
Science of Computer Programming 202 (2021) 102567
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Provably correct implementation of the AbC calculus ✩

Rocco De Nicola a,b,∗, Tan Duong a,∗, Michele Loreti c,∗
a IMT School for Advanced Studies Lucca, Italy
b CINI – Cyber Security Laboratory, Rome, Italy
c University of Camerino, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 February 2020
Received in revised form 16 October 2020
Accepted 20 October 2020
Available online 6 November 2020

Keywords:
Process calculi
Formal methods
Distributed computing
Erlang
Correctness proofs

Building open, distributed systems while guaranteeing a specific behaviour is difficult
because of the dynamicity of the operating environments and the complexity of the
interactions of their components. The AbC calculus provides a novel communication
mechanism to select interacting partners based on their runtime capabilities, making it
naturally to model complex interactions and adaptive behaviour in such systems. The
formal account of this calculus has enabled constructing formally verifiable models and
proving their properties. In this paper, we i) propose an implementation of AbC using
the Erlang language ii) formalize the operational semantics of our implementation; iii)
propose a set of rules that given an AbC specification, automatically generate Erlang
executable code; and iv) prove that the proposed translation is correct by establishing a
simulation relation between source and target specifications. This enables us to guarantee
that any property proved for a given AbC specification is preserved by the corresponding
implementation.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Attribute-based communication, originally proposed in [1], is a novel paradigm that allows the dynamic formation of
interaction groups while taking into account run-time properties and status of individual members. This paradigm was
formalized in the AbC kernel calculus [2] to study the impact of attribute-based communication in the realm of so-called
collective-adaptive systems (CAS) [3]. In AbC, components are equipped with a set of attributes, describing their features,
whose values may change locally at runtime. The calculus comes with specifically conceived primitives that permit compo-
nents to communicate on the basis of satisfactions of predicates over the attributes that they expose. Communication among
components takes place in a broadcast fashion [4] in which only the components that satisfy sender’s predicate can receive
the sent message; receivers can ignore messages from components that do not satisfy their predicates. By parameteris-
ing the interaction predicates with attributes, communication groups can be implicitly changed and adaptation is naturally
modelled; run-time changes of attribute values allow additional opportunistic interactions between components.

The expressive power of AbC in modelling complex interactions has been demonstrated in [5,6]; there it has been shown
that AbC can be an alternative to other traditional communication models such as publish/subscribe-based, group-based,
broadcast and channel-based interactions. The use of AbC to specify and program CAS has also been discussed in other

✩ This work is partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems).

* Corresponding authors.
E-mail address: tan.duong@imtlucca.it (T. Duong).
https://doi.org/10.1016/j.scico.2020.102567
0167-6423/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.scico.2020.102567
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102567&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tan.duong@imtlucca.it
https://doi.org/10.1016/j.scico.2020.102567
http://creativecommons.org/licenses/by/4.0/

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
papers with illustrative examples, such as classical distributed systems [7,8], communication protocols [9], and real-world
systems [2,10]. The paradigm itself has also been employed and studied in other contexts, see e.g., [11–13]. [14].

Despite the promising features of AbC in dealing with complex systems, when considering actual CAS programming,
implementability, scalability, and proof of correctness of systems specified by resorting to the new communication primitives
are still a concern. Researchers have diligently developed implementations for AbC in different languages, for example,
AbaCus [15] in Java, GoAt [8] in Go, and AErlang [16] in Erlang with a common goal of adopting the new communication
paradigm for practical use. By design, both AbaCus and GoAt tried to stay aligned with AbC whereas AErlang can be seen
more as an attribute-based variant of Erlang rather than an implementation of AbC. These frameworks provide some sort of
programming interface that allows writing AbC-like programs in their host languages. However, there are still syntax gaps
between the supported APIs and AbC primitives that make it difficult to use them to directly capture complex forms of AbC
processes. This means that there may not be a uniform way to express an executable system from an AbC specification.
Another problem with the existing implementations is that they lack proof of correctness of preserving the AbC semantics.
These efforts hence fall short of serving as a runtime environment for AbC.

The research problem we are after is how to reliably build systems with their behaviour guaranteed correct with respect
to AbC specifications. We envisage several key ingredients that are needed to tackle this problem. The first is an adequate
runtime environment which faithfully respects AbC operational semantics. The second is a systematic translation of AbC
specifications. The third is a rigorous correctness proof of the implementation and of the translation.

In response, we propose an implementation of AbC in Erlang, called ABEL that combines the lessons learned from previous
proposals to preserve the semantics of calculus. ABEL’s API is designed to closely mimic AbC’s syntax, making it easy to
write AbC specifications. For the actual implementation, we need to encode message broadcasting of AbC by relying on
Erlang point-to-point asynchronous communication.

As pointed out in [17], it is not possible to uniformly encode atomic broadcast using point-to-point communication
and thus to model AbC atomic broadcast, we follow the approach presented in [18]. This approach relies on building an
infrastructure used to forward messages among components that uses a fixed sequencer protocol [19]; messages to be
sent are labelled with sequence numbers and components are required to deliver the forwarded messages according to the
attached numbers.

To reason about our implementation, we equip also ABEL with an operational semantics. In general there are different
ways for clearly stating the formal semantics of an implementation of a source language into a host language. The most
obvious one would be to rely on the semantics of the host language and to reason on the specified systems by using the
tools developed for that language. Another approach would be to introduce an intermediate language capturing the essence
of the host language but ignoring its specific syntax.

Different formal semantics of Erlang [20], our host language, have been proposed for different purposes, such as model
checking [21–23], debugging [24] and reversible computation [25] and it would be certainly possible to adapt one of those
for reasoning on the Erlang implementation of AbC. But, in this case, we would need to examine the entire code of the
implementation, which would mean considering also libraries such as OTP [26] which often go beyond the plain language
primitives. Thus, we follow the second approach and introduce an intermediate language (ABEL), equipped with a formal
semantics, capturing the essence of Erlang. Correctness of the implementation is proved by showing that the interaction
between components and the infrastructure guarantees messages delivery in the desired order.

Instead of writing ABEL code manually, we advocate a model-driven approach to the development of AbC systems by
providing a translation from AbC to ABEL. A natural question arises to as whether the behaviour of the translated ABEL
system is the one dictated by the original AbC specification. We establish the correspondence between an AbC system
and an ABEL by proving that their respective labelled transition systems are operationally correspondent. Our notion of
correspondence is based on simulation in the sense that ABEL executions are present in the corresponding AbC model. The
other direction does not hold because the evolution of ABEL components is constrained by sequencing numbers, and thus
some executions allowed by an AbC term could not be present in the corresponding ABEL program. In fact, the mentioned
sequencer protocol implicitly introduces a specific scheduling policy for ABEL executions whereas AbC executions are non-
deterministic at each evolution step. Nevertheless, we show that if an AbC system can evolve then also the corresponding
ABEL program does so.

Now, given an AbC specification, we can first rely on an external verifier to establish the correctness of the model
using verification methods developed for AbC [14,9] and then translate the verified specifications into ABEL code for actual
execution. This approach is particularly effective since correctness of specifications is typically independent of the number
of components. Thus, even if we may only verify a system model with a small number of components; its translation in
ABEL can be executed with a larger system size while still being confident about the correctness of the executable code.
With the work in this paper, we bridge the gap between AbC specifications and ABEL implementations, and make another
step toward constructing reliable systems.

This paper extends [27] where ABEL was first introduced, and [28] where a translation from AbC into ABEL was first
presented. In a nutshell, the current paper provides the key elements that were missing in earlier attempts, namely guaran-
teeing correctness of the ABEL implementation and of the proposed translation. The new contributions are thus the formal
semantics of ABEL and the proofs that the infrastructure faithfully models attribute-based communication and that the ac-
tual translation is correct. The ABEL implementation and the translator have been significantly refined and are available at
https://github .com /ArBitral /ABEL, together with several illustrative examples.
2

https://github.com/ArBitral/ABEL

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 1
AbC syntax.

(Components) C ::= � :I P | C ‖ C

(Processes) P ::= Q | P |P | K

Q ::= � J α
i
j .U j | � J α

o
j .U j | 〈�〉Q

(Input Actions) αi ::= �(x̃)

(Output Actions) αo ::= (Ẽ)@�

(Updates) U ::= [a := E]U | P

(Expressions) E ::= v | x | a | this.a | f (Ẽ)

(Predicates) � ::= tt | ff | p(Ẽ) | � ∨ � | � ∧ � | ¬�

The rest of the paper is organized as follows. Section 2 introduces the fragment of AbC calculus of interest. Section 3
contains a description of the ABEL’s API for AbC, of the translation from AbC to the API, and an informal presentation of ABEL
implementation. The formal semantics of ABEL and some of its properties are presented in Section 4. Section 5, instead, is
concerned with the correctness of the translation from AbC to ABEL. Section 6 discusses the related works, while Section 7
concludes the paper and suggests topics for future research.

2. AbC: a calculus for attribute-based communication

In this paper we work with a subset of AbC; the full calculus is presented in [6]; in fact, this section is mainly a
rephrasing of [6] that we report here for the sake of completeness. The considered subset does not allow so-called mixed
choice, i.e. non-deterministic composition of output and input prefixes and does not permit using the (blocking) awareness
predicate to condition the evolution of parallel processes.

2.1. The syntax

Let A, V, X be disjoint countable sets of attribute names, values, and variables, ranged over by a, v and x, respectively.
An attribute environment � is a partial mapping from A to V . An interface I, with respect to an attribute environment � is
a subset of A.

An AbC system is a collection of parallel components, each component C is either a process P associated with an envi-
ronment � and an interface I, or the parallel composition of two components. The syntax of AbC processes (P , Q) is detailed
in Table 1. There, we use (·̃) to denote a finite sequence whose length is not relevant, for example, x̃, Ẽ denotes sequences
of variables and expressions, respectively. The basic actions of processes include input and output. Action prefixes exploit
run-time attributes and predicates over them to determine the internal behaviour of components and the communication
partners. Specifically, (Ẽ)@� is used to send the results of the evaluation of expressions Ẽ to those components whose
attributes satisfy predicate �. �(x̃) is used to receive a message from any component whose attributes (and the message
itself) satisfy the predicate � and bind the received message to x̃.

The process � J α
i
j .U j (respectively � J α

o
j .U j) represents a guarded choice where j ranges over some index set J . We

use inactive process 0 to denote an empty sum, prefix process α.U to represent the sum with only one element, and
α1.P1 + α2.P2 to represent a binary choice between a pair of input or output actions. The symbol [a := E] denotes an
atomic update that assigns the result of the evaluation of expression E to attribute a.

A process can also be an awareness process 〈�〉Q , a parallel process P |P or a process call K (with a unique definition
K � P). The symbol 〈�〉 blocks the following process until � is satisfied.

A predicate � can be either tt, ff or be built using logical connectives such as ∧, ¬, . . . over atomic predicates p(Ẽ) with
p ∈ Vk for some k the length of sequence Ẽ .

An expression E may be a constant value v , a variable x, an attribute a or an attribute of the local environment this.a.
The latter can be used in communication predicates (sending or receiving) to distinguish local attributes from the attributes
of other participants. Expressions can be built via some generic operator f , for example, binary ones such that +, −, ∗,

Both predicates and expressions can take complex forms, of which we deliberately omit the precise syntax; we just refer
to them as k-ary operators on subexpressions, i.e., fk(E1, . . . , Ek) and pk(E1, . . . , Ek). For each fk , we assume the existence
of a corresponding function from Vk to V describing its semantics. Similarly, for each pk with its domain Vk , we assume
pk is decidable.

We assume valuations from a set of expressions, with respect to a local attribute environment �, to a set of values,
denoted by �·�� .

AbC input actions act as binders for free variables. Thus, in �(x̃).U the occurrences of x̃ in U are bound. A process
is closed if it does not contain any free variables. In our model, all processes are closed. Substitutions, denoted by [ṽ/x̃]
are presupposed for attribute updates, expressions and predicates. For example, Ẽ[ṽ/x̃] is the procedure of replacing each
occurrence of x in the sequence Ẽ by a corresponding v . Substitutions can be extended to process terms in a straightforward
way. The application of substitutions is an implicit meta-syntactic operation, i.e., [ṽ/x̃] instantaneously replaces x̃ with ṽ
3

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 2
Auxiliary definitions.

(Predicate Satisfaction) |=, 	|=
� |= tt,� 	|= ff for all � � |= �1 ∧ �2 iff � |= �1 and � |= �2

� |= �1 ∨ �2 iff � |= �1 or � |= �2 � |= ¬� iff not � |= �

� |= pk(E1, . . . ,Ek) iff pk(�E1��, . . . ,�Ek��) is true

(Attribute updates) {||} (Environment restriction) ↓

{|C |} =
{

{|�[a �→ �E��]:I U |} if C = �:I [a := E]U
�:I P if C = �:I P

(�1 ↓ I)(a) =
{

�(a) if a ∈ I

⊥ otherwise

�[a �→ v](a′) =
{

�(a′) if a 	= a′

v otherwise

Table 3
Operational semantics of AbC components.

�Ẽ�� = ṽ {�1}� = �

�:I (Ẽ)@�1.U
�↓I��(ṽ)�−−−−−−→{|�:I U |}

Brd

�:I (Ẽ)@�.U
˜�′��′(ṽ)�−−−−−→�:I (Ẽ)@�.U

FBrd

�′ |= {�[ṽ/x̃]}� � ↓ I |= �′

�:I �(x̃).U
�′��′(ṽ)�−−−−−→{|�:I U [ṽ/x̃]|}

Rcv

�′ 	|= {�[ṽ/x̃]}� ∨ � ↓ I 	|= �′

�:I �(x̃).U
˜�′��′(ṽ)�−−−−−→�:I �(x̃).U

FRcv

� |= � �:I P
��−→�′ :I P ′

�:I 〈�〉P
��−→�′ :I P ′

Aware

� 	|= � ∨ �:I P
˜�′��′(ṽ)�−−−−−→�:I P

�:I 〈�〉P
˜�′��′(ṽ)�−−−−−→�:I 〈�〉P

FAware

�:I P j
��−→�′ :I P ′

j

�:I � J P j
��−→�′ :I P ′

j

Sum j (j ∈ J)

∀ j ∈ J . �:I P j

˜�′��′(ṽ)�−−−−−→�:I P j

�:I � J P j

˜�′��′(ṽ)�−−−−−→�:I � J P j

FSum

�:I P1
��−→�′ :I P ′

�:I P1 | P2
��−→�′ :I P ′ | P2

Int

∀i ∈ {1,2} . �:I P i

˜�′��′(ṽ)�−−−−−→�:I P i

�:I P1 | P2
˜�′��′(ṽ)�−−−−−→�:I P1 | P2

FInt

�:I P
��−→�′ :I P ′ K � P

�:I K
��−→�′ :I P ′

Rec

�:I P
˜�′��′(ṽ)�−−−−−→�:I P K � P

�:I K
˜�′��′(ṽ)�−−−−−→�:I K

FRec

in the target term. When considering processes and substitutions, we assume that the bound variables in a process are
distinct.

2.2. Operational semantics

We use the transition relation �−→⊆ Comp × CLAB × Comp to define the local behaviour of a component where Comp
denotes the set of components and CLAB is the set of transition labels ζ :

ζ ::= � | ˜� � �(ṽ) � ::= � � �(ṽ) | � � �(ṽ)

The �-labels are used to denote AbC output and input actions. The ζ -labels include a discard label to model the case where
a component loses a message. More specifically, at the sender side, an output label � � �(ṽ) exposes the information about
the actual message to be sent, which contains (part of) the component’s environment �, the communicated values ṽ , and
the sending predicate �. Dually, at the receiver side, the label � � �(ṽ), resp. ˜� � �(ṽ) exposes the information about the
incoming message to be accepted, resp. lost.

The transition relation �−→ is defined in Table 3 inductively on the syntax of AbC (Table 1). The semantics rules involve
some auxiliary definitions for predicate satisfaction, environment restriction and attribute updates which are given in Ta-
ble 2. Let us now comment on the component rules. For each process operator we have two types of rules: one describing
the actions a term can perform, the other one showing how a component discards undesired input messages.
4

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 4
Operational semantics of AbC systems.

�:I P
��−→�′ :I P ′

�:I P
�−→ �′ :I P ′

Comp

�:I P
˜�′��′(ṽ)�−−−−−→�:I P

�:I P
�′��′(ṽ)−−−−−→ �:I P

FComp

C1
���(ṽ)−−−−→ C ′

1 C2
���(ṽ)−−−−→ C ′

2

C1 ‖ C2
���(ṽ)−−−−→ C ′

1 ‖ C ′
2

Sync

C1
���(ṽ)−−−−→ C ′

1 C2
���(ṽ)−−−−→ C ′

2

C1 ‖ C2
���(ṽ)−−−−→ C ′

1 ‖ C ′
2

Com

Rule Brd specifies the behaviour of a component with an output prefixing process. The sequence of expressions Ẽ is
evaluated, say to ṽ , and the closure � of predicate �1 under � is computed. The message to be sent is a triple (� ↓ I, �1, ̃v),
where � ↓ I is the portion of � restricted to the interface I (see Table 2). Afterwards, possible attribute updates associated
with the process U are applied. Rule (FBrd) states that an output component ignores any incoming messages.

Rule Rcv governs the execution of a component with an input prefixing process upon hearing a message (�′, �′, ̃v). It
states that the message is received when the local attribute environment (�) restricted to interface I (� ↓ I) satisfies the
predicate used by the sender (�′); and the sender environment �′ satisfies the receiving predicate {�[ṽ/x̃]}� . Afterwards,
possible updates associated with the process U are applied, under the substitution [ṽ/x̃]. Rule FRcv states that a message is
discarded when one of the two mentioned constraints fails.

The behaviour of a component � :I 〈�〉P is the same as of � :I P only when � |= �, while the component is inactive
when � 	|= �. This is rendered by rules Aware, FAware. Rules Sum and FSum describe behaviour of a component with a
choice process. The behaviour of a component with interleaving processes is described by rules Int, and FInt, where the
symmetric version of Int is omitted. Finally, rules Rec, FRec are the standard rules for handling process definition.

The behaviour of an AbC system is described by means of the transition relation −→ ⊆ Comp × SLAB × Comp, where
Comp denotes the set of components and SLAB is the set of transition labels � defined previously. The definition of the
transition relation −→ is provided in Table 4.

Rules Comp and FComp depend on relation �−→ and they are used to lift the effect of local behaviour to the system level.
The former rule states that the relations �−→ and −→ coincide when performing either an input or an output actions, while
rule FComp states that a component � :I P can discard a message and remain unchanged. However, the system level label of
FComp implies that externally it cannot be observed whether a message has been accepted or discarded.

Rule Sync states that two parallel components C1 and C2 can receive the same message. Rule Com governs communica-
tion between two parallel components C1 and C2. If C1 sends a message then C2 can receive it by applying rule Comp.

Remark 1. When defining the translation, we distinguish between three kinds of predicates depending on the action they
control, and use �a, �s, �r to denote awareness, sending, and receiving predicates, respectively. According to the semantics
of AbC, we can distribute an awareness predicate over the branches of a choice process, i.e., 〈�a〉� j∈ J P j = � j∈ J 〈�a〉P j for
some index set J . Moreover, since the evaluation of an awareness predicate, the execution of a communication action and
attribute updates are performed atomically, we do associate an action with the preceding awareness predicate (if any) and
with the following attribute updates (if any). This simplifies the design of our APIs.

Remark 2. In process calculi, the application of substitutions is a metalevel operation that instantaneously replaces x̃ with
ṽ in the target term. However, for practical purposes, as mentioned in [29,30], substitutions are recorded explicitly while
evaluating process term and serve as an “environment” for bound variables.

Example 1. We illustrate AbC’s syntax and semantics by means of a simple example that amount to finding the maximum
value in a given list of numbers [31]. We can model each number v in the input list by an AbC component of the form
Ci = �i :∅ P where the attribute environment is specified as �i = [s �−→ true, n �−→ v] with s a boolean attribute, initially set
to true, expressing the intention of the component to send out its value, and n a numeric attribute set to the actual value
of the element that Ci models. The component behaviour is the process P .

P � A | B A � 〈s〉(n)@(tt).0 B � (x ≥ this.n)(x).[s := false]0
Each component announces its value at most once, which may be preempted by the second parallel branch if before sending
a larger element is received. The last component whose attribute s remains true is the maximum.1

Fig. 1 shows a possible derivation for the list of three values 1, 2, 3 (the active process is underlined). First, C2 sends an
announcement which is accepted by C1 and discarded by C3. In this new configuration, C1 cannot announce its value since

1 One might wonder how to decide when all components have announced their value. This issue is connected to deciding termination in a distributed
setting; investigating this issue goes beyond the scope of the paper. In our ABEL implementation, we simply let components report, upon termination, their
value to a separate, globally registered Erlang process.
5

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
�1 :∅ (A|B) ‖ �2 :∅ (A|B) ‖ �3 :∅ (A|B)

{Com} �2�tt(2)−−−−−→
�1[s �−→ false] :∅ (A|0) ‖ �2 :∅ (0|B) ‖ �3 :∅ (A|B)

{Com} �3�tt(3)−−−−−→
�1[s �−→ false] :∅ (A|0) ‖ �2[s �−→ false] :∅ (0|0) ‖ �3 :∅ (0|B)

Fig. 1. A possible derivation when looking for max element.

the corresponding guard 〈s〉 is rendered as false. Hence, only C3 can send its announcement, which is then accepted by C2
(and discarded by C1). In the last configuration, C3 remains the only component whose s is true and therefore deemed to
be the maximum element.

3. ABEL – a programming framework for AbC

ABEL [27] is a faithful implementation of AbC in Erlang with the support of APIs in close correspondence with AbC
primitives. Using ABEL, one can write AbC specifications in Erlang at ease and execute the code afterwards. In the following
we introduce ABEL’s programming interface, and informally describe its underlying implementation. We also present a
simple translation from AbC syntax to this interface. The next section will provide the operational details of ABEL.

3.1. Programming interface

As in Erlang, ABEL code is organized into modules. Each module contains a sequence of process definitions for a com-
ponent type, defined in terms of Erlang functions. The functions make use of ABEL’s APIs to encode process behaviour
whose representations conform to specific grammar rules (see below). Another separate module, “main”, contains top-level
commands for components and systems initialization.

The syntax for defining process behaviour is given in Table 5 where elem denotes a finite sequence of elements elem,
and font is used to highlight the ABEL’s exported library functions. Moreover, Atom ranges over Erlang atoms, C, V , _V are
Erlang variables, and [], {} are notations for Erlang lists and tuples. Other elements will be explained below.

The main building block of a process definition is function definition def . A definition takes two parameters: a compo-
nent address C and the current bindings list V of variables. V is initially empty and is gradually updated with the messages
received after input actions; in other words, V keeps track of the actual substitutions. The body of a definition (start after
→) contains a single command com determining the process behaviour.

A behaviour beh is a reference to a previously defined function. It is represented as an Erlang anonymous function
of one parameter _V that provides the possibility of passing a new bindings list to the wrapped function. A reference
can be passed as a parameter to commands so that the executing process can continue with the referred behaviour. This
programming style is reminiscent of continuation-passing style.

Table 5
ABEL’s programming interface for defining AbC process.

def ::= Atom(C, V) → com. Definition

beh ::= f un(_V) → Atom(C, _V) end Reference

| nil

com ::= prefix(C, V , {act,beh}) Prefix

| choice(C, V , [{act,beh}]) Choice

| parallel(C, V , [beh]) Parallel

act ::= {g, {m̄}, s, [ū]} Output

| {g, r, {x̄}, [ū]} Input

A command com has parameters C and V bounded by those of an outer function, and a third one specifying basic
actions possibly paired with references, depending on the type of command. ABEL supports the following commands.

• prefix – takes as parameters an action act and a continuation beh. The action can be either an input or an output,
and its description is a 4-tuple (see Table 5) where g , s, and r denote awareness, sending and receiving predicates,
respectively. Moreover, m denotes the message, x denotes input-binding variables and u denotes an attribute update.
If g or u are omitted, ABEL treats them as true and as the empty list [], respectively. This command executes act and
then the behaviour encapsulated in beh. The execution of an input action (if successful) returns a message; ABEL then
continues by calling beh on an updated list of bindings, calculated by appending the association of input variables –
message contents to the current list V . If act is an output action, the continuation is determined by applying beh to
V .

• choice – takes as a parameter a list of pairs, each describing a prefixing action act and a continuation beh. This
command executes one of the actions and continues with the associated behaviour.
6

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
• parallel – takes as a parameter a list of behaviour beh and creates new processes, executing functions resulting from
the application of beh to V .

We now elaborate on the representations of AbC’s basic terms and top-level commands. We assume the disjoint sets A,
X and V in Erlang that represent the attribute set A, variable set X and value set V in AbC. In practice, we use Erlang
atoms for A, X, and any ground Erlang terms, i.e., its elements need no evaluation for V . An attribute environment is then
an Erlang map, and an interface is an Erlang tuple. Their representations, together with other AbC’s terms are shown in
Table 6.

Table 6
ABEL’s representation of AbC basic terms.

a, x, v ::=A,X,V Attribute & Variable & Value

env, l ::=#{a ⇒ v}, {ā} Environment & Interface

g,m ::= f un(L) → e end Awareness predicate & Message

s ::= f un(L, R) → e end Sending predicate

r ::= f un(L, M, R) → e end Receiving predicate

u ::={a, f un(L) → e end} | {a, f un(L, M) → e end} Attribute Update

e ::=var(x, V) | att(a, L) | att(a, R) | msg(k, M) Expression

| v | op(e1, . . . , ek) | . . .

Awareness predicates g and message elements m are functions parameterized with the local environment (L). A sending
predicate s is a function parameterized with the local environment (L) and the environment of other components (R), while
receiving predicate r is parameterized also with an incoming message (M). Attribute update u is a pair of an attribute name
and the second is a function parameterized with the local environment, and additionally a message in case the update is
associated with an input operation.

The body of a function is an expression e. Several library functions are available. att(a, L) refers to the value of attribute
a in an environment L; msg(k, M) refers to the kth element in a message (tuple) M , and var(x, V) refers to the value of x
in a list V of variables bindings. In addition, values v and generic functions op, either user-defined or built-in can also be
used.

While the programming interface provides a means for writing AbC specifications in Erlang syntax, top-level commands
deal with the creations of a messaging infrastructure and components and start their executions.

The infrastructure is responsible for exchanging messages among components and must be built before component
creation. A component is created by invoking new_component while passing the attribute environment env and interface l
parameters. The command returns a component address C which can be used by start_component to start the execution of
C from an initial behaviour beh.

C = new_component(env, l)

start_component(C, [],beh)

Example 2. We can write the code of AbC’s process P in Example 1 using the ABEL programming interface as below (when
creating a component, the code assumes data for component C1). We will explain how to obtain ABEL code from AbC
systematically in the next section.

Env= #{s⇒ true,n⇒ 1}, p(C,V) →
I= {} A= fun(_V) → a(C, _V) end,

C= new_component(Env,I), B= fun(_V) → b(C, _V) end,

start_component(C, [],fun(_V) → p(C, _V)end). parallel(C,V, [A,B]).

b(C,V) → a(C,V) →
R= {fun(L,M) → msg(1,M) ≥ att(n,L) end}, G= fun(L) → att(s,L) end,

X= {x}, M= {fun(L) → att(n,L) end},
U= [{s,fun(L,M) → false end}], S= fun(L,R) → true end,

Act= {R,X,U}, Act= {G,M,S},
prefix(C,V, {Act,nil}). prefix(C,V, {Act,nil}).
7

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Here p models the behaviour of AbC process P . The correspondence is realized by a parallel command referring to the
other two functions. In turn, functions a, b make use of prefix commands with appropriate parameters representing basic
terms such as predicates, messages, etc.

3.2. From AbC to ABEL

As the API offers a close syntax to that of AbC, we exploit this fact to translate an input AbC specification into an
ABEL program. Generally, we assume an AbC specification contains a set of component specifications, each has the form
of (�, I, K , D) with � the attribute environment, I the interface, K the initial process name and D the set of process
definitions. Here the definition of K must be included in D.

We define a family of functions, generally denoted as tr in order to translate different AbC terms in an AbC specification
into ABEL.

To translate attribute environments and interfaces, as mentioned, we assume for each a, x, v ∈ A, X , V in AbC, the trans-
lation can always find corresponding elements a,x,v ∈ A, X, V in Erlang. Then the translation over attributes, variables,
and values is trivial, i.e., tra(a) = a, trx(x) = x, trv(v) = v. Translations for attribute environments � and interface I are also
straightforward, i.e., for some � = [a1 �−→ v1, . . . , ak �−→ vk] and I = {a1, . . . , al}, we have

tr�([a1 �−→ v1, . . . ,ak �−→ vk]) = #{tra(a1)⇒trv(v1), . . . , tra(ak)⇒trv(vk)}
trI ({a1, . . . ,al}) = {tra(a1), . . . , tra(al)}

We next present the translation tr for process definitions in D. It is defined as trD = trL ◦ trN that consists of two steps:
a normalization step that refactors process definitions in D to match the structure provided by the programming interface,
and a generation step that produces the actual Erlang code.

Normalization. Let X be either a process name K or process code P . We define a function trN that rewrites the definitions,
and while doing so may produce auxiliary definitions. A fresh definition is introduced if any of the following conditions
hold: i) the continuation of a prefixing process is not a process name; ii) any branch of a parallel process is not a process
name.

Table 7 presents rules for normalization procedure. A generic action denoted by α may be paired with awareness and
attributes updates (see Remark 1). Please notice that the rules in Table 7 are applied repeatedly until all definitions in D
are considered.

Table 7
Normalizing process definitions.

(prefix) trN (K � αX) = K � α ·R(X)

(choice) trN (K � � jα j X j) = K � � jα j ·R(X j)

(parallel) trN (K � ∏
j X j) = K � ∏

j R(X j)

(new def.) R(K) = K
R(P) = K for K fresh and new {K � P }

In a prefixing definition, the procedure generates another definition with the same structure, except that the continuation
X needs to be processed by a helper function R: if X is a name, R returns that name, otherwise, if X is a process code P ,
R creates a fresh name K , adds a new definition {K � P } and returns K .

In a choice definition, the procedure recursively processes all the branches of the choice. In a parallel definition, the
procedure recursively normalizes all the branches.

Code generation. This step produces Erlang functions corresponding to a set of normalized AbC process definitions. The rules,
formalized via function (trL) are reported in Table 8. The first three rules capture all possible forms of a definition and
generate the corresponding def definitions in ABEL style (see Table 5). The next two rules generate behaviour beh. The
other next two rules deal with AbC actions.

The remaining nine rules are responsible for the actual translation of the basic terms of such actions: Namely,
tr�a , tr�s , tr�r consider awareness, sending and receiving predicates �a, �s, �r , respectively. tru considers attribute up-
dates [ã := Ẽ] and tre considers the expressions Ẽ . The translation is parameterized with input-binding variables x̃ because
the expressions contained in receiving predicates or in attribute updates may need them.

The translation functions in the last five rules are very similar to each other but we separate them out for clarity. The
translation �·� deals with local expressions, awareness predicates and is defined as below.

�a� = att(a,L) �this.a� = att(a,L)

�x� = var(x,V) �v� = v

� f (Ẽ)� = op f (�E1�, . . . ,�Ek�)
8

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 8
Code generation.

trL(K � α · K ′) = k(C,V) → prefix(C,V, {trα(α), trL(K′)}).
trL(K � �n

j=1α j · K j) = k(C,V) → choice(C,V, [{trα(α1), trL(K1)}, . . .]).
trL(K � ∏m

j=1 K j) = k(C,V) → parallel(C,V, [trL(K1), . . . , trL(Km)]).
trL(K) = fun(_V) → k(C, _V) end
trL(0) = nil
trα(〈�a〉(Ẽ)@(�s).[ã := Ẽ]) = {tr�a (�a), tre(Ẽ), tr�s (�s), tru([ã := Ẽ])}
trα(〈�a〉(�r)(x̃).[ã := Ẽ]) = {tr�a (�a), tr�r (�r)

x̃, trx(x̃), tru([ã := Ẽ])x̃}
tre(Ẽ) = {tre(E1)�, . . . , tre(Ek)}
trx(x̃) = {trx(x1), . . . , trx(xl)}
tru([ã := Ẽ]) = [{tra(a1), tre(E1)}, . . . , {tra(ai), tre(Ei)}]
trx̃

u([ã := Ẽ]) = [{tra(a1), trx̃
e(E1)}, . . . , {tra(ai), trx̃

e(Ei)}]
tr�a (�a) = fun(L) → ��a� end
tr�s (�s� = fun(L,R) → ��s� end
trx̃

�r
(�r) = fun(L,M,R) → ��r�

x̃ end
tre(E) = fun(L) → �E� end
trx̃

e(E) = fun(L,M) → �E�x̃ end

For complex expressions (or predicates) f (Ẽ) that do not have a closed form in AbC syntax, the translation generates a
function call as a place holder for f , and users need to provide a definition in Erlang for this function afterward.

Please notice that �·� treats a and this.a the same way. The translation �·� that deals with sending and receiving
predicates instead differentiates between them. In fact we have:

�a� = att(a,R) �this.a� = att(a,L)

For all the other cases, the definitions are exactly the same, one needs only to replace �.� with �.�.
The corresponding parameterized versions �·�x̃ and �·�x̃ of �.� and �.� differ only when translating some variable y:

�y�x̃ = �y�x̃ =
{
msg(k,M) if y ∈ x̃ and y = xk

var(y,V) otherwise

where k is the index of y in the sequence x̃.
Finally, the translation of some initial behaviour K is obvious, i.e., trL(K). The initial behaviour, together with attribute

environment and interface are then provided to top-level commands for actual execution.

Example 3. We illustrate the translation tr for the process P in Example 1. For brevity, let α1 stands for 〈s〉(n)@(tt) and α2
for (x ≥ this.n)(x).[s := false]. Note that the AbC processes in the example are already normalized.

Attribute environment, interface.

tr�([s �−→ true,n �−→ 1]) = #{s⇒ true,n⇒ 1}
trI (∅) = {}

Process definitions, actions.

trL(P � A|B) = p(C,V) → parallel(C,V, [trL(A), trL(B)]).
trL(A) = fun(_V) → a(C, _V) end.

trL(B) = fun(_V) → b(C, _V) end.

trL(A � α1 · 0) = a(C,V) → prefix(C,V, {trα(α1),nil}).
trα(〈s〉(n)@(tt)) = {tr�a (s), tre(n), tr�s (tt)}
tr�a (s) = fun(L) → att(s,L) end
tre(n) = {fun(L) → att(n,L) end}
tr�s (tt) = fun(L,R) → true end

trL(B � α2 · 0) = b(C,V) → prefix(C,V, {trL(α2),nil}).
trα(x ≥ this.n)(x).[s := false]) = {trx̃

�r
(x ≥ this.n), trx(x), trx̃

u([s := false])}
trx̃

�r
(x ≥ this.n) = {fun(L,M) → msg(1,M) ≥ att(n,L) end}

trx(x) = {x}
trx̃

u([s := false]) = [{s,fun(L,M) → false end}]

3.3. Coordination strategies

In this section, we describe the implementation with a focus on the way ABEL coordinates processes and components.
The left part of Fig. 2 shows the internal structure of an ABEL component. Conceptually, the implementation maps an
AbC component into a set of Erlang processes P and a special process C which coordinates the activities of the different
processes. The component coordinator is also connected to the infrastructure for communicating with other components.
9

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Fig. 2. ABEL component.

The API command new_component (see Section 3.1) automates the creation of C together with the necessary setup, whereas
start_component instructs C to create the initial process (that executes the supplied behaviour). After that, new processes
may be created by the coordinator, depending on the current behaviour it is handling.

Inside a component, Erlang processes execute functions given in form of the programming interface presented in Sec-
tion 3.1. Such functions rely on APIs which in turn send their actual parameters to the coordinator whose address is C .
Each process sends one command (i.e., its parameters) at a time and continues only after receiving an acknowledge-
ment message, as illustrated on the right of Fig. 2. The coordinator decides, on behalf of processes the actual command
to be executed. Taking such a decision requires considering different input conditions from the processes and the infras-
tructure, which the coordinator dynamically records. More specifically, the conditions include the status of component
processes, their submitted commands, the current attribute environment, and the messages forwarded from the infrastruc-
ture. The coordinator is implemented as a reactive process2 that combines each received event with the set of previously
collected events, in order to select the appropriate (i.e., permitted by AbC’s component semantics) action of a compo-
nent.

Apart from controlling processes inside components, another building block of ABEL is the communication infrastructure
for preserving a total order of message delivery, obeying AbC’s system semantics. This consists of a set of nodes that
collaborate on mediating message exchanges. Components join the system via a globally named registration node which
assigns them to a node of the infrastructure. A node only communicates with those connected to it; likewise, a component
only communicates with the node it is assigned to. The AbC semantics was actually formulated on top of broadcast wherein
only one output action can take place at a time while input actions do wait concurrently for messages availability. This
calls for a restriction on the ordering of message delivery according to a total order [19] which in turn requires appropriate
coordination of message exchange in order to guarantee a correct execution semantics.

To guarantee a total order of message delivery for AbC components, we exploit an idea proposed in [18]. Whenever a
component is willing to send a message, it requests a unique timestamp id (i.e., a sequence number) from the infrastructure
and labels the message with this id. A component delivers a message labelled with an id only if it has delivered all messages
with id′ < id. Therefore messages are delivered according to the consecutive messages timestamps.

The infrastructure has been implemented as a set of Erlang processes3 organized logically in a tree-based topology. In
particular, each process acts as an inner node while ABEL components (coordinators) are connected to the tree as leaves.
Following [18], the root node plays the role of a sequencer that allocates fresh timestamps on demand. Whenever a non-
root node receives an id request, it forwards the request to its parent. The root issues a counter value and increments the
counter. This fresh id is forwarded along the same path of the original request but in reverse order. Eventually, the node
which initiated the request receives the fresh id and sends it to the requesting component.

A component sends its message attached with the allocated id to its connected tree node. Upon receiving such a message,
a tree node forwards the message to its siblings and other connected AbC components, except the sender. In this way, any
sent message will be eventually forwarded to all components.

4. Formalizing ABEL

The programming interface presented in Section 3.1 allows us to program a process as a chain of function calls (to API
commands). The execution of each of these functions realises a sequence of interactions with the hosting ABEL component
that in turn is responsible to dispatch messages through the underlying communication infrastructure. Each component is
also responsible for coordinating process executions. This is done by scheduling the activation of pending function calls.

2 https://erlang .org /doc /man /gen _statem .html.
3 https://erlang .org /doc /man /gen _server.html.
10

https://erlang.org/doc/man/gen_statem.html
https://erlang.org/doc/man/gen_server.html

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 9
ABEL runtime entities at component level.

(Environment) γ ::= ε | a v | γ · γ
(Substitution) σ ::= ε | x v | σ · σ
(Actions) αi ::= {g, r, x̄, u}

αo ::= {g,m̄, s, u}
(Behaviour) b ::= i(αi ,b) | o(αo,b) | co(αo,b) | ci(αi ,b) | pa(b) | nil

(Process) p ::= {σ ,b} | [σ ,b] | 〈〉∅
ps ::= ε | p | p ps

Table 10
ABEL runtime entities at system level.

(Coordinator) ctr ::= con(λ, c,ms,q) | con(⊥, c,ms,q)

(Component) com ::= 〈γ ; ps; ctr〉ι
(Comp. Config.) cn ::= com | com bool | cn cn

(Tree Node) t ::= 〈c,ms,q〉ι | 〈λ, c,ms,q〉ι
(Infrastructure) sn ::= t | t sn

(System) sys ::= 〈〈T � cn; sn〉〉

In this section we formalise the behaviour of ABEL components. This is defined in terms of their interactions with the
infrastructure.

Following previous works on giving operational semantics for systems built upon asynchronous point-to-point communi-
cation, e.g., [32–34], we introduce runtime configurations of ABEL and specify their semantics in the SOS style [35]. Tables 9
10 present the ABEL runtime entities and configurations used in the ABEL formal semantics. There, with some abuse, the
same notation as for AbC is used to represent attributes, values, and input-binding variables.

Attribute environment γ is a list of pairs attribute-value. Substitution σ is a list of pairs variable-value. Accordingly, γ (a)

and σ(x) denote the values associated with a and x in γ and σ , respectively. The basic actions are αo for output and αi

for input and the basic terms have the same representation as in the API. Their evaluations however depend also on the
substitution σ .

A behaviour b is similar to API commands. However, a distinction between input and output commands is made. In
particular, i(αi, b) (o(αo, b)) indicates an input (output) prefixes, with some action α followed by a behaviour b. ci(αi,b)

(co(αo,b)) stands for a choice behaviour among input (output) prefixes. pa(b̄) represents a parallel behaviour. Finally, nil
denotes an inactive behaviour that can be garbage collected.

A process p consists of a behaviour b and a substitution σ . A process can be in three states:
• {σ , b}, an active process with a behaviour b;
• [σ , b], a process waiting for an acknowledgement from its coordinator in order to proceed;
• 〈〉∅ , a terminated process.
Finally, ps denotes a set of processes.

4.1. Component

A (runtime) component com contains an attribute environment γ , a set of processes ps, a control ctr and a process
identifier ι (in fact, this is the address of the component’s coordinator) denoted as 〈γ ; ps; con(λ, c, ms, q)〉ι . Identifiers are
used mainly in communication rules and will be omitted when unnecessary. A control has a field λ to hold a timestamp;
when the timestamp is used, the field becomes ⊥. c is a counter representing the number of messages the component has
processed. ms is a priority queue while q is a process queue (mailbox). A component configuration cn can be a component
or a component followed by a boolean value. The latter is used to enforce explicitly which rules can be applied during
component evolution.

In a component, p ps denotes the process p is in focus (i.e., active), composed with the rest ps while [ps] is used to
mean that all processes in ps are waiting. Moreover, we use _ for any term which is not relevant in the semantics. Similarly,
ellipsis . . . is used in the control structure con to denote the remaining terms, hence the order of terms inside con is not
relevant. Subscript letters specified next to a given action α (i.e., αg , αs , . . .) mean the corresponding elements of the action.
For queues, e : q denotes a queue with e in its head and the rest is q, whereas m :: ms denotes the insertion of an element
in the priority queue ms. ?= is used for checking the form of terms (i.e., a sort of pattern matching), = for constructing a
new term and == for checking equality.

The operational semantics of ABEL component is defined through the relation ��→⊆ AComp × AL AB × AComp in Tables 11
and 12. The set of labels is the following.

AL AB = {τ , snd(ρ, (κ, ι)), snd(ρ, (λ,m)), snd(ρ, (λ, ff)), recv(λ,m), ˜recv(λ,m)}

11

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 11
ABEL component rules (Part 1) where c′ = c + 1 and λ′ = λ + 1.

C-out
b

?= o(α, _) sat(αg , σ ,γ) λ == ⊥
〈γ ; {σ ,b} ps; con(λ,q, . . .)〉ι ��������→snd(ρ,(κ,ι)) 〈γ ; [σ ,b] ps; con(κ,q, . . .)〉ι

C-in
b

?= i(_, _)

〈γ ; {σ ,b} ps; con〉ι ��→τ 〈γ ; [σ ,b] ps; con〉ι
C-fout

b
?= o(α, _) (¬sat(αg , σ ,γ) ∨ λ 	= c)

〈γ ; {σ ,b} ps; con(λ, c, . . .)〉ι ��→τ
〈γ ; [σ ,b] ps; con(λ, c, . . .)〉ι

C-snd

b
?= o(α,b′) λ == c sat(αg , σ ,γ)

v = eval(αe, σ ,γ) π = eval(αs, σ ,γ) m = (γ ,π, v)

γ ′ = upd(αu , σ ,γ)

〈γ ; {σ ,b} ps; con(λ, c, . . .)〉ι ��������→snd(ρ,(λ,m)) 〈γ ′; {σ ,b′} ps; con(⊥, c′, . . .)〉ι stch(γ ,γ ′)

C-fsnd
b

?= o(α,b′) λ == c ¬sat(αg , σ ,γ)

〈γ ; {σ ,b} [ps]; con(λ, c, . . .)〉ι ��������→snd(ρ,(λ,ff)) 〈γ ; [σ ,b] [ps]; con(⊥, c′, . . .)〉ι

C-recv

ms
?= (λ,m) : ms′ λ == c m

?= (γ1,π1, v)

p
?= {σ , i(α,b)} . sat(αg , σ ,γ) ∧ match(αr , σ ,γ ,m)

σ ′ = σ · αx v γ ′ = upd(αu , σ ′, γ)

〈γ ; [p ps]; con(c,ms, . . .)〉ι ������→recv(λ,m)

〈γ ′; {σ ′,b} [ps]; con(c′,ms′, . . .)〉ι (stch(γ ,γ ′) ∨ stch(c′, λ))

C-frecv

ms
?= (λ,m) : ms′ λ == c m

?= (γ1,π1, v)

∀p
?= {σ , i(α, _)} ∈ ps . ¬sat(αg , σ ,γ) ∨ ¬match(αr , σ ,γ ,m)

〈γ ; [ps]; con(λ, c,ms, . . .)〉ι ������→˜recv(λ,m) 〈γ ; [ps]; con(λ, c′,ms′, . . .)〉ι stch(c′, λ)

C-res
q

?= (λ, ε) : q′

〈γ ; ps; con(κ, c,q, . . .)〉ι ��→τ
〈γ ; ps; con(λ, c,q′, . . .)〉ι stch(c, λ)

C-msg
q

?= (λ,m) : q′ ms′ = (λ,m) :: ms

〈γ ; ps; con(q,ms, . . .)〉ι ��→τ
〈γ ; ps; con(q′,ms′, . . .)〉ι

C-stch
ps′ = unblk(ps)

〈γ ; ps; con〉ι true ��→τ 〈γ ; ps′; con〉ι
C-fstch 〈γ ; ps; con〉ι false ��→τ 〈γ ; ps; con〉ι

The first label represents tau actions, the labels start with snd denote sending actions to some connected process whose
identifier is ρ , whose value will become known at the system level. In order, snd(ρ, (κ, ι)) means that the component
ι sends a request for a timestamp, snd(ρ, (λ, m)) means sending a data message. Similarly, the labels starting with recv
denote receiving actions. We distinguish between recv(λ, m), denoting that a message has been successfully received, and

˜recv(λ,m), denoting that a message has been discharged. We will also use special messages, denoted as (λ, f̄f) for some
timestamp λ, to which all components discard it. The corresponding label for this message is snd(ρ, (λ, ff)).

In the semantics, we use the functions sat, eval, upd, match to implement the auxiliary functions presented in Table 2
and those used by AbC component semantics. Notice that since we keep track of variable bindings explicitly, σ is used for
retrieving values of input-variables x when needed, i.e., σ(x).

• eval(g, σ , γ) evaluates the awareness predicate g with attribute environment γ , using σ for determining the values
of the bound variables used by g .

• eval(s, σ , γ) partially evaluates the sending predicate s with attribute environment γ , using σ for determining the
values of the bound variables used by s. By partial evaluation we mean that the result of this evaluation is not
completely defined because the predicate s is parameterized also with the environment of a receiving component. We
write πs to denote the result of partial evaluation of s.

• upd(γ , σ , u) updates the attribute environment γ according to update u using σ for determining the values of the
bound variables used in u.

• match(r, σ , γ , m) verifies the communication constraints for accepting the message m = (γs, πs, v) at a receiver with
receiving predicate r and attribute environment γ . The function checks if the sender predicate πs is satisfied in the
receiver’s environment γ , and if the receiving predicate is satisfied in the sender environment γs and communicated
values v .

We now provide some comments about the rules in Table 11. For any output action α with an associated awareness
predicate αg that is satisfied in the current runtime environment, rule C-out requests for a new timestamp if this field λ
is not available (⊥). The configuration evolves to one with κ in place of the waiting timestamp, and the executing process
is suspended. κ is a number different from ⊥ which essentially prevents the same rule being triggered by other sending
processes.

Any input command makes the executing process blocked (Rule C-in). Similarly, any output process that does not meet
the condition of the associated awareness predicate or in that sending attempt, the component is not in a sending state
(λ 	= c) goes to a blocking state (Rule C-fout).

When the obtained timestamp λ is equal to the local counter c, a component must send out a message, either an actual
data message (handled by Rule C-snd) or the mentioned special message (handled by Rule C-fsnd).
12

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 12
ABEL component rules (Part 2) where c′ = c + 1 and λ′ = λ + 1.

C-par
b

?= pa(b′)
〈γ ; {σ ,b} ps; con〉ι ��→τ

〈γ ; {σ ,b1} . . . {σ ,bk} ps; con〉ι
C-cout

b
?= co(α, _) (∃α′ ∈ ᾱ . sat(α′

g , σ ,γ)) λ == ⊥
〈γ ; {σ ,b} ps; con(λ,q, . . .)〉ι ��������→snd(ρ,(κ,ι))

〈γ ; [σ ,b] ps; con(κ,q, . . .)〉ι

C-cin
b

?= ci(_, _)

〈γ ; {σ ,b} ps; con〉ι ��→τ
〈γ ; [σ ,b] ps; con〉ι

C-fcout
b

?= co(α, _) (∀α′ ∈ ᾱ . ¬sat(α′
g , σ ,γ)) ∨ λ 	= c

〈γ ; {σ ,b} ps; con(λ, c, . . .)〉ι ��→τ
〈γ ; [σ ,b] ps; con(λ, c, . . .)〉ι

C-csnd j

b1
?= co(α,b) (α j ,b j) ∈ (α,b) sat(α jg , σ ,γ) λ == c

v = eval(α je , σ ,γ) π = eval(α js , σ ,γ) m = (γ ,π, v)

γ ′ = upd(α ju , σ ,γ)

〈γ ; {σ ,b1} ps; con(λ, c, . . .)〉ι ��������→snd(ρ,(λ,m)) 〈γ ′; {σ ,b j} ps; con(⊥, c′, . . .)〉ι stch(γ ,γ ′)

C-fcsnd
b

?= co(α, _) (∀α′ ∈ ᾱ . ¬sat(α′
g , σ ,γ)) λ == c

〈γ ; {σ ,b} [ps]; con(λ, c, . . .)〉ι ��������→snd(ρ,(λ,f̄f)) 〈γ ; [σ ,b] [ps]; con(⊥, c′, . . .)〉ι

C-crecv j

ms
?= (λ,m) : ms′ m

?= (γ1,π1, v) λ == c

b1
?= ci(α,b) (α j ,b j) ∈ (α,b) sat(α jg , σ ,γ) match(α jr , σ ,γ ,m)

σ ′ = σ · α jx v γ ′ = upd(α ju σ
′, γ)

〈γ ; [{σ ,b1} ps]; con(c,ms, . . .)〉ι ������→recv(λ,m)

〈γ ′; {σ ′,b j} [ps]; con(c′,ms′, . . .)〉ι (stch(γ ,γ ′) ∨ stch(λ, c′))

C-fcrecv

ms
?= (λ,m) : ms′ m

?= (γ1,π1, v) λ == c

(∀p
?= {σ , ci(α, _)} ∈ ps .∀α′ ∈ ᾱ . ¬sat(α′

g , σ ,γ) ∨ ¬match(α′
r , σ ,γ ,m))

〈γ ; [ps]; con(λ, c,ms, . . .)〉ι ������→˜recv(λ,m) 〈γ ; [ps]; con(λ, c′,ms′, . . .)〉ι stch(c′, λ)

Rule C-snd sends a message if there exists an output prefixing process whose awareness predicate αg is satisfied in
the environment γ . A message (m) includes attribute environment (γ), the partial evaluation of the sending predicate
(π) and the evaluation of the output expression (v). The component configuration evolves into a new one where γ is
possibly updated into γ ′ , the sending process evolves with its continuation, the local counter c is increased by 1 and the
corresponding field for message timestamp in the coordinator becomes unavailable ⊥.

Since a change in the attribute environment may activate sending processes that were previously blocked by their aware-
ness predicates, the new configuration is guarded by a state change detection, expressed by the function stch. This function
compares the old attribute environment γ and a new one γ ′ , that returns true if γ 	= γ ′ and false otherwise. The fu-
ture evolution of this new configuration is determined by the rules C-stch and C-fstch. Rule C-stch unblocks all sending
processes, expressed by the function unblock while rule C-fstch leaves the component unchanged.

Rule C-fsnd is used when a component is in a sending turn, but no output action is possible because their awareness
predicates are not satisfied. In this case, an empty message is sent. This message shall be discarded by all other components
but it is necessary to avoid deadlock at the system level.

Rule C-res is triggered when a timestamp λ arrives at the input queue q. The received value λ replaces κ . The evolved
configuration is also guarded by a check on state change, e.g., whether the obtained λ matches the local counter c. If this is
the case, the component enters a sending state where all blocked sending processes are retried. The evolution after C-res is
passed to rules C-stch, C-fstch as described above.

Rule C-msg moves a data message from the top of the input queue to the priority queue ms.
A component evaluates a message m on the top of the priority queue ms for receiving when all processes are blocked,

and the associated timestamp of m matches the local counter c. There are two cases, namely successfully receive m (rule
C-recv) or discard m (rule C-frecv).

Rule C-recv handles reception of an external message m at the top of the priority queue ms when its attached timestamp
is equal to the local counter c and when all processes are blocked. The rule checks if there exists an input prefixing process
that can receive m. This includes checking the satisfaction of awareness predicate of the input action αg in the environment
γ and the satisfaction of the communication constrains induced by m and the receiving predicate, expressed by the function
match. If such an inputting process is found, it is unblocked to evolve according to its continuation behaviour b with an
updated substitution σ ′ . The configuration evolves with local counter c increased by 1 and with a possibly updated attribute
environment γ ′ . A change in the attribute environment may unblock sending processes (as in rule C-snd), thus we guard
the configuration with the function stch(γ , γ ′). Moreover, if the new value of the counter c′ is equal to the component
timestamp λ then the component must send a message. Therefore, we guard the configuration also with the function
stch(c′, λ), which returns true if λ is equal to c′ and false otherwise.

Rule C-frecv, on the other hand, discards a message m when there is no receiving process that can accept it. In the
evolved configuration, the local counter is increased, the message is removed from the input queue, and the possibility for
the component to send the message is checked by appending stch to the configuration.
13

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 13
Tree node semantics.

T-req
q

?= (κ, r) : q′ m = (κ, r · ι)
〈c,ms,q〉ι snd(ρ,m)−−−−−→ 〈c,ms,q′〉ι

T-new
q

?= (κ, r) : q′ r
?= ι′ · r′ m = (λ, r′)

〈λ, c,ms,q〉ι snd(ι′,m)−−−−−→ 〈λ′, c,ms,q′〉ι
T-res

q
?= (λ, r) : q′ r

?= ι′ · r′ m = (λ, r′)

〈c,ms,q〉ι snd(ι′,m)−−−−−→ 〈c,ms,q′〉ι
T-msg

q
?= (λ,m) : q′ ms′ = (λ,m) :: ms

〈q,ms, . . .〉ι τ−→ 〈q′,ms′, . . .〉ι

T-fwd
ms

?= (λ,m) : ms′ λ == c

〈c,ms, . . .〉ι snd(μ,(λ,m))−−−−−−−→ 〈c + 1,ms′, . . .〉ι

Other rules in Table 12 deal with other types of process behaviour. In particular, rule C-par creates new processes from a
list of behaviour b′ with the substitutions σ inherited from the parent process as their initial bindings lists. Rules C-cin, C-
cout, C-csend, C-crecv and their negative versions handle choice operators among inputs and outputs. Among these, C-csend
and C-crecv are respectively responsible for the actual sending and receiving data messages. Each rule has several instances,
subscripted by an index j to deal with the specific branches of the choice process under consideration.

4.2. Tree nodes

As shown in Table 10, a tree node t is a tuple 〈c, ms, q〉ι containing a local counter c, a message queue q, a priority queue
ms that sorts messages according to their attached timestamps, and a unique identifier (i.e., address) ι. The root of the tree
additionally has a sequence number λ that keeps track of the number of timestamps it has allocated, i.e., 〈λ, c, ms, q〉ι .

At any point in the system execution, there are two types of messages: timestamp messages and data messages. Both
are originated from the sending components and are routed by the nodes of the tree to the appropriate destinations. Data
messages are routed in a flooding fashion, effectively modelling broadcast.

The transition labels are of the form {snd(ρ, m), snd(μ, m), snd(ι, m), τ } where the first two labels denote the actions of
forwarding a given message to the parent and the set of connected nodes, respectively. The third label denotes sending a
message to another tree node whose address is ι, the last label denotes an internal action.

The semantics of a tree node is specified in Table 13. T-Req handles requests for a new timestamp by adding the current
node identifier to the address list r contained in the message, and then forward the pair to a parent node, indicated by ρ .
Note that ρ will be resolved at the system level where the current node is structured into a tree topology. The root node
deals with a timestamp request by forwarding its sequence number to an immediate node whose identifier extracted from
the address list r, as stated in rule T-new. Other non-root nodes forward the sequence number back to the original sender
in the same manner by applying the rule T-res.

The last two rules in Table 13 deal with data messages. Any data message forwarded is first buffered into the priority
queue ms (Rule T-msg). A top message in ms is delivered to a set of connected nodes, denoted by μ only if its attached
timestamp matches the counter c (Rule T-fwd). Similar to ρ , μ will be resolved at the system level.

4.3. System

Let C and S be sets of components and tree nodes, respectively. Moreover, let us denote by CA and SA the sets
of addresses of the components and tree nodes in C and S , respectively. A tree topology T is a mapping from child
to parent, except that the root is also its own parent. The set of children of a given node s ∈ dom(T) (i.e., the domain
of T) can be defined as childs(T , s) = {s′ 	= s | T (s′) = s ∀s′ ∈ dom(T)}. The set of connected nodes of a node s is thus
connected(T , s) = childs(T , s) ∪ {T (s)}. An ABEL system, denoted by 〈 〈T � C; S〉 〉, is a tuple containing C and S , structured
into a topology T satisfying the following constraints.

• (all nodes are connected) dom(T) = CA ∪ SA ∧ ∀ι ∈ CA ∪ SA.T (ι) ∈ SA

• (all components are leaves) ∀ι ∈ CA, ∃!ι′ ∈ SA.T (ι) = ι′ ∧ ∀ι′ ∈ SA.childs(ι′) 	= ∅
• (there is only one root) ∃!ι ∈ SA.T (ι) = ι
• (there is no cycle) ∀ι ∈ CA ∪ SA.ι /∈ des(T , ι) where des(T , s) = {s′′|∃s′ ∈ childs(T , s).s′′ ∈ des(T , s′)} ∪ childs(T , s)
The operational semantics of ABEL system is defined through the relation ����⇒⊆ A SY S × T L AB × A SY S with the set of

labels contains the following.

T L AB = {τ , snd(λ,m), recv(λ,m), ˜recv(λ,m)}
The system rules are presented in Table 14. Rules C-Tau and T-Tau lift τ moves at components and tree nodes to the

system level. Furthermore, the facts that a component sending and discarding special messages are also hidden at the
system level, as stated by rules S-Tau, F-Tau.

Rule Multicast stipulates that a data message is forwarded from a tree node to all connected nodes and components.
There, we enforce in the rule that the sent message is put immediately into mailboxes of appropriate destinations. We could,
alternatively, add an “ether” (or global mailbox) to represent messages in transit and another rule for non-deterministic
14

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Table 14
ABEL system semantics.

Send1
nι �������→snd(ρ,m1)

n′
ι ι′ = T (ι) m1

?= (λ,m)

〈〈T � nι C; 〈q, . . .〉ι′ S〉〉 ������������⇒snd(λ,m)

〈〈T � n′
ι C; 〈m1 : q, . . .〉ι′ S〉〉

Send2
nι ������→snd(ρ,m)

n′
ι ι′ = T (ι) m

?= (κ, _)

〈〈T � nι C; 〈q, . . .〉ι′ S〉〉 ����⇒τ
〈〈T � n′

ι C; 〈m : q, . . .〉ι′ S〉〉

Send3
tι ������→snd(ι′,m)

t′
ι ι′ ∈ dom(T)

〈〈T � C; tι 〈q, . . .〉ι′ S〉〉 ����⇒τ
〈〈T � C; t′

ι 〈m : q, . . .〉ι′ S〉〉
Send4

tι ������→snd(ι′,m)
t′
ι ι′ ∈ dom(T)

〈〈T � 〈q, . . .〉ι′ C; tι S〉〉 ����⇒τ
〈〈T � 〈m : q, . . .〉ι′ C; t′

ι S〉〉

Recv
nι ������→recv(λ,m)

n′
ι m

?= (γ ,π, v)

〈〈T � nι C;S〉〉 ������������⇒recv(λ,m) 〈〈T � n′
ι C;S〉〉

FRecv
nι ������→˜recv(λ,m)

n′
ι m

?= (γ ,π, v)

〈〈T � nι C;S〉〉 ������������⇒˜recv(λ,m) 〈〈T � n′
ι C;S〉〉

Multicast
tι

snd(μ,(λ,m))−−−−−−−→ t′
ι ι = connected(T , ι)\{ι}

〈〈T � ⋃
ιi∈ῑ

〈q, . . .〉ιi C; tι
⋃
ι j∈ι

〈q, . . .〉ι j S〉〉 ����⇒τ 〈〈T � ⋃
ιi∈ι

〈(λ,m) : q, . . .〉ιi C; t′
ι

⋃
ι j∈ι

〈(λ,m) : q, . . .〉ι j S〉〉

C-Tau
nι ��→τ n′

ι

〈〈T � nι C;S〉〉 ����⇒τ 〈〈T � n′
ι C;S〉〉 T-Tau

tι
τ−→ t′

ι

〈〈T � C; tι S〉〉 ����⇒τ 〈〈T � C; t′
ι S〉〉

S-Tau
nι ������→snd(ρ,m)

n′
ι ι′ = T (ι) m

?= (λ, (_, ff, ()))

〈〈T � nι C; 〈q, . . .〉ι′ S〉〉 ����⇒τ 〈〈T � n′
ι C; 〈m : q, . . .〉ι′ S〉〉 F-Tau

nι ������→˜recv(λ,m)
n′
ι m

?= (_, ff, ())

〈〈T � nι C;S〉〉 ����⇒τ 〈〈T � n′
ι C;S〉〉

message forwarding [36]. This choice does not affect our proof given the fairness assumption and the fact that data messages
are always inspected at components and nodes according to their timestamps.

Apart from Multicast, we have four more system rules concerned with sending messages. The rules first identify the
source and target of a message and then append the message to the mailbox of the target. In particular, Send1 (resp. Send2)
forwards a data message (resp. a timestamp request) from a component to its parent. Send3 forwards a timestamp message
(either request or reply) from an inner tree node to another connected one. Send4 forwards a timestamp from an inner node
to its connected component. Here, we require a property of the message forwarding rules, commonly known as fairness,
is that the sent message must eventually arrive at (the mailbox of) the target. This further implies that the message will
eventually be processed.

Of all the system rules presented, the three main rules Send1, Recv, and FRecv expose the capability of components to
the system level, namely sending a message, receiving a message, and losing a message.

4.4. Correctness of the tree structure

Thanks to our construction of the semantics, some properties concern with the communication among tree nodes and
components in an ABEL system can be stated and established. The goal of the infrastructure, as mentioned before, is to
forward the messages exchanged among components in a total order. In this section, we present arguments showing that
this is the case.

First, we show that the allocation of message timestamps works as expected.

Proposition 4.1. (Reliable Message Timestamp). If a component c requests a timestamp then it will eventually receive one. Furthermore,
the timestamp is unique.

Proof. Consider the path (i.e., a sequence of tree nodes) (a1, . . .an) (n ≥ 2) from c to the root of the tree. The existence of
such a path is guaranteed by definition of the tree topology. When c, i.e., a1 sends a request for timestamp, either the rule
C-out or C-cout is applied. In both cases, the system forwards the request to a connected node T (c) = a2 using the rule
Send2. For each inner node ak (k > 1) along the path, by the fairness assumption we have that ak eventually receives the
request forwarded from its predecessor ak−1 (rule T-req). Thus, the request eventually arrives at the root an . Similarly, the
timestamp issued (rule T-new) by an that propagates along the path in the reverse direction is also guaranteed to arrive
at c. Moreover, since the root produces ever-increasing values of λ in reply to timestamp requests, the value received by the
component is unique. �

Next, we provide several claims that characterize the properties of individual components and tree nodes. A few termi-
nologies will be helpful. A λ-message is a message that is attached with the timestamp λ, i.e., it is of the form (λ, _). For a
data message m, we write λ(m) to denote its attached timestamp. A n-state component (or inner tree node) is one whose
local counter is equal to n. For components, we use the term message delivery to refer to the events: a component sends
or receives or discards a message. For inner nodes, message delivery is the event of forwarding a message when it has an
expected timestamp.

Proposition 4.2. A n-state component can only deliver n-message.
15

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Proof. By inspecting the relevant rules of component semantics, we have that a) in order to send a message, either the
rules C-snd, C-csnd, C-fsend, or C-fcsend must be applicable; b) in order to evaluate a message for acceptance (i.e., either
accept or discard the message), the component must use one of the rules C-frecv, C-recv, C-fcrecv, C-crecv. Since all the rules
require the local counter to be equal to the message timestamp, a component in n-state can only deliver a n-message. �
Proposition 4.3. A n-state inner node can only deliver n-message.

Proof. By inspecting the relevant rules of tree node semantics. �
Proposition 4.4. If a component delivers message (l, _) (for l ≥ 0) then it has delivered all messages (l′, _) with l′ < l.

Proof. Since the component is able to deliver a l-message, it must be in l-state (l ≥ 0) by Proposition 4.2. However, the only
way for the component to reach a l-state from its initial 0-state is by delivering l messages. By Proposition 4.2 and the fact
that the local counter gets increased each time a message is delivered, the timestamps of these messages are smaller than
l. �
Proposition 4.5. If an inner node delivers a message (l, _) (for l ≥ 0) then it has delivered all messages (l′, _) with l′ < l.

Proof. Similar to the Proposition 4.4. �
Next, we show that the tree infrastructure disseminates messages in a broadcast manner: messages are only created by

components and propagated through the inner nodes to other leaves. For this, we introduce the following lemmas.

Lemma 4.1. (Leaf-node Agreement). For any component c, its connected tree node t and all l ≥ 0, if c delivers message m = (l, _) then
either t has already delivered m or t will deliver eventually it.

Proof. See Appendix. �
Lemma 4.2. (Node-node Agreement). For any two inner nodes t1 and t2 , and all l ≥ 0, if t1 delivers message m = (l, _) then either t2
has already delivered m or t2 will eventually deliver it.

Proof. We can assume that the message originates from t1 (otherwise we swap t1 and t2). The proof is by double induction
on message timestamp l and the length k of the path in the tree structure that connects t1 and t2. Let us consider the base
case when l = 0, k = 1. Since t1 delivers the message (0, _), by the rule Multicast, t2 is forwarded the message due to the
fact that they are neighbours. Further, the local counter of t2 is initially 0, thus it eventually delivers (0, _).

Next, assume that the lemma holds for some timestamp l ≥ 0 and k = 1. Since t1 and t2 are neighbours, we immediately
have that if t1 delivers (l + 1, _) then t2 eventually delivers (l + 1, _).

Finally, we assume that the lemma holds for some l ≥ 0 and some k ≥ 1, we show that if t1 delivers the message (l, _)
then t2 eventually delivers (l, _) where the distance between t1 and t2 is k + 1. Let t3 be the inner node right before t2
in the path from t1. We have that t1 delivers the message and so does t3 by induction hypothesis. Since t3 delivers (l, _),
it must have delivered all messages (l′, _) for all l′ < l by Proposition 4.5. Note that t3 and t2 are neighbours, thus each
message (l′, _) delivered by t3 must be forwarded to or from t2. In other words, t2 also has these l messages in its queues.
By the design of semantic rules, these messages will eventually be sorted by t2 ’s priority queue ms. So t2 eventually delivers
all the messages including (l, _). �

To prove the correctness of the tree-based structure, we further need to show that every component in an ABEL system
sees the same sequence of message delivery events. The proof is the direct consequences of the following Lemmas which
assert that the components and tree nodes can not deliver messages out of order in the sense of Definition 4.1.

Definition 4.1. (Ordering) For any component c (resp. inner node t) and any two messages m, m′ that c (resp. t) deliver, we
say that c (resp. t) delivers m before m′ if λ(m) < λ(m′).

Lemma 4.3. For any component c, its connected tree node t, and any two messages m, m′ that c, t deliver, if c delivers m before m′
then t delivers m before m′ .

Proof. See Appendix. �
Lemma 4.4. For any two inner nodes t1, t2 and any two messages m, m′ that t1, t2 deliver, if t1 delivers m before m′ then t2 delivers
m before m′ .
16

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Proof. See Appendix. �
We arrive at Theorem 4.1 which states that the order of messages delivered at components is total.

Theorem 4.1. (Total order message delivery). For any two components c1, c2 and any two data messages m and m′ , if c1 delivers m
before m′ then c2 delivers m before m′ .

Proof. We have two cases to consider: a) both components share the same parent, b) c1 and c2 are connected to different
inner nodes. The proof for case a is immediate from Lemma 4.3. For case b, the proof is straightforward from Lemmas 4.3,
4.4. �
Example 4. We show how the system rules work by deriving a possible execution of the ABEL program in Example 3. For
brevity, we here illustrate with three components and one tree node, which is also the root. The system configuration is
thus represented in the beginning as 〈 〈T � Cs; S〉 〉 where:

Components. Cs = {C1, C2, C3} and for a component Ci , its configuration is the tuple 〈γi; ps; ctr〉ιi with the following
initializations

• attribute environment γi = n i · s tt;
• process ps = {ε, pa(a, b)} with subprocesses behaviour a, b;
• local coordinator ctr = con(⊥, 0, ε, ε).
Tree Node. S = {〈0,0, ε, ε〉ι}.
System. The system consists of ABEL components plugged into topology T = [ι1 → ι, ι2 → ι, ι3 → ι, ι → ι], rooted at the

tree node given above.
Fig. 3 presents an execution, i.e., a sequence of rules applications from the initial configuration that corresponds to the

execution of the AbC system in Example 1.

〈〈T � 〈γ1; pa(a,b); con(⊥, . . .)〉 〈γ2; pa(a,b); con(⊥, . . .)〉 〈γ3; pa(a,b); con(⊥, . . .)〉; 〈0,0, ε, ε〉〉〉
{C-Tau, C-Tau, C-Tau} ����⇒τ ∗

〈〈T � 〈γ1;o(α, _) b; con(⊥, . . .)〉 〈γ2;o(α, _) b; con(⊥, . . .)〉 〈γ3;o(α, _) b; con(⊥, . . .)〉; 〈0,0, ε, ε〉〉〉
{Send2, Send2, Send2} ����⇒τ ∗

〈〈T � 〈γ1; [a] i(_, _); con(κ, . . .)〉 〈γ2; [a] i(_, _); con(κ, . . .)〉 〈γ3; [a] i(_, _); con(κ, . . .)〉; 〈0,0, ε, (κ, ι2) : (κ, ι3) : (κ, ι1) : ε〉〉〉
{C-Tau, C-Tau, C-Tau} ����⇒τ ∗

〈〈T � 〈γ1; [a b]; con(κ, . . .)〉 〈γ2; [a b]; con(κ, . . .)〉 〈γ3; [a b]; con(κ, . . .)〉; 〈0,0, ε, (κ, ι2) : (κ, ι3) : (κ, ι1) : ε〉〉〉
{Send4, Send4, Send4} ����⇒τ ∗

〈〈T � 〈γ1; [a b]; con(2, . . .)〉 〈γ2; [a b]; con(0, . . .)〉 〈γ3; [a b]; con(1, . . .)〉; 〈3,0, ε, ε〉〉〉
{C-Tau, C-Tau, C-Tau} ����⇒τ ∗

〈〈T � 〈γ1;o(α,nil) [b]; con(2,0, . . .)〉 〈γ2;o(α,nil) [b]; con(0,0, . . .)〉 〈γ3;o(α,nil) [b]; con(1,0, . . .)〉; 〈3,0, ε, ε〉〉〉
{C-Tau, Send1, C-Tau} ������������⇒snd(0,m2) ∗

〈〈T � 〈γ1; [a b]; con(2,0, . . .)〉 〈γ2; 〈〉∅ [b]; con(⊥,1, . . .)〉 〈γ3; [a b]; con(1,0, . . .)〉; 〈3,0, ε, (0,m2) : ε〉〉〉
{T-Tau,Multicast,C-Tau} ����⇒τ ∗

〈〈T � 〈γ1; [a b]; con(2,0, (0,m2) : ε, ε)〉 〈γ2; [b]; con(⊥,1, . . .)〉 〈γ3; [a b]; con(3,0, (0,m2) : ε, ε)〉; 〈3,1, ε, ε〉〉〉
{Recv,Frecv,C-Tau} ��������������⇒recv(0,m2) ∗ ��������������⇒˜recv(0,m2) ∗

〈〈T � 〈γ ′
1; [a] 〈〉∅; con(2,1, . . .)〉 〈γ2; [b]; con(⊥,1, . . .)〉 〈γ3;o(α,nil) [b]; con(1,1, . . .)〉; 〈3,1, ε, ε〉〉〉

{Send1} ������������⇒snd(1,m3) ∗

〈〈T � 〈γ ′
1; [a]; con(2,1, . . .)〉 〈γ2; 〈〉∅ [b]; con(⊥,1, . . .)〉 〈γ3; 〈〉∅ [b]; con(1,1, . . .)〉; 〈3,1, ε, (1,m3) : ε〉〉〉

{T-Tau,Multicast} ����⇒τ ∗

〈〈T � 〈γ ′
1; [a]; con(2,1, (1,m3) : ε, ε)〉 〈γ2; [b]; con(⊥,1, (1,m3) : ε, ε)〉 〈γ3; [b]; con(⊥,2, . . .)〉; 〈3,2, ε, ε〉〉〉

{FRecv,Recv,C-Tau} ��������������⇒˜recv(1,m3) ∗ ��������������⇒recv(1,m3) ∗

〈〈T � 〈γ ′
1; [a]; con(2,2, ε, ε)〉 〈γ ′

2; 〈〉∅; con(⊥,2, ε, ε)〉 〈γ3; 〈〉∅; con(⊥,2, . . .)〉; 〈3,2, ε, ε〉〉〉

Fig. 3. A possible derivation of the running example in ABEL.

It is worth commenting that, due to nondeterminism, the system may evolve in a way that the message timestamps
allocated for the three components are (C1, 1), (C2, 0) and (C3, 2), respectively. In this scenario, C2 is the first to send its
message to which C1 accepts and C3 discards it. By accepting message (0, m2), component C1 itself is not able to send
the promised message (but still holds the timestamp 1). If this were the case, other components that obtained timestamps
higher than C1, such as C3 in this example could have been blocked. However, by the design of component semantics, rule
C-fsend enforces C1 to send out an empty message that contributes to compensating the value of the local counter at C3,
hence enabling it to proceed.
17

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
5. Operational correspondence

In this section, we prove the operational correspondence between AbC and ABEL. In particular, we show that ABEL enjoys
two crucial properties. The first one guarantees soundness, i.e., the execution of ABEL is in agreement with AbC semantics.
The second one is concerned with liveness, i.e., ABEL does not get stuck if AbC does not.

The translation tr introduced in Section 3.2 is static, in the sense that it transforms AbC specification into runnable ABEL
program, and is not suitable to relate running processes. Because of this, in order to establish the above-mentioned prop-
erties, in this section we introduce the appropriate notations to relate AbC and ABEL at runtime. The mapping tr (Table 15)
transforms an AbC component � : P into a pair consisting of the translations of the attribute environment and the process.
tr is defined inductively over the structure of AbC process. For other AbC terms, tr coincides with tr. By relying on tr and

Table 15
Relating AbC terms to ABEL runtime entities (tr).

tr(C1 ‖ . . . ‖ Cn) = (tr(C1), . . . , tr(Cn))

tr(� : P) = (tr(�), tr(P))

tr�αo .P� = o(tr�αo�, tr�P�)

tr�αi .P� = i(tr�αi�, tr�P�)

tr��n
j=1α

i
j .P j� = ci({tr�αi

1�, tr�P1�}, . . . , {tr�αi
n�, tr�Pn�}])

tr��n
j=1α

o
j .P j� = co({tr�αo

1�, tr�P1�}, . . . , {tr�αo
n�, tr�Pn�}])

tr�P1| . . . |Pm� = pa([tr�P1�, . . . , tr�Pm�])
tr�0� = nil

the additional definitions given below, we can obtain ABEL components and systems from AbC ones.

Definition 5.1 (Context). A component context ξ = 〈•; con〉ι is a component configuration without attribute environment and
process. Given an AbC component C = � : P , we write ξ [tr(C)] to represent the running component C = 〈γ ; {ε, b}; con〉ι
where tr(�) = γ , tr(P) = b and ε the empty binding list.

Let E be a set of component contexts, a system context K = 〈 〈T � E; S〉 〉 is a system configuration with the set
of components replaced by E . Given an AbC system S , we write K[tr(S)] to represent the running system G = 〈 〈T �
ξ [tr(C1)] . . . ξ [tr(Cn)]; S〉 〉 for each component Ci of S.

Each component context has an identifier (namely the address of the coordinator con) and a system context conforms
to the constraints listed in Section 4.3. However, a system context is not executable if it is not equipped with appropriate
code, say tr(S) corresponding to AbC system S .

Moreover, we say a system context K is consistent, denoted as K if all the counters of component contexts in K have
the same value. Note that, since we do not consider the states of tree nodes in the above definition, there are many contexts
that are consistent for a given value of the components’ local counters.

In ABEL, substitutions are not applied instantaneously: after successfully executing an input action, the binding list σ is
accumulated with the received message (see Section 4.1). In this way, the value of any variable if required is looked up in
σ at each execution step. Instead in AbC, the application of a substitution happens at once. Thus, the mapping tr above and
the introduction of ABEL code into contexts may lose track of substitutions. To address this gap, we need some notations to
equate ABEL components and systems. For our purpose, we introduce the notion of equivalent configurations.

Definition 5.2. (Equivalent Configurations) Two ABEL component configurations C1 = 〈γ ; {σ1, b1}; con〉 and C2 = 〈γ ; {σ2, b2};
con〉 are equivalent, written as C1 �c C2 if there exist AbC processes P1, P2 such that tr(P1) = b1 and tr(P2) = b2 and
P1σ1 ≡ P2σ2. Two ABEL system configurations G1 = 〈 〈T � Cs1; S〉 〉 and G2 = 〈 〈T � Cs2; S〉 〉 are equivalent, written as G1 �s

G2 if the components in Cs1 and Cs2 are pair-wise equivalent.

Based on the prepared notations, we now define what it means by correspondence between AbC and ABEL.

Definition 5.3. (System Correspondence �) An ABEL system G corresponds to an AbC system S , written as G � S if ∃K s.t.
K[tr(S)] ����⇒τ ∗ = G or K[tr(S)] �s G .

In fact, not all system configurations are of interest in the proofs, we only concern with systems that are consistent and
hence their correspondence with AbC systems can be established. Let G(n) denote a consistent (ABEL) configuration with
n ≥ 0 the value of the components’ local counters.

Proposition 5.1 claims that there exists interleaved executions of components in which, starting from a consistent config-
uration G(n), leads to another consistent configuration G(n + 1). We assume there are sending components, otherwise there
would be no interactions.
18

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Proposition 5.1. Given a consistent configuration G(n), if there is at least one sending component in G(n) then there exists interleav-
ings of component execution that lead to G(n + 1).

Proof. See Appendix. �
Practically speaking, consistent configurations are not likely to occur during the system evolution. For example, consider

a component connected to the root of the tree that keeps sending out its internal values (e.g., plays the role of a clock).
The counter of this component may increase faster than that of the components located further away from the root. Con-
sistent components states may be enforced by using more messages for coordination, but that would introduce unnecessary
overhead.

Let us denote by ⇒ any sequence of ABEL’s components transitions that satisfy the property in Proposition 5.1.

Let β ′ ranges over the set of ABEL components labels, i.e., {snd(ρ , (λ, m)), recv(λ, m), ˜recv(λ,m)}. Let β ranges over the
set of public ABEL systems labels, i.e., {snd(λ, m), recv(λ, m), ˜recv(λ,m)}. For convenience, we prefix a label variable with
! to mean it is a sending label, ? for receiving and : for discarding. The following function f relates the transitions labels
between ABEL and AbC for components and systems, respectively.

Definition 5.4 (Labels Correspondence). Let f be a function that maps ABEL labels to AbC labels as follows. f (snd(ρ, (λ, m)) =
f (snd((λ, m))) = � � �(v), f (recv(λ, m)) = � � �(v), f (˜recv(λ,m)) = ˜� � �(v), where m = (tr(�), tr(�), tr(v)).

The simulation relation (�) between an ABEL system and an AbC system can now be defined as.

Definition 5.5. � is a simulation relation between an ABEL system G and an AbC system S , written as G � S if G � S and
G ⇒ G′ , then S −→ S ′ and G′ � S ′ , where −→ is a single AbC transition.

That is, whenever an ABEL system makes a sequence of moves (i.e., rule applications) from a consistent configuration to
another, the corresponding AbC system can make a transition to another such that the latter two are still correspondent.

The soundness property is established in two steps, first at the component level (Lemma 5.1), where we consider
components in isolation and then at the system level (Theorem 5.1) where we take into account the interactions of the
components. The proof amounts to showing that an AbC system can match all the moves of its translation in ABEL in the
sense of Definition 5.5.

Lemma 5.1. Given C a single AbC component and any context ξ such that ξ [tr(C)] is capable of doing a β ′ transition. We have that if

ξ [A] ��→β ′ ∗ C′ then there exists C ′ and ξ ′ such that C
f (β ′)�−−−→ C ′ and C′ ��→τ ∗ = ξ ′[tr(C ′)], or C′ ��→τ ∗ �c ξ ′[tr(C ′)].

Proof. See Appendix. �
Theorem 5.1. (Soundness) Let S be an AbC system and K a consistent context, if K[tr(S)] =⇒ G′ , then there exist S ′ and K′ such that
S −→ S ′ and G′ ����⇒τ ∗ =K′[tr(S ′)], or G′ ����⇒τ ∗ �s K′[tr(S ′)].

Proof. Consider an AbC system S = �1 : P1 ‖ . . . ‖ �n : Pn , then

G(c) = K[tr(S)] = 〈〈T � 〈γ1; {ε,b1}; con1〉 . . . 〈γn; {ε,bn}; conn〉;S〉〉
is the ABEL system resulting from filling the set of translated components into K, where ∀1 ≤ i ≤ n.γi = tr(�i), bi = tr(Pi)

and c the value of components counters.
If no components can output in G , the theorem trivially holds. Therefore, we consider cases where there is at least one

component that can send. By Lemma 4.1, we know that there must exist one component, say i that obtains the smallest
timestamp, say λ such that λ = c.

We now consider the evolution of G . The only possibility for G to evolve into another consistent state is by

G = 〈〈T � 〈γi; {ε,bi}; coni〉ιi C;S〉〉
����⇒!β ∗ l̄=⇒

= 〈〈T � 〈γ ′
i ; {σi,b′

i}; con′
i〉ιi C

′;S ′〉〉 = G′

where !β = snd(λ, (γi, π, v)) = snd(λ, mi) and l̄=⇒ denotes any of the following sequences

• permutations of labelled transitions of the form ����⇒?β ∗ and ����⇒:β ∗ such that |̄l| + 1 = n,

• sequences of ����⇒?β ∗ or ����⇒:β ∗ such that |̄l| + 1 = n.
19

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Intuitively, these sequences mean that component Ci sends out its message while the rest components deliver this
message. Let Ie, Is be the index sets of components in C′ that have accepted and discarded the message (λ, mi), respectively.
Let ρi = T (ιi) be the connected tree node of component Ci , we construct the labels for components by defining !β ′ =
snd(ρi, (λ, mi)), ?β ′ = ?β and :β ′ = :β . Then, the transitions at the individual components can be further elaborated as
follows. ∀ j ∈ Ie . C j ���→?β ′ ∗C′

j and ∀k ∈ Is . Ck ��→:β ′ ∗C′
k .

By Lemma 5.1, we can derive transitions for each AbC component C∗ in S from its corresponding ABEL component C∗ in

G , in particular: Ci
f (!β ′)�−−−→ C ′

i and ∀ j ∈ Ie . C j
f (?β ′)�−−−→ C ′

j , ∀k ∈ Is . Ck
f (:β ′)�−−−→ C ′

k .
By AbC’s system semantics, the following transition can be derived for S:

S ≡ Ci ‖
∏
j∈Ie

C j ‖
∏
k∈Is

Ck
�i��i(v)= f (!β ′)−−−−−−−−−−→ C ′

i ‖
∏
j∈Ie

C ′
j ‖

∏
k∈Ik

C ′
k ≡ S ′

Consider the context K = 〈 〈T � 〈•; con′
1〉 . . . 〈•; con′

m〉; S ′〉 〉, the components coordinators coni ’ in it have their counter
values increased by 1. Thus K is consistent and we take K′ = K. In K′[tr(S ′)], all components are pair-wise equivalent to
components in G′ , hence K′[tr(S ′)] �s G′ . �

The above theorem is not sufficient to guarantee the correctness because an empty ABEL system that does nothing can
still satisfy it. The liveness property justifies that the generated implementation does some work.

Theorem 5.2. (Liveness). Given an AbC system S, if S −→ S ′ , then G = K[tr(S)] =⇒ G′ . Moreover, given S = C ‖ S1 , if C
���(ṽ)�−−−−→ C ′

and S1
���(ṽ)−−−−→ S ′

1 and K[tr(S)] ����⇒!β ∗ =⇒ G′ , then G′ � C ′ ‖ S ′
1 , where f (!β) = � � �(ṽ).

Proof. See Appendix. �
Intuitively, Theorem 5.2 says that if an AbC system S can evolve to S ′ by performing a single transition −→ then

the corresponding ABEL one G can also evolve to G′ by performing a sequence of components transitions ⇒ (Proposi-
tion 5.1). However, because the component that outputs in G may be different from the one in S , we cannot conclude a
correspondence between S ′ and G′ . The second part of the theorem strengthens the hypothesis in order to recover this
correspondence. It states that if a specific AbC component C actually sent a message and it is the corresponding ABEL
component the sending one in G (implied by the first label), then we have the correspondence between the two derivatives.

Generally, an ABEL system obtained by the translation can not simulate the original AbC system for two reasons. First,
ABEL components must ask for fresh timestamps before sending which makes their sending order is somewhat fixed in
the next steps of the system evolution. Second, practically the implementation has resolved the non-deterministic choice
by considering the choice branches from leftmost to rightmost. Both amount to reducing nondeterminism of the original
AbC specification. However, since any execution of an implementation generated by the translation is allowed by the related
AbC specification, the transition system of the AbC specification subsumes the transition system of the corresponding ABEL
implementation. For this reason, we conclude that any state-based properties, i.e., safety that hold in an AbC model are
guaranteed also in the implementation.

6. Related works

Several implementations of the attribute-based interaction have been proposed [7,8,16]. Two of them, namely AbaCus [7],
a Java implementation, and Goat [8], a Go implementation, rely on a message broker to distribute messages in a broadcast
manner. It is the receiving component that decides whether to use or discard a forwarded message, by checking the sending
and the receiving predicates. In both implementations, non-deterministic choice is modelled as an if-then-else construct and
process recursion as an infinite loop. We argue that AB E L APIs are much closer to the AbC’s syntax than those of GoAT and
AbaCus. This facilitates automatic translation from AbC specifications into ABEL programs. Another implementation, named
AErlang [16], extends Erlang processes with the key ingredients of AbC programming idioms, but it cannot be considered a
faithful implementation of AbC because components can only have a single thread of control and broadcast messages are
not ordered. Moreover, none of the three AbC implementations considers the issue of correctness.

Despite the different host languages, AB E L and GoAT share some similarities in terms of implementation as they rely on
the tree-shaped distributed infrastructure proposed in [18]. GoAt provides also a ring and a cluster shape of the infrastruc-
ture. Performance of GoAT is evaluated through simulation in [18,8], and considering the same study we have shown that
ABEL can handle a larger number of components [27]. In [18], the proofs of correctness focused solely on the convergence
of counters values at every component and infrastructure nodes. Here, we precisely identify the sequence of ABEL transi-
tions that correspond to the AbC lock-step evolution. Besides, [18] and [8] did not consider the possibility of system-level
deadlock as illustrated in Example 4.

The approach to ABEL semantics was inspired by [24], aiming at achieving modularity. This is done specifically by dec-
orating the local transition labels with variables (e.g., ρ, μ in Section 4), making it possible to describe the semantics of
20

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
components and tree nodes in isolation. Such transitions are made available at system-level so that the relevant rules can
exploit labels variables to fulfil the designed purpose. Our work on formalizing ABEL is also related to the work in [34]
where a similar exercise has been done for ContextErlang, a programming framework for a Context-Oriented approach to
multi-agent agents programming.

We would also like to mention two other efforts that are concerned with correctness proof of implementations. In [37],
Java code is generated from spi-calculus specifications and a simulation relation is established between the sequential part
of the spi-calculus and its translation in Java. Since only the sequential part of the calculus was considered they used a
subset of an existing API wrapper. The set of APIs used is formalized and the proofs are fully carried out, but the underlying
library implementation is abstracted and assumed correct. In [38] a parallel simulator of a multi-cores memory system is
implemented in ABS [33] and it is proved that the implementation simulates the proposed operational model of the memory
system. However, the proof is only sketched as the ABS implementation is only described informally.

