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Abstract

We prove that if a smoothly bounded strongly pseudoconvex domain D C C*,n > 2, admits
at least one Monge-Ampere exhaustion smooth up to the boundary (i.e., a plurisubharmonic
exhaustion T : D — [0, 1], which is € at all points except possibly at the unique minimum
point x and with u:=log t satisfying the homogeneous complex Monge-Ampere equation),
then there exists a bounded open neighborhood %7 C D of the minimum point x, such that
for each y € 7 there exists a Monge-Ampere exhaustion with minimum at y. This yields
that for each such domain D, the restriction to the subdomain %2 C D of the Kobayashi
pseudo-metric «p is a smooth Finsler metric for %/ and each pluricomplex Green function
of D with pole at a point y € % is of class ¥*°. The boundary of the maximal open subset
having all such properties is also explicitly characterized. The result is a direct consequence
of a general theorem on abstract complex manifolds with boundary, with Monge-Ampere
exhaustions of regularity ¥ for some k > 5. In fact, analogues of the above properties hold
for each bounded strongly pseudoconvex complete circular domain with boundary of such
weaker regularity.
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1 Introduction

Motivated by Lempert’s results on smoothly bounded convex domains and the several fol-
lowing developments, the second author introduced in [24] the notion of Lempert manifold,
that is a complex manifold (M, J) such that:
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(i) the Kobayashi pseudo-metric x of M is a smooth strongly pseudoconvex Finsler metric,
ie.,

(a) Itis a strictly positive and €°° on TM? = TM\{Zero section};

(b) k(Av) = |Alk(v) forany A € C* and v € TM?;

(c) The set of tangent vectors .%, = {v € Ty M : k(v) < 1} is a strongly pseudoconvex
domain of C" >~ T, M for each x € M;

(i1) all exponentials exp, : TyM — M, x € M, are diffeomorphisms and the distance
function d, determined by «, is complete.

(iii) foreach w € Tx(C M?, the 2-dimensional real submanifold exp(Cw) of M is a complex
curve, which is totally geodesic and with induced metric of constant holomorphic
curvature —4.

This definition was designed to capture most of the properties of the smoothly bounded
strictly convex domains. Indeed, by [1,2,12,13,18], each such domain is a Lempert manifold.
It is also quite remarkable that, in contrast with the fact that on each smoothly bounded
strictly convex domain (and each domain biholomorphic to one of them) the Kobayashi
pseudo-metric ¥ has so many and so nice properties, up to now no other explicit class of
domains, for which « is smooth on the whole 7 M?, is known.

A closely related notion introduced by the first author in [19] is the class of manifolds of
circular type which naturally includes all smoothly bounded strictly convex domains and all
smoothly bounded strongly pseudoconvex circular domains. Manifolds of circular type are
characterized by the Because of the uniqueness of the exhaustion 7 : M — [0, 1), which is
smooth at all points except possibly at the minimal set {t = 0} and with u:=log t satisfying
the homogeneous complex Monge-Ampere equation. The minimal set always consists of
only one point x,, called center, and the function x = «® : T,, M\{0} — [0, +00) for
(x0,v) € Ty, M, defined by

d
KXo, v):=lim =Ty ()| (1.1)

0 dr t=t,

where y is any smooth curve with y(0) = x,, y(0) = v, coincides with the Kobayashi
metric of M at the point x,,.

Apparently strictly convex domains and strongly pseudoconvex circular domains are man-
ifolds of circular type for unrelated reasons. Indeed, for a smoothly bounded strictly convex
domain £2 C C", for any x, € 2, the exhaustion 7 defined by 7(y) = (tanh §(y, X)), with
8(y, x,) the Kobayashi distance from y to x,, is a Monge-Ampere exhaustion centered at x,,.
This is a consequence of the very special properties of the Kobayashi metric and distance and
their peculiar relation with the pluricomplex Green potential, discovered by Lempert for this
class of domains. On the other hand, a smoothly bounded, strongly pseudoconvex complete
circular domain D C C" is of circular type because its squared Minkowski function M2D is
a Monge-Ampere exhaustion centered at 0. This is a simple consequence of the symmetry
properties of such domains, namely of the S! action that defines them and has the origin
as the unique fixed point. While it is known that the pluricomplex Green potential exists at
every point and it is in general only C!-!, there is no simple reason why such a domain should
admit a Monge-Ampere exhaustion as defined above, centered at some other point but the
origin. Indeed, this would imply strong regularity and the least possible degeneracy of the
Levi form of the pluricomplex Green potential.

Important steps toward a deeper understanding of the geometry of the set of centers of
domains of circular type are provided by the results of Pang ([18]). Indeed, Pang detected
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a special condition on holomorphic stationary disks, called coercitivity property, which is
invariant under biholomorphisms (in contrast with the strict convexity condition for domains),
it characterizes isolated local extremal disks and, most importantly, it is stable under small
deformations. As an important application of such results and especially of the quoted sta-
bility of coercitivity property, Pang managed to prove that any smoothly bounded strongly
pseudoconvex complete circular domain D admits an open subset 7% C D with the property
that each y € % is the center of an appropriate smooth Monge-Ampére exhaustion.

In this paper, we show that the existence of such “clouds” of centers is actually a general
property, provided that the considered domain admits at least one Monge-Ampere exhaustion
7, which is smoothly extendible up to the boundary. More precisely, we prove the following

Theorem 1.1 Let D C C" be a smoothly bounded strongly pseudoconvex domain, admitting
a Monge-Ampére exhaustion T : D — [0, 1), centered at x, € D, which is smoothly
extendible up to the boundary. Then there exists an open neighborhood % C D of x,, such
that for each x € U there exists a Monge-Ampére exhaustion T : M — [0, 1), smoothly
extendible up to the boundary and centered at x. The family of exhaustions ™), considered
as collections of maps parameterized by the uniquely associated centers x € %, depends
smoothly on such parameter.

Further, in the cases in which the maximal connected neighborhood % ™ of x, with
the above property is strictly smaller than D, the intersection 3% ™) N f(A) with each
stationary disk f(A) C D through x, coincides with the set of points, where an appropriate
matrix valued function is singular (see Proposition 5.4 below for details)

In this result, the “maximality” of % ™) means that for each point y € 3% ™ < D
there is no Monge-Ampere exhaustion centered at y that is smooth up to the boundary. Actu-
ally, as mentioned in the statement, our proof gives also a constructive method to determine
the maximal open set % (™3 and, in particular, its boundary. It thus provides a biholomorphi-
cally invariant characterization of the domains for which D = % max) ' e for the domains
for which each point is the center of a smooth Monge-Ampere exhaustion, hence of domains,
on which the Kobayashi metric is a smooth complex Finsler metric.

In Theorem 1.1, the smoothness properties are deliberately not specified. Indeed whenever
the boundary of the domain D and the Monge-Ampére exhaustion 7 are either ¥, for some
k > 5, 0r €% or €, then our result yields that the exhaustions ™ x € 7™M are at least
¢* =32 o € (0, 1), in the first case, or €°° or €* respectively in the other cases, up to the
boundary.

The above theorem has the noticeable consequence that for any smooth domain of circular
type D C C" admitting at least one Monge-Ampére exhaustion that is smooth up to the
boundary, the Kobayashi pseudo-metric k is a strongly pseudoconvex Finsler metric on a
(possibly non-connected) open subdomain of D.

Of course, all this can be rephrased in terms of the pluricomplex Green functions and, in
particular, gives new information on their regularity. In fact, if 7™ : D — [0, 1) is a Monge-
Ampere exhaustion, with center x and smooth up to the boundary, the associated function

u® =logr™ : D — [—00, 0] (1.2)

is the pluricomplex Green function for D with pole at x, it is of class C* and satisfies the
homogeneous complex Monge-Ampere equation on D\{x} with the least possible degener-
acy, i.e., the annihilator of the form 391 has rank 1 at every point of D\{x}. Conversely, if
the pluricomplex Green function ™) with pole at x is of class C* and satisfies the homoge-
neous complex Monge-Ampere equation on D\{x} with the least possible degeneracy, then
70 = exp(u™) is a Monge-Ampere exhaustion centered at x.

@ Springer



1296 G. Patrizio, A. Spiro

By general results on hyperconvex manifolds ([4,5,9]), it is known that for each point
x of a smoothly bounded strongly pseudoconvex domain D C C”" there exists a unique
pluricomplex Green function ™) with pole at x. Its regularity is at least ! up to the
boundary but, in general, of not higher regularity. Our result implies the following curious
phenomenon of propagation of regularity: if a smoothly bounded strongly pseudoconvex
domain D C C" admits at least one pluricomplex Green function u™® of class €, then
necessarily all other pluricomplex Green functions u™) with poles at the points x' in an
appropriate subdomain 2™ C D, are of class €°.

While, by Lempert’s results ([12]), it is known that on a smoothly bounded strictly convex
domain D C C”" the pluricomplex Green function u*) with pole at x is of class "> for each
x € D, there are no explicit examples of smoothly bounded strongly pseudoconvex domain
D c C" with a point x,, for which pluricomplex Green function u*) is > and such that
the surrounding “cloud” % (M) ¢ D, made of the points x for which also their pluricomