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ABSTRACT: The effective use of swift ion beams in cancer treatment (known as hadrontherapy) as well
as appropriate protection in manned space missions rely on the accurate understanding of the energy
delivery to cells that damages their genetic information. The key ingredient characterizing the response of a
medium to the perturbation induced by charged particles is its electronic excitation spectrum. By using
linear-response time-dependent density functional theory, we obtained the energy and momentum transfer
excitation spectrum (the energy-loss function, ELF) of liquid water (the main constituent of biological
tissues), which was in excellent agreement with experimental data. The inelastic scattering cross sections
obtained from this ELF, together with the elastic scattering cross sections derived by considering the
condensed phase nature of the medium, were used to perform accurate Monte Carlo simulations of the
energy deposited by swift carbon ions in liquid water and carried away by the generated secondary
electrons, producing inelastic events such as ionization, excitation, and dissociative electron attachment
(DEA). The latter are strongly correlated with cellular death, which is scored in sensitive volumes with the
size of two DNA convolutions. The sizes of the clusters of damaging events for a wide range of carbon-ion
energies, from those relevant to hadrontherapy up to those for cosmic radiation, predict with
unprecedented statistical accuracy the nature and relative magnitude of the main inelastic processes contributing to radiation
biodamage, confirming that ionization accounts for the vast majority of complex damage. DEA, typically regarded as a very relevant
biodamage mechanism, surprisingly plays a minor role in carbon-ion induced clusters of harmful events.

The interaction of swift ions with matter is used to probe
its structure, characterize and modify materials proper-

ties, or design microdevices.1 Energetic ion beams have also
found an application in treating cancer (hadrontherapy) owing
to their peculiar energy delivery to the target material, which is
characterized by a depth-dose profile with a sharp peak (a so-
called Bragg peak) at the end of their range where they
produce severe cell damage while sparing both traversed and
deeper-located healthy tissues.2−4 The higher spatial resolution
of the dose delivered by ion beams as compared to that of
conventional radiation (photons and electrons) is not their
only advantage. The capacity of high linear-energy-transfer
(LET) ions, such as carbon ions, to produce complex DNA
lesions that eventually lead to cell killing is very promising for
developing more effective oncological treatments5,6 when
radiation damage to the surrounding normal tissue could be
dangerous or even deadly.7

On the other hand, highly energetic ions with a high atomic
number are also abundant in cosmic radiation. This fact poses
risks to the safety of humans and devices onboard space
stations, representing a serious challenge for space explora-
tion.8,9 Even the required coherence in quantum computers
can be destroyed by cosmic rays.10

Achieving optimal results for selective cell destruction
requires an understanding of the fundamental processes that
produce most harmful lesions occurring at the cellular level.

Among these, the clustering of the sugar−phosphate strand
and base pair breaks in the DNA structure are mostly lethal in
terms of cell survival.11−13 Such clustered DNA lesions might
be induced by several physical and chemical mechanisms.14,15

Although indirect chemical effects can account for a large
fraction of the biodamage,16 their contributions are below 50%
for high LET ions, such as carbon around the Bragg peak
region.17 As for the direct physical events, these are mainly
produced by the secondary electrons abundantly generated by
the incident ions. In particular, the latter can induce electronic
excitations and ionizations as well as dissociative electron
attachment (DEA) at energies of a few electronvolts, leading to
molecular fragmentation. Since most of the electrons are
ejected with energies below 50 eV, DEA has been regarded as
especially relevant to biodamage.18

In contrast, current physical approaches to measure
clustered inelastic events in targets with a DNA size, referred
to as nanodosimetry,19,20 are based on the exclusive measure-
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ment of ionizing collisions (in gas-phase detectors, which
cannot asses the role of indirect chemical events). In this
context, it is crucial to precisely determine the relative
contribution to clustered DNA damage for carbon ions due
to the different direct interaction mechanisms. This problem
can be carefully addressed either analytically, such as within the
multiscale approach to the physics of radiation damage with
ions,21−23 or numerically by means of track-structure Monte
Carlo (MC) simulations provided that reliable cross sections of
the different interaction mechanisms with the target medium
are used.2 Typically, radiation transport is studied in liquid
water, which is conventionally considered a good proxy for
biological tissue due to being its main constituent.
In this work we accurately describe the liquid water

electronic excitation spectrum from first-principles and
simulate in detail, with remarkably high statistics, the processes
occurring around the swift carbon-ion track. The relative roles
of ionizations, dissociative electronic excitations, and DEA in
regard to the clustering of damaging events in the medium are
quantified for the first time from typical ion energies around
the Bragg peak, which are useful in hadrontherapy, to cosmic
ray energies, which are relevant to space missions.
The interaction of charged particles through a medium

depends mainly on its electronic excitation spectrum encoded
in the energy loss function ELF(ℏk, E),24,25 where ℏk and E
are the momentum and energy transfer, respectively. The ELF,
conveniently weighted and integrated, provides the proba-
bilities for the most important inelastic scattering processes
occurring at the passage of charged particles inside a
condensed medium.2 Liquid water is the most abundant
constituent of living beings; thus, a great deal of effort has been
expended to obtain its ELF over the Bethe surface (ℏk, E).
Unfortunately, this quantity is only known experimentally for a
limited range of excitation energies E and a finite set of
momentum transfers ℏk.26−28 This lack of data hinders the
study of energetic particles moving through biological media.
Theoretical estimates could fill the gap of the required data.

However, ab initio computations, being mostly carried out for
water in the gas phase instead of the liquid (i.e., condensed)
state that appears in living tissues, typically do not compare
well with the available experimental data over the entire Bethe
space. Moreover, first-principles simulations are cumbersome
because of their high computational cost, particularly when
dealing with a paradigmatic disordered system characterized by
a large degree of amorphousness, such as liquid water. In
principle, the computational complexity of calculating the ELF
by time-dependent density functional theory (TDDFT) for all
ℏk and E is largely due both to the size of the supercell
necessary to describe its noncrystalline structure and the need
to simulate a number of different molecular configurations to
achieve the statistical significance of the averaged final result.
However, to cut off the prohibitively expensive task of realizing
an ensemble of statistically independent optimized water
configurations, we limit our analysis to one particular cell
configuration (32 water molecules at the experimental density
in room conditions, ρ = 1 g/cm3), assuming that the ELF is
independent of the molecular configuration as shown in ref. 29
for its optical response. The Supporting Information details the
procedure to generate a (periodic) water supercell as well as
the methods for computing the electronic excitation spectrum.
Figure 1 depicts the calculated ELF of liquid water compared
to the available experimental data,26−28 showing an excellent
agreement in a wide range of energy and momentum transfers.

The passage of swift charged particles through a medium
prompts the generation of secondary electrons, which leads to
subsequent cascade processes where these secondaries produce
further electrons. All these charged particles lose energy and
change their direction of motion by colliding with the medium
constituents. It is currently admitted that the collision of
secondary electrons with DNA from biological tissues can
trigger irreparable damage if critical events, such as bond
breaking of the nucleobase pairs or the sugar−phosphate chain,
occur. The biodamage effectiveness increases when these
episodes happen close enough (i.e., clustering) in the DNA
molecule, as these events hamper the repair mechanisms.13,30

The occurrence of these damaging events strongly depends on
the energy with which the electrons reach the DNA molecule.
Therefore, it is crucial to accurately know the characteristic
energy range of the electrons reaching typical DNA volumes to
better characterize the physical stage in radiation biodamage.
The main quantities for studying the generation, prop-

agation, and effects of the secondary electrons produced by
energetic ion beams in condensed phase media are the
probability of ionization and the energy and angular
distributions of the emitted electrons. These quantities are
encoded in the inelastic scattering cross sections, which can be
accurately calculated using the dielectric formalism2,24,25 once
the projectile (mass, charge, and energy) and medium
(electronic excitation spectrum) characteristics are known.
The procedure to obtain these cross sections is presented in
the Supporting Information.
The doubly differential cross section (DDCS) for the

angular distribution of electrons ejected with energy W per
unit solid angle dΩ can be obtained from the ELF31 using the
procedure also described in the Supporting Information. This
DDCS is depicted in Figure 2a together with available
experimental measurements in the gas phase for carbon ions
of the kinetic energy T = 6 MeV/u.32 The agreement with the
experimental data is fairly good for a wide range of electron
energies W and angles θ, despite the phase differences between
the calculations and the experiments. It is worth noting the

Figure 1. Energy-loss function (ELF) of liquid water as a function of
the energy E and the momentum ℏk transfer. Black continuous curves
represent TDDFT calculations, whereas symbols correspond to
experimental data.26−28
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rather isotropic angular distribution of the lower-energy
electrons.
The appropriate integration of the electronic excitation

spectrum for all possible values of the momentum transfer ℏk
provides the singly differential cross section (SDCS) of
emission of electrons with energy W (see the Supporting
Information). Figure 2b compares the calculated SDCS with
the available experimental data for water vapor for several
incident carbon-ion kinetic energies T from the typical values
at the Bragg peak in hadrontherapy (0.2 MeV/u) to the very
high ones appearing in cosmic radiation (1 GeV = 83.33 MeV/
u). The comparison with measurements at T = 6 MeV/u32

shows a good accordance, which is within the experimental
error bars. Secondary-electron energy distributions are
characterized by a peak at W ≃ 10 eV that rapidly decreases
at higher energies. The SDCSs drop to zero at the maximum
energy at which secondary electrons can be ejected. The
abundance of low-energy electrons to which a significant role
in clustered damage on the nanometer scale is attributed12,18,33

is remarkable.
The energy transferred by the carbon ions to secondary

electrons is carried away from the ion path as they propagate
through the medium, where they undergo elastic collisions
(leading to trajectory deviation) and inelastic interactions
(resulting in electronic excitations, further ionizations,
electron−phonon coupling, and trapping phenomena). Elec-
tron elastic scattering is reckoned with in this work by directly
solving the Dirac−Hartree−Fock equation for a cluster of six
water molecules to account for multiple scattering from the
surrounding water molecules in the liquid phase by using a
projected-potential approach44,45 based on Gaussian func-
tions44−46 (see the Supporting Information for further details).
In Figure 3a, we compare the elastic cross section we obtained
using the water cluster (red curve) and the widely adopted
Mott cross section47 (dashed line). We stress the coincidence
between the result obtained when using a single molecule in
our Gaussian-based relativistic projected-potential approach
and the Mott cross section, which is in excellent agreement
with the recommended experimental data for water vapor
(blue squares in Figure 3a).34,35 At odds, Figure 3a clearly
shows how the condensed-phase nature of liquid water

emerges as a significant deviation from the single water
molecule case (typically used in hadrontherapy modeling),
particularly at low energies where the elastic cross section
assessed on the cluster is appreciably reduced with respect to
the single molecule; this behavior also appears in the
experimental data by Cho et al.36

The main inelastic processes of electron projectiles
(ionization and excitation of target electrons) are dealt with
the dielectric formalism (see the Supporting Information) by
replacing the ion characteristics with the electron ones as well
as introducing indistinguishability and exchange. Upon the
appropriate integration of the ELF for all ℏk and E transfers
and properly accounting for excitation or ionization events,48

the relevant cross sections were obtained. These are compared
with experimental values available for a few specific excitation
channels in the gas phase37−40 (scaled to include all known
channels)49 and ionizations41−43 in a broad energy range (10−
104 eV) in Figure 3b and c, respectively. Despite the rather
scattered experimental data, the excitation and ionization cross
sections obtained from the ELF of liquid water exhibit a
general shape and magnitude that is in fairly good agreement
with the experimental results in the entire energy range.
Remarkably, our calculations agree almost perfectly with the
most recent experimental data.42 Besides the previous inelastic
processes, at energy ≲20 eV electrons may induce quasi-
particle excitations (most notably phonons50 and polarons51)
or dissociative electron attachments.18

To reckon the electron transport within liquid water and the
generation of the secondary electrons cascade, we used the
event-by-event MC code SEED (secondary electron energy
deposition),52,53 which follows electron trajectories and
accurately accounts for inelastic events (typically taking place
at higher energy), resulting in the excitation and ionization of
the medium atoms as well as elastic collisions with the atomic
ions of the target (normally occurring below 50 eV) and

Figure 2. (a) Angular distribution of electrons with energy W
generated by T = 6 MeV/u C ions in liquid water. (b) Energy
distribution of electrons generated in liquid water by C ions with an
initial kinetic energy T. Continuous lines represent our calculations,
whereas symbols correspond to experimental data in water vapor.32

Figure 3. Cross sections of electrons in liquid water as a function of
their energy W due to (a) elastic, (b) excitation, and (c) ionization
processes. Curves correspond to calculations, as explained in the text.
Symbols are experimental data for water vapor from (a) refs 34−36,
(b) refs 37−40 (scaled), and (c) refs 41−43.
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leading to a change in trajectory when using the cross sections
obtained above. Events particularly noticeable at low electron
energies, such as electron−phonon and electron−polaron loss
interactions as well as DEA processes, are also included in the
simulation, as explained in the Supporting Information.
Indeed, it is the clustering of damaging events in nanometric

volumes, mimicking the size of DNA, that determines
biological effects, such as lethal lesions. Typically, these result
in the clustered bond breaking of DNA molecules, a damage
difficult to repair with the cell machinery that leads eventually
to cell mutation or death.11 Recently, the quantitative relation
between the calculated complex DNA damage and the
measured cell death probabilities was explicitly shown within
the multiscale approach to the physics of radiation damage
with ions.13,23

The physical processes that can lead to damage can be
recorded by means of the SEED code.52,53 The following
damaging mechanisms were considered: (i) ionizations, (ii)
electronic excitations leading to bond dissociation, and (iii)
dissociative electron attachment events; the latter was
simulated using the experimental cross section available for
water molecules.34,54,55 We assumed that only 40% of
electronic excitation events lead to molecular dissociation49

and thus produce damage. Figure 4 shows the average cluster

size M1 of damaging events scored in nanometric cylinders of
liquid water with a 2.3 nm diameter and a 6.8 nm height (see
the inset in Figure 4), which is the size of 20 base pairs (bp) of
DNA, for several carbon-ion energies T and impact parameters
0 ≤ r ≤ 100 nm. To consider the inherently stochastic nature
of the different interaction processes, a large number of ion
shots at each ion kinetic energy were conducted (as explained
in the Supporting Information), minimizing the statistical
uncertainties so that the error bars in Figure 4 are smaller than
the symbol size.
For 0.2 MeV/u ions, the average cluster sizes M1 are

significantly large (≳ 10) at ion−target impact parameters r <
3 nm and are always larger than 1 for r < 5 nm. The value of
M1 drops to 0 at r > 20 nm, meaning that secondary electrons
cannot travel beyond that distance at this ion kinetic energy.
Cluster-size distributions progressively decrease at increasing
ion energies, although they are still larger than 1 at energies
below 6 MeV/u with closer values of r (∼3−4 nm at 2 MeV/u
and ∼2 nm at 6 MeV/u). The highest-energy (1 GeV) ions
considered in this work are not capable of inducing clusters of

average size ≥1 for any impact parameter. These trends show
the potential of different ion kinetic energies to induce
irreparable DNA damage; low-kinetic-energy ions around the
Bragg peak region are especially harmful, producing large
damage cluster sizes, while individual high-energy ions will not
produce significant lethal damage.
From the cluster size distributions, it is possible to obtain

useful statistical information on the probability of inducing
complex DNA damage, which is the necessary information to
relate the physical damage to biological outcomes. This is the
purpose of experimental nanodosimetry,20 which employs gas-
phase detectors to estimate the probabilities of the clustering
of inelastic events (estimated as ionizing collisions) in volumes
of dimensions similar to those of sensitive nanometric DNA
targets. Particularly important are the nanodosimetric quanti-
ties Fk (k = 1, 2, or 3), which indicate the cumulative
probabilities of inducing clusters of a size ≥k in a nanometric
volume. F2 is known to be correlated to the probability of
inducing DNA double-strand breaks (DSB), while F3 is
connected to the probability of producing complex lethal
damage.
Remarkably, it is known that the representation of the

measured Fk
ioniz distributions for ionization events as a function

of the average ionization cluster size M1
ioniz yields a universal

distribution independent of the size and characteristics of the
particular nanodosimeter, which can be used to predict cell
inactivation cross sections.19,20 Our simulations provide these
ionization distributions in nanometric cylinders of liquid water,
which mimic DNA targets, at different values of the carbon-ion
energy T and the impact parameter r. Figure 5 shows the plot

Fk
ioniz (k = 1, 2, or 3) for ionization in the ranges 0.2 MeV/u to

1 GeV and 0 ≤ r ≤ 100 nm as a function of the average
ionization cluster size M1

ioniz. Results are reported for the two
target sizes relevant in evaluating lethal DNA damage, both of
which have a diameter of 2.3 nm but a height of 3.4 or 6.8 nm
that corresponds to DNA turns of 10 bp (dashed lines) or 20
bp (solid lines), respectively. Our simulations show a good
agreement with nanodosimetric measurements in gas targets in
a wide range of M1

ioniz values,20 confirming the universal
relation Fk

ioniz vs M1
ioniz for nanometric liquid water volumes.

These data correspond to the impact parameters at which the
largest amount of damaging events occur, i.e., for r < 10 nm for
every ion energy. This result confirms the accuracy of both the
simulations in liquid water and the nanodosimetric measure-
ments in gas targets, and also shows that the relation Fk

ioniz vs

Figure 4. Average cluster size M1 of damaging events in a sensitive
volume of liquid water with a dimension of two DNA turns as a
function of the radial distance r from the ion track for different values
of the carbon-ion energy T. Symbols correspond to simulations, and
lines are plotted to guide the eye. The inset depicts a scheme of the
nanometric cylinder used in the scoring of the following damaging
events: excitation (e), ionization (i), and dissociative electron
attachment (d). Figure 5. Simulation results of the ionization events Fk

ioniz (k = 1, 2, or

3) vs M1
ioniz corresponding to several energies of the incident carbon

ion and different impact parameters. Solid (dashed) lines correspond
to a nanometric volume of 20 (10) base pairs. Symbols constitute a
compilation of experimental data.20
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M1
ioniz scales irrespective of the size of the sensitive volume (10

bp or 20 bp DNA-like targets). Our Fk
ioniz distributions show a

satisfactory behavior for the higher values of M1
ioniz

(corresponding to lower carbon energies or to the shorter
impact parameters), although they deviate from experimental
measurements at lower values (possibly due to differences
between the gas and the liquid water targets at conditions
where the number of damaging events is lower or to the
electron−phonon and trapping cross sections). We stress the
good agreement between the simulations and the experimental
measurements of the ionization cluster size distribution, which
is the only event experimentally measured.
We also used MC simulations, fed with accurate electronic

excitation and ionization cross sections as well as the
recommended dissociative electron attachment cross section
for water,34 to evaluate the specific contribution of each
process to the average cluster sizes in a sensitive volume that
had the dimensions of two DNA turns (i.e., 20 bp). These
results are reported in Figure 6 for carbon-ion kinetic energies

in the range from 0.2 MeV/u to 1 GeV and impact parameters
between the ion and the sensitive volume from 0 to 50 nm.
The relative roles of the different damaging events (ionizations,
excitations leading to molecular dissociation, and dissociative
electron attachments) do not vary much neither with the
carbon-ion kinetic energy nor with the impact parameter. This
finding shows that ionizations contribute ∼80% to the average
cluster size except at ∼5 nm impact parameters, where it is
reduced to 60%. Electronic excitations leading to dissociation
in general add up to ∼20% of the average cluster size at all
kinetic energies, except for impact parameters around 5 nm
where is ∼30%. However, dissociative electron attachments
provide only 3% of the average cluster size at all kinetic
energies and impact parameters; only at a very close impact
parameter (∼5 nm) does its relative contribution amount to
∼10% of the total cluster size. For the lowest kinetic energy
(0.2 MeV/u, matching the Bragg peak), the increased
contribution of the dissociative electron attachment (15%)
was observed at the 10 nm impact parameter at the expense of
ionization. Note that this assessment relies on the assumption
that only 40% of excitation events lead to bond breaking. In
light of these results we can safely state that ionization events
make up the vast majority of clustered damage mechanisms in
liquid water (DNA-like) targets, which supports the use of
ionization-based nanodosimeters.
In conclusion, we have presented an accurate description of

the physical processes leading to the damage of living tissue

(mimicked by liquid water medium) induced by swift carbon-
ion beams in a wide energy range that addresses conditions
typical of hadrontherapy and exposure to cosmic radiation.
The main inelastic channels for charged particles, namely
ionization and electronic excitation, were obtained from
accurate TDDFT first-principles calculations of the electronic
excitation spectrum (energy loss function, ELF) of liquid
water, which via the dielectric formalism gave access to reliable
inelastic cross sections to simulate the generation and
propagation of secondary electrons abundantly produced by
the energetic carbon-ion beam passing through the liquid water
medium. Ab initio calculations of the elastic scattering cross
section via a direct solution of the Dirac equation in water
clusters to reproduce the condensed phase environment were
also carried out, allowing precise MC simulations of the
propagation of the (mostly) low-energy secondary electrons
and their relevant effects at nanometer scale.
An analysis of the clustering of damaging events in

nanometric volumes mimicking sensitive DNA targets was
also conducted. This is important in the context of
experimental nanodosimetry, relating cell response to the
measurement of ionization clusters in gas-phase detectors.19,20

The nature of damaging events (measurable ionizations vs
other inelastic channels, namely dissociative excitations and
dissociative electron attachments that are not accessible to
nanodosimeters) and the effects of different phases (gas vs
condensed) were investigated with unprecedented statistical
accuracy.
We found that carbon ions with energy in proximity to the

Bragg peak region, such as those typically used in
hadrontherapy treatments, are capable of inducing large
clusters of damaging events (>10 for ion-target distances ≲3
nm), while clusters tend to be much smaller for the larger
energies. In particular, individual high-energy ions found in
cosmic radiation are not capable of inducing average damage
clusters larger than 1. We found that ∼70% of the events
leading to the damaging cluster correspond to ionization
processes. The obtained ionization cumulative distributions
Fk

ioniz, represented as a function of the mean ionization cluster

size M1
ioniz, were found in excellent agreement with nano-

dosimetry measurements for the larger values of M1
ioniz where

most of the biological effects occur. These findings support the
use of ionization-based detectors in nanodosimetry setups.
Although a qualitative good agreement was found for the lower
M1

ioniz values, the presence of significant discrepancies requires
deeper investigations. Nevertheless, we notice that a deviation
for high-energy carbon ions may also arise due to the phase
difference used in our simulations (liquid water) and that used
in detectors (gas-phase).
Despite dissociative electron attachments being typically

regarded as one of the most relevant biodamage mechanisms in
radiotherapy, we found that our simulations point toward the
limited role (∼10−15%) of dissociative electron attachment in
carbon-ion-induced biodamage. Taking into account that only
a fraction of dissociative electron attachments lead to
irreversible damage,56 we conclude that this process plays an
almost negligible role in carbon-ion-induced biodamage;
ionizations and excitations are the more significant physical
processes resulting in harmful events due to carbon-ion
irradiation in a wide energy range, covering those relevant to
hadrontherapy up to those from cosmic radiation.

Figure 6. Fractional contribution to the average cluster size in a
cylinder with a dimension of two DNA turns (20 bp) due to
ionization, excitation (with only 40% of them leading to molecular
dissociation), and dissociative electron attachments events for several
carbon-ion kinetic energies and impact parameters.
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