Fano resonance
for high-Tc multi-gap superconductivity in p-Terphenyl
doped by K at the Lifshitz transition, EPL 118, 37003
(2017).

[12] S. A. Kivelson, E. Fradkin, and V. J. Emery, Electronic
liquid-crystal phases of a doped Mott insulator, Nature
393, 550 (1998).

[13] E. Arrigoni, E. Fradkin, and S. A. Kivelson, Mechanism
of high-temperature superconductivity in a striped Hub-
bard model, Phys. Rev. B 69, 214519 (2004).

[14] J.-K Bao, J-Y. Liu, C.-W. Ma, Z.-H. Meng, Z.-T. Tang,
Y.-L. Sun, H.-F. Zhai, H. Jiang, H. Bai, C.-M Feng, Z.-
A. Xu, and G.-H. Cao, Superconductivity in quasi-one-
dimensional K2Cr3As3 with significant electron correla-
tions, Phys. Rev. X 5, 011013 (2015).

[15] Z.-T. Tang, J.-K. Bao, Y. Liu, Y.-L. Sun, A. Ablimit,
H.-F. Zhai, H. Jiang, C.-M. Feng, Z.-A. Xu, and G.-
H. Cao, Unconventional superconductivity in quasi-one-
dimensional Rb2Cr3As3, Phys. Rev. B 91, 020506 (2015).

[16] Z.-T. Tang, J.-K. Bao, Z. Wang, H. Bai, H. Jiang, Y.
Liu, H.-F. Zhai, C.-M. Feng, Z.-A. Xu, and G.-H. Cao,
Superconductivity in quasi-one-dimensional Cs2Cr3As3

with large interchain distance, Sci. China Mater. 58, 16
(2015).

[17] S.-Q. Wu, C. Cao, and G.-H. Cao, Lifshitz transition and
nontrivial H-doping effect in the Cr-based superconduc-
tor KCr3As3Hx, Phys. Rev. B 100, 155108 (2019).

[18] H. Jiang, G. Cao, and C. Cao, Electronic structure
of quasi-one-dimensional superconductor K2Cr3As3 from
first-principles calculations, Scientific Reports 5, 16054
(2015).

[19] A. Perali, C. Castellani, C. Di Castro, M. Grilli, E.
Piegari, and A. A. Varlamov, Two-gap model for un-
derdoped cuprate superconductors, Phys. Rev. B 62,
9295(R) (2000).

[20] S. Wolf, A. Vagov, A. A. Shanenko, V. M. Axt, A. Perali,
and J. Albino Aguiar, BCS-BEC crossover induced by a
shallow band: Pushing standard superconductivity types
apart, Phys. Rev. B 95, 094521 (2017).

[21] L. Salasnich, A. A. Shanenko, A. Vagov, J. Albino
Aguiar, and A. Perali, Screening of pair fluctuations in
superconductors with coupled shallow and deep bands:
A route to higher-temperature superconductivity, Phys.
Rev. B 100, 064510 (2019).

[22] H. Suhl, B. T. Matthias, and L. R. Walker, Bardeen-
Cooper-Schrieffer theory of superconductivity in the case
of overlapping bands, Phys. Rev. Lett. 3, 552 (1959).

[23] V. A. Moskalenko, Superconductivity of metals, taking
into account the overlapping of energy bands, Phys. Met.
Metallogr. 8, 25 (1959).

[24] B. T. Geilikman, R. O. Zaitsev, and V. Z. Kresin, Prop-
erties of superconductors having overlapping bands, Sov.
Phys. Solid State 9, 642 (1967).

[25] I. N. Askerzade, A. Gencer, and N. Güclü, On the
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A. V. Vagov, Extended Ginzburg-Landau formalism for
two-band superconductors, Phys. Rev. Lett. 106, 047005
(2011).

[29] A. Vagov, A. A. Shanenko, M. V. Milošević, V. M.
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