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CHAPTER 1: INTRODUCTION 

 

1.1 Data Science 
 

Data Science is an interdisciplinary field that applies statistics and data science tools 

to analyze and interpret the data generated by modern technologies. Data Science 

allows us to better understand biological systems, and to leverage genomic 

technologies to benefit science, medicine, society and the economy. 

 

 

Fig.1: Data science as interdisciplinary field1 

 

 

This field include data mining, statistics, machine learning, analytics, and 

programming (Fig.1).  
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 Data mining applies algorithms to reveal patterns in complex datasets then used 

to extract new knowledge from the set. Knowledge discovery in databases is a 

field encompassing theories, methods and techniques, trying to make sense of 

data and extract useful knowledge from them. It is considered to be a multi-step 

process (selection, preprocess, transformation, interpretation and evaluation)2. 

 

 Statistical measures use this extracted data to gauge events that are likely to 

happen in the future based on what the data shows happened in the past. 

 

 Machine learning is an artificial intelligence tool that processes mass quantities 

of data that a human would be unable to process in a lifetime. Machine learning 

perfects the decision model presented under predictive analytics by matching the 

likelihood of an event happening to what actually happened at a predicted time. 

 

 Using analytics, the data analyst collects and processes the structured data from 

the machine learning stage using algorithms. The analyst interprets, converts, 

and summarizes the data into a cohesive language that the decision-making team 

can understand.  

 

Data science can be applied to practically any contexts and, as the data scientist's role 

evolves, the field will expand to encompass data architecture, data engineering, and 

data administration.  
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1.2 Machine learning 
 

Machine learning (ML) is the scientific field dealing with the ways in which machines 

learn from experience. ML algorithms uses variables called “features” to learn, predict 

and build a model. A feature is an individual measurable property or characteristic of 

a phenomenon3. Choosing informative, discriminating and independent features is a 

crucial element of effective algorithms in pattern recognition, classification and 

regression. Features are usually numeric, but structural features such as strings and 

graphs are used in syntactic pattern recognition. For many scientists, the term “machine 

learning” is identical to the term “artificial intelligence”, given that the possibility of 

learning is the main characteristic of an entity called intelligent in the broadest sense 

of the word. The purpose of machine learning is creating an algorithm that can adapt 

and learn from their experience4. ML is already applied to great effect in diverse 

biological fields, such as the protein secondary structure prediction5, the mechanisms 

of splicing6 and the onset prediction of diseases7. 

 

Fig.2: Example of machine learning model development (supervised learning approach 8 
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ML tasks are typically classified into three broad categories7: 

a) Supervised learning, in which the system infers a function from labeled training data.  

b) Unsupervised learning, in which the learning system tries to infer the structure of 

unlabeled data.  

c) Reinforcement learning, in which the system interacts with a dynamic environment. 

A typical supervised ML pipeline is shown in figure 2. 
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1.3 Aim of the Thesis 
 

Machine Learning methods have broadly begun to infiltrate the clinical literature in 

such a way that the correct use of algorithms and tools can facilitate both diagnosis and 

therapies. The availability of large quantities of high-quality data could lead to an 

improved understanding of risk factors in community and healthcare-acquired 

infections. In the first part of my PhD program, I refined my skills in Machine Learning 

by developing and evaluate with a real antibiotic stewardship dataset, a model useful 

to predict multi-drugs resistant urinary tract infections after patient hospitalization9. 

For this purpose, I created an online platform called DSaaS specifically designed for 

healthcare operators to train ML models (supervised learning algorithms). These 

results are reported in Chapter 2. 

 

In the second part of the PhD thesis (Chapter 3) I used my new skills to study the 

genomic variants, in particular the phenomenon of intron splicing. One of the important 

modes of pre-mRNA post-transcriptional modification is alternative intron splicing, 

that includes intron retention (unsplicing), allowing the creation of many distinct 

mature mRNA transcripts from a single gene. An accurate interpretation of genomic 

variants is the backbone of genomic medicine. Determining for example the causative 

variant in patients with Mendelian disorders facilitates both management and potential 

downstream treatment of the patient’s condition, as well as providing peace of mind 

and allowing more effective counselling for the wider family. 
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Recent years have seen a surge in bioinformatics tools designed to predict variant 

impact on splicing, and these offer an opportunity to circumvent many limitations of 

RNA-seq based approaches. An increasing number of these tools rely on machine 

learning computational approaches that can identify patterns in data and use this 

knowledge to speculate on new data.   

I optimized a pipeline to extract and classify introns from genomes and transcriptomes 

and I classified them into retained (Ris) and constitutively spliced (CSIs) introns. I used 

data from ciliates for the peculiar organization of their genomes (enriched of coding 

sequences) and because they are unicellular organisms without cells differentiated into 

tissues. That made easier the identification and the manipulation of introns. In 

collaboration with the PhD colleague dr. Leonardo Vito, I analyzed these intronic 

sequences in order to identify “features” to predict and to classify them by Machine 

Learning algorithms. We also developed a platform useful to manipulate FASTA, gtf, 

BED, etc. files produced by the pipeline tools. I named the platform: Biounicam (intron 

extraction tools) available at http://46.23.201.244:1880/ui. 

The major objective of this study was to develop an accurate machine-learning model 

that can predict whether an intron will be retained or not, to understand the key-features 

involved in the intron retention mechanism, and provide insight on the factors that drive 

IR. Once the model has been developed, the final step of my PhD work will be to 

expand the platform with different machine learning algorithms to better predict the 

retention and to test new features that drive this phenomenon. These features hopefully 

will contribute to find new mechanisms that controls intron splicing. 

http://46.23.201.244:1880/ui
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The other additional papers and patents I published during my PhD program are in 

Appendix B and C. These works have enriched me with many useful techniques for 

future works and ranged from microbiology to classical statistics. 
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CHAPTER 2: Machine learning models predicting multidrug 

resistant urinary tract infections using “DsaaS” 

DOI: 10.1186/s12859-020-03566-7  

 

2.1 Machine Learning in Healthcare systems 
 

Increasingly, healthcare operators must process and interpret large amounts of complex 

data. Data science applications regard the extraction of knowledge from information, 

more than simply mining massive data sets. Machine learning (ML) methods have 

broadly begun to infiltrate the clinical literature and the right use of algorithms and 

tools can facilitate both diagnosis and therapies. The availability of large quantities of 

high-quality data could lead to an improved understanding of risk factors in community 

and healthcare-acquired infections. For instance, in the antibiotic stewardship field 

researchers utilized Massachusetts statewide antibiogram data to predict three future 

years of antibiotic susceptibilities using ML regression-based strategies 10. 

International guidelines recommend to use institutional antibiograms in the 

development of empiric antibiotic therapies 11.  

ML methods could help physicians in the empirical treatment of the urinary tract 

infections (UTIs). These are usually known as the most common bacterial infections 

with a significant financial burden on society 12. In hospitals at least 40% of all 

infections are UTIs and bacteriuria develops in up to 25% of patients who require a 

urinary catheter for one week or more 13. The selection of adequate treatment for the 

management of UTIs is increasingly challenging due to their etiology, bacterial 

https://doi.org/10.1186/s12859-020-03566-7
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resistance profile and evolving of adaptive strategies. Moreover, the bacteria resistance 

to antibiotics has risen dramatically with few therapeutic options and one of the causes 

is the recurrent infection that leads to development of multidrug resistance (MDR). 

Several risk factors are associated with UTIs, including gender and age 14. Male 

patients have a lower risk of contracting uncomplicated UTIs but more prominent to 

contract complicated or MDR infections than women. Older adults are more prone than 

younger individuals in developing urinary tract infections because of incomplete 

bladder emptying (often related to prostatic enlargement in men), higher rate of 

catheter use and increased susceptibility to infection associated with frailty 15. 

Moreover, infections caused by MDR organisms are more common in older adults, 

especially those with catheters or residing in long-term care. The resistance rates to 

antimicrobials in UTIs can differ from region to region, patient to patient and even 

from ward to ward where the patient is hospitalized. Hence, in a nosocomial infection 

it is therefore important to know the microorganism population in the hospitalization 

place 16. 

Unfortunately, antibiotics are not always prescribed responsibly contributing to the 

development of new resistances 17. To effectively treat patients and prevent the 

increases in resistance, every institution must have an up-to-date susceptibility 

knowledge and predictions can be used to guide prescription practices and prepare for 

future resistance threats 10. To reach this goal, the literature offers a huge number of 

ML tools requiring minimum training in computer sciences and basic programming 

knowledge. These skills, obvious for researchers, are often missing in routine 
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healthcare operators. Moreover, most of these tools require the installation, in 

institutional PCs, of dedicated applications that make the process even slower and less 

attractive for the end-user. 

The first objective of this work is to design, develop and evaluate, with a real antibiotic 

stewardship dataset, a user-friendly, online and completely dynamic tool to train 

predictive ML models (supervised learning algorithms) to be applied in this field. 

Future works will focus on enriching DSaaS with additional algorithms-analysis 

packages to make the platform able to operate large amounts of data both from a 

computational and storage point of view and creating a platform useful to users to 

easily carry out the complete data science work pipeline. 

 

2.2 Methods 
 

2.2.1 DSaaS Platform Architecture 

 

DSaaS (Data Science as a Service) is built on a multi-tier architecture. The front-End 

provides a "notebook" interface where users can interact with the platform creating 

interactive data science experiments. The notebook front end includes many menus, 

graphical tools and an assistant system that may help users driving their experiments, 

reading and sharing data science experiments and exchanging data set with other 

systems. 
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At the same level, DSaaS provides specific API, basically REST-services 

(Representational State Transfer) useful to integrate third party applications. 

From a Business-Logic level, DSaaS is an engine performing data analysis as well as 

dataflow execution. 

This level also leans on other external systems such as: 

 h2o.ai platforms 18: to improve machine learning models’ performance on big data 

 Fluentd 19: for capturing and collecting information from application log file 

 Apache Flink 20: as a processing engine for stateful computations over bounded and 

unbounded data streams 

 Apache Giraph 21: for improving graph processing algorithms (e.g. topological data 

analysis) 

 Apache NiFi 22: for data routing, transformation, and system mediation logic 

 Active MQ 23: as a broker for time consuming process and asynchrony 

communication 

 Apache Spark 24: running of existing Hadoop Distributed File System HDFS 25 

infrastructure provides several features like Spark SQL for query distributed data 

set. Spark will be able to replace the Hadoop layer and provide fast and real-time 

processing of massive data 

 

Back-End level represents data storage using distributed systems such as Hadoop and 

Hive in a transparent way. We have currently implemented a plain DSaaS prototype to 

evaluate its effectiveness using a real database about antibiotic stewardship.  
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To date, DSaaS allows to validate simple data science models based on regression 

algorithms (e.g., Linear Regression, Polynomial Regression and Support Vector 

Regression) as well as supervised classification techniques (e.g., Support Vector 

Machines, Catboost, Neural Network). Moreover, DSaaS may be used to create and 

execute data science processes using an easy dataflow editor and allows to publish the 

results obtained as a REST services. These last features (i.e., dataflow editor and 

unsupervised ML algorithms) will be released in the next iteration of the platform. 

We are also planning to provide DSaaS with a “Stewardship UI” that will help users to 

maintaining data quality within DSaaS platform 26. 

From a technical point of view, DSaaS prototype was developed integrating R with 

h2o.ai and using the shiny package for the realization of the GUI and was used as 

working tool for the problem described above.  

 

2.2.2 Experimental setup 

 

The aim of this work was to build a ML model useful to predict the patient-related risk, 

after the hospitalization, to acquire an MDR UTI. 

The dataset was built out based on the bacterial isolates reports of a hospital located in 

Central Italy with 288 beds and a mean of 31,000 inpatient days per semester. All 

patients admitted from March 2011 to march 2018 (14 six-months periods) were 

included in the study. Only isolates collected from infections that occurred 48 hours 

after admission were used and identified as nosocomial infections, as defined by the 

Centers for disease Control and Prevention27.  
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We considered as MDR UTI a patient with a microorganism resistant to one or more 

antibiotic classes as defined from the CDC 28 and we assigned the value R (e.g. 1) to 

all MDR UTI and the value S (e.g. 0) to the rest. 

We collected results from 11 wards, defined as a spatial unit provided with rooms 

where a unique staff of health-care and co-workers are active. In our model we 

considered the variable “ward” as a space subjected to few interactions with the others. 

Therefore, the microbial population within a ward with their related hospital infections 

and antibiotic resistance profiles were preserved for each ward and time-dependent. 

To test the DSaaS platform we decided to restrict the database and to use only the urine 

samples, corresponding to the most commonly requested clinical test among wards. 

The selection of four predictors (time-period, sex, age class and ward) was primarily 

based on urinary infection related literature 29. Table 1 shows the detailed operational 

definition of variables used in our study.  

Variables Measurements Definition 

Dependent 

MDR 

Resistance Discrete 

Does the patient acquire a MDR infection during 

hospitalization? Yes or No 

Independent Gender Discrete Gender of the patients, Male or Female. 

Age Continous Age (in years) during hospitalization 

Age Class Discrete 10 years class to witch the patient belong, from 1 to 10 

Ward Discrete Ward where the patient was hospitalized, from 1 to 11 

Time 

Period Discrete 

Time period in witch the patient was hospitalized in a 

ward, from 1 to 14 

Table.1: Operational definition of variables  
 

A total of 1486 clinical samples were considered for this study. Specimens were 

processed according to good laboratory practice and standard methods for 

identification. Duplicate data were discarded using the Bio-Mérieux VIGIguard™ 
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software if all the following conditions were true: isolate collected from the same 

patient, same specimen, same ward, same species and similar antibiotic pattern (S/R=1; 

I/R–S/I=2) within 20 days.  

 

DSaaS adopted the Caret v6.0–82 30 and the GA (genetic algorithms optimization) v3.2 

package 31 to automatically tune the optimal combinations of model parameters for the 

three ML algorithms aiming to achieve a better prediction performance. Evidence 

demonstrated that the class imbalance (i.e., unequal size of the dependent variable), 

which is just the situation in our sample, can substantially impact the performance of 

the method used. Therefore, we adopted synthetic minority over-sampling technique 

by under-sampling the adequate class and over-sampling the inadequate class to 

improve the model performance32. DSaaS did also automatically a 10-fold cross 

validation method with three repeats, which has been viewed as the de facto standard 

for estimating model performance 33. 

 

Furthermore, DSaaS allows the user to divide the database in a training set (70% of all 

data points), and a test set (30%) to evaluate the predictive models. The data point 

splitting was made by assigning random values to the test set. The training set were 

used to build the classification algorithms using gradient boosting Catboost 34, Neural 

Networks35 and SVM36.  
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2.2.3 Performance measures 

 

DSaaS allowed us to measure the model’s performance with accuracy, AUC, 

sensitivity and specificity. To describe such performance measures for classification 

problem, it is essential to define a specific matrix, called confusion matrix, 

containing the number of false positives (FP), false negatives (FN), true positives (TP), 

and true negatives (TN). Specifically, a two-class (positive-negative) confusion matrix 

is a table where each row represents a predicted value and each column defines an 

actual value (or vice-versa): all correct prediction (TP and TN) are located in the matrix 

diagonal while the errors are given by all the elements outside the diagonal. 

Accuracy (ACC) 37 is a value that can be directly calculated from the confusion matrix 

and defines how often the classifier is correct and is calculated as the ration between 

the number of correct predictions and the total number of predictions. 

To define AUC 37 it is necessary to introduce the ROC curve (Receiver Operating 

Characteristic curve), namely a graph showing the performance of the classifier over 

all possible thresholds with respect to two parameters: the sensitivity also known as 

recall or true positive rate (TPR) and the false positive rate (FPR). 

Sensitivity 37 is calculated as the ratio between the number of positive inputs correctly 

classified as positive (true positives) and the total number of positive data and measures 

how well the classifier made positive predictions based on all classes (i.e., it can be 

seen as the classifier ability to correctly detect positive inputs). FPR is calculated as 

the ratio between the number of negative inputs wrongly classified as positive (false 
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positive) and the total number of negative data and measures the proportion of all the 

negative inputs who will be identified as positive. 

AUC (Area Under the ROC Curve) measures the area underneath the ROC curve: it 

has a range of values from 0 to 1. The area measures discrimination, that is, the ability 

to correctly classify random positive and negative data. 

Specificity 37 also known as true negative rate (TNR) is defined as the ratio between 

the number of negative inputs correctly classified as negative (true negatives) and the 

total number of negative data and measures how well the classifier made negative 

predictions based on all classes (i.e., it can be seen as the classifier ability to correctly 

detect negative inputs).  

Finally, overall model performance was calculated by averaging model performances 

each time37. 
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2.3 Results and Discussion  

 
We created a cloud platform called DSaaS (figure 3) that allows both testing of data 

science models and the creation of rough but useful ML processes easily usable by 

non-expert users. A demo demonstrator of DSaaS can be found at: 

https://dsaas-demo.shinyapps.io/Server/ and its actual and future architecture is shown 

in figure 4. 

 

 

 

To test the platform, we used a dataset based on antibiotic resistance information 

obtained from a tertiary hospital in central Italy. Several supervised learning 

algorithms, readily available in the platform, have been used to make antibiotic 

resistance predictions about MDR UTIs and results were subsequently compared to 

obtain the best model possible to predict further resistance outcome. 

Fig.3: The DSaaS platform 
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1-Data scientist assistant 

 
 

2-ML model evaluation for classification 

a) 

 
 

b) 

 
3-User friendly interface: a- Model operations 

history; b-Dataflow editor 

a) 

 
 

b) 

 
 

4-Model visualization: a-Neural Networks; b-SVM 

 

 Fig.4: The DSaaS architecture 
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Table 2 shows predictors and descriptive statistics for patients with and without an 

MDR urinary infection. Respectively 767 and 718 in-patients with and without 

hospital-acquired infections are present. 

Variable 

Patients with MDR urinary infection 

Patients without MDR urinary 

infection 

Summary statistics 

Gender Male: 267, Female: 500 Male: 149, Female: 569 

Age M: 70,0 (SD 25,5) M: 59.5 (SD 28.7) 

Age Class 

 

 
 

Ward 

 

 
 

Time Period  

(six-months) 

 

 
 

Table.2: Descriptive statistics for patients with/without an MDR urinary infection 

 

Table 3 demonstrates the results of the three ML algorithms we tested with DSaaS. 

Accuracy, AUC, sensitivity and specificity were used to assess the performance of 

those methods. Since we adopted ten-fold cross validation for estimating model 

performance, the means and standard deviations of the above four metrics can be 

calculated for the training sample. Among the three methods employed, Catboost has 
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the highest accuracy rate (0.711), followed by Neural Networks (0.646) and Support 

Vector Machine (SVM) (0.643) almost with the same performances. In terms of AUC, 

Catboost (0.735) has a value higher than 0.7, indicating a more than discreet classifier 

performance. The AUC values of Neural Networks and SVM are lower than 0.7, 

demonstrating poor performance. In sum, Catboost had a quite good performance while 

the remaining classifiers performed poorly. Finally, the sensitivity (recall) value told 

us that all the three classifiers had a high performance in discriminating true positives 

(MDR infection) with values of 0.895, 0.807 and 0.752 respectively for Catboost, SVM 

and Neural Networks.  

 

Method Accuracy(SD) AUC(SD) Sensitivity(SD) Specificity(SD) 

Catboost 0.711 (0.033) 0.735(0.028) 0.895(0.067) 0.489(0.122) 

SVM 0.643 (0.008) 0.626(0.028) 0.807(0.028) 0.445(0.017) 

NeuralNetworks 0.646 (0.020) 0.682(0.033) 0.752(0.073) 0.521(0.085) 

Table 3: Performance evaluation of models using the test set  
 

The field of bioinformatics is evolving from being a tool to a subject in its own right 

that needs new paradigms and methods to carry out biological experiments and data 

analysis. Planning a Data Science project is a difficult task as the purpose of the project 

may be unknown ex ante. Over the last few years, several development environments 

and platforms allowing the implementation of data science and machine learning 

techniques are emerging. Specifically, Bio738, R studio, Zeppelin, Jupiter, R analytic 

Flow, Window Azure, together with others, allow the creation of data science and 

machine learning processes in quite a simple way but still do not enable the complete 

definition of a data science pipeline system in a user-friendly way. 
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A data science team needs to work efficiently, compliant, agile and reproducible and 

above all faster. The current data science and ML platforms, while very performing, 

do not allow a quick approach to the solution of the problem. For this purpose, we 

designed and developed a new data science platform called DSaaS (Data Science as a 

Service) useful to easily perform ML experiments. 

In our case-study, since we were dealing with data defined by binary targets describing 

whether an individual turned out to be affected by an MDR UTI or not, we decided to 

use a variety of well-known ML classification approaches previously implemented in 

DSaaS. In this way, we both studied the lending of the platform and were able to get a 

comparison of the classification performance using several classification models on the 

same dataset. Specifically, as a first step we decided to use SVM, Neural Networks and 

a quite new boosting method, known as Catboost, that is particularly suitable for 

dataset with an important presence of categorical features. Categorial data, differently 

form numerical quantitative data, can only assume a limited, and usually fixed number 

of possible values corresponding to different types or categories.  

 

As target value we decided to assign 1 to individuals with the characteristic to have an 

MDR UTI (i.e., R) to two or more antibiotic classes. Therefore, in our dataset the 

negatives coincided with non-MDR UTIs and are described by all the points with target 

value equal to 0 (i.e., S). From Table 2 it can be noted that, among the three algorithms 

the one having highest results was Catboost: it had the best value in terms of sensitivity, 

AUC value, accuracy rate and finally we have a very low value for specificity. Note 
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that, specificity measure has low results in all three methods, while we have obtained 

generally fair results (i.e., above 0,75) for sensitivity value. By definition of sensitivity 

we can conclude that our predictors have better results when a resistant data point, i.e. 

MDR, with target equal to 1, is considered. Hence, the used predictors have good skills 

in telling us if a new hospitalized patient is at risk of taking a multi-drug resistant 

(MDR) infection. Furthermore, as regards SVM and Neural Networks, they have 

similar accuracy and AUC results around the value 0,6. Finally, since we are dealing 

with an imbalanced dataset containing a very large number of positive samples, it is 

important to underline that AUC measure is to be preferred over accuracy value.  

 

Despite numerous studies have investigated risk factors in UTIs 29, literature revealed 

that little of those studies adopted ML techniques for prediction. At the best of our 

knowledge, our study is the first adopting a ML approach in predicting the patient-

related risk after the hospitalization to acquire an MDR UTIs. Further, by utilizing five 

differing classifiers easy to obtain from a new hospitalized patient, physicians may 

quickly adopt early prevention and intervention procedures and decision plans may be 

formulated in combination with related clinical experiences. 

Furthermore, following the enhancement of the predictive model, the integration into 

the hospital computerized physician order entry could be done, where physicians may 

acquire a timely alert regarding the possibility of the onset of MDR UTIs in an early 

hospitalized patient. 
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CHAPTER 3: Feature discovery in ciliates Retained introns 

using Machine Learning  

 

3.1 The Mechanisms of intron splicing 

 

The coding and non-coding part of genes is referred to as exons and introns 

respectively. When mRNA is synthesized, in eukaryotes, the mRNA precursors still 

contain introns transcribed from DNA template. The introns are then removed and 

adjacent exons are ligated 39. The origin of introns is still not completely known. At 

first, processing these useless components appears very wasteful in terms of energy 

consumption, but today we know the existence of introns largely facilitates the 

diversity of gene products. The intron removal may involve different pathways, thereby 

producing functional distinct mRNA isoforms from a single gene. This mechanism is 

known as alternative splicing (AS). Exons often encode independent functional 

domains 39. Therefore, AS provides a complex design to assemble different functional 

modules. This is an economic way to achieve the proteome diversity. 

Furthermore,ntrons can also play the cis-regulatory roles in splicing. For example, the 

intronic enhancers and silencers can promote or inhibit the splice site recognition. 

Furthermore,ntrons can also play the cis-regulatory roles in splicing. For example, the 

intronic enhancers and silencers can promote or inhibit the splice site recognition.  
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The length of introns affects the efficiency of transcription as well, and then the gene  

expression can be regulated 39. AS is prevalent in eukaryotic genes. For example, a 

human transcriptome study by high throughput 

sequencing indicates that more than 95% human genes undergo AS40. It can be 

classified into five categories (Fig.5) and observations indicate that only a small 

minority of AS events are involved in the production of functional protein variants 40. 

This led some authors to conclude that the vast majority of AS events correspond to 

splicing errors 41. 

  

Fig.5: Traditional classification of basic types of 

alternative RNA splicing events. Exons are represented 

as blue and yellow blocks, introns as lines in between40 

 

1. Exon skipping: An exon may be retained or 

removed.  

2. Mutually exclusive exons: Only one of two 

exons is retained 

3. Alternative donor site: An alternative upstream 

exon boundary used.  

4. Alternative acceptor site: An alternative 

downstream exon boundary used. 

5. Intron retention: An intron may be retained or 

removed.  
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3.2 Intron recognition 
 

To date, next generation sequencing (NGS)42 has become one of the most promising 

Bioinformatic technologies to study the genomes and transcriptome structure. Since 

Illumina sequencers can generate highest throughput of NGS reads, they have become 

the most dominant platform in this field. One of the main problems of Illumina reads 

is the read length. DNA or RNA in the library preparation step are chopped into smaller 

fragments. Each fragment can be sequenced from one end up to 150bp only (single-

end). The major problem of single end reads is the ambiguity when reads are mapped 

to multiple loci. A simple improvement to the single-end library preparation is to 

sequence both ends of fragments (scanning both the forward and reverse template 

strand). The paired-end sequencing incorporates the fragment length information, 

which can significantly improve the mapping and assembly accuracy. The typical 

fragment length of paired-end sequencing is 200-500bp. If the reference genome is 

available, the way to deal with NGS transcriptome reads is to map the reads back to 

the reference genome. Sequence alignment is an old bioinformatics problem. The 

classical method is to align reads back to genome using fast alignment algorithms such 

as BLAST indexes k-mers. These k-mer seeds are then extended using traditional 

alignment methods 42 effective with small libraries but not so useful for millions of 

very short reads. Therefore, the new NGS aligners are rapidly introduced and have 

become one of the prosperous fields in bioinformatics. The main drawback of these 

programs is the requirement of memory.  
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Many previously described RNA-seq aligners were developed as extensions of 

contiguous short read mappers, which were used to either align short reads to a database 

of splice junctions or align split-read portions contiguously to a reference genome, or 

a combination thereof. In contrast to these approaches RNA STAR43  is designed to 

align the non-contiguous sequences directly to the reference genome using less amount 

of memory. STAR algorithm consists of two major steps: seed searching step and 

clustering/stitching/scoring step. 

 

 

3.3 Intron Retention 
 

Albeit part of splicing mechanism has been deciphered and several tools have been 

developed to find the splice junctions given a piece of DNA sequence, other tools are 

used to discover the AS isoforms. 

Historically being considered as transcriptional noise or ‘junk’, intron retention (IR) 

has recently been shown to carry out important biological functions such as regulating 

gene expression that is coupled with nonsense mediated decay44, producing novel 

isoforms45, and targeting specific cell compartments 45. Previous studies have shown 

that IR functions in the homeostatic control of the expression of some RNA processing 

and export factors46,47. More recently, it has emerged that IR also controls the 

expression of developmentally regulated genes in plants and animals 47,40. For example, 

a set of retained introns in a murine neuroblastoma cell line was shown to negatively 

regulate genes with neural-associated functions. Several of these introns were linked 

to nuclear retention and exosome-mediated RNA turnover of the host transcripts48. In 
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contrast, another set of IR events was found to control the levels of transcripts 

important for granulocyte maturation49, largely through the process of nonsense-

mediated mRNA decay (NMD). These recent studies suggest that different IR events 

control gene expression through distinct mechanisms. However, the extent to which IR 

operates across different primary cells and tissues to regulate gene expression via these 

and possibly additional mechanisms is unknown. 

 

To study IR, first the transcriptome structure must to be known. Next generation 

sequencing has resulted in a vast amount of RNA-seq data, which provides a rich 

resource for the detection of IR in combination with bioinformatics tools. Cufflinks50 

for example assembles transcripts, estimates their abundances, and tests for differential 

expression and regulation in RNA-Seq samples. It accepts aligned RNA-Seq reads and 

assembles the alignments into a parsimonious set of transcripts. Cufflinks then 

estimates the relative abundances of these transcripts based on how many reads support 

each one, taking into account biases in library preparation protocols. Cufflinks is a 

more natural descendant of the expressed sequence tag-based algorithms. A minimal 

set of isoforms explaining all the reads is constructed. In case there is more than one 

possible set of the same size explaining all the reads, a cost function is used to choose 

the ideal set. Then, an algorithm is used to quantify the isoforms in this set by modeling 

the probability “ρt” that a read came from transcript “t”. An advantage of this method 

is that it is flexible enough to accommodate pair end reads in a natural way. Also, both 

isoform discovery and quantification are addressed; however, the tasks are broken apart 
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and performed separately. With this approach, different RNA-seq replicates or 

different cellular states (i.e. starvation, conjugation) can be analysed at the same time 

and then merged to discover more isoforms and increase the transcript coverage51.  

 

Then, with specific tools, retained introns can be discovered. ASTALAVISTA 

(Alternative Splicing Transcriptional Landscape Visualization Tool)52 employs an 

intuitive and complete notation system to univocally identify IR events. The method 

extracts AS events dynamically from custom gene annotations, classifies them into 

groups of common types and visualizes a comprehensive picture of the resulting AS 

landscape. Thus, ASTALAVISTA can characterize IR for whole transcriptome data 

from reference annotations as well as for genes selected by the user according to 

common functional/structural attributes of interest. 

iREAD (intron REtention Analysis and Detector)52, is another tool to detect IR events 

genome-wide from high-throughput RNA-seq data. The command line interface for 

iREAD is implemented in Python. iREAD takes as input a BAM file53, representing 

the transcriptome, and a text file containing the intron coordinates of a genome. It then 

1) counts all reads that overlap intron regions, 2) detects IR events by analyzing the 

features of reads such as depth and distribution patterns, and 3) outputs a list of retained 

introns into a tab-delimited text file. 
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3.4 Machine learning in genomics 

 
Several algorithms can be used in genomics for the researcher’s purposes. One of them 

is the supervised machine learning algorithm “Support Vector Machine (SVM)”54. 

SVM’s purpose is to predict the classification of a query sample by relying on labeled 

input data which are separated into two group classes by using a margin. Specifically, 

the data is transformed into a higher dimension, and a support vector classifier is used 

as a threshold (or hyperplane) to separate the two classes with minimum error (Fig.6). 

Some studies suggest that SVM, in some cases, outperform neural networks and 

decision trees55 for classification of various problems in the domain of bioinformatics.  

 

 

Fig.6: SVM classification scheme, H is the classification hyperplane; W is the normal vector to the 

hyperplane; m is the minimum distance between positive and negative hyperplanes124 

 

Neural Networks (NNs)56 are adaptive nonlinear information processing systems 

which combine numerous processing units with a series of characteristics such as self-

adapting, self-organizing and real-time learning (Fig.7). NNs have already been 
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adapted for genomics problems such as motif discovery 57, predicting the 

deleteriousness of genetic variants 58, and gene expression inference 59. There has been 

a growing interest to predict function directly from sequence, instead of from curated 

datasets such as gene models and multiple species alignment. 

 

 

 

Other popular algorithms are decision trees60. The first concept of decision tree was 

proposed by Hunt.E.B et al in 1966. Based on it, a lot of improved algorithms have 

emerged. Among these, the most famous algorithm is ID3 with a choosing policy 

according to information gain, which was proposed by Quinlan in 1986. 

C5.061 is another new decision tree algorithm developed based on C4.5 by Quinlan. It 

includes all functionalities of C4.5 and apply a bunch of new technologies, among them 

the most important application is “boosting” technology for improving the accuracy 

rate of identification on samples.  

Fig.7: Schematic of NNs. Data are processed by a series of layered nodes, or neurons. The 

output can be used for classification56 
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Gradient boosting34,62 is a powerful machine-learning technique that achieves state-of-

the-art results in a variety of practical tasks. For many years, it has remained the 

primary method for learning problems with heterogeneous features, noisy data, and 

complex dependencies: web search, recommendation systems, weather forecasting, 

and many others. This is essentially a process of constructing an ensemble predictor 

by performing gradient descent in a functional space. It is backed by solid theoretical 

results that explain how strong predictors can be built by iteratively combining weaker 

models (base predictors) in a greedy manner.  

AdaBoost63, acronym of "Adaptive Boosting", proposed by Freund and Schapire in 

1996, was the first very successful boosting algorithm developed for binary 

classification. It represents a popular boosting technique that helps to combine several 

"weak classifiers" into one "strong classifier" (Fig.8). A weak classifier is simply a 

classifier that works poorly, but works better than a random guess. By merging so many 

models of this type, AdaBoost is able to generate a model that overall is better than the 

single weak classifiers taken individually. Adaboost uses many decision trees at a depth 

level, called decision stumps, as many as the characteristics of the model. To every 

iteration, a new weak classifier is introduced in sequence and aims to compensate the 

"deficiencies" of the previous models to create a strong classifier. The general objective 

of this exercise is to consecutively adapt new models to provide more accurate 

estimates of our variable response. Actually, AdaBoost does not only accept decision 

trees as weak learners: any automatic learning algorithm can be used as a basic 

classifier if it accepts weights on the training set. 
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3.5 Ciliates as model organisms 
 

Studies on ciliates have contributed to several scientific milestones.  Ciliates are 

advantageous as a model eukaryotic system because they grow rapidly to high density 

in a variety of media and conditions, their life cycle allows the use of conventional 

tools of genetic analysis, and molecular genetic tools for sequence-enabled 

experimental analysis of gene function have been developed64. In addition, although 

they are unicellular, they possess many core processes conserved across a wide 

diversity of eukaryotes (including humans) that are not found in other single-celled 

model systems (e.g., the yeasts Saccharomyces cerevisiae and Schizosaccharomyces 

pombe). These unicellular eukaryotes are characterized by the presence of hair-like 

organelles called cilia, which are identical in structure to flagella but typically shorter 

Fig.8: Illustration of AdaBoost algorithm for creating a strong classifier based on multiple weak 

linear classifiers98. 
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and present in larger number. Protists use motile cilia for locomotion as well as for 

sensory perception to detect light, odors, soluble chemicals and mechanical forces. 

These single-celled microorganisms are spread almost everywhere such as in lakes, 

ponds, oceans, rivers and soils. Moreover, there are plenty of data in the public 

repositories, genomes, transcriptomes and gene annotations useful to build a 

generalized predictive model for all the ciliates.  

 

In hash and stress conditions, ciliates undergo a sexual phenomenon known as 

conjugation, that occurs by the mating between two cells of different and compatible 

“mating types”65. The aim of conjugation is mainly to increase genetic variability in 

the population that is obtained by genetic recombination and extensive nuclear 

reorganization including a complex DNA rearrangement.  

Even though ciliates are unicellular organisms, they maintain the germ and somatic 

line within a single cell represented by two different kinds of nuclei (nuclear 

dimorphism). The micronucleus (MIC) is diploid and transcriptionally silent. The MIC 

undergoes meiosis during conjugation. The macronucleus (MAC) is highly polyploid, 

i.e. it contains several copies of each homologous gene; it is transcriptionally active 

and controls the cell phenotype. The MAC derives from the MIC after several genomic 

rearrangement that occur during conjugation that include DNA sequence elimination, 

scrambling and amplification. During the vegetative growth, the MIC divides 

mitotically, while the MAC by a process named amitosis where the homologous 

polyploid chromosomes segregate randomly into the new daughter cells65. 
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Tetrahymena species have contributed to fundamental biological discoveries such as 

telomerase, telomeric repeats, catalytic RNA and the function of histone acetylation66. 

T. thermophila (Fig.9), T. borealis, T. elliotti and T. malaccensis genomes and 

transcriptomes under different physiological conditions have been sequenced, 

providing a large amount of data that can be used to study alternative intron splicing. 

According the literature Tetrahymena species have the highest number and percentage 

of genes showing AS reported in a unicellular eukaryote67. 

 

 

Paramecium tetraurelia (Fig.10)  is another ciliated model organism68 extensively used 

to study the mechanism of mating69  and genome rearrangement70, as well as the 

process of NMD71. The intron density in P. tetraurelia (2.3 introns per gene on average) 

is similar to that observed in many other unicellular eukaryotes, and some animals, 

such as Drosophila72. Paramecium introns are very short (25.1 bp on average, with 

99.9% of them in the range of 20–35 bp), i.e. much shorter than RNA-seq sequence 

reads, which greatly simplifies the detection and classification of AS events. In 

Fig.9: Tetrahymena thermophila confocal  immunofluorescence microscopic images125 
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particular, cases of IR can be identified directly by detecting sequence reads spanning 

the entire intron and its flanking exon boundaries. Moreover, given its high number of 

genes (~40,000), this genome allows the analysis of a large dataset of introns (>90,000 

introns). Finally, this organism already proved to be a good model to reveal important 

general features of splicing control in eukaryotes71. 

 

 

 

Euplotes  is a genus of free-living marine ciliates that play important roles as both 

predators of  microalgae and preys of multicellular eukaryotes like flatworms73. 

Euplotes focardii (fig.11)  is a marine ciliate of the Antarctic coastal seawaters, which 

lives between -1.9 °C and +1.9°C in natural conditions. It has been isolated from 

sediment and seawater samples collected in Terra Nova Bay by Valbonesi and Luporini 

Fig.10: Paramecium tetraurelia confocal  immunofluorescence microscopic images126 
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in 199374. It has optimal survival and multiplication rates at 4-5 °C under laboratory 

conditions but its viability declines sharply at temperatures greater than 8-10°C; after 

three hours of exposure at more than 20°C it is irreversibly damaged and dies74. 

Euplotes focardii has a doubling time of three days under normal feeding conditions 

but it shows cannibalistic phenomena under starvation conditions. It exhibits a peculiar 

behavior during conjugation because the formation of the conjugating pairs takes about 

18-24 hours after which the process proceeds for other 10 days74, instead of 12-16 hours 

as in other Euplotes species. One of the two partners reduce considerably its cell body 

and then is absorbed by the other one at the end of the reproductive process, in contrast 

with other ciliate species in which partners separate and complete independently macro 

and micronuclear development. The E. focardii genome and transcriptome have been 

studied by my research group (Mozzicafreddo et al., in press).  Genome sequencing 

was performed form the Department of Medicine at the Harvard Medical School in 

Boston, USA. The annotation process for the transcriptome and genome75 has been 

completed. E. focardii may represent an ideal model species for genome-level analysis 

to understand the evolutionary mechanisms of cold adaptation in psychrophilic 

organisms.  
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As a model organism in studies of cell and environmental biology, the free-living and 

cosmopolitan ciliated protist Euplotes vannus has more than ten mating types73 and 

shows strong resistance to environmental stresses. It shows intriguing features like 

most of ciliates, dual genome architecture (i.e., separate germline and somatic nuclei 

in each cell/organism), “gene-sized” chromosomes, stop codon reassignment, 

programmed ribosomal frameshifting (PRF) and strong resistance to environmental 

stressors76. However, the molecular mechanisms that account for these remarkable 

traits remain largely unknown. Both of these organisms have never been studied in 

terms of their AS arrangements 

  

Fig.11: Euplotes focardii confocal immunofluorescence microscopic images127. A) Ventral 

view; B) Dorsal view; C) Ventral view-1 in mitosis; D) Ventral view-2 in mitosis   
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3.6 Methods  
 

3.6.1 The pipeline  

 

The figure below shows the pipeline applied for the study (Fig.12). All genome and 

transcriptome data were downloaded from the European Bioinformatics Institute 

(EMBL-EBI)60 a part of EMBL.  

The second step of the pipeline (reads cleaning, mapping and assembly) was done using 

Galaxy Europe77 an open, web-based platform for accessible and reproducible 

computational biological research. Here users can easily run tools without writing code 

or using the command line interface all via a user-friendly web interface. 

 

 
 
  

 

 

Fig.12: The computational pipeline for the identification and classification of RIs 
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For the third step, several tools were required to extract exons and introns from the 

galaxy outputs.  Some of these were able to use input files from standard Galaxy-

generated outputs, but some required custom and modified files. My colleague, Dr. 

Leonardo Vito, decided to bundle all the scripts I needed to edit and extract results in 

an online and user-friendly service called Biounicam (Fig.13).  This service was 

developed using Node Red78, useful to create the graphical interface and to use the 

individual tools as a dataflow. The Node Red components are available on Github (Fig 

14) at the following address: https://github.com/leonardovito/node-red-biounicam-tool  

All the platform features are described in Chapter 3.6.2 Biounicam platform. 

https://github.com/leonardovito/node-red-biounicam-tool
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 Fig.14: Biounicam Github page. The user can download the source code 

Fig.13: Biounicam Homepage. This is the welcome page of the platform. The user can navigate 

it using the sections in the left window 
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Eventually to complete the last steps of the pipeline (retained introns classification, 

feature extraction and Machine Learning model creation) I used NextFlow53. It is a 

low-level framework useful to automate and concatenate different scripts in order to 

allow the following script to use as input the output of the previous script. Nextflow is 

a reactive workflow framework and a programming domain specific language that 

eases the writing of data-intensive computational pipelines. It is designed around the 

idea that the Linux platform is the lingua franca of data science. Linux provides many 

simple but powerful command-line and scripting tools that, when chained together, 

facilitate complex data manipulations. Nextflow extends this approach, adding the 

ability to define complex program interactions and a high-level parallel computational 

environment based on the dataflow programming model. This framework enabled us 

to speed up the single processes, and to execute the whole pipeline for every organism 

in an easy and reproducible way.  
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Some Nextflow tasks were already present as stand-alone tools in the Biounicam 

platform (Cufflinks Introns extraction, ASTALAVISTA Intron retention, subtract 

FASTA datasets, Dot-Bracket Notation), some other were added de novo. All the 

Nextflow tasks are described in chapter 3.6.5 Step 3: The Nextflow Framework. 

  

Fig.15: Nextflow code. In particular two concatenated scripts for mapping and 

transcriptome assembly 



52 

 

3.6.2 Biounicam platform  

 

This is an overview of the Biounicam platform. Not all the sections were used for our 

purposes, like section 6, 7 and 8. The platform still yet in development and in the near 

future we will add new tools. 

 
 

 

Fig.16: Section 1. The user can create .FASTA files with unique and incremental IDs. An 

incremental number starting from 1 to n is added on every description line 
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Fig.18: Section 3. Astalavista Intron retention: The user can extract retained introns using 

provided Astalavista (.gtf) coordinates (only IR specific coordinates). The user can choose to 

extent the intron flanking regions (5’-; 3’-) of a desired length 

 

 

 

Fig.17: Section 2. Cufflinks Introns extraction: The user can extract introns using provided 

Cufflinks (.gtf) coordinates. The user can choose to extent the intron flanking regions (5’-; 3’-) 

of a desired length 
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Fig.19: Section 4. Subtract FASTA datasets: the user can remove a subset of sequences from a 

.FASTA file 
 

Fig.20: Section 5. Merge FASTA: the user can merge two FASTA files 
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Fig.21: Section 6. Remove Nucleotides: the user can extend or shorten the intron flanking 

regions (5’-; 3’-) 

 

Fig.22: Section 7. Augustus Introns Extraction: The user can extract introns using provided 

Augustus (.gtf) coordinates and choose to extent the intron flanking regions (5’-; 3’-) of a 

desired length 
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Fig.23: Section 8. Stringtie Introns Extraction: the user can extract introns using provided 

Stringtie (.gtf) coordinates 

Fig.24: Section 9. DotBracket Notation: the user can convert the RNA primary structure (RNA 

sequence) in the secondary structure with the Dot-Bracket notation87 
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3.6.3 Step 1: Data selection 

 

Genome data of Tetrahymena species and Euplotes vannus was obtained from the 

Tetrahymena Genome Database Wiki, a user-updatable database of information about 

the genes, proteins, and genomes of ciliate organisms, as determined by The Institute 

for Genomic Research (TIGR) and Ocean University of China77. 

Paramecium tetraurelia genome was generated by Saudemont et. al79. All datasets are 

available at http://doi.org/10.5281/zenodo.321639 [52] 

Euplotes focardii genome assembly is available at NCBI with accession number 

CAAL0100000080. My research group produced the transcript reads. 

Fig.25: Section 10. Download File: the user can download all the data produced from the 

previous platform instances 
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All transcriptome data can be downloaded from the EMBL-EBI site using the IDs in 

chapter 3.7.1 Genomes and Transcriptomes (table 2). 

 

 

3.6.4 Step 2: The Galaxy Europe Platform 

 

Genome and transcriptome files in different formats (.FASTA, .FASTQ) were 

imported into the platform and different tools were used for each organism and its 

various transcriptome replicates. 

 

3.6.4.1 Data Cleaning and Mapping 

 

To remove low-quality and adaptor sequences within the transcriptome reads, 

Trimmomatic v0.3280 tool was employed for cleaning raw reads. Trimmomatic is a 

fast, multithreaded command line tool that can be used to trim and crop Illumina 

(FASTQ) data. There are two major modes of the program: Paired end mode and Single 

end mode. Paired end mode maintains the correspondence of read pairs and also use 

the additional information contained in paired reads to better find adapter or PCR 

primer fragments introduced by the library preparation process. This tool works with 

FASTQ files (using phred + 33 or phred + 64 quality scores, depending on the Illumina 

pipeline used) and performs a variety of useful trimming tasks. I used the settings 

below: 

(i) Trimming adapter fragments off raw sequence reads.  

(ii) Drop the read if the average quality is below the specified level phred 

(>30%)81.  
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(iii) Cut the read to a specified length by removing bases from the end (45bp).  

These trimming steps should ensure all clean reads without low-quality bases left 

for downstream analyses. 

The clean sequencing data were mapped to the organism reference genome using RNA 

STAR (v.2.4.0d-2)43 with default parameters. After the mapping step I obtained for 

every transcriptome a .BAM file (data reads aligned to an assembly) and a .BED file 

(index). 

 

3.6.4.2 Transcriptome assembly 
 

For each BAM file after reads mapping, I independently assembled transcriptome 

states using Cufflinks v2.2.1.351. It is known that ciliates and protozoa introns are 

averagely shorter than their animal counterparts. I found introns within the range from 

40 to 150 bp, so I adjusted the parameter -I (-max-intron-length) from default 30,000 

to 4,000 for Cufflinks. Meanwhile, the parameter -u (-multi-read-correct) was utilized 

to weigh reads mapping to multiple locations in the genome, and only highest-ranking 

alignments were reported.  

Cufflinks assembles individual transcripts from RNA-seq reads that have been aligned 

to the genome. Because a sample may contain reads from multiple splice variants for 

a given gene, Cufflinks must be able to infer the splicing structure of each gene. 

However, genes sometimes have multiple AS events, and there may be many possible 

reconstructions of the gene model that explain the sequencing data. In fact, it is often 
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not obvious how many splice variants of the gene may be present. Thus, Cufflinks 

reports a parsimonious transcriptome assembly of the data. The algorithm reports as 

few full-length transcript fragments or ‘transfrags’ as are needed to ‘explain’ all the 

splicing event outcomes in the input data. 

After the assembly phase, Cufflinks quantifies the expression level of each transfrag in 

the sample. This calculation is made using a rigorous statistical model of RNA-seq and 

is used to filter out background or artifactual transfrags. For example, with current 

library preparation protocols, most genes generate a small fraction of reads from 

immature primary transcripts that are generally not interesting. As these transfrags are 

typically far less abundant in the library than the mature, spliced transcripts, Cufflinks 

can use its abundance estimates to automatically exclude them. Given a sample, 

Cufflinks can also quantify transcript abundances by using a reference annotation 

rather than assembling the reads.  

 

3.6.4.3 Transcriptome Isoforms  

 

Cuffmerge51 was employed to remove the redundant isoforms in different samples. 

Cuffmerge is essentially a meta-assembler. It treats the assembled transfrags the way 

Cufflinks treats reads, merging them together parsimoniously. Furthermore, when a 

reference genome annotation is available, Cuffmerge can integrate reference transcripts 

into the merged assembly. It performs a reference annotation-based transcript 

assembly to merge reference transcripts with sample transfrags and produces a single 
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annotation file for use in downstream differential analysis. Figure 24 shows an example 

of the benefits of merging sample assemblies with Cuffmerge.  

 

 

 

 

Genes with low expression may receive insufficient sequencing depth to permit full 

reconstruction in each replicate. However, merging the replicate assemblies with 

Cuffmerge often recovers the complete gene. Newly discovered isoforms are also 

integrated with known ones at this stage into more complete gene models. 

Once each sample has been assembled and all samples have been merged, the final 

assembly can be screened for genes and transcripts that are differentially expressed or 

regulated between samples. 

 

3.6.5 Step 3: The Nextflow Framework 

 

 

3.6.5.1 Total Introns Extraction 

 

This task start from the Cuffmerge Galaxy output, remove duplicate exons and create 

a .FASTA file representing the sequence of all introns (5'-3'). 

Fig.26: Cuffmerge operating mode51 
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3.6.5.2 Differentiate Retained from Constitutively Spliced Introns 
 

This task creates two .FASTA file, respectively retained and constitutively spliced 

introns after cleaning them from outliers.  

The retained intron sequences were generated using the ASTALAVISTA and iREAD 

.gtf output. During this process all introns were flipped to 5’-3’ and only canonical 

introns were filtered. 

The first tool used was ASTALAVISTA (Fig 27) an algorithm by Foissac and 

Sammeth52. It can identify all the AS events from a Cuffmerge .gtf input. For our 

purposes, only IR events were examined. The RIs can be directly identified by the 

record code of AS event. The AS code of IRevents is 1^2-,0. 

 

 Fig.27: Astalavista operating mode52 
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The second tool was iREAD82 (Fig 28). It takes as input these files:  

1) the organism genome (.FASTA)  

2)BAM and a BED file that is generated by aligning reads to a reference genome using 

STAR in the Galaxy Europe Platform. The BAM file needs to be sorted by coordinates 

(the default of STAR) and to be indexed (can be done using the ‘samtools index’ 

command).  

3) a text file containing the coordinates of independent introns that do not overlap with 

any exons of any other isoforms or genes generated after the the Cuffmerge (.GTF) 

being processed by section 2 Biounicam script (Fig.17) in Nextflow. 

 

To obtain the constitutively spliced introns I implemented the section 4 Biounicam 

script (Fig.19) in Nextflow able to subtract the total introns from the cuffmerge files 

the retained introns obtained with the two tools. 

The data was checked for outliers via box and whisker plots. The observations that 

were beyond the range of ±3 standard deviation were deemed as outliers and were 

accordingly removed. 
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3.6.5.3 Feature Extraction 

 

Retained introns are generally smaller in length, have weaker splice sites and are more 

G/C rich. Braunchweigh et al.83 presented an ‘IR code’ in which they combined 

features for the task of predicting percentage intron retention. More recently, Mao et 

al. did a similar study, differentiating retained and non-retained introns in Arabidopsis 

thaliana84.  The feature set used by our models is mainly based on these two works, 

but I added some new features never used in literature in order to test if they can higher 

the performances of the models like the estimation of Entropy or a Metric of 

Complexity. In the next future, I will add some new features to better understand the 

secondary structure involvement into the splicing mechanism. A tabular data-frame, 

Fig.28: iRead operating mode82 
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with all features, was created for every retained and non-retained couple of FASTA 

file for every organism. 

 

I used the following features: 

 Intron length 

 Percentage of normalized AG, AC, AT, GC, GT, CT pairs considering the 

shortest intron sequence length85. I determined local features of segmental 

nucleotides composition, which provide crucial complementary to the global 

features and are defined as segmental probabilities of four nucleotides 

correlation factors (ΦAG, ΦAT, ΦGC, ΦGT, ΦCT) 

 To estimate the entropy of nucleotide sequences, I used the Dirichlet-

multinomial pseudo-count entropy estimator86, a Bayesian plug-in estimator. 

 The script in Biounicam section 9 (fig.24) was used in Nextflow to determine 

the intron secondary structure with RNAlib-2.4.1687 in Dot Bracket Notation. 

From the structure was calculated the sequent features: 

o Entropy value of intron’s global and local secondary structure86 

o Number specific secondary structure element (Hairpin, Internal Loop, 

Stem, Multi-branch loop) with specific length87 

The RNA structures were folded using RNAfold88 from the Vienna package 

with default parameters. The standard representation of a secondary structure 

in this library is the Dot-Bracket Notation (a.k.a. Dot-Parenthesis Notation), 

where matching brackets symbolize base pairs and unpaired bases are shown 
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as dots. Based on that notation, more elaborate representations have been 

developed such loops, hairpins, stem-loops. 

 

 The metric of complexity proposed by Lempel and Ziv (LZ)89. LZ has been 

used for complexity characterization of DNA sequences89, recognition of 

structural regularities to characterize the responses of neurons89, to develop 

new methods for discovering patterns in DNA sequences90 and to estimate the 

entropy of neural discharges (spike trains)91. This complexity measure is 

related to the number of distinct substrings (i.e., patterns) and the rate of their 

occurrence along a given sequence92. LZ is calculated in two steps. First, the 

value of a given signal of length is binarized. The standard way of doing this 

is calculating its mean value and turning each data point above it to |1|s and 

each point below it to |0|s; as a second step, the resulting binary sequence is 

scanned sequentially looking for distinct structures or patterns, building up a 

dictionary that summarizes the sequences seen so far. Finally, the LZ index is 

determined by the length of this dictionary; i.e., is the number of distinct 

patterns found. Note that regular signals can be characterized by a small 

number of patterns and hence have low LZ complexity, while irregular signals 

require long dictionaries and hence have a high LZ complexity. 

 

 The effective distance93 is defined as the linear distance in nucleotides (nt) 

after removing the secondary structure. More specifically, removing all the 
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bases that are part of a structured region and keeping the 2 bases corresponding 

to the beginning and the end of the structured region. The simplest way of 

calculating the effective distance between two signals in the RNA is to predict 

the minimum free energy structure and calculate the distance between them 

after discarding the positions included within the secondary structure. 

 

 Accessibility of splicing signals93: when secondary structures are placed 

overlapping cis elements in the sequence, they can hinder the recognition of 

these elements by other proteins or RNAs. Therefore, when measuring the 

ability to recognize a signal in an RNA molecule such as a splice site, I will 

have to measure its accessibility, i.e. whether the signal will be available to 

other proteins or will be hidden by an RNA structure. 

 

 Branch point position from 5’- within the intron.  

 

3.6.5.4 Data preprocessing 

 

Data preprocessing pipeline is shown in Figure 29. I randomly divided the database in 

a training set (70%), and a test set (30%) to evaluate the predictive models. The training 

set were used to build the classification algorithms using gradient boosting C5.061, 

NNs94 and SVM61 and ADAboost95.  The test set was used to evaluate the models. 
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Often real-world data sets are predominately composed of “normal” examples (spliced 

introns) with only a small percentage of “abnormal” (retained introns) examples. 

Evidence demonstrated that the class imbalance, which is just the situation in our 

sample, could substantially affect the performance of the method used.   

Fig.29: Data preprocessing pipeline. The numbers shown refer to an example dataset  
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A dataset is imbalanced if the classification categories are not approximately equally 

represented. It is also the case that the cost of misclassifying an abnormal example as 

a normal example is often much higher than the cost of the reverse error.  

With our tabular data-frames the numerical difference of the two classes was 

approximately 1 to 10. I applied different approaches in Nextflow to solve this 

problem. All these approaches can be classified into three strategies: data level, 

algorithm level and ensemble-based strategy. 

I used three classes of sampling only in the training set: under-sampling, ROSE and 

SMOTE. Under-sampling of the majority (normal) class has been proposed as a good 

means of increasing the sensitivity of a classifier to the minority class. SMOTE96 shows 

that a combination of over-sampling the minority (abnormal) class and under-sampling 

the majority (normal) class can achieve better classifier performance (in ROC space) 

than only under-sampling the majority class. ROSE97 (Random Over-Sampling 

Examples) generates synthetic balanced samples and thus allows to strengthen the 

subsequent estimation of any binary classifier. ROSE is a bootstrap-based technique 

which aids the task of binary classification in the presence of rare classes. It handles 

both continuous and categorical data by generating synthetic examples from a 

conditional density estimate of the two classes. 

 

I used the Caret v6.0–8296 and the GA (Genetic Algorithm optimization) v3.2 

package96 to automatically tune the optimal combinations of model parameters for the 
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four Machine Learning algorithms I choose, aiming to achieve a better prediction 

performance.  

The caret package, short for classification and regression training, contains numerous 

tools for developing predictive models using the rich set of models available in R. The 

package focuses on simplifying model training and tuning across a wide variety of 

modeling techniques. It also includes methods for pre-processing training data, 

calculating variable importance, and model visualizations (boxplot). Variable 

importance evaluation functions can be separated into two groups: those that use the 

model information and those that do not. I used a model-based approach more closely 

tied to the model performance and may be able to incorporate the correlation structure 

between the predictors into the importance calculation. Regardless of how the 

importance is calculated, for most classification models, each predictor will have a 

separate variable importance for each class. All measures of importance can be scaled 

to have a maximum value of 100. 

 

 

3.6.5.5 Machine Learning Algorithms 

 

C5.0 is an algorithm used to generate a decision tree developed by Ross Quinlan61. 

C5.0 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated 

by C5.0 can be used for classification, and for this reason, C5.0 is often referred to as 

a statistical classifier.  
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C5.0 builds decision trees from a set of training data in the same way as ID3 algorithm, 

using the concept of Entropy (Information Theory).  

At each node of the tree, C5.0 chooses the attribute of the data that most effectively 

splits its set of samples into subsets enriched in one class or the other. The splitting 

criterion is the normalized information gain (difference in entropy). The attribute with 

the highest normalized information gain is chosen to make the decision. The C5.0 

algorithm then recurses on the partitioned sublists. 

This algorithm has a few base cases. 

 All the samples in the list belong to the same class. When this happens, it simply 

creates a leaf node for the decision tree saying to choose that class. 

 None of the features provide any information gain. In this case, C5.0 creates a 

decision node higher up the tree using the expected value of the class. 

 Instance of previously-unseen class encountered. Again, C5.0 creates a decision 

node higher up the tree using the expected value. 

 

AdaBoost combines a set of weak learners in order to form a strong classifier in a 

“greedy fashion”98 , it always chooses the weak classifier with the lowest error, 

ignoring all others. A weak learner is any classifier such that at time t, ∊t < 0.5. It uses 

a decision stump because it is fast and gives a one-to-one relationship between a feature 

and a weak learner. The threshold is chosen such that the minimum error rate using 

feature t is achieved for weak learner h 

ℎ𝑡(𝑥) = {
+1       𝑖𝑓𝑥 ≥ 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑
−1                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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AdaBoost explicitly seeks to minimize the error according to a distribution of weights, 

Dt, a teach iteration. However, if we follow the logic and view as a vector of 

coordinates, α⃗, then it can be rewrite f(x) as: 

 

 

Here it can be view α⃗ as a hyperplane and as the margin. AdaBoost explicitly 

minimizes the error, and implicitly maximizes the margin according to the l1 −norm at 

each iteration, causing it to generalize well. Because AdaBoost greedily selects 

features, it can take a complicated problem, one composed of many features, and create 

a sparse classification rule, one composed of only a few features. However, this is also 

a drawback. Due to the greedy nature of AdaBoost it can only minimize the error, and 

maximize the margin with respect to features that have already been selected. 

AdaBoost is also limited by the fact that it can only combine weak learners by adding 

them together. AdaBoost approximates the Bayesian posterior distribution by 

incrementally adding new weak learners (hi(x)) at each iteration. This is equivalent to 

formulating the overall classifier at time t as H(x) = sign[P(y = ±1|h1(x) ⋯ht(x) > 0.5)] 

[50]. If we let h1(x) ⋯ht(x) = ht, we can formulate the posterior distribution as: 
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The denominator is again a constant and P(y = ±1) is a shape model which must be 

integrated later. In this formulation, AdaBoost also approximates the ideal Bayesian 

distribution after a long enough t, drawing features from a very large feature pool. 

We could stop here and just apply an ideal Bayesian classifier to the features selected 

by AdaBoost. For problems with a large number of i.i.d. examples that lie in a low-

dimensional space, this would be ideal. However, our problem lies in a high-

dimensional space, meaning that it would require a large number of i.i.d. examples for 

the Bayesian classifier to generalize well. Although we do have many examples, they 

are all correlated (non-i.i.d) and therefore the ideal Bayesian classifier would most 

likely be memorizing the posterior probability P(x1 ⋯ xt|y = ±1), resulting in poor 

generalization. 

 

Support Vector Machine (SVM) 61 is one of the most widely used classification 

method, specifically designed for binary classification problems. Among other things, 

SVM owns its popularity to its ability to study complex nonlinear classification 

problem by solving a convex quadratic optimization problem. Let be a generic dataset 

of N points where 𝑥𝑖 ∈ 𝑅𝑛 and 𝑦𝑖 respectively define an input vector (or feature vector) 

and its associated label, which may only assume the two values +1 and -1, indicating 

the class to which the input belongs. SVM central idea is the construction of a 

hyperplane with maximum margin of separation between the two classes. Such optimal 

hyperplane is represented by the following equation 

𝑤𝑇𝑥 + 𝑏 = 0 
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In Equation (1) 𝑤 is a weight vector of the same dimension of 𝑥𝑖 , ∀𝑖 = 1, . . . , 𝑁 and 𝑏 ∈ 𝑅 

is a threshold value. The goal of SVM would be to perfectly divide the points belonging 

to the two different classes. Anyway, based on the dataset in use, this is not always 

possible in the input space. To overcome this difficulty, SVM makes use of the so-

called kernel trick: training data is nonlinearly mapped into a higher dimensional space 

(i.e., feature space) through a function called feature mapping. Since the algorithm can 

be written entirely in terms of the inner products of the features, it is not required to 

know the feature mapping but only the inner products (in the feature space) 

⟨𝛷(𝑥𝑖), 𝛷(𝑥𝑗)⟩∀𝑖, 𝑗 = 1, . . . , 𝑁.  Specifically, given a function 𝛷, the corresponding kernel is 

defined as 

𝑘(𝑥𝑖 , 𝑥𝑗) = ⟨𝛷(𝑥𝑖), 𝛷(𝑥𝑗)⟩ 

Note that, in many cases the quantities 𝑘(𝑥𝑖, 𝑥𝑗) may be computationally inexpensive to 

calculate, even if 𝛷 is a very complex high dimensional function.  

Among the most popular kernel functions we find the polynomial kernel 𝑘(𝑥𝑖, 𝑥𝑗) =

⟨𝑥𝑖, 𝑥𝑗⟩𝑑, the radial basis function (RBF) kernels 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒−∨𝑥𝑖−𝑥𝑗∨ 2 2⁄ 𝜎2
 and the sigmoid 

kernel 𝑘(𝑥𝑖, 𝑥𝑗) = tanh(𝛾⟨𝑥𝑖, 𝑥𝑗⟩ + 𝑟) with 𝜎, 𝛾 and 𝑟 kernel parameters. 

 

 

Artificial Neural Network is a Machine Learning technique aiming to reproduce the 

behavior of human brain where neural cells (i.e., neurons) receive, process and transmit 

external data with each other. An artificial neuron is very similar to the physical one 

and is formed by three parts: the summing function, the activation function and the 

output function. In the summing function the inputs are associated with scalar weights 
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and summed, such sum is later on compared to a threshold value. If the computed value 

is greater than the threshold value, the neuron is activated and an output, defined by 

the activation function is sent to the other connected neurons, otherwise the neuron is 

not activated. Multilayer perceptron (MLP) is one of the most popular NN structure, 

where nodes are organized in three or more layers, i.e., a collection of nodes operating 

together at a specific depth: an input layer, one or more hidden layers and an output 

layer. At the beginning of the algorithm, all weights are randomly chosen. As the 

algorithm proceeds, the weights are modified in order to achieve the best agreement 

between computed and expected output. NN is a widely used algorithm mainly in 

image classification problems because of its performance. However, unlike other 

classical models as SVM or linear regression where the user can actually look inside 

the algorithm to understand how and how well it is working, using NNs makes it near 

impossible to know how the structure is actually working8. The user is aware that the 

model is some non-linear combination of some neurons, but it is hard to determine 

what each neuron is doing. For this reason, NNs are also known as “black boxes”. 

 

 

3.6.5.6 Model validation 

 

I did a 10-fold cross validation method with three repeats, which has been viewed as 

the de facto standard for estimating model performance33. In K Fold cross validation, 

the data is divided into k subsets. Now the holdout method is repeated k times, such 

that each time, one of the k subsets is used as the test set/ validation set and the other 

k-1 subsets are put together to form a training set. The error estimation is averaged over 
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all k trials to get total effectiveness of our model. As can be seen, every data point gets 

to be in a validation set exactly once, and gets to be in a training set k-1 time. This 

significantly reduces bias as we are using most of the data for fitting, and significantly 

reduces variance as most of the data is also being used in validation set. Interchanging 

the training and test sets also adds to the effectiveness of this method. 

 

 

3.6.5.7 Model evaluation 

 

As performance measures I used accuracy, area under the ROC curve (AUC), 

sensitivity and specificity. To describe such performance for classification problem, it 

is essential to define a specific matrix, called confusion matrix, containing the number 

of false positives (FP), false negatives (FN), true positives (TP), and true negatives 

(TN). Specifically, a two-class (positive-negative) confusion matrix is a table where 

each row represents a predicted value and each column defines an actual value (or vice-

versa): all correct predictions (TP and TN) are located in the matrix diagonal while the 

errors are given by all the elements outside the diagonal. 

Accuracy (ACC) is a value that can be directly calculated from the confusion matrix 

and defines how often the classifier is correct  

ACC =
TP + TN

𝑡𝑜𝑡𝑎𝑙
 

To define AUC it is necessary to introduce the ROC curve (Receiver Operating 

Characteristic curve), namely a graph showing the performance of the classifier over 

all possible thresholds with respect to two parameters: the sensitivity also known as 
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recall or true positive rate (TPR) and the false positive rate (FPR). The two quantities 

are defined as follows 

            TPR =
TP

TP+FN
,FPR =

FP

FP+TN
 

Sensitivity is calculated as the ratio between the number of positive inputs correctly 

classified as positive (true positives) and the total number of positive data and measures 

how well the classifier made positive predictions based on all classes (i.e., it can be 

seen as the classifier ability to correctly detect positive inputs). FPR is calculated as 

the ratio between the number of negative inputs wrongly classified as positive (false 

positive) and the total number of negative data and measures the proportion of all the 

negative inputs who will be identified as positive. 

AUC measures the area underneath the ROC curve: it has a range of values from 0 to 

1. The area measures discrimination, that is, the ability to correctly classify random 

positive and negative data. 

 

Specificity also known as true negative rate (TNR) is defined as 

TNR =
TN

TN + FP
, 

is calculated as the ratio between the number of negative inputs correctly classified as 

negative (true negatives) and the total number of negative data and measures how well 

the classifier made negative predictions based on all classes (i.e., it can be seen as the 

classifier ability to correctly detect negative inputs). 
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The Matthew Correlation Coefficient (MCC) is a binary classification model evaluator 

which can directly be computed using confusion matrix elements as follows: 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

Once introduced the Precision value as the ratio of correctly predicted positive 

observations with respect to the total positive ones, F1 score is given by 

 

𝐹1 =
2(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

representing the harmonic mean between sensitivity and recall values. 

Still using Precision and Sensitivity (Recall) values, the precision-recall curve simply 

plots precision (x-axis) and recall (y-axis) for several possible values of threshold. 

 

3.6.6 Gene Ontology 

 

Gene Ontology (GO) analysis was performed by an enrichment evaluation using the 

Fisher’s Exact Test available of the Blast2GO software83. The distributions of 

Tetrahymena species genomic and retained introns GO terms were compared 

considering all the GO categories (molecular function, biological process and cellular 

component) using a p-value threshold of 0.05 and a multiple testing correction of false 

discovery rate (FDR) as p-value filter mode. 
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3.7 Results and Discussion 
 

 

3.7.1 Genomes and Transcriptomes 

 

To build the IR prediction models for I used seven ciliate genomes: four from 

Tetrahymena species, two from Euplotes species, and one Paramecium species. The 

lowest GC content was in Tetrahymena species (between 22.6 and 24.0%). 

Paramecium tetraurelia had a GC content of 29%, while the highest GC content was 

in the Euplotes species (about 36%). Tetrahymena species had the longest mean 

assembly length (>190k bp) while Euplotes species had the shortest (<1.8k bp). P. 

tetraurelia had a slightly greater assembly average length than the Euplotes species 

(7.4k bp). Genomes’ details are represented in Table 4. 
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To map each genome, I decided to use at least four transcriptomes. The transcriptomes 

may derive from different cell physiological states (starvation, conjugation and growth) 

or all from the same state. For Euplotes focardii, the organism studied by my research 

group, only two transcriptomes were available. In table 5 there are all the 

transcriptomes’ details including the accession numbers and the Percentage of aligned 

mapped reads (%), which was acceptable for all transcriptomes after the RNA STAR 

Table.4: Genomes overview. Statistics were made with the FASTAstatistics tool77  
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mapping (>90% of aligned read) except for E. focardii in starvation (79.45%). This 

poor result may be caused by bacterial contamination during transcriptome extraction 

or a low yield of the extraction protocol. 

Organism ID Condition Sequencing instrument 
number  
of reads (bp) 

Sequencing 
types 

The Percentage of 

aligned mapping (%) 
Tetrahymena 

thermophila SRR636695 Growth-m Illumina Analyzer 30812705 Paired 96.75 

 SRR636696 Starvation-3h-VI Illumina Analyzer 15978436 Paired 97.37 

 SRR636697 Starvation-3h-V Illumina Analyzer 8939127 Paired 90.39 

 SRR636698 Starvation-15h-VI Illumina Analyzer 8254521 Paired 85.35 

 SRR636699 Conjugation-2h Illumina Analyzer 16329020 Paired 97.05 

 SRR636700 Conjugation-8h Illumina Analyzer 13692298 Paired 92.19 

Tetrahymena 

borealis SRR536859 Growth Illumina HiSeq 2000 14915466 Paired 
90.20 

 SRR536858 Starvation Illumina HiSeq 2000 16292687 Paired 
90.35 

 SRR505873 Growth Illumina HiSeq 2000 14923292 Paired 
91.02 

 SRR505872 Starvation Illumina HiSeq 2000 15857549 Paired 
90.13 

Tetrahymena 

elliotti SRR536843 Starvation Illumina HiSeq 2000 16317662 Paired 
90.89 

 SRR536842 Growth Illumina HiSeq 2000 14946584 Paired 
90.14 

 SRR505875 Starvation Illumina HiSeq 2000 15798072 Paired 
91.25 

 SRR505874 Growth Illumina HiSeq 2000 14486996 Paired 
90.26 

Tetrahymena 

malaccensis SRR505878 Growth Illumina HiSeq 2000 14873192 Paired 
90.85 

 SRR505879 Starvation Illumina HiSeq 2000 16801891 Paired 
89.69 

 SRR536826 Growth Illumina HiSeq 2000 15072192 Paired 
90.22 

 SRR536827 Starvation Illumina HiSeq 2000 16718449 Paired 
90.54 

Euplotes  

vannus SRR7670786 Growth HiSeq X Ten 20070546 Paired 
90.63 

 SRR7670788 Starvation HiSeq X Ten 26097176 Paired 
89.96 

 SRR7670790 Growth HiSeq X Ten 29030314 Paired 
90.75 

 SRR7670785 Starvation HiSeq X Ten 23739691 Paired 
90.67 

Euplotes  
focardii SRR1296783 Growth-m Illumina HiSeq 2000  27839201 Paired 91.67 

 SRR1296928 Starvation-6h Illumina HiSeq 2000  14032283 Paired 79.45 

Paramecium  
tetraurelia ERR1661484 Growth-m Illumina  IIx  9383971 Unpaired 90.33 

 ERR1661485 Growth-m Illumina  IIx  8875969 Unpaired 90.33 

 ERR1676709 Growth-m Illumina  IIx  32147503 Paired 94.22 

 ERR1676710 Growth-m Illumina  IIx  32103515 Paired 93.75 

 

 

 

 

 

 

 

 

Table.5: List of transcriptome reads used for genome mapping 
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3.7.2 Exons, CSIs and RIs 

 

The number of exons, as well as the number of RIs and CSIs below, does not represent 

the actual number of exons that are in a unique organism transcriptome, but the sum in 

the various transcriptome states after merging them with Cuffmerge. I merged the 

transcriptomes to increase the number of RIs and CSIs found, in order to train more 

effectively our Machine Learning models. Therefore, the real numbers of exons, RIs 

and CSIs are slightly lower than the following values. 

After assembly, merging and redundant isoforms removal using Cuffmerge of every 

transcriptome, I got the following exons results: the highest number of exons found 

was in E. vannus (about 200k). In P. tetraurelia and T. thermophila I found about 100k 

exons. For the other organisms, I obtained a number of exons less than 100k. Exons 

from all organisms had approximately the same average length, with a median between 

230 and 270 bp. Only E. vannus had a shorter median length of about 150 bp. The 

average GC content of the exons was lowest in Tetrahymena species (about 27%), 

while the highest was in E. vannus (37.7%) which also differed from the other Euplotes 

species E. focardii (32.4%). 
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 Exon# 

GC content 

(%) Median 

T.ter 118972 27.2 242 

T.mal 99843 26.8 248 

T.bor 79241 27.0 257 

T.ell 94735 26.3 269 

P.tet 114027 30.4 247 

E.van 214072 37.7 152 

E.foc 62995 32.4 229 

 

After label assignment (CSI or RI) by the two tools iREAD and ASTALAVISTA I 

obtained the following results.  

Based on the intron length distribution generated by quantile in terms of the given 

probabilities (0.02, 0.2, 0.4, 0.6, 0.8, 0.98), 95% RIs and CSIs were found within the 

range from 20 to 160bp. This suggested that extremely large introns (>1000bp) and 

extremely small introns (less than 20 bp) became outliers, which would cause a 

negative effect on classification. Another filter we applied was to select introns based 

on the presence of branch-point99. Consequently, I filtered the introns dataset obtaining 

the numbers in Figure 30 and 31. 

Table.6: Exons overview after the transcriptome mapped reads assembly and merging.  
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iREAD found more CSIs in all organisms than ASTALAVISTA, even significantly so 

as in E. vannus in which more than twice as many were labeled.  

 

The RIs pattern was different. iREAD found a higher number of retained introns in T. 

malaccensis, T. elliotti and E. focardii, while ASTALAVISTA in T. thermophila, T. 

borealis, P. tetraurelia and E. vannus. In this latter organism the differences were 

extremely marked as in the search for CSIs, in fact ASTALAVISTA labeled more than 

twice as many RIs. 

Fig.30: Absolute number of CSIs found by ASTALAVISTA and iREAD 
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If we examine the ratio between the RI and CSI, fairly consistent relationships between 

the two labelling tools were achieved in almost all ciliates. By contrast, in Euplotes 

species, I obtained discordant and unbalanced ratios. For example, ASTALAVISTA 

found more RI and less CSI than iRead in E.vannus with an unbalanced ratio towards 

IR (8.87%). Oddly, this unbalanced ratio disappears in E.vannus using iRead, but 

appears in E.focardii with a ratio of 6% RIs vs INR. 

 

I found differences not only in the number of CSIs and RIs labeled by the two tools, 

but also in introns features. ASTALAVISTA found RIs to be generally shorter than 

CSIs and with lower GC content. In contrast, iREAD found completely opposite 

results, with longer RIs and higher GC content (Table 7). Previous reports discovered 

similar features as iREAD, including, lower AT content and higher GC content in Ris 

100, 101. 

Fig.31: Absolute number of RIs found by ASTALAVISTA and iREAD 
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ASTALAVISTA       

        

 CSI# GC_content Median RI# GC_content Median RI vs CSI 

T.ter 67051 19,3 69 1349 14,8 59 2,01 

T.mal 69346 17,9 67 874 14,9 58 1,26 

T.bor 53512 19,5 67 534 16,2 61 1,00 

T.ell 64428 18,8 63 1074 15,7 58 1,67 

P.tet 74279 28,3 25 983 23,7 25 1,32 

E.van 81028 31,7 28 7190 32,3 26 8,87 

E.foc 34999 23,2 29 263 23,7 27 0,75 

        

iREAD        

        

 CSI# GC_content Median RI# GC_content Median RI vs CSI 

T.ter 80570 19,0 68 222 19,4 64 0,28 

T.mal 75332 16,7 66 1330 17,7 67 1,77 

T.bor 57899 18,8 67 372 19,5 75 0,64 

T.ell 71853 17,5 63 1186 18,0 67 1,65 

P.tet 79292 22,5 25 254 25,9 25 0,32 

E.van 159488 31,6 27 2749 32,7 36 1,72 

E.foc 35058 23,0 28 2119 24,5 31 6,04 

 

Finally, the ASTALAVISTA tool also provided us an overview of the AS that occurs 

in the studied organisms. The most frequent AS was intron retention followed by alt 

acceptor and alt donor. Only in T. thermophila the most frequent event was the alt 

acceptor (Fig.32). 

 

Table.7: Descriptive statistics of CSIs and RIs found by ASTALAVISTA and iREAD 
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Fig.32: Alternative splicing landscape found by ASTALAVISTA in Tetrahymena species. The pie 

charts show the most represented alternative splicing isoforms. Intron retention code is 1^2-,0. 
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Fig.33: Alternative splicing landscape found by ASTALAVISTA in P. tetraurelia and Euplotes 

species. The pie charts show the most represented alternative splicing isoforms. Intron retention 

code is 1^2-,0. 
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3.7.3 Machine learning performances 

 

The tables 8 and 9 below represent the results of the model evaluators, applied to each 

organism. Four machine learning algorithms, Adaboost M1, NeuralNetworks, C5.0 

and SVM, were evaluated.  

In this study, RIs were regarded as negative samples whereas CSIs as positive samples. 

However, the proportion of negative to positive samples was approximately 3:1000 in 

the worst scenario (iREAD, T.ter), which was unbalanced and the performance of 

classification tended to be biased towards the positive class. To address this issue, 

SMOTE proves to be an efficient method for classifying unbalanced dataset102. 

SMOTE is an algorithm that performs data augmentation by creating synthetic data 

points based on the original data. SMOTE can be seen as an advanced version of 

oversampling, or as a specific algorithm for data augmentation. The advantage of 

SMOTE is that are not generating duplicates, but rather creating synthetic data points 

that are slightly different from the original data points. 

Only the values obtained with the SMOTE preprocessing for iREAD and Down-

sampling method with ASTALAVISTA are represented in the tables since they 

performed better in the Matthews correlation coefficient (MCC) than the other 

sampling methods. For an extensive view of the results all the comprehensive tables of 

the other evaluators are in the appendix supplementary materials (Appendix C). 

As an alternative measure unaffected by the unbalanced datasets issue, the Matthews 

correlation coefficient is a contingency matrix method of calculating the Pearson 

product moment correlation coefficient. Accuracy and F1-score, although popular, can 
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generate misleading results on imbalanced datasets, because they fail to consider the 

ratio between positive and negative elements.  To get a high-quality score, the classifier 

has to make correct predictions both on the majority of the negative cases, and on the 

majority of the positive cases, independently of their ratios in the overall dataset. F1 

and accuracy, instead, generate reliable results only when applied to balanced datasets, 

and produce misleading results when applied to imbalanced cases. For these reasons, I 

choose MCC as a primary evaluator in our binary classification predictions, instead of 

using F1 score, accuracy or other evaluators.  

 

Surprisingly, machine learning algorithms performances were poor in all the analyzed 

organisms after ASTALAVISTA intron labeling. After the Down-sampling 

processing, the highest values obtained were with T. thermophila using 

NeuralNetworks (MCC 0.104), with E. vannus using Adaboost M1 (MCC 0.114) and 

with E. focardii using NeuralNetworks (MCC 0.116). These values, however, were not 

acceptable for the model’s discriminatory power because they were very close to zero 

(random guess). In some organisms such as T. malaccensis, T. borealis and E. vannus 

the SVM algorithm was not able to resolve the labeling due to the poor quality of the 

available data. The lowest performance was obtained in P. tetraurelia. The models 

were not able to confidently predict whether an intron was retained or not, a suggestion 

that the features used, the initial raw data or the labelling method were wrong. 

The precision values (the ratio of correctly predicted positive observations to the total 

predicted positive observations) were much higher in all organisms (>0.85) and even 
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in E. vannus, the organism with the lowest precision values, they were acceptable 

(about 0.5). Combining the precision values with those of Sensitivities (the ratio of 

correctly predicted positive observations to the all observations in actual class) yielded 

discrete F1-score values (the weighted average of Precision and Sensitivity) almost all 

between 0.5 and 0.7, but these could not be taken into account as these evaluators 

become less useful and biased by the majority class in highly unbalanced classes as in 

our experiment. Eventually, using ASTALAVISTA as labelling tool, the evaluators 

told us that the models using the provided features were able to discriminate the CSIs 

(majority class) but were not effective to recognize the RIs, causing many labeling 

errors. 

ASTALAVISTA 

Model evaluation          

Tetrahymena thermophila  

 Algorithm 
AUC-

PR 

AUC-

ROC 
Accuracy Precision 

F1 

score 
MCC Sensitivity Specificity 

 Adaboost M1 0,59 0,59 0,594 0,896 0,921 0,078 0,469 0,699 

 NeuralNetworks 0,59 0,62 0,493 0,918 0,618 0,104 0,466 0,694 

 C5,0 0,58 0,599 0,458 0,882 0,586 0,047 0,047 0,047 

 SVM 0,57 0,59 0,477 0,909 0,603 0,078 0,452 0,667 

Tetrahymena malaccensis  
        

 
Algorithm 

AUC-

PR 

AUC-

ROC 
Accuracy Precision 

F1 

score 
MCC Sensitivity Specificity 

 
Adaboost M1 0,57 0,57 0,524 0,931 0,667 0,045 0,52 0,564 

 
NeuralNetworks 0,54 0,58 0,385 0,947 0,512 0,072 0,351 0,775 

 
C5,0 0,56 0,538 0,351 0,947 0,468 0,067 0,311 0,802 

 
SVM - - - - - - - - 

Tetrahymena borealis          

 
Algorithm 

AUC-

PR 

AUC-

ROC 
Accuracy Precision 

F1 

score 
MCC Sensitivity Specificity 

 
Adaboost M1 0,6 0,62 0,648 0,962 0,779 0,083 0,655 0,526 

 
NeuralNetworks 0,58 0,61 0,555 0,964 0,701 0,074 0,551 0,616 

 
C5,0 0,57 0,534 0,552 0,955 0,032 0,08 0,554 0,518 

 
SVM - - - - - - - - 
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Tetrahymena elliotti          

 
Algorithm 

AUC-

PR 

AUC-

ROC 
Accuracy Precision 

F1 

score 
MCC Sensitivity Specificity 

 
Adaboost M1 0,59 0,6 0,6 0,914 0,77 0,051 0,665 0,665 

 
NeuralNetworks 0,62 0,64 0,504 0,911 0,632 0,088 0,484 0,652 

 
C5,0 0,6 0,52 0,652 0,901 0,779 0,039 0,681 0,38 

 
SVM 0,54 0,57 0,547 0,922 0,684 0,07 0,544 0,574 

Paramecium tetraurelia         

 Algorithm 
AUC-

PR 

AUC-

ROC 
Accuracy Precision 

F1 

score 
MCC Sensitivity Specificity 

 Adaboost M1 0,58 0,59 0,595 0,921 0,732 0,047 0,607 0,4735 

 NeuralNetworks 0,59 0,59 0,582 0,927 0,718 0,07 0,586 0,534 

 C5,0 0,57 0,549 0,629 0,924 0,76 0,065 0,645 0,465 

 SVM 0,56 0,56 0,525 0,924 0,667 0,048 0,522 0,563 

Euplotes vannus          

 Algorithm 
AUC-

PR 

AUC-

ROC 
Accuracy Precision 

F1 

score 
MCC Sensitivity Specificity 

 Adaboost M1 0,58 0,58 0,54 0,434 0,521 0,114 0,434 0,679 

 NeuralNetworks 0,56 0,58 0,532 0,628 0,542 0,084 0,476 0,609 

 C5,0 0,57 0,566 0,531 0,628 0,542 0,083 0,4768 0,607 

 SVM - - - - - - - - 

Euplotes focardii          

 
Algorithm 

AUC-

PR 

AUC-

ROC 
Accuracy Precision 

F1 

score 
MCC Sensitivity Specificity 

 
Adaboost M1 0,54 0,53 0,604 0,975 0,75 0,003 0,609 0,4 

 
NeuralNetworks 0,6 0,58 0,5 0,624 0,922 0,116 0,472 0,706 

 
C5,0 0,58 0,585 0,543 0,978 0,698 0,025 0,543 0,538 

 
SVM 0,45 0,44 0,562 0,976 0,715 0,013 0,564 0,476 

 

The performance obtained with iREAD after model evaluation was overall better. The 

best results obtained were with the C5.0 algorithm in Paramecium tetraurelia (MCC 

0.983) and in Tetrahymena thermophila with Adaboost M1 (MCC 0.979). C5.0 was 

also the best algorithm among those tested in all organisms, having always very good 

performances (MCC>0.79). In general P. tetraurelia and T. thermophila was the best 

Table.8: Machine learning models performance evaluation after Down-sampling using 

ASTALAVISTA intron recognition. 
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performing organism obtaining an average MCC value respectively of 0.899 and 0.884. 

Models trained with iREAD were more capable of discriminating CSIs from RIs.  

The lowest performing organisms were Euplotes species. As seen above, the two tools 

used (ASTALAVISTA and iRead) in these organisms encountered several difficulties 

in consistently labeling introns, yielding mixed results. Causes could be found in their 

peculiar genome features that might have biased the tools used, which were probably 

optimized for canonical genome structures.  

Euplotes macronucleus genome are extensively fragmented to gene-sized nano-

chromosomes, which facilitates the evolution of genetic code. Previous studies indicate 

that ciliates evolved diversified and flexible nuclear genetic code from their ancestors 

with ambiguous genetic codes103. For most species, UGA remains as stop while UAA 

and UAG are reassigned to code glutamine, tyrosine or glutamic acid103. It is opposite 

in Euplotes, whose UGA codon is reassigned to code cysteine while UAA and UAG 

are stops104. However, euplotids evolves another important mechanism of programmed 

ribosomal frameshifting at the stop codons UAA and UAG, which can solve the same 

problem of canonical stop codons residing in the coding regions. It is proposed that 

translation (either through reassignment or frame- shifting), rather than termination, is 

the default recognition mode for “stop” codons while termination is due to the context- 

specific override provided by transcript ends103. 

For these reasons, if in the future we want to study these organisms more effectively, 

customized versions of the tools must be used. 
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iREAD Model 

Evaluation         

Tetrahymena thermophila  

 Algorithm AUC-PR 
AUC-

ROC 
Accuracy Precision F1 score MCC Sensitivity Specificity 

 Adaboost M1 0,99 0,99 0,989 0,982 0,989 0,979 0,997 0,982 

 NeuralNetworks 0,97 0,97 0,841 0,87 0,832 0,684 0,798 0,883 

 C5,0 0,99 0,98 0,961 0,938 0,987 0,959 0,922 0,942 

 SVM 0,99 0,99 0,953 0,975 0,957 0,917 0,939 0,974 

Tetrahymena malaccensis  
        

 
Algorithm AUC-PR 

AUC-

ROC 
Accuracy Precision F1 score MCC Sensitivity Specificity 

 
Adaboost M1 - - - - - - - - 

 NeuralNetworks 0,81 0,81 0,709 0,721 0,691 0,419 0,66 0,752 

 
C5,0 0,98 0,98 0,948 0,921 0,948 0,898 0,978 0,919 

 
SVM 0,84 0,86 0,781 0,786 0,772 0,562 0,759 0,802 

Tetrahymena borealis  
        

 
Algorithm AUC-PR 

AUC-

ROC 
Accuracy Precision F1 score MCC Sensitivity Specificity 

 
Adaboost M1 - - - - - - - - 

 NeuralNetworks 0,91 0,92 0,783 0,785 0,777 0,567 0,77 0,797 

 
C5,0 0,98 0,98 0,984 0,972 0,984 0,97 0,997 0,973 

 
SVM 0,94 0,95 0,919 0,952 0,914 0,84 0,879 0,957 

Tetrahymena elliotti  
        

 
Algorithm AUC-PR 

AUC-

ROC 
Accuracy Precision F1 score MCC Sensitivity Specificity 

 
Adaboost M1 0,85 0,87 0,745 0,734 0,727 0,489 0,719 0,769 

 NeuralNetworks 0,84 0,86 0,751 0,73 0,738 0,501 0,747 0,754 

 
C5,0 0,99 0,99 0,961 0,938 0,959 0,922 0,981 0,942 

 
SVM 0,98 0,99 0,96 0,939 0,959 0,922 0,968 0,943 

Paramecium tetraurelia         

 Algorithm AUC-PR 
AUC-

ROC 
Accuracy Precision F1 score MCC Sensitivity Specificity 

 Adaboost M1 0,98 0,98 0,913 0,893 0,914 0,828 0,937 0,89 

 NeuralNetworks 0,98 0,98 0,923 0,966 0,919 0,851 0,877 0,969 

 C5,0 0,99 0,97 0,991 0,985 0,991 0,983 0,997 0,986 

 SVM 0,98 0,98 0,969 0,968 0,968 0,937 0,968 0,969 

Euplotes vannus          

 Algorithm AUC-PR 
AUC-

ROC 
Accuracy Precision F1 score MCC Sensitivity Specificity 

 Adaboost M1 0,94 0,92 8,831 0,81 0,825 0,633 0,841 0,823 

 NeuralNetworks 0,76 0,75 0,657 0,582 0,656 0,311 0,582 0,726 

 C5,0 0,97 0,96 0,874 0,858 0,869 0,748 0,88 0,869 

 SVM 0,76 0,75 0,697 0,692 0,669 0,391 0,648 0,74 
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Euplotes focardii  
        

 
Algorithm AUC-PR 

AUC-

ROC 
Accuracy Precision F1 score MCC Sensitivity Specificity 

 
Adaboost M1 0,82 0,79 0,708 0,693 0,653 0,405 0,616 0,782 

 
NeuralNetworks 0,74 0,78 0,641 0,622 0,578 0,271 0,539 0,727 

 
C5,0 0,97 0,98 0,896 0,877 0,884 0,79 0,89 0,9 

 
SVM 0,78 0,75 0,689 0,684 0,615 0,364 0,558 0,793 

 

The figure 34, shows the gain in performance brought by iREAD in all tested organisms 

that ranged from a gain of 4.6x to even 14.6x in the case of P.tetraurelia. Probably this 

gain is the result of a higher labeling power by iREAD compared to ASTALAVISTA, 

allowing the ML algorithms together with the features I used to have a good 

performance in almost all organisms. 
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Fig.34: iRead vs ASTALAVISTA gain in performances. The values on the y-axis represent the 

averages of the models MCC.  

Table.9: Machine learning models performance evaluation after SMOTE, using iREAD intron 

recognition. 
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Analyzing iRead-labeled data performances (Figure 35), the best overall machine-

learning algorithm was C5.0, with decent scores in all seven organisms. In second place 

was SVM and then NNs followed in last place by Adaboost M1, that despite getting 

the highest score in T. thermophila, failed the classification in two out of seven 

organisms. 

Our results clearly demonstrate that C5.0 offers more advantageous classification 

performance than SVM (Fig.35). Performances of these two kinds of classifier are 

influenced by their respective hyperparameters. Our experience showed that the 

parameter optimization was easier to implement for C5.0, resulting to a stable classifier 

performance. In contrast, slight changes in these parameters would cause large 

variation in the classifier performance in SVM105. Although I employed Genetic 

Algorithm Optimization to search the optimal parameters and have obtained better 

classification performance in comparison with the result using traditional grid search 

method, the classification performance of SVM may be further improved using 

different type of optimization like Particle Swarm106. Unlike SVM, individual decision 

trees in C5.0 automatically utilize informative features more frequently in training 

process and achieve independent predictions, which were combined to gain accurate 

predictions107. Therefore, C5.0 presents significant superiority in failure tolerances and 

robustness, which plausibly explain its consistent advantageous performance. 
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3.7.4 Feature importance and visualization 
 

Using the CARET package on the best performing dataset (iRead-labelled), I was able 

to understand the features importance (Fig.36) during the ML classification process 

(RIs and CSIs). Moreover, this package has been useful to quickly visualize the 

differences between features in one group of introns or in the other (Fig.37).  

 

In Tetrahymena species, I was able to recognize four main common features in this 

genus: Lempel-Ziv Complexity Measure in primary (Lev) and in local secondary 

structure (nSsLv) and two segmental sequences (ΦGC, ΦGT). This feature overlap 

could be due to the common origin of the datasets or to their belonging to the same 

genus. Figure 36 shows that the most important features in Tetrahymena species was 

The Lempel-Ziv complexity. Lempel-Ziv Complexity Measure, based on the Lempel-
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iRead MCC performances
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Fig.35: Machine learning algorithms performances after iRead labelling. The values on the y-axis 

represent the averages of the models MCC.  
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Ziv-Welsh compression algorithm, is a feature that represents the complexity of the 

nucleotide sequence. DNA sequence can be treated as finite-length symbol strings over 

a four-letter alphabet (A, C, T, G)108. As a universal and computable complexity 

measure, Lev complexity is valid to describe the complexity of DNA sequences, one 

of the most basic properties of a symbolic sequence.  

This feature, in our case, represented the repetitiveness of nucleotides on the intron 

sequence. The higher the Lev value was, the less repetitive the nucleotides in the 

sequence were. In the experiments with Tetrahymena this feature was significant, in 

fact descriptive analysis done in retrospect, showed that RIs have a higher Lev than 

CSIs (Fig.37), from which I could highlight that the structure of the sequence is more 

chaotic and less compressible. The same Lempel-Ziv measure was also calculated for 

the secondary structure, both in global (SsLv) and local (nSsLv) form. I can infer that 

Tetrahymena species have a less complex secondary structure in RIs than CSIs, 

typically with smaller structures (loops, hairpin etc.) 

A simpler and more straightforward interpretation of Lev is by to focus on the quantity 

which is known to be an efficient estimator of the entropy rate109. The entropy rate is a 

quantity from Information Theory, which measures how many bits of innovation are 

introduced by each new data sample 110. Moreover, the entropy rate is a good measure 

of how hard it is to predict the next value of a sequence. In effect, one half of the 

entropy rate approximates the probability of making an error with the best informed 

guess about the next sample111.  
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Other two important features were ΦGC and ΦGT. The first feature (ΦGC) was higher 

in in RIs than in CSIs and the second was lower (Fig.37). This indicates that difference 

between G and C contents for segmental intron sequences in RIs was greater than that 

in CSIs, whereas the difference between G and C contents for segmental intron 

sequences was higher in CSIs than that in RIs.  

Sequential ΦGC content could be higher in RI because the second largest class, GC-

AG introns, appeared more frequently in RIs than CSIs84 and also for the higher content 

of GC in retained introns. Instead lower values of ΦGT in RIs was consistent with 

previous reports100,101. 

 

However, the condition was different for the two Euplotes species and for P. 

tetraurelia. Not only the best-performing iRead-labelling features were different from 

the Tetrahymena species, but also from each other. This could be due to the origin of 

the datasets from three different research groups112, but also to the different structure 

of the introns. Indeed, P. tetraurelia had the shortest introns of all organisms (median 

25bp), and Euplotes species also had much shorter introns (median 27-28bp) than 

Tetrahymena species (63 to 68bp). In addition, these three species also had the highest 

GC content in their introns.  This led to a change in the structure properties113 of the 

introns and consequently also to a difference in the importance of the features.  

Among the main features, common to P. tetraurelia and E. focardii was another 

entropy-based feature, the Bayesian (Laplace) estimator. The entropy of a string, in our 

case an intron nucleotide sequence, represents the amount of information contained in 
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a message ("the intron"). In information theory, entropy represents the inverse measure 

of the compressibility of a message and depends on the probability of appearance of 

symbols in the relevant alphabet. In particular, higher is the entropy, more random is 

the message and more information it contained.  In our study, the results show higher 

entropy in retained introns, which means more disorder in the sequence directly 

proportional to the information it contains. 

The same Lempel-Ziv measure on the secondary structure, both in global (SsLv) and 

local (nSsLv) was also important in Euplotes species and similar to that estimated in 

Tetraymena species, with lower values in retained introns. 

Lower values of ΦGT in E. vannus retained introns were consistent with those in the 

Tetrahymena species. 

 

RNA secondary structures have been demonstrated to affect AS114,115. In our models 

only the calculation of the entropy on the secondary structures (SsLv, nSsLv) was 

relevant for a correct classification. The simple quantitative calculation of RNAlib-

derived secondary structures and their position in the intron did not have the expected 

effectiveness, always being in the very bottom sections of the importance diagram. 

Therefore, a great challenge is how to accurately and effectively incorporate RNA 

secondary structures as features to enhance the performance and accuracy of our 

classifier. Without a doubt, a comprehensive feature extraction including both linear 

sequence features and RNA secondary structure features will definitely facilitate our 

understanding of how RIs are regulated in eukaryotes. 
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The different outcomes obtained from the two Euplotes species may be explained with 

the distinct niches the two ciliates come from. E. focardii is strictly cold-adapted (it 

cannot survive above 10 °C), a characteristic that favored the evolution of a AT rich 

genome104 with respects the other non-cold-adapted Euplotes species and most 

probably a “looser” (more flexible) RNA secondary structure. Intron splicing/retention 

mechanism may be completely different in this Antarctic ciliate, mainly due to 

inefficient spliceosome activity at low temperatures than other controllers. 

Another explanation could be related, as mentioned before, to the structural 

characteristics of introns and exons. 

 



102 

 

 
 

 

 
 

Fig.36: Machine learning feature importance using CARET tool. A normalization step 

automatically scales the importance scores to be between 0 and 100. 
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Fig.37: BoxPlot features visualization using CARET tool. It can be visualized the differences of 

values in the most representative features in every organism between retained (R) and CSIs (N) 
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3.7.5 Tetrahymena species Gene Ontology 

 

In order to assess the functional differences of the sequences that mostly undergo intron 

retention, I performed a Gene Ontology (GO) and an enrichment analysis using the 

Fisher’s Exact Test 27 This analysis allowed to compare term changes of retained 

introns normalized with the corresponding genomic sequences . 

 

 

Fig.39: Gene Ontology (GO) and an enrichment analysis using the Fisher’s Exact Test of 

Tetrahymena retained introns. Test set (blue): retrained intron; reference set (red): genomic 

sequences 

 

In Tetrahymena species, the first term was ATP binding (Fig.39). Under this category 

are usually included membrane proteins, categories of molecules know to be “tailored” 

by AS events 116. It follows GO terms involved in protein phosphorylation in ciliates’ 

species.  
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CHAPTER 4: Conclusions and Future Work  

During these years of pursuing my doctorate, I encountered many challenges. Primarily 

was the multidisciplinary nature of the subject. I found myself interacting with different 

professionals, mathematicians, physicists, informaticians and bioinformaticians. Each 

of these figures had their own particular technical language. I was forced to learn a 

common, interdisciplinary language in order to achieve my goals. 

Another challenge was finding myself in a field of research relatively new and 

definitely in its infancy at the University of Camerino. However, this gave me more 

freedom in my research and stimulated me to seek knowledge even from figures 

outside my university. 

In the past, a large fraction of clinical data were underestimated. This limitation was 

due to both the size and complexity of the data and the absence of techniques for 

collecting and storing such data. These data was frequently underused and 

undervalued; however, new and improved methods for data collection and storage (eg, 

electronic health records) provide opportunities to tackle the issue of analysis. In 

particular, machine learning (ML) has begun to infiltrate the clinical literature broadly. 

Our tool,DSaaS, can help physicians to make easy and fast predictions models that 

could be helpful to treat hospitalized patients. Additionally, epidemiologists can use 

predictions to guide policies, research, and drug development for upcoming years. In 

the first version of DSaaS, we provided a useful prediction model for hospitalized 

patients on the onset of an MDR UTI with discrete performance. Moreover, our 
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objective is to expand the DSaaS platform to allow not only physicians but also 

researchers from different fields to use our tool with a variety of databases.  

Several limitations should be noted in this ML application. First, potential risk factors 

which were unavailable from the review of medical records will be considered for use 

in the next model. In the next future we will point to enhance the model with other 

well-known UTIs risk factors like diabetes, the presence of a catheter, sexual-related 

factors, antibiotic use and renal transplantation 117. Moreover, using ML techniques, 

risk factors commonly neglected by traditional statistical models can be discovered. 

Secondly, the analyzed cases were extracted from a small-scale hospital and therefore 

the generalizability of our findings may be limited. In the future we wish to gather more 

cases from a wider variety of hospitals. 

The future steps to enlarge the platform will be to develop a dataflow editor and to add 

unsupervised ML methods. At the end, DSaaS platform will allow users to carry out 

data science pipeline works by obtaining, cleaning, exploring and visualizing data in 

order to individuate patterns, apply models and understand data trends. 

 

Once we mastered the basic Machine Learning techniques, we decided to investigate 

the field of alternative splicing, a topic far more complex than the previous one. 

Alternative splicing contributes to the majority of protein diversity in higher eukaryotes 

by allowing one gene to generate multiple distinct protein isoforms. It adds another 

regulation layer of gene expression. Moreover, around 15% of human hereditary 

diseases and cancers are associated with alternative splicing118. The developed pipeline 
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(Chapter 3.6.1) can be used effectively for the discovery of new features that 

differentiate Retained Introns from Constitutively Spliced Introns. The plasticity of the 

pipeline will allow in the future implementing new features and new ML algorithms 

that may lead to a better understanding of the phenomenon of AS also in other 

organisms. All the newly discovered features can be found below: 

 

 This pipeline can be utilized to effectively discover and test for new RIs features. 

 For this case study, iRead appears to be the best labeling method to use. 

 The genus Tetrahymena is the one that responded best in Machine Learning 

feature discovery, achieving consistent results across species. 

 Euplotes species have been difficult to label by the two tools ASTALAVISTA 

and iRead. 

 For this case study C5.0 was the best Machine Learning algorithm to be used. 

 On average RIs are longer, higher GC content and lower AT content than CSIs 

in all organisms. 

 In Tetrahymena species the RIs have a higher primary Lempel-Ziv Complexity 

Measure than CSIs. This means that the sequence primary structure of RIs is 

more chaotic and less compressible. 

 In Tetrahymena and Euplotes species the RIs have a lower Lempel-Ziv 

Complexity Measure than CSIs in the secondary structure. This means their 

secondary structures are smaller. 



109 

 

 In Tetrahymena species RIs show different features of segmental nucleotides 

composition, such as higher ΦGC and lower ΦGT locally. 

 In P. tetraurelia and E. focardii the RIs have a higher Laplace estimator than 

CSIs. This means that the sequence primary structure of RIs is more chaotic 

directly proportional to the information it contains. 

 Due to the complexity of the study, it was not possible to find a common feature 

between the different genus analyzed, but only within the same genera 

 

During the case-study design, I faced several limitations. Most importantly, I 

encountered difficulties in putting together a harmonious and homogeneous database. 

All the data used came from different research groups, including my own. The main 

limitation, however, was the accumulation of error in each step of the pipeline that 

eventually led us to a result, although good, to be verified experimentally.  

 

Below I list the main sources of error encountered: 

 Different data from different research groups 

A crucial prerequisite for a successful RNA-seq study is that the data generated 

have the potential to answer the biological questions of interest. This is achieved 

by first defining a good experimental design, that is, by choosing the library type, 

sequencing depth and number of replicates appropriate for the biological system 

under study, and second by planning an adequate execution of the sequencing 

experiment itself, ensuring that data acquisition does not become contaminated 
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with unnecessary biases119. All of these issues are amplified when using datasets 

from different research groups as in our work. This inevitably leads to an 

increase in the global error. All raw data should be produced by the group that 

then has the goal of identifying whether or not an intron is retained, to have the 

complete control. If this is not possible the data should only come from a single 

research group in order to limit error in this step. These two options decrease the 

error but inevitably lead to a drastic reduction in the amount of data available. A 

balance should be struck between acceptable error and the amount of data that 

can be used for subsequent machine learning modeling. For example, the work 

designed in this thesis, a multi-organism study, would have been impossible for 

a single research group unless a reasonable investment of time and money was 

made. 

 

 Error in data selection and manipulation 

There are different sources of error when manipulating transcriptome and genome data. 

The good practices suggest several control steps. Quality control for the raw reads 

involves the analysis of sequence quality, GC content, the presence of adaptors, 

overrepresented k-mers and duplicated reads in order to detect sequencing errors, PCR 

artifacts or contaminations. Percentage of mapped reads, which is a global indicator of 

the overall sequencing accuracy and of the presence of contaminating DNA. Other 

important parameters are the uniformity of read coverage on exons and the mapped 
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strand. Despite all these measures, the researcher generates an amount although 

minimal of error. 

 

 RIs labelling 

There are a considerable number of tools (>10) in the literature that promise to correctly 

label whether an intron is retained or not120. RNA sequencing-based IR 

detection/quantification software has not been systematically benchmarked to date 

despite there are many challenges in IR identification. All these approaches are 

generally hampered by the intrinsic limitations of short-read sequencing for accurate 

identification at the isoform level, transcriptional ‘noise’ introduced by DNA 

contamination or unprocessed pre-mRNA transcripts121 as for Euplotes species. 

All of these computational methods while not perfect, are rapid methods by which the 

researcher can label thousands of RIs in a single day, but most importantly they do not 

affect the research team's budget as only a laptop and basic coding skills are needed to 

accomplish the tasks. 

In order to have a precise validation it is necessary to rely on experimental techniques, 

which are slower and more expensive. Northern blot analysis is one of the original 

methods for RNA visualization and quantification and remains a standard technique to 

validate IR-transcripts discovered through mRNA-seq experiments122. However, 

Northern blot techniques are relatively involved and time consuming and are less 

sensitive for accurate quantification in the case of very low abundance IR RNA123. RT-

PCR has emerged as a simple and efficient way to quantify RNA, including low 
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abundance RNA124. The key principle for IR validation and quantification in qRT-PCR 

is again to use sequence-specific primers that align in the intron or across the intron–

exon junctions. The relative abundance of IR can be assessed by using primer pairs in 

regions that are common to both IR and completely spliced mRNAs. 

In this case the researcher is forced to make a choice, between a big amount of data 

produced by computational methods or the quality of classical techniques, because the 

quantity and quality of the data set will impact the Machine learning model 

performances. 

 

 Machine Learning challenges 

For any given data set the researcher wants to develop a model that is able to predict 

with the highest degree of accuracy possible. In Machine Learning, there are many 

levers that impact the performance of the model. The algorithm choice, the parameters 

used in the algorithm, the quantity and quality of the data set and the features used to 

train the model. Despite the methods the researcher applies to minimize errors and 

increase performance, a minimal amount of error will be inevitable. 

 

Since it is impossible to eradicate these limitations, a future approach will be to limit 

their impact as much as possible. This will help us achieve the ultimate goal of 

discovering and applying new features to all the data set without distinction of species 

and/or genera, providing a unique set of features for a global AS understanding. 
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∑

Δ Limitation Solution 

1 

Different data from different research 

groups 

Data should only come from a single research 

group 

2 

Errors in data selection and 

manipulation All the quality control steps should be done 

3 

Only use IR detection/quantification 

software  

In order to have a precise validation it is 

necessary to rely on experimental techniques 

4 

Use a limited number of machine 

learning algorithms,  

features and optimization methods 

Use the correct number of features, the best 

hyperparameter-optimization 

 methods and avoid model overfitting 

 

In conclusion, the field of machine learning, especially for biologists, has been very 

fascinating and given the amount of publications and new techniques that are applied 

every day, is free from the stagnation of ideas that other fields of research are frequently 

suffering. 

  

Table.7: Limitations and solutions in the intron retention feature discovery pipeline 
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Appendix A: Publications Overview 
 

All the articles published during my PhD are listed below. In addition to the article 

abstracts I reported the main techniques used in each one and my contributions. These 

techniques have been useful to broaden my knowledge in statistics, data science and 

microbiology as well as to lay the foundations for writing the final manuscript.  

 

 

A.1 Data Science 

 

A.1.1 Abstract I 

 

A Real-World Setting Study: Which Glucose Meter Could Be the Best for POCT 

Use? An Easy and Applicable Protocol During the Hospital Routine  

DOI: 10.1177/1932296818774077  

 

Abstract 

The aim of this retrospective study is to evaluate the reliability and robustness of six 

glucose meters for point-of-care testing in our wards using a brand-new protocol. 

During a 30-days study period a total of 50 diabetes patients were subjected to venous 

blood sampling and glucose meter blood analysis. The results of six glucose meters 

were compared with our laboratory reference assay. GlucoMen Plus (Menarini) with 

the 82% of acceptable results was the most robust glucose meter. Even if the Passing-

Bablok analysis demonstrates the presence of constant systematic errors and the 

Bland-Altman test highlighted a possible overestimation, the surveillance error grid 

analysis showed that this glucose meter can be used safely. We proved that portable 

glucose meters are not always reliable in routinely clinical settings. 

https://doi.org/10.1177/1932296818774077
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Technique’s overview: 

 The passing–Bablok regression is a statistical method for non-parametric 

regression analysis suitable for method comparison studies 

 The Bland–Altman plot (difference plot) in analytical chemistry or biomedicine 

is a method of data plotting used in analysing the agreement between two 

different assays. 

 The coefficient of variation (CV) is a measure of relative dispersion used to 

comparing distributions that have not outliers  

 The Surveillance Error Grid is a modern metric for clinical risk assessments of 

blood glucose monitor errors that assigns a unique risk score to each monitor 

data point when compared to a reference value. 

 

Contributions: 

Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data 

Curation, Writing - Original Draft, Review & Editing 
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A.1.2 Abstract II 

 

CiliateGEM: an open-project and a tool for predictions of ciliate metabolic 

variations and experimental condition design 

DOI: 10.1186/s12859-018-2422-9  

 

Abstract 

Background: The study of cell metabolism is becoming central in several fields such 

as biotechnology, evolution/adaptation and human disease investigations. Here we 

present CiliateGEM, the first metabolic network reconstruction draft of the freshwater 

ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate 

different growth conditions and to predict metabolic variations. CiliateGEM can be 

extended to other ciliates in order to set up a meta-model, i.e. a metabolic network 

reconstruction valid for all ciliates. Ciliates are complex unicellular eukaryotes of 

presumably monophyletic origin, with a phylogenetic position that is equal from plants 

and animals. These cells represent a new concept of unicellular system with a high 

degree of species, population biodiversity and cell complexity. Ciliates perform in a 

single cell all the functions of a pluricellular organism, including locomotion, feeding, 

digestion, and sexual processes. 

 

Results: After generating the model, we performed an in-silico simulation with the 

presence and absence of glucose. The lack of this nutrient caused a 32.1% reduction 

rate in biomass synthesis. Despite the glucose starvation, the growth did not stop due 

to the use of alternative carbon sources such as amino acids. 

https://doi.org/10.1186/s12859-018-2422-9
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Conclusions: The future models obtained from CiliateGEM may represent a new 

approach to describe the metabolism of ciliates. This tool will be a useful resource for 

the ciliate research community in order to extend these species as model organisms in 

different research fields. An improved understanding of ciliate metabolism could be 

relevant to elucidate the basis of biological phenomena like genotype-phenotype 

relationships, population genetics, and cilia related disease mechanisms. 

 

Techniques overview: 

 The constraint-based Modelling is used for a quantitative prediction of cellular 

and multicellular biochemical networks 

 

Contributions: 

Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data 

Curation, Writing - Original Draft, Review & Editing 
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A.1.3 Abstract III 

 

Differences between Community- and Hospital-acquired urinary tract infections 

in a tertiary care hospital 

http://www.newmicrobiologica.org/PUB/allegati_pdf/2020/1/17.pdf 

 

Abstract 

The aim of this retrospective study was to highlight the differences in antibiotic 

resistance between Hospital-acquired and Community-acquired urinary tract 

infections (UTIs). Antimicrobial UTIs resistance data were collected from March 2011 

to March 2018. Uropathogens were identified from 41,715 patients using routine 

laboratory methods. Differences in antibiotic resistance between Hospital and 

Community (non-hospitalized) patients were statistically validated. Odds ratio (OR) 

and p-values was used to determine whether a particular exposure (hospitalization) 

was a risk factor for a particular outcome (higher antibiotic resistance). We reported 

a general increase of unnecessary urine cultures in both community and hospital 

patients. The most representative microorganism isolated from Community (58.2%) 

and Hospital (47.6%) was E. coli. UTIs causative bacteria in hospitalized patients was 

more than twice as resistant to Trimetoprim/sulphamethoxazole (OR 2.26) and 

Imipenem (OR 2.56), for Gram-positive and Gram-negative, respectively, than in 

Community patients. Nitrofurantoin was the only agent without differences in 

resistance rate between community and hospital UTIs. Therefore, physicians could use 

it as a definitive therapy for uncomplicated cystitis and as a prophylactic agent for 

recurrent uncomplicated cystitis. With this work, we provided a general protocol 

http://www.newmicrobiologica.org/PUB/allegati_pdf/2020/1/17.pdf
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applicable by physicians to select the most suitable, if necessary, UTIs empiric 

treatment. 

 

Technique’s overview: 

 

 The odds ratio (OR) is a statistic that quantifies the strength of the association 

between two events, A and B. 

 The p-value. A very small p-value means that such an extreme 

observed outcome would be very unlikely under the null hypothesis.  

 

Contributions: 

Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data 

Curation, Writing - Original Draft, Review & Editing 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Outcome_(probability)
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A.2 Microbiology 
 

A.2.1 Abstract IV 

 

Synthesis of Bioactive Silver Nanoparticles by a Pseudomonas Strain Associated 

with the Antarctic Psychrophilic Protozoon Euplotes focardii 

DOI: 10.3390/md18010038  

 

Abstract  

The synthesis of silver nanoparticles (AgNPs) by microorganisms recently gained a 

greater interest due to its potential to produce them in various sizes and morphologies. 

In this study, for AgNP biosynthesis, we used a new Pseudomonas strain isolated from 

a consortium associated with the Antarctic marine ciliate Euplotes focardii. After 

incubation of Pseudomonas cultures with 1 mM of AgNO3 at 22 °C, we obtained 

AgNPs within 24 h. Scanning electron (SEM) and transmission electron microscopy 

(TEM) revealed spherical polydispersed AgNPs in the size range of 20-70 nm. The 

average size was approximately 50 nm. Energy dispersive X-ray spectroscopy (EDS) 

showed the presence of a high intensity absorption peak at 3 keV, a distinctive property 

of nanocrystalline silver products. Fourier transform infrared (FTIR) spectroscopy 

found the presence of a high amount of AgNP-stabilizing proteins and other secondary 

metabolites. X-ray diffraction (XRD) revealed a face-centred cubic (fcc) diffraction 

spectrum with a crystalline nature. A comparative study between the chemically 

synthesized and Pseudomonas AgNPs revealed a higher antibacterial activity of the 

latter against common nosocomial pathogen microorganisms, including Escherichia 

coli, Staphylococcus aureus and Candida albicans. This study reports an efficient, 

https://doi.org/10.3390/md18010038
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rapid synthesis of stable AgNPs by a new Pseudomonas strain with high antimicrobial 

activity.  

 

Technique’s overview: 

 Pathogen isolation from human specimens 

 Pathogen identification with VITEK 2 microbial identification system 

 The disk diffusion test, or agar diffusion test, or Kirby–Bauer test (disc-diffusion 

antibiotic susceptibility test, disc-diffusion antibiotic sensitivity test, KB test), is 

an antibiotic susceptibility test. It uses antibiotic discs to test the extent to which 

bacteria are affected by those antibiotics. 

 

Contributions: 

Methodology, Validation and Investigation of the microbiological part. Writing - 

Review & Editing 
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A.2.2 Abstract V 

 

Antibiotic activity of the antioxidant drink effective Microorganism-X (EM-X) 

extracts against common nosocomial pathogens: an in vitro study 

DOI: 10.1080/14786419.2018.1517344  

 

Abstract 

EM-X is a mixed consortium of beneficial microorganisms of natural occurrence 

(lactic bacteria, yeast and photosynthetic bacteria). The aim of this study is to evaluate 

the antimicrobial activity in-vitro of EM-X to the principal pathogens isolated in 

clinical settings and to understand if it could be a suitable adjuvant to synthetic 

antibiotics. According the World Health Organization we performed antimicrobial 

assays to the main pathogens usually found in hospital wards. After antimicrobial 

testing, EM-X has been shown to be most effective at a concentration of 40 mg/ml four 

time concentrated than the commercial original solution (10 mg/ml). The EM-X 

antimicrobial action, although effective against bacteria, has proved to be ineffective 

against the candida genus. This active range of concentration (mg/ml) may prove a 

very weak action of EM, but further investigations will be done to separate the active 

substances form the inactive ones in this complex mixture. 

 

Technique’s overview: 

 Pathogen isolation from human specimens 

 Pathogen identification with VITEK 2 microbial identification system 

https://doi.org/10.1080/14786419.2018.1517344
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 The the broth microdilution method appears to be an easy and reliable method 

for determination of the MICs of antibiotics 

 freeze-drying and filtering of substances containing active ingredients 

 

Contributions: 

Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data 

Curation, Writing - Original Draft, Review & Editing 

 

 

A.2.3 Abstract VI 

 

Horizontal gene transfer and silver nanoparticles production in a new 

Marinomonas strain isolated from the Antarctic psychrophilic ciliate Euplotes 

focardii 

DOI: 10.1038/s41598-020-66878-x  

 

Abstract  

We isolated a novel bacterial strain from a prokaryotic consortium associated to the 

psychrophilic marine ciliate Euplotes focardii, endemic of the Antarctic coastal 

seawater. The 16S rDNA sequencing and the phylogenetic analysis revealed the close 

evolutionary relationship to the Antarctic marine bacterium Marinomonas sp. 

BSw10506 and the sub antarctic Marinomonas polaris. We named this new strain 

Marinomonas sp. ef1. The optimal growth temperature in LB medium was 22 °C. 

Whole genome sequencing and analysis showed a reduced gene loss limited to regions 

encoding for transposases. Additionally, five genomic islands, e.g. DNA fragments that 

https://doi.org/10.1038/s41598-020-66878-x
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facilitate horizontal gene transfer phenomena, were identified. Two open reading 

frames predicted from the genomic islands coded for enzymes belonging to the Nitro-

FMN-reductase superfamily. One of these, the putative NAD(P)H nitroreductase YfkO, 

has been reported to be involved in the bioreduction of silver (Ag) ions and the 

production of silver nanoparticles (AgNPs). After the Marinomonas sp. ef1 biomass 

incubation with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. The AgNPs 

were relatively small in size (50 nm) and had a strong antimicrobial activity against 

twelve common nosocomial pathogenic microorganisms including Staphylococcus 

aureus and two Candida strains. To our knowledge, this is the first report of AgNPs 

biosynthesis by a Marinomonas strain. This biosynthesis may play a dual role in 

detoxification from silver nitrate and protection from pathogens for the bacterium and 

potentially for the associated ciliate. Biosynthetic AgNPs also represent a promising 

alternative to conventional antibiotics against common pathogens. 

 

Techniques overview: 

 Pathogen isolation from human specimens 

 Pathogen identification with VITEK 2 microbial identification system 

 The disk diffusion test, or agar diffusion test, or Kirby–Bauer test (disc-diffusion 

antibiotic susceptibility test, disc-diffusion antibiotic sensitivity test, KB test), is 

an antibiotic susceptibility test. It uses antibiotic discs to test the extent to which 

bacteria are affected by those antibiotics. 

 



135 

 

Contributions: 

Methodology, Validation and Investigation of the microbiological part. Writing - 

Review & Editing 

 

 

A.2.4 Abstract VII 

 

Biogenic Synthesis of Copper Nanoparticles Using Bacterial Strains Isolated from 

an Antarctic Consortium Associated to a Psychrophilic Marine Ciliate: 

Characterization and Potential Application as Antimicrobial Agents 

DOI: 10.3390/md19050263  

 

Abstract 

In the last decade, metal nanoparticles (NPs) have gained significant interest in the 

field of biotechnology due to their unique physiochemical properties and potential uses 

in a wide range of applications. Metal NP synthesis using microorganisms has 

emerged as an eco-friendly, clean, and viable strategy alternative to chemical and 

physical approaches. Herein, an original and efficient route for the microbial synthesis 

of copper NPs using bacterial strains newly isolated from an Antarctic consortium is 

described. UV-visible spectra of the NPs showed a maximum absorbance in the range 

of 380–385 nm. Transmission electron microscopy analysis showed that these NPs are 

all monodispersed, spherical in nature, and well segregated without any 

agglomeration and with an average size of 30 nm. X-ray powder diffraction showed a 

polycrystalline nature and face centered cubic lattice and revealed characteristic 

diffraction peaks indicating the formation of CuONPs. Fourier-transform infrared 

https://doi.org/10.3390/md19050263


136 

 

spectra confirmed the presence of capping proteins on the NP surface that act as 

stabilizers. All CuONPs manifested antimicrobial activity against various types of 

Gram-negative; Gram-positive bacteria; and fungi pathogen microorganisms 

including Escherichia coli, Staphylococcus aureus, and Candida albicans. The cost-

effective and eco-friendly biosynthesis of these CuONPs make them particularly 

attractive in several application from nanotechnology to biomedical science. 

 

Techniques overview: 

 Pathogen isolation from human specimens 

 Pathogen identification with VITEK 2 microbial identification system 

 The disk diffusion test, agar diffusion test, or Kirby–Bauer test (disc-diffusion 

antibiotic susceptibility test, disc-diffusion antibiotic sensitivity test, KB test), is 

an antibiotic susceptibility test. It uses antibiotic discs to test the extent to which 

bacteria are affected by those antibiotics. 

 

Contributions: 

Methodology, Validation and Investigation of the microbiological part. Writing - 

Review & Editing 
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Appendix B: Patents 

 
These four patents are related to the field of microbiology and concerns the 

characterization of four novel bacteria strains, isolated in our laboratories and 

deposited, belonging to Marinomonas, Rhodococcus, Bacillus and Brevundimonas 

genera, and the use of these bacteria for the in-vitro production of useful metabolites.  

These bacteria are cold tolerant and can growth in a wide range of temperatures, from 

4 °C to 28 °C.  

 

Patent-102019000014121 (granted): in the presence of glucose and peptone in the 

culture medium, these bacteria produce fluorescent molecules that can be exploited as 

natural dyes. Moreover, in the presence of silver nitrate, these strains are able of silver 

nanoparticles biosynthesis. These nanoparticles show high antimicrobial activity 

against pathogenic gram-positive and gram-negative bacteria and against pathogenic 

yeast such as Candida. The production of the silver nanoparticles is rapid and low-cost. 

Furthermore, the biosynthesis is environmentally friendly since does not imply the use 

of toxic substances for nanoparticles purification. In particular, we aim in the 

production of material such as tissues or sponges that contain the bio-produced silver 

nanoparticles to be used to sterilize surfaces from pathogenic agents. 

 

Patent-102019000024493: the patent reports a method for removing fuels from 

contaminated water by adding the bacterial strain Rhodococcus ef1 to diesel 

contaminated water long enough to grow and produce a natural phenazin-like dye and 
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surfactants that trap and remove diesel. If Marinomonas ef1 and/or Rhodococcus ef1 

are added to water contaminated with CrIII and CrVI in the presence of CrSO4 and 

K2CrO4, these toxic salts are transformed into nanoparticles containing Cr reduced, 

harmless to humans and the environment. Finally, the addition of the bacterial strain 

Rhodococcus ef1 to cocaine-contaminated water allows the bacterial strain 

Rhodococcus ef1 to degrade cocaine within 24 hours. 

 

Both are protected internationally under the Patent Cooperation Treaty (PTC).  

 

Patent-102019000014121 (submitted): the patent reports two bacteria able to 

synthesize biocellulose under room temperature, without energy expenditure. Usually 

this procedure take place at 30°C. No specific salt solutions are used and the culture 

medium is not a limiting factor. Different culture media can be used without affecting 

the success of the biocellulose production process. The culture media is usually mixed 

with glucose and mannitol, the former in concentrations of at least 3%. Our bacteria 

need only 1.5% of glucose. 

 

Patent-102021000017333 (submitted): the patent reports two bacteria able to 

synthesize a new resin and biocellulose under room temperature, without energy 

expenditure. The culture media is usually mixed with sugar of fat, deriving from food 

waste.  
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