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Abstract

We study quantum channels that vary on time in a deterministic way, that is, they change in an
independent but not identical way from one to another use. We derive coding theorems for the classical
entanglement assisted and unassisted capacities. We then specialize the theory to lossy bosonic quantum
channels and show the existence of contrasting examples where capacities can or cannot be drawn from
the limiting behavior of the lossy parameter.

1 Introduction

Any physical process involves a state change and hence can be regarded as a quantum channel, i.e. a
stochastic map on the set of density operators [1]. As such, it results quite naturally to characterize physical
processes in terms of their ability to transmit information. Hence, much attention has been devoted to
quantum channel capacities. They were, however, mostly confined to the assumption of channels acting in
independent and identically distributed way over inputs. Only recently it has been started to go beyond this
assumption [2].

A paradigm in this direction is provided by compound quantum channels where the map, though be-
ing the same over the uses, is initially randomly selected from a given set (with possibly infinite many
elements)[3]. A more general situation is represented by arbitrarily varying quantum channels, where the
sender and receiver must deal with further uncertainty. In fact, in this case, the map is randomly chosen
(from a given set) at each use. Concerning this latter, wider class of quantum channels, the classical capac-
ity was derived in [4] under the assumption of classical-quantum channels and then extended to the fully
quantum channels in [5]. Instead, the entanglement-assisted classical capacity has been derived in [6]. In
particular, in Ref.[4] it was proved that the average error classical capacity of a classical-quantum arbitrarily
varying channel equals zero or else the random code capacity. Conditions for the latter case were found by
using the elimination (or de-randomization) technique. Then, Ref.[5] showed how the random code capac-
ity of a finite-dimensional quantum arbitrarily varying channel can be reduced to the capacity of a naturally
associated compound channel by using permutation symmetry and de Finetti reduction. The technique used
in Ref.[6] to prove a coding theorem for the entanglement-assisted classical capacity relies on the arguments
used in Ref.[7] for finite-dimensional arbitrarily varying quantum channels. That is, capacity-achieving
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codes for general compound quantum channels were used. Next a variation of the so-called robustification
and elimination techniques was borrowed from [8] as a method to extend the coding theorem to arbitrarily
varying quantum channels.

Here we want to consider channels that are varying from one use to another, not in an arbitrary (random)
way, but rather in a deterministic way. As such they cannot however be obtained as a particular case of
arbitrarily varying quantum channels, because even if we concentrate the probability measure used therein
to one item of the channels’ set, we recover the independent and identical distributed model. Instead, we
would deal with independent but not identical channels and more specifically with classical information
transmission through them. We shall derive the classical assisted and unassisted capacities formulae in a
different way with respect to Refs.[4, 5, 6]. Namely, we shall employ position-based encoding [9, 10] and
sequential decoding [11], which rely on quantum hypothesis testing and Berry-Esseen theorem [tools dis-
cussed in [12, 13, 14, 15] for finite-dimensional Hilbert spaces and in [16] for infinite-dimensional ones].
As a by-product, we obtain the validity of formulae also in the case of infinite-dimensional spaces. We then
specialize the theory in this context by considering lossy bosonic quantum channels. The study of deter-
ministic time-varying quantum channels is motivated by the fact that a determinist description is often taken
for linear time-varying channels in wireless communication (see e.g. [17]), which is almost unexplored at
the quantum level. Additionally, there are practical situations, of increasing interest for quantum commu-
nication, showing deterministically time-varying channels. One of these is provided by data transmission
from a low-orbit satellite to a geostationary satellite or ground station. In such scenarios, the received signal
power increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs,
resulting in a communication link whose time variation is known to the sender and receiver (see e.g. [18]).

The paper is organized as follows. Preliminary notions, starting from smooth quantum relative entropy,
are introduced in Section 2. In the core part of the paper, we will derive coding theorems for the classical
entanglement assisted and unassisted capacities (Sections 3 and 4 respectively). We then specialize the
theory to lossy bosonic quantum channels (Section 5) and show the existence of contrasting examples where
capacities can or cannot be drawn from the limiting behavior of the lossy parameter (Section 6). Section 7 is
for conclusions and Appendix A contains details on the deviation of smooth relative entropy from standard
relative entropy.

2 Preliminaries

Let H be a separable Hilbert space, and let T (H ) be a set of trace class linear operators acting on H .
A quantum channel NA→B is a completely positive trace preserving (CPTP) linear map from T (HA) to
T (HB).

Suppose that we have an infinite sequence N = {N A→B
k }k of quantum channels, known to both the

sender and receiver before communication begins, whence referred to as deterministic. Here we want to
address the issue of what are the classical capacities (entangled assisted and unassisted) of such a sequence
of channels. To this end we cannot resort to the standard asymptotic theory that is valid for independent and
identical channels. Rather, what we will do is to consider the one-shot capacity (see e.g. [12, 19, 10, 20, 21])
for the first n-items of the channels sequence and then let n goes to infinity. In other words, n items of the
sequence are viewed as a single (larger) channel which will be used only once and the number of bits that
can be transmitted through it with a given average error probability will be found. In doing so we need to
introduce tools like smooth quantum relative entropy[12, 19].

A density operator on H is a positive linear operator with trace equal to one. Let us consider two
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density operators ρ and σ and assume that their spectral decompositions are given by

ρ = ∑
x∈X

λxPx and σ = ∑
y∈Y

µyQy , (2.1)

where X and Y are countable index sets, {λx}x∈X and {µy}y∈Y are probability distributions with ∑x∈X λx =

∑y∈Y µy = 1, and Px,Qy are projections such that ∑x∈X Px = ∑y∈Y Qy = I.
Given a Positive Operator Valued Measure (POVM) with two elements, Π and I−Π, aimed at distin-

guishing ρ from σ , we consider a smoothed version of quantum relative entropy defined as the negative
logarithm of the minimum probability that the ‘test’ Π will fail on state σ , under the constraint that its
failure probability on state ρ is not larger than ε ∈ (0,1), that is [12, 19]

Dε
H(ρ‖σ)≡ sup

0≤Π≤I,Tr(Πρ)≥1−ε

[− logTr(Πσ)] . (2.2)

Throughout this paper log stands for log2.
The quantum relative entropy [22], its variance [15, 14, 13] and the T quantity are respectively defined

as [15, 14, 13]:

D(ρ‖σ)≡ ∑
x∈X ,y∈Y

λx Tr(PxQy) log
(

λx

µy

)
, (2.3)

V (ρ‖σ)≡ ∑
x∈X ,y∈Y

λx Tr(PxQy)

(
log
(

λx

µy

)
−D(ρ‖σ)

)2

, (2.4)

T (ρ‖σ)≡ ∑
x∈X ,y∈Y

λx Tr(PxQy)

∣∣∣∣log
(

λx

µy

)
−D(ρ‖σ)

∣∣∣∣3 . (2.5)

For given density operators ρ and σ satisfying

D(ρ‖σ),V (ρ|σ) and T (ρ‖σ)< ∞ , (2.6)

we have the following expansion

Dε
H
(
ρ
⊗n‖σ⊗n)= nD(ρ‖σ)+

√
nV (ρ‖σ)Φ−1(ε)+O(logn) , (2.7)

where

Φ(a)≡ 1√
2π

∫ a

−∞

exp
(
−x2

2

)
dx, Φ

−1(ε) = sup{a ∈R|Φ(a)< ε} . (2.8)

Relation (2.7) was proven for finite dimensional Hilbert spaces in [15, 14]. For infinite-dimensional sepa-
rable Hilbert spaces, the inequality ≤ was proven in [23, 13], while the inequality ≥ was shown in [16]. In
Appendix A, we generalize it as follows

Dε
H

(
n⊗

i=1

ρi

∥∥∥∥∥ n⊗
i=1

σi

)
=

n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1(ε)+O(logn) , (2.9)

where ρi’s and σi’s are density operators acting on H with the additional condition

lim
n→∞

6∑
n
i=1 (T (ρi‖σi))√

(∑n
i=1V (ρi‖σi))

3
= 0 . (2.10)
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3 Entanglement assisted classical capacity

In this Section we present the coding theorem for the entanglement assisted classical capacity of a determin-
istic sequence of independent channels N= {N A→B

k }k.
Suppose that channels N connect a sender Alice to a receiver Bob and they can share an arbitrary quan-

tum state ρRnAn before using the first n items of N. Here the system R (resp. A) is considered as accessible to
Bob (resp.) Alice. For positive integers n and M, and ε ∈ [0,1], an (n,M,ε) code for entanglement-assisted
classical communication consists of the resource state ρRnAn and a set {E m

An→An}m∈M of encoding channels,
where |M |= M. It also consists of a decoding POVM {Λm

RnBn}m∈M satisfying the following condition:

1
M ∑

m∈M
Tr{(IRnBn−Λ

m
RnBn)⊗n

k=1 N A→B
k (E m

An→An(ρRnAn))} ≤ ε , (3.1)

which we interpret as saying that the average error probability is no larger than ε , when using the entanglement-
assisted code described above.

The entanglement-assisted classical capacity of the first n items of N, denoted by CE(N,n,ε), is equal to
the largest value of 1

n logM (bits per channel use) for which there exists an (n,M,ε) entanglement-assisted
code as described above. The entanglement assisted classical capacity for N is defined by

CE(N)≡ lim
ε→0

lim
n→∞

CE(N,n,ε) . (3.2)

Theorem 1 Given a deterministic sequence of independent channels N = {N A→B
k }k, the entanglement

assisted classical capacity results

CE(N) = lim
n→∞

1
n

[
max
ρRA

n

∑
k=1

D
(
N A→B

k (ρRA)
∥∥∥ρR⊗N A→B

k (ρA)
)]

, (3.3)

where ρRA is a resource entangled state shared by Alice and Bob.

To prove the Theorem, we will resort to position-based encoding and sequential decoding strategy. In
other words, Alice and Bob are supposed to share M resource entangled states ρRiAi , i = 1, · · · ,M where
Bob has R systems and Alice has A systems. If Alice wants to transmit the message m through the channel
N A→B, simply selects the m’s state in her systems and sends it through the channel so that the marginal
state of Bob systems is as follows

ρR1⊗·· ·⊗ρRm−1⊗N Am→B(ρRmAm)⊗ρRm+1⊗·· ·⊗ρRM . (3.4)

Bob then to determine which message Alice transmitted, introduces M auxiliary probe systems in the state
|0〉〈0|, so that his overall state is

ω
m
RMBPM ≡ ρR1⊗·· ·⊗ρRm−1⊗N Am→B(ρRmAm)⊗ρRm+1⊗·· ·⊗ρRM ⊗|0〉〈0|P1⊗·· ·⊗ |0〉〈0|PM . (3.5)

He next performs the binary measurements {ΠRiBmPi ,Π̂RiBmPi ≡ IRiBmPi −ΠRiBmPi}, sequentially, in the order
i = 1, i = 2, etc. With this strategy, the probability that he decodes the mth message correctly is given by

Tr{ΠRmBPmΠ̂Rm−1BPm−1 · · ·Π̂R1BP1ω
m
RMBPM Π̂R1BP1 · · ·Π̂Rm−1BPm−1} . (3.6)

Applying the “quantum union bound" [16], we can bound the complementary probability (error probability)

pe(m)≡ 1−Tr{ΠRmBPmΠ̂Rm−1BPm−1 · · ·Π̂R1BP1ω
m
RMBPM Π̂R1BP1 · · ·Π̂Rm−1BPm−1} . (3.7)
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More specifically, by [16, Theorem 5.1] pe(m)≤ ε holds for all m, when

logM = Dε−η

H (N (ρRB)‖ρR⊗N (ρA))− log(4ε/η
2), (3.8)

where η ∈ (0,ε) and ε ∈ (0,1). Now, we are going to use this relation to provide a lower bound on the
position-based encoding and sequential decoding for the entangled assisted classical capacity of the channel
sequence {N A→B

k }k.

Lemma 2 A message m ∈M can be sent through the channels
⊗n

k=1 Nk with pe(m)≤ ε by choosing

logM =
n

∑
k=1

D
(
N A→B

k (ρRA)
∥∥∥ρR⊗N A→B

k (ρA)
)

+

√
n

∑
k=1

V
(
N A→B

k (ρRA)
∥∥ρR⊗N A→B

k (ρA)
)
Φ
−1
(

ε− 1√
n

)
+O(logn) . (3.9)

Proof. By replacing N A→B with
⊗n

k=1 N A→B
k and letting Λn

Rn
i Bn be a measurement operator such that

Λ
n
Rn

i Bn = argmaxΛ

(
Dε

H

(
n⊗

k=1

N Ai→B
k (ρRiAi)

∥∥∥ n⊗
k=1

ρRi⊗N Ai→B
k (ρAi)

))
, (3.10)

we can get from (3.8)

logM = Dε−η

H

(
n⊗

k=1

N A→B
k (ρRA)

∥∥∥ n⊗
k=1

ρR⊗N A→B
k (ρA)

)
− log

(
4ε

η2

)
. (3.11)

Next, setting η = 1/
√

n, with the second order asymptotic relation (2.9) we arrive at

logM =
n

∑
k=1

D
(
N A→B

k (ρRA)
∥∥ρR⊗N A→B

k (ρA)
)
+

+

√
n

∑
k=1

V
(
N A→B

k (ρRA)‖ρR⊗N A→B
k (ρA)

)
Φ
−1
(

ε− 1√
n

)
+O(logn) , (3.12)

with the condition

lim
n→∞

6∑
n
k=1
[
T
(
N A→B

k (ρRA)‖ρR⊗N A→B
k (ρA)

)]√[
∑

n
k=1V

(
N A→B

k (ρRA)‖ρR⊗N A→B
k (ρA)

)]3 = 0 . (3.13)

Proof. Theorem 1. The direct part is based on the result of Lemma 2 which provides a lower bound for the
capacity, namely

nCE(N,n,ε)≥max
ρRA

n

∑
k=1

D
(
N A→B

k (ρRA)
∥∥ρR⊗N A→B

k (ρA)
)

+

√
n

∑
k=1

V
(
N A→B

k (ρRA)‖ρR⊗N A→B
k (ρA)

)
Φ
−1
(

ε− 1√
n

)
+O(logn) . (3.14)
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For the converse part, since the channels are independent, though not identical, it is like to have them used
in parallel, hence

nCE(N,n,ε)≤max
ρRA

n

∑
k=1

D
(
N A→B

k (ρRA)
∥∥ρR⊗N A→B

k (ρA)
)
. (3.15)

Remark 3 From Eqs.(3.14) and (3.15) it is evident that, by taking the limit n→ ∞, the dependence on ε

disappears. Hence the subsequent limit ε → 0 results superfluous.

Remark 4 For arbitrarily varying quantum channel, Ref. [6], the encoding depends on the dimension of
input Hilbert space and so the capacity formula cannot work in the infinite dimensional case, while here we
do not have such a restriction.

4 Unassisted classical capacity

This Section is devoted to the coding theorem for the unassisted classical capacity of a deterministic se-
quence of independent channel N= {N A→B

k }k.
Suppose that channels N connect a sender Alice to a receiver Bob. For positive integers n and M, and

ε ∈ [0,1], an (n,M,ε) code for classical communication consists of a set {ρm
An} of separable quantum states

across systems Ak, which are called quantum codewords, and where |M |= M. It also consists of a decoding
POVM {Λm

Bn}m∈M satisfying the following condition:

1
M ∑

m∈M
Tr{(IBn−Λ

m
Bn)⊗n

k=1 N A→B
k (ρm

An)} ≤ ε , (4.1)

which we interpret as saying that the average error probability is no larger than ε , when using the quantum
codewords and decoding POVM described above.

The unassisted classical capacity with separable inputs of the first n items of N, denoted by C(N,n,ε),
is equal to the largest value of 1

n logM (bits per channel use) for which there exists an (n,M,ε) code as
described above. The unassisted classical capacity for N is defined by

C(N)≡ lim
ε→0

lim
n→∞

C(N,n,ε) . (4.2)

Theorem 5 Given a deterministic sequence of independent channel N= {N A→B
k }k, the unassisted classi-

cal capacity with separable inputs results

C(N) = lim
n→∞

1
n

[
max
ρXnAn

n

∑
k=1

D
(
N A→B

k (ρXAk)
∥∥∥ρX ⊗N A→B

k (ρAk)
)]

, (4.3)

where
ρXnAn = ∑

xn∈X n

p(xn) |xn〉〈xn|⊗ρ
xn

An (4.4)

is a classical-quantum state, with |xn〉 ∈H ⊗n
X orthonormal states (being HX a separable Hilbert space)

and ρxn

An =
(

ρ
x1
A1
⊗ . . .⊗ρ

xn
An

)
.
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Given a classical-quantum channel x → ρx
B, we know from [24] that there exists an encoding and

position-based decoding for choosing

logM = Dε−η

H (ρXB‖(ρX ⊗ρB))− log(4ε/η
2), (4.5)

where η ∈ (0,ε), ε ∈ (0,1) and
ρXB = ∑

x
p(x)|x〉〈x|⊗ρ

x
B , (4.6)

with ρx
B≡N (ρx

A). In other words, there exist an encoding m→ ρ
xm
A and position-based POVM {Λxm

B }M
m=1 as

decoder such that, according to (4.1), and together with [16, Theorem 5.1], pe(m)≤ ε holds for all m ∈M .

Lemma 6 A message m ∈M can be sent through the channels
⊗n

k=1 Nk with pe(m)≤ ε by choosing

logM =
n

∑
k=1

D
(
N A→B

k (ρRA)
∥∥ρR⊗N A→B

k (ρA)
)

+

√
n

∑
k=1

V
(
N A→B

k (ρRA)‖ρR⊗N A→B
k (ρA)

)
Φ
−1
(

ε− 1√
n

)
+O(logn) . (4.7)

Proof. If we replace ρXB with
⊗n

i=1 ρXBi in Eq.(4.5), then we have

logM=Dε−η

H

(
n⊗

k=1

ρXBk

∥∥∥ n⊗
k=1

(ρX ⊗ρBk)

)
− log(4ε/η

2) . (4.8)

As a consequence, following the arguments of Lemma 2, we can get

logM(ε)=
n

∑
k=1

D(ρXBk‖ρX ⊗ρBk)+

√
n

∑
k=1

V (ρXBk‖ρR⊗ρBk)Φ
−1
(

ε− 1√
n

)
+O(logn) , (4.9)

with the condition

lim
n→∞

6∑
n
k=1 (T (ρXBk‖ρX ⊗ρBk))√

(∑n
k=1V (ρXBk‖ρX ⊗ρBk))

3
= 0 . (4.10)

Proof. Theorem 5. The direct part is based on the result of Lemma 6 which provides a lower bound for the
capacity, namely

nC(N,n,ε)≥max
ρXAn

[
n

∑
k=1

D(ρXBk‖ρX ⊗ρBk)+

√
n

∑
k=1

V (ρXBk‖ρR⊗ρBk)Φ
−1
(

ε− 1√
n

)
+O(logn)

]
.

(4.11)

For the converse part, since the channels are independent, though not identical, it is like to have them used
in parallel, hence from the Holevo bound we have

nC(N,n,ε)≤max
ρXAn

n

∑
k=1

D(ρXBk‖ρX ⊗ρBk) . (4.12)

7



Remark 7 From Eqs.(4.11) and (4.12) it is evident that, by taking the limit n→ ∞, the dependence on ε

disappears. Hence the subsequent limit ε → 0 results superfluous.

Remark 8 We have employed the hypothesis testing based on the Berry-Esseen theorem to get the formula
(4.9) as average of relative entropies of single channels. In contrast for arbitrarily varying quantum chan-
nels, Ref.[4], it was used the sum of n entropies greater than n times the smallest of them. Furthermore, in
case we consider a finite dimensional Hilbert space, and parallel the error bound (4.9) with that obtained for
arbitrarily varying quantum channels [4], we note that the former only depends on the number of channel
uses, while the latter also on the size of channels’ set.

5 Memoryless but not identical Gaussian lossy channels

Since the coding Theorems 1 and 5 were derived without any restriction on the dimensionality of Hilbert
spaces, they can be straightforwardly applied to continuous variable (bosonic) quantum channels.

We shall focus on a sequence of Gaussian lossy channels (each acting on a single bosonic mode)
{Nηk}∞

k=1, where ηk ∈ (0,1) is the trasmissivity characterizing the kth channel. As customary we shall
also consider an average energy N per channel use, so to have the constraint

n

∑
k=1

Nk = nN , (5.1)

on the effective energy Nk employed at kth use.

5.1 Entangled assisted classical capacity

We consider Alice and Bob sharing M two-mode squeezed state each with photon mean number Nk. We
want to see how the capacity resulting from Theorem 1 is approached over channel uses.

In Ref.[25] it has been shown that

D
(
N k

A→B(ρRA)‖ρR⊗N k
A→B(ρA)

)
= g(Nk)+g(ηkNk)−g((1−ηk)Nk) , (5.2)

where g(x)≡ (x+1) log(x+1)− x logx. In addition, the quantum relative entropy variance is computed in
[13] as

V
(
N k

A→B(ρRA)‖ρR⊗N k
A→B(ρA)

)
= (1−ηk)Nk ((1−ηk)Nk +1)

[
log
(

1+
1

(1−ηk)Nk

)]2

−2(1−ηk)Nk(Nk +1) log
(

1+
1

(1−ηk)Nk

)
log
(

1+
1

Nk

)
+Nk(Nk +1)

[
log
(

1+
1

Nk

)]2

. (5.3)

According to Theorem 1 and (5.2) we now need to maximize the quantity

n

∑
k=1

[g(Nk)+g(ηkNk)−g((1−ηk)Nk)] , (5.4)

8



with respect to Nk. This amounts to set

δ {Eq.(5.4)}=
n

∑
k=1

[
g′ (Nk)+ηkg′ (ηkNk)− (1−ηk)g′ ((1−ηk)Nk)

]
δNk = 0, (5.5)

where g′ stands for the derivative of g with respect to its argument. From the energy constraint (5.1) we
further have

δ

{
n

∑
k=1

Nk

}
=

n

∑
k=1

δNk = 0. (5.6)

Using a Lagrange multiplier β we get

n

∑
k=1

[
g′ (Nk)+ηkg′ (ηkNk)− (1−ηk)g′ ((1−ηk)Nk)−β

]
δNk = 0. (5.7)

Solving the set of n+1 equations
g′ (Nk)+ηkg′ (ηkNk)− (1−ηk)g′ ((1−ηk)Nk)−β = 0

∑
n
k=1 Nk = nN

, (5.8)

allows us to find the Nk and β giving

nCE({Nηk},n)≡max
Nk

n

∑
k=1

[g(Nk)+g(ηkNk)−g((1−ηk)Nk)] . (5.9)

where CE({Nηk},n) denotes the upper bound on CE({Nηk},n,ε). Clearly limn→∞CE({Nηk},n,ε)=CE({Nηk}).
The variance of the quantum relative entropy CE({Nηk},n) can be obtained by means of (5.3) as

1
n2

n

∑
k=1

V
(
N k

A→B(ρRA)‖ρR⊗N k
A→B(ρA)

)
. (5.10)

5.2 Unassisted classical capacity

Here we want to see how the capacity resulting from Theorem 5 is approached over channel uses.
From Ref. [26], we know that

D(ρXBk‖ρX ⊗ρBk) = g(ηkNk) , (5.11)

and
V (ρXBk‖ρX ⊗ρBk) = ηkNk(ηkNk +1) [log(ηkNk +1)− log(ηkNk)]

2 . (5.12)

Then, according to Theorem 1 and (5.2) we now need to maximize the quantity

n

∑
k=1

g(ηkNk), (5.13)

with respect to Nk.

9



Proceeding like in the previous section, using a Lagrange multiplier β and imposing (5.1), we get
g′ (Nk)−β = 0

∑
n
k=1 Nk = nN

. (5.14)

Solving this set of n+1 equations allows us to find the Nk and β giving

nC({Nηk},n)≡max
Nk

n

∑
k=1

[g(Nk)] . (5.15)

where C({Nηk},n) denotes the upper bound on C({Nηk},n,ε). Clearly limn→∞C({Nηk},n) =C({Nηk}).
The variance of the quantum relative entropy C({Nηk},n) can be obtained by means of (5.12) as

1
n2

n

∑
k=1

V (ρXBk‖ρX ⊗ρBk). (5.16)

6 Examples

We now apply the results of Sec.5 to some specific cases study, i.e. specific sequences of lossy channels.

6.1 Example 1

Consider
ηk = η +ηe−(k−1)2/∆, 0 < η ,η <

1
2
. (6.1)

After a transient (whose extension is determined by ∆) the channel reaches a transmissivity η (see Fig.1).
The distribution of input energy shows a similar behavior to transmissivity (see Fig.1). Note however that
the sequence of input energies {N(n)

k }k depends on the number n of channel uses.

0 20 40 60 80 100

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100

0.4

0.6

0.8

1.0

1.2

Figure 1: Q
uantities ηk (dashed line) and N(n)

k (solid line) vs k for n = 100. On the left (resp. right) is the case for
entanglement assisted (resp. unassisted) classical communication. It is ∆ = 5. The values of other

parameters are η = 0.4,η = 0.1,N = 1.

For this example the capacity CE({Nηk}) can be guessed by simply computing CE({Nlimk→∞ ηk},n = 1)
(see Fig.2 left). Analogous argument holds true for C({Nηk}), i.e. it can be guessed by simply computing
C({Nlimk→∞ ηk},n = 1) (see Fig.2 right).
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Figure 2: (Left) CE({Nηk},n) vs n for ∆ = 5 (solid line). The bottom (resp. top) dashed line repre-
sents the capacity g(N)+g(ηN)−g((1−η)N) (resp. g(N)+g((η +η)N)−g((1− (η +η))N)). (Right)
C({Nηk},n) vs n for ∆ = 5 (solid line). The bottom (resp. top) dashed line represents the capacity g(ηN)
(resp. g((η +η)N)). The values of other parameters are η = 0.4,η = 0.1,N = 1.

In Fig.3 we report the variances (5.10) and (5.16) as functions of n. As one can see the variance of
CE({Nηk},n) converges faster than that of C({Nηk},n).

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

Figure 3: Variance of CE({Nηk},n) (solid line) and of C({Nηk},n) (dashed line) vs n for ∆ = 5,η =
0.4,η = 0.1,N = 1.

6.2 Example 2

Consider

ηk = η +η

∣∣∣∣sin
(

k−1
∆

+
π

2

)∣∣∣∣ , 0 < η ,η <
1
2
. (6.2)

In this case we have an oscillatory behavior of ηk (whose frequency is determined by ∆), as can be seen in
Fig.4. The distribution of input energy still follows the behavior of transmissivity.
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Figure 4: Quantities ηk (dashed line) and N(n)
k (solid line) vs k for n = 100. On the left (resp. right) is the

case for entanglement assisted (resp. unassisted) classical communication. It is ∆ = 5. The values of other
parameters are η = 0.4,η = 0.1,N = 1.

In this case the capacities cannot be guessed by the limk→∞ ηk, because this latter does not exist, however
the bound CE({Nηk},n), after transient oscillations depending on ∆, converges to a well definite value for
n→ ∞ (see Fig.5 left). The same happens for the bound C({Nηk},n) (see Fig.5 right).

0 20 40 60 80 100
1.0

1.1

1.2

1.3

1.4

1.5

0 20 40 60 80 100
0.75

0.80

0.85

0.90

0.95

1.00

Figure 5: (Left) CE({Nηk},n,ε) vs n for ∆ = 5 (solid line). The bottom (resp. top) dashed line repre-
sents the capacity g(N)+g(ηN)−g((1−η)N) (resp. g(N)+g((η +η)N)−g((1− (η +η))N)). (Right)
CE({Nηk},n,ε) vs n for ∆= 5 (solid line). The bottom (resp. top) dashed line represents the capacity g(ηN)
(resp. g((η +η)N)). The values of other parameters are η = 0.4,η = 0.1,N = 1.

As for what concerns the variance of CE({Nηk},n) and of C({Nηk},n), the behavior is quite similar to
that of Fig.3.

7 Conclusion

In conclusion, we studied quantum channels that vary from one to another use in a deterministic way. To
analyze their ability in transmitting classical information we resorted to a smoothed version of quantum
relative entropy. As the first result, we derived a generalization of the relation between smooth and standard
quantum relative entropies to the case of tensor product of non-identical density operators, which is valid
also for separable Hilbert spaces (Eq.(2.9)). We then proved coding theorems for the classical entanglement
assisted and unassisted capacities (Theorems 1 and 5 respectively). For that, we used position-based coding
and quantum union bound applied to sequential decoding. The results were then adapted, with the help
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of input energy constraints, to continuous variable quantum channels, specifically lossy bosonic. Finally,
enlightening examples were put forward in this context. They show that only when the sequence of channels
parameter has a well defined limit, the capacities can be easily evaluated. The approach taken allowed us to
evaluate the maximum transmission rate for any number of channel uses and estimate the error.

The natural extension of this work would be the study of time-varying channels in a non-deterministic
way. Quite generally channels that are selected over the uses according to a probability distribution that
is itself varying from one to another use, thus generalizing the arbitrarily varying channel model. We are
confident that the mathematical tools developed here will be useful to this end. In another direction, one
can pursue the quantum capacity of the introduced sequences of channels, which however needs slightly
different tools.
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A Second-order asymptotic

In this Appendix we derive Eq.(2.9), which represents a generalization of the relation between smooth and
standard quantum relative entropies to the case of tensor product of non identical density operators, which
is valid also for separable Hilbert spaces. The proof of inequality ≥ in Eq.(2.9) is based on [23, 14, 16].

Let us assume ρi,σi, for i = 1,2, . . . be full rank density operators on Hilbert space H . Let us consider
their spectral decompositions as follows

ρi = ∑
xi

λxiPxi , (A.1)

and
σi = ∑

yi

µyiQyi . (A.2)

We also define two distributions for any two density operators ρ = ∑x λxPx and σ = ∑x µxQy as follows

Pρ,σ = λx Tr(PxQy) , (A.3)

and
Qρ,σ = µy Tr(PxQy) . (A.4)

We then introduce
Pn

ρ,σ (x1, . . . ,xn) = ∏
i

Pρ,σ (xi) , (A.5)

and
Qn

ρ,σ (x1, . . . ,xn) = ∏
i

Qρ,σ (yi) . (A.6)

Lemma 9 Let ρ and σ be two density operators acting on a separable Hilbert space H . For a given
number L, there exists a measurement operator TL (0≤ TL ≤ I ) such that

Tr(TLρ)≥ Pr(Z ≥ logL), Tr(TLσ)≤ 1
L
, (A.7)

where Z is a random variable defined by Z ≡ logPρ,σ (X)− logQρ,σ (X).
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Let Z̄ = 1
n ∑i Zi be the average over n independent but not identical random variables Zi = logPρ,σ (Xi)−

logQρ,σ (Xi). For each i, set

µi ≡ D(Pρi,σi‖Qρi,σi) = D(ρi‖σi), s2
i ≡V (Pρi,σi‖Qρi,σi) =V (ρi‖σi), (A.8)

and
tn ≡ E

(
(Zn−µi)

3)= E
(
| logPi(Xi)− logQi(Xi)−D(P‖Q)|3

)
. (A.9)

Now, we use the following Theorem which is a generalization of the central limit Theorem for independent
but not identical random variables.

Theorem 10 [27]. Let the {Xn} be random variables such that

E(Xn) = 0, E(X2
n ) = s2

n, E(|Xn|3) = tn , (A.10)

Put
s̃2

n = s2
1 + · · ·+ s2

n, t̃n = t1 + · · ·+ tn , (A.11)

and denoted by Pn the distribution of the normalized sum (X1 + · · ·+ Xn)/s̃n, then under the following
condition

lim
n→∞

6t̃n
s̃3

n
= 0 , (A.12)

for all x and n, we have ∣∣∣∣Pn
(

X1 + · · ·+Xn

s̃n
≤ x
)
−Φ(x)

∣∣∣∣≤ 6t̃n
s̃3

n
, (A.13)

where
Φ(x)≡

∫ x

−∞

1√
2π

e−y2/2dy . (A.14)

Proposition 11 Let ρ1,ρ2, · · · and σ1,σ2, · · · denote states acting on a separable Hilbert space H . Suppose
that D(ρi‖σi),V (ρi‖σi),T (ρi‖σi) < ∞ and V (ρi‖σi) > 0, for each i = 1,2,3, · · · . Suppose n is sufficiently
large such that ε− 6∑

n
i=0[T (ρi‖σi)]√

[∑n
i=0 V (ρi‖σi))]

3 ≥ 0. Then

Dε
H

(
n⊗

i=1

ρi

∥∥∥ n⊗
i=1

σi

)
=

n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1

ε− 6∑
n
i=0 [T (ρi‖σi)]√

[∑n
i=0V (ρi‖σi))]

3

 (A.15)

=
n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1(ε)+O(logn). (A.16)

Proof. (Part ≥) Applying the Berry–Esseen theorem [27] to the random sequence Z1−D(ρ1‖σ1), . . . ,
Zn−D(ρn‖σn), we find that ∣∣∣∣∣∣Pr

 Zn√
[∑n

i=0V (ρi‖σi))]
3
≤ x

−Φ(x)

∣∣∣∣∣∣≤ α(n), (A.17)
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where Zn ≡ 1
n ∑

n
i=1 [Zi−D(ρi‖σi)] and α(n)≡ 6∑

n
i=0[T (ρi‖σi)]√

[∑n
i=0 V (ρi‖σi))]

3 , which implies that

Pr


n

∑
i=1

Zi ≤
n

∑
i=1

D(ρi‖σi)+nx

√√√√[ n

∑
i=0

V (ρi‖σi))

]3
≤Φ(x)+α(n). (A.18)

Picking x = Φ−1
(

ε− 6·t̃n
s̃3

n

)
, this becomes

Pr

{
n

∑
i=1

Zi ≤
n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1(ε−α(n))

}
≤ ε. (A.19)

Choosing L such that

logL =
n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1(ε−α(n)) , (A.20)

and applying Lemma 9, we find that

Tr{T n
n⊗

i=1

ρi} ≥ Pr

{
n

∑
i=1

Zi ≥ logL

}
= 1−Pr

{
n

∑
i=1

Zi ≤ logL

}
≥ 1− ε, (A.21)

while

Tr{T n
n⊗

i=1

σi} ≤
1
L
= exp

{
−

[
n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1(ε−α(n))

]}
. (A.22)

This implies that

− logTr

{
T n

n⊗
i=1

σi

}
≥

n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1(ε−α(n)) . (A.23)

Since Dε
H(
⊗n

i=1 ρi‖
⊗n

i=1 σi) involves an optimization over all possible measurement operators T n satisfying
Tr{T n⊗n

i=1 ρi} ≥ 1− ε , we conclude that the bound ≥ in (A.15) holds true. The equality (A.16) follows
from expanding Φ−1 at the point ε using Lagrange’s mean value theorem.

(Part ≤) We use the following

Theorem 12 [8] Let ρ and σ be density operators acting on a separable Hilbert space H , let T be a
measurement operator acting on H and such that 0≤ T ≤ I, and let ν ,θ ∈R. Then

e−θ Tr{(I−T )ρ +Tr{T σ} ≥ e−η

1+ eν−θ
Pr{X ≤ ν} , (A.24)

where X is a random variable taking values log(λx/µy) with probability λx Tr(PxQy).

Then, the proof closely follows the proof of Proposition 2 in [13], which is based on [23]. Choosing

νn =
n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1
(

ε +
2√
n
+α(n)

)
, (A.25)
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and θn = νn +
1
2 logn, we get

Tr{T n⊗n
i=1 σi} ≥

{
e−∑

n
i=1 D(ρi‖σi)−

√
∑

n
i=1 V (ρi‖σi)Φ

−1(ε+2n−1/2+α(n))− 1
2 logn

}( 1
1+n−1/2

)
, (A.26)

where Tr
{
(I⊗n−T n)⊗n

i=1 ρi
}
≤ ε . In this way we find

− logTr{T n⊗n
i=1 σi} ≤

n

∑
i=1

D(ρi‖σi)+

√
n

∑
i=1

V (ρi‖σi)Φ
−1(ε +2n−1/2 +α(n))+

1
2

logn− log
1

1+n−1/2 .

(A.27)
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