Among the many works concerned with proving the correspondence between different formalisms based on their oper-
ational semantics, our work has also been influenced by [39,40]. The former presents two actor languages and a semantics
preserving translation between them, while the latter considers variants of the KLAIM language and proves their bisimilarity
under weak fairness assumption. In our case, source and target languages are very different in nature and we are concerned
with an actual implementation which requires dealing with the nondeterminism in the source language, which enabled us
to prove only similarity but not bisimilarity.

Obviously, AbC is not the only formalism for building software-intensive systems. In fact, several frameworks and runtime
environments have been proposed [41–44] for similar purposes. Many of them are based on the notions of components
and component ensembles that can be traced back to the SCEL language [45,1]. The language allows the specification of
components that during system evolution, can dynamically organize themselves into ensembles based on the components
knowledge. Helena [42] relies on the notion of role to represents the capability of components. Roles are helpful to group
different components for specific collaborative tasks. The approach is somewhat static in the sense that roles are assigned
at design time and each component must indicate the ensembles it is part of. DEECo [44] supports specifying compo-
nents and ensembles as first-class entities. Components exchange knowledge with each other in the same ensemble via a
hidden ensemble’s coordinator. Ensembles need to be specified explicitly and components memberships have to be period-
ically checked. TCOEL [43] is a more recent proposal that extends the DEECo to incorporate more expressive membership
conditions and dynamic groups formation, achieved by leveraging advanced features of Scala. By contrast to the above, com-
munication groups (ensembles) in AbC and ABEL are more abstract as they only arise on the basis of predicates satisfaction.

7. Concluding remarks

In this paper, we have presented ABEL, an implementation of the AbC calculus in Erlang and proved its correctness.
The correctness of ABEL is the result of a series of developments. First, the syntax gap between AbC and ABEL is bridged
by a translation from the former to the latter. Second, the operational details of ABEL APIs and its implementation are
distilled into a formal semantics that serves as a basis for reasoning. Third, ABEL’s coordination infrastructure is proved to
agree with the intended meaning of the parallel composition of AbC. Finally, we have shown that there is an operational
correspondence between the labelled transitions systems of ABEL and AbC. Specifically, we have proved that to any AbC
transition there correspond an ABEL transition. Thanks to the careful design of the semantics and of the translation, the
relevant correctness proofs are relatively straightforward.

Our main technical contribution is therefore the validation that the ABEL system obtained from the proposed translation
can be simulated by the original AbC specification while guaranteeing liveness. Our constructions pave the way to the
systematic development of systems via code generation from AbC specifications. And this can be done after analysing the
latter with formal tools [14,9] that permits removing early design errors (e.g., fixing concurrency bugs), as well as checking
(state-based) properties of interest.

Our proofs do not directly involve the Erlang language but an intermediate language proposed for ABEL. This is justified
by the fact that the implementations of the tree and component coordinators (Section 3.3) are not part of the language.
On the other hand, the methodology is general enough and may be used to prove implementation correctness in similar
settings. We also think that the semantics proposed in this paper can be used to guide AbC implementations in another
programming languages, in particular in actor-based ones, like Scala.

Our experience with AbC suggests that the globally synchronous semantics appears to be too demanding when large
distributed systems are considered. In many applications, any arbitrary order of the exchanged messages across distributed
components does not change the outcome (e.g., the toy system in Example 1 and others in [27]). Also, global broadcast is
not always necessary, for example when communicating between different groups or within the same group. In the future,
we would like to investigate on these practical aspects by considering to what extent we can reduce the unnecessary checks
on broadcast messages, as well as to increase the asynchrony between components execution. In addition, a type system
would be helpful to ensure predicates and attributes are used in an appropriate way.

CRediT authorship contribution statement

All authors contributed equally to this work.
21

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix. The proofs

Proof of Lemma 4.1. For any component c, its connected tree node t and all l ≥ 0, if c delivers message m = (l, _) then either t has
already delivered m or t will deliver eventually it.

Proof. The proof is by induction on message timestamp l. Let us consider the base case when l = 0. Since the message
timestamp is unique (Proposition 4.1), there can be either a) c sends m to t or b) t sends m to c.

In case a) c delivers the message m by applying either C-send, C-csend, C-fsend or C-fcsend. In all scenarios, the system
rule Send1 will eventually be applied. Since t is connected to c, Send1 appends m to the message queue q of t . By tree
node semantics, t will eventually process the message m by applying the rule T-msg that places m inside t ’s priority queue
ms. Since the local counter of t is initially 0, we know that the rule T-fwd will eventually be applied, i.e., t eventually
delivers m.

In case b) we have that t delivers the message by applying the rule T-fwd, which in turn triggers the application of the
system rule Multicast. Since t and c are connected, the message is appended to the message queue q of c. By the component
semantics, c will eventually apply the rule C-msg to place m inside the priority queue ms. Since the local counter of c is
initially 0, we know that one of the relevant component rules concerning the evaluation of m for acceptance will eventually
be applied, i.e., either C-recv, C-frecv, C-crecv or C-fcrecv. In all scenarios, we have that c eventually delivers m.

Assume that the lemma holds for some l ≥ 0 we show that it also holds for l + 1. Since c and t deliver the message
(l, _) by the hypothesis, we have that their local counters are equal to l + 1 by the fact that delivering a message increases
the local counters by 1. We can now proceed by case analysis on the possible origins of the message m = (l + 1, _) and use
similar arguments as in the base case. �
Proof of Lemma 4.3. For any component c, its connected tree node t, and any two messages m, m′ that c, t deliver, if c delivers m
before m′ then t delivers m before m′.

Proof. Since c delivers m before m′ , by definition we have that λ(m) < λ(m′). By Lemma 4.1, t also delivers m and m′ .
Therefore, t delivers m before m′ . �
Proof of Lemma 4.4. For any two inner nodes t1, t2 and any two messages m, m′ that t1, t2 deliver, if t1 delivers m before m′ then t2
delivers m before m′.

Proof. Since t1 delivers m before m′ , by definition we have that λ(m) < λ(m′). By Lemma 4.2, t2 also delivers m and m′ .
Therefore, t2 delivers m before m′ . �
Proof of Proposition 5.1. Given G(n), if there is at least one sending component in G(n) then there exists interleavings of components
execution that lead to G(n + 1).

Proof. Consider the evolution of G(n), we have that a message attached with timestamp λ = n will be sent by one of the
components. Let us denote by λ-Ci , λ-C j, . . . the events of delivering a λ-message at components Ci, C j By Theorem 4.1,
any sequence of events produced by a scheduler must satisfy the condition: ∀C∗, l ≥ 1, λ-C∗ precedes (λ + l)-C∗ . Moreover,
∀i, j . Ci 	= C j , any two events (λ + l)-Ci ,λ-C j are independent. Thus, on a particular sequence of events, whenever there is a
(λ +1)-event appears before a λ-event (at two different components), we can swap such a pair to produce the desired order.
By induction on the total number of out-of-order pairs, we will eventually obtain a schedule where all λ-events precede
any λ + 1-event. Since the λ-events cause the local counters of the components to increase by 1, the schedule results in the
consistent configuration G(n + 1). �
Proof of Lemma 5.1. Given C a single AbC component and any context ξ such that ξ [tr(C)] is capable of doing a β ′ transition. We

have that if ξ [A] ��→β ′ ∗ C′ then there exists C ′ and ξ ′ such that C
f (β ′)�−−−→ C ′ and C′ ��→τ ∗ = ξ ′[tr(C ′)], or C′ ��→τ ∗ �c ξ ′[tr(C ′)].

Proof. By case analysis on the structure of the process P of the AbC component � : P and by transition induction [46] on
the derivation of the corresponding ABEL component.

We assume any component context ξ = 〈•; con(λ, c, ms, q)〉 that satisfies the hypothesis of the lemma, for some appro-
priate values of message timestamp λ, local counter c and message queues ms, q.
22

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
a) Case of P = (Ẽ)@(�s).[ã := Ẽ ′]P ′ . We consider the corresponding ABEL runtime component C = ξ [tr(� : P)] =
〈γ , {ε, o(α, b)}; con〉 where γ = tr(�), b = tr(P ′).
There are two cases where C can perform a labelled transition: one via the rule C-snd and the other via C-frecv.

• Rule C-snd is applied. We have that 〈γ , {ε, o(α, b)}; con(c, . . .)〉 ��→!β ′ ∗〈γ ′, {ε, b}; con′(c + 1, . . .)〉 = C′ , where γ ′ =
upd(γ , ε, αu) and !β ′ = snd(ρ, (c, m)).
At the same time, the AbC component can evolve with the transition label f (!β ′) � : (Ẽ)@(�s).[ã :=
Ẽ ′]P ′ ���s(ṽ)= f (!β ′)−−−−−−−−−→ �[ã := �Ẽ ′��] : P ′ = �1 : P ′ by the application of rule BRD.
Consider the translation tr(�1) that produces an attribute environment γ1. By assuming that the upd function
used in the ABEL semantics correctly implements the update operation of AbC, we have γ1 = γ ′ . Therefore, if we
take ξ ′ = 〈•; con′(c + 1, . . .)〉, then ξ ′[tr(�1 : P)] = 〈γ1; {ε, b}; con′(c + 1, . . .)〉 = C′ .

• Rule C-frecv is applied. We have that 〈γ , o(α, b); con(c, . . .)〉 ��→:β ′ ∗〈γ , b′; con′(c + 1, . . .)〉 where :β ′ = ˜recv(c,m).

At the same time, the original AbC component can perform � : P
˜�′��′(v)= f (:β ′)−−−−−−−−−−→ � : P by the application of rule

FBRD.
Therefore, we take C ′ = C and choose ξ ′ = 〈•; con′(c + 1, . . .)〉, the pair C ′, ξ ′ satisfy the claim.

b) Case of P = (�r)(x̃).[ã := Ẽ ′]P ′ . Consider the ABEL component C = ξ [tr(� : P)] = 〈γ ; {ε, i(α, b)}; con〉 where b = tr(P ′).
This is a receiving component that can either accept or reject a message.
If C discards a message by the application of rule C-frecv, we resolve it similar to the previous sub case of
a). Let us consider the other case when rule C-recv is applied, i.e., C actually consumes a message. Accord-

ingly, 〈γ ; {ε, i(α, b}; con(c, . . .)〉 ���→?β ′ ∗〈γ ′; {σ , b}; con′(c + 1, . . .)〉 = C′ where ?β ′ = recv(c, m) for some message
m = (γs, πs, v) that satisfies the receiving condition, σ = αx v and γ ′ = upd(γ , σ , αu).

At the same time, we have that � : (�r)(x̃).[ã := Ẽ ′]P ′ �′��′(ṽ)= f (?β ′)−−−−−−−−−−→ �[ã := �Ẽ ′[ṽ/x̃]��] : P ′[ṽ/x̃] = �1 : P1 by the ap-
plication of rule RECV. The basis for this assertion is that since m satisfies the receiving predicate αr , a corresponding
message (�′, �′, ̃v) shown in the label of the above transition also satisfies the receiving predicate �r . In addition,
by using the same argument in the previous subcase of a), we have that tr(�1) = γ1 = γ .
Consider the process P1 = P [ṽ/x̃], by Definition 5.2 〈γ1; {ε, b1}; con′〉 �e 〈γ ′; {σ , b}; con′〉. Thus, if we take ξ ′ =
〈•; con′〉, then ξ ′[tr(�1 : P1)] = 〈γ ′; {σ , b}; con′〉 �e C′ .
Next, we consider two possibilities of choice, among input and output prefixes.

c) Case of P = � j∈ J (�r j)(x̃ j).[ã j := Ẽ j]P j . Encapsulating the translation tr(� : P) in ξ yields the component C =
〈γ ; {ε, ci({α j,b j}); con(c, . . .)〉, where γ = tr(�) and b j = tr(P ′

j) ∀ j ∈ J .
This component can either accept or discard a message. We consider the case where it actually consumes a message
since the other case is trivial. If C accepts some message m = (γs, πs, v) via the application of rule C-crecv j , we have
the following transition C ���→?β ′ ∗〈γ ′; {σ , bk}; con(c + 1, . . .)〉 where σ = αkx v , γ ′ = upd(γ , σ , αku), ?β ′ = recv(c, m)

with (αk, bk) the kth branch of ci(α j,b j) that consumes m.
Then the AbC component � : P can also perform an input action on some branch P ′

k with the same index k by
applying the rule SUM j . From here we can proceed similarly as in case b)

d) Case of P = � j∈ J (�r)@(Ẽ j).[ã j := Ẽ ′
j]P j . This case is resolved similar to case c) and when it comes to picking one

branch to consider, we proceed similarly as in case a).
e) Case of P = P1|P2. We have that C = E[tr(� : P)] = 〈γ ; {ε, pa(b1, b2)}; con〉 ��→τ 〈γ ; {ε, b1} {ε, b2}; con〉 = C′ via rule

C-par, where bi = tr(Pi) with i ∈ {1, 2}.
We know that the β ′ transition that C exposes is performed by one of the two processes in C′ . Hence, there are
two cases to consider. For each case, we apply induction hypothesis on a shorter derivation of the considered process
{ε, bi} to “match” it with the transition of the AbC process Pi . Because the other two corresponding parallel processes
stay unchanged in this derivation, it is straightforward to obtain the claim.
Case of P = K or P = 0. For the first case, we proceed with the process structure in the definition K . For the second
case, the proof is straightforward since the only possible derivation corresponds to rules for discarding message, i.e.,
ones expose the label :β ′ .
Case of P = 〈�a〉P ′ . The proof of this case depends on the proof for P ′ . Assume P ′ is not an awareness process (oth-
erwise we connect its awareness predicate with �a to obtain the desired form), we thus proceed with the structure
of P ′ and distribute the awareness predicate to each of the subcases. There are two scenarios. If �a evaluates to true,
all the previous considerations hold. If �a evaluates to false, the only possible derivation corresponds to rules that
discarding messages and hence is trivial to prove. �

Proof of Lemma 5.2. Given an AbC system S, if S −→ S ′ , then G = K[tr(S)] =⇒ G′ . Moreover, given S = C ‖ S1 , if C
���(ṽ)�−−−−→ C ′ and

S1
���(ṽ)−−−−→ S ′

1 and K[tr(S)] ����⇒!β ∗ =⇒ G′ , then G′ � C ′ ‖ S ′
1 , where f (!β) = � � �(ṽ).

Proof. Consider an AbC system S , since S can perform a transition we know that there at least one component in S that
can send a message. Therefore, assume that there are #s ≥ 1 sending components, then there exists one component with
23

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
some index i is actually responsible for initiating the synchronization. That is, S
�i��i(ṽ i)−−−−−→ C ′

i ‖ S ′′ , where �i, �i, ̃vi are Ci ’s
attribute environment, sending predicate and its communicated values, respectively.

Consider the corresponding ABEL system obtained from S , i.e., G =K[tr(S)].
Since originally there are #s components that can output in S , there are also #s corresponding components that can

output in G . These components will ask for message timestamps by using either rule C-out or C-cout according to the ABEL
component semantics. By Lemma 4.1, any such components will obtain a message timestamp. Since message timestamps
are unique, there exists one component, say k that obtains the smallest timestamp λ among them.

Therefore, in the sequence ⇒, G must evolve with the first transition whose label corresponds to Ck ’s sending label, i.e.,
some !β while the rest of ⇒ contains accepting or discarding labels based on β , performed by other different components

in G . More specifically, the evolution has the shape G ����⇒!β ∗ l̄=⇒ G′ with l̄ the sequence capturing the accepting or discarding
labels mentioned above. Obviously, G′ is a consistent system because all the counter values of the components get increased
by 1.

For the second part of the theorem, note that when f (!β) = �i � �i(ṽ i) then k = i. We can now use the same argument
as in the proof of Theorem 5.1 to show that the components of ABEL and AbC systems are pair-wise correspondent, thereby
concluding that G′ � S ′ . �
References

[1] R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi, A formal approach to autonomic systems programming: the SCEL language, ACM Trans. Auton. Adapt. Syst.
9 (2) (2014) 7:1–7:29.

[2] Y.A. Alrahman, R. De Nicola, M. Loreti, F. Tiezzi, R. Vigo, A calculus for attribute-based communication, in: Proceedings of the 30th Annual ACM
Symposium on Applied Computing, ACM, 2015, pp. 1840–1845.

[3] S. Anderson, N. Bredeche, A. Eiben, G. Kampis, M. van Steen, Adaptive Collective Systems: Herding Black Sheep, BookSprints for ICT Research, 2013.
[4] K.V. Prasad, A calculus of broadcasting systems, Sci. Comput. Program. 25 (2–3) (1995) 285–327.
[5] Y.A. Alrahman, R.D. Nicola, M. Loreti, On the power of attribute-based communication, in: FORTE, in: Lecture Notes in Computer Science, vol. 9688,

Springer, 2016, pp. 1–18.
[6] Y.A. Alrahman, R. De Nicola, M. Loreti, A calculus for collective-adaptive systems and its behavioural theory, Inf. Comput. 268 (2019).
[7] Y. Abd Alrahman, R. De Nicola, M. Loreti, Programming of CAS systems by relying on attribute-based communication, in: ISoLA, in: Lecture Notes in

Computer Science, vol. 9952, 2016, pp. 539–553.
[8] Y. Abd Alrahman, R. De Nicola, G. Garbi, GoAt: attribute-based interaction in Google Go, in: ISoLA, in: Lecture Notes in Computer Science, vol. 11246,

Springer, 2018, pp. 288–303.
[9] R. De Nicola, T. Duong, O. Inverso, Verifying AbC specifications via emulation, in: ISoLA, in: Lecture Notes in Computer Science, vol. 12477, Springer,

2020, pp. 261–279.
[10] Y. Abd Alrahman, R. De Nicola, M. Loreti, Programming interactions in collective adaptive systems by relying on attribute-based communication, Sci.

Comput. Program. 192 (2020) 102428.
[11] M. Loreti, J. Hillston, Modelling and analysis of collective adaptive systems with CARMA and its tools, in: SFM, in: Lecture Notes in Computer Science,

vol. 9700, Springer, 2016, pp. 83–119.
[12] V. Ciancia, D. Latella, M. Massink, On-the-fly mean-field model-checking for attribute-based coordination, in: COORDINATION, in: Lecture Notes in

Computer Science, vol. 9686, Springer, 2016, pp. 67–83.
[13] R. De Nicola, L. Di Stefano, O. Inverso, Multi-agent systems with virtual stigmergy, Sci. Comput. Program. 187 (2020) 102345.
[14] R. De Nicola, T. Duong, O. Inverso, F. Mazzanti, Verifying properties of systems relying on attribute-based communication, in: ModelEd, TestEd, TrustEd,

in: LNCS, vol. 10500, Springer, 2017, pp. 169–190.
[15] Y.A. Alrahman, R. De Nicola, M. Loreti, Programming of CAS systems by relying on attribute-based communication, in: International Symposium on

Leveraging Applications of Formal Methods, Springer, 2016, pp. 539–553.
[16] R.D. Nicola, T. Duong, O. Inverso, C. Trubiani, AErlang: empowering Erlang with attribute-based communication, in: COORDINATION, in: Lecture Notes

in Computer Science, vol. 10319, Springer, 2017, pp. 21–39.
[17] C. Ene, T. Muntean, Expressiveness of point-to-point versus broadcast communications, in: FCT, in: Lecture Notes in Computer Science, vol. 1684,

Springer, 1999, pp. 258–268.
[18] Y.A. Alrahman, R.D. Nicola, G. Garbi, M. Loreti, A distributed coordination infrastructure for attribute-based interaction, in: FORTE, in: Lecture Notes in

Computer Science, vol. 10854, Springer, 2018, pp. 1–20.
[19] X. Défago, A. Schiper, P. Urbán, Total order broadcast and multicast algorithms: taxonomy and survey, ACM Comput. Surv. 36 (4) (2004) 372–421.
[20] J. Armstrong, Making reliable distributed systems in the presence of software errors, Ph.D. dissertation, The Royal Institute of Technology, Stockholm,

2003.
[21] L.-Å. Fredlund, H. Svensson, McErlang: a model checker for a distributed functional programming language, ACM SIGPLAN Not. 42 (9) (2007) 125–136.
[22] H. Svensson, L.-A. Fredlund, A more accurate semantics for distributed Erlang, in: Erlang Workshop, 2007, pp. 43–54.
[23] H. Svensson, L.-Å. Fredlund, C. Benac Earle, A unified semantics for future Erlang, in: Proceedings of the 9th ACM SIGPLAN workshop on Erlang, ACM,

2010, pp. 23–32.
[24] R. Caballero, E. Martin-Martin, A. Riesco, S. Tamarit, A core Erlang semantics for declarative debugging, J. Log. Algebraic Methods Program. 107 (2019)

1–37.
[25] I. Lanese, N. Nishida, A. Palacios, G. Vidal, A theory of reversibility for Erlang, J. Log. Algebraic Methods Program. 100 (2018) 71–97.
[26] M. Logan, E. Merritt, R. Carlsson, Erlang and OTP in Action, Manning Publications Co., 2010.
[27] R.D. Nicola, T. Duong, M. Loreti, ABEL - a domain specific framework for programming with attribute-based communication, in: COORDINATION, in:

Lecture Notes in Computer Science, vol. 11533, Springer, 2019, pp. 111–128.
[28] R. De Nicola, T. Duong, O. Inverso, F. Mazzanti, A systematic approach to programming and verifying attribute-based communication systems, in: From

Software Engineering to Formal Methods and Tools, and Back, in: Lecture Notes in Computer Science, vol. 11865, Springer, 2019, pp. 377–396.
[29] M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Lévy, Explicit substitutions, J. Funct. Program. 1 (4) (1991) 375–416.
[30] G.L. Ferrari, U. Montanari, P. Quaglia, A pi-calculus with explicit substitutions, Theor. Comput. Sci. 168 (1) (1996) 53–103.
[31] K.V.S. Prasad, Programming with broadcasts, in: CONCUR, in: Lecture Notes in Computer Science, vol. 715, Springer, 1993, pp. 173–187.
[32] G.A. Agha, I.A. Mason, S.F. Smith, C.L. Talcott, A foundation for actor computation, J. Funct. Program. 7 (1) (1997) 1–72.
24

http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD222E3EFCC24A9EC27696C50F4A40D51s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD222E3EFCC24A9EC27696C50F4A40D51s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib76FF222A5A75A9362F40ED707C78A018s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib76FF222A5A75A9362F40ED707C78A018s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibB234855F9CF6965F94FC803C7EE37DF4s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib3E3DA1673CE1D2D3D1611246093491D6s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib47A2348FF8879368E4373D15FF5BBC58s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib47A2348FF8879368E4373D15FF5BBC58s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib4134DE308C460ED45DD8C4143A99441Cs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib13F27B1072BBF7719D0D267B083FF91Cs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib13F27B1072BBF7719D0D267B083FF91Cs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA94AA000F9A94CC51775BD5EAC97C926s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA94AA000F9A94CC51775BD5EAC97C926s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA8C84BF536F618C49F8B9DDA77285C91s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA8C84BF536F618C49F8B9DDA77285C91s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibAF9D6BBFB378E21E40DE9F0D654E51B8s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibAF9D6BBFB378E21E40DE9F0D654E51B8s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibAFB055BEC0CC84FCCEE7D5EA4F9538D3s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibAFB055BEC0CC84FCCEE7D5EA4F9538D3s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib20C4A4D9F682DDEF91D8DFFC52F81AB5s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib20C4A4D9F682DDEF91D8DFFC52F81AB5s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA69CA3B36237369D5F5C3D270B39DAFFs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib12ACE4D051F9E3717A165A9043658BBDs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib12ACE4D051F9E3717A165A9043658BBDs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibB113EA55C5FF6B7BF0D25438B3FEC279s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibB113EA55C5FF6B7BF0D25438B3FEC279s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD405451398E951E422A3F76BE700C41As1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD405451398E951E422A3F76BE700C41As1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD8C11FB19138C67DB92E16E71E9267ECs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD8C11FB19138C67DB92E16E71E9267ECs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibAE5F684F2E3336802589D6D9BE61E1A0s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibAE5F684F2E3336802589D6D9BE61E1A0s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD7828CFE815415AFB3BA02ACBD1AA2C3s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib1867ED747AAACECABB40E8E92808684Fs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib1867ED747AAACECABB40E8E92808684Fs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibF22B4F6A066EE01694CB24B1E5CEBE0Es1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib380C874C27EA5AB07105835511BD0A89s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibF32F652589FDA043FA29282414B3CD9Ds1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibF32F652589FDA043FA29282414B3CD9Ds1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibE6C42449C05817B5988AA7CF38E52D4Cs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibE6C42449C05817B5988AA7CF38E52D4Cs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib86B2948609480E4F6361774677ADB0ECs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib4FAD95FDAB86B372CA81166969404DDFs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib4DA4990BEE6C1865E02D61FD80F985C8s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib4DA4990BEE6C1865E02D61FD80F985C8s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibE106180111CA8AB28288FD338040860As1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibE106180111CA8AB28288FD338040860As1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib66001FEC3BD0903596562659F719FFFBs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib7C5C00EDCB721BE93E8D80BF7D5280DCs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibCED2F5E72F0BACC0C77A53C84F78DEE0s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib1A679548D75A42F9693C2C507F0D15ABs1

R. De Nicola, T. Duong and M. Loreti Science of Computer Programming 202 (2021) 102567
[33] E.B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: a core language for abstract behavioral specification, in: FMCO, in: Lecture Notes in
Computer Science, vol. 6957, Springer, 2010, pp. 142–164.

[34] G. Salvaneschi, C. Ghezzi, M. Pradella, ContextErlang: a language for distributed context-aware self-adaptive applications, Sci. Comput. Program. 102
(2015) 20–43.

[35] G.D. Plotkin, A structural approach to operational semantics, Tech. Rep. Computer Science Department, Aarhus University, 1981.
[36] N. Nishida, A. Palacios, G. Vidal, A reversible semantics for Erlang, in: International Symposium on Logic-Based Program Synthesis and Transformation,

Springer, 2016, pp. 259–274.
[37] A. Pironti, R. Sisto, Provably correct Java implementations of Spi Calculus security protocols specifications, Comput. Secur. 29 (3) (2010) 302–314.
[38] N. Bezirgiannis, F.S. de Boer, E.B. Johnsen, K.I. Pun, S.L.T. Tarifa, Implementing SOS with active objects: a case study of a multicore memory system, in:

FASE, in: Lecture Notes in Computer Science, vol. 11424, Springer, 2019, pp. 332–350.
[39] I.A. Mason, C.L. Talcott, Actor languages their syntax, semantics, translation, and equivalence, Theor. Comput. Sci. 220 (2) (1999) 409–467.
[40] J. Eckhardt, T. Mühlbauer, J. Meseguer, M. Wirsing, Semantics, distributed implementation, and formal analysis of KLAIM models in Maude, Sci. Comput.

Program. 99 (2015) 24–74.
[41] jRESP: Java Runtime Environment for SCEL Programs, http://jresp .sourceforge .net/.
[42] R. Hennicker, A. Klarl, Foundations for ensemble modeling – the Helena approach, in: Specification, Algebra, and Software, Springer, 2014, pp. 359–381.
[43] T. Bures, I. Gerostathopoulos, P. Hnetynka, F. Plasil, F. Krijt, J. Vinárek, J. Kofron, A language and framework for dynamic component ensembles in smart

systems, Int. J. Softw. Tools Technol. Transf. 22 (4) (2020) 497–509.
[44] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, DEECO: an ensemble-based component system, in: CBSE, ACM, 2013, pp. 81–90.
[45] R. De Nicola, G. Ferrari, M. Loreti, R. Pugliese, A language-based approach to autonomic computing, in: International Symposium on Formal Methods

for Components and Objects, Springer, 2011, pp. 25–48.
[46] R. Milner, Communication and Concurrency, PHI Series in Computer Science, Prentice Hall, 1989.
25

http://refhub.elsevier.com/S0167-6423(20)30175-1/bib0655C50071330008E030977A45ABB4A0s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib0655C50071330008E030977A45ABB4A0s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD6E1E55378112632B84EE2FD58E1B0AAs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibD6E1E55378112632B84EE2FD58E1B0AAs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib5F12A1A34FBBD10196D923BEB59DF0D4s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib3A6683095662875488328106679D49A7s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib3A6683095662875488328106679D49A7s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib747629C030C82C60C0A0152D9FD5C2F9s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib2E9C8EF59DFFA5E503F0CCF6C5C846E6s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib2E9C8EF59DFFA5E503F0CCF6C5C846E6s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib88445D17A1D6AF9F4F749C36431D707Cs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA43EF3459B2E5F5C36BFBAD88000915Fs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA43EF3459B2E5F5C36BFBAD88000915Fs1
http://jresp.sourceforge.net/
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib73FEBB8A6168FADB1D068B625252CFD4s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibBF56FE755670D8754E31ABF5BA6514F8s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibBF56FE755670D8754E31ABF5BA6514F8s1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibA84A068D823548823F4B6FE1C29CAE6Es1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibE8E45B976A6036E7C0B5AE53862EBC3Fs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bibE8E45B976A6036E7C0B5AE53862EBC3Fs1
http://refhub.elsevier.com/S0167-6423(20)30175-1/bib4C0F5F6524A382DE4DC95E93BDC0CC18s1

	Provably correct implementation of the AbC calculus
	1 Introduction
	2 AbC: a calculus for attribute-based communication
	2.1 The syntax
	2.2 Operational semantics

	3 ABEL -- a programming framework for AbC
	3.1 Programming interface
	3.2 From AbC to ABEL
	3.3 Coordination strategies

	4 Formalizing ABEL
	4.1 Component
	4.2 Tree nodes
	4.3 System
	4.4 Correctness of the tree structure

	5 Operational correspondence
	6 Related works
	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix The proofs
	References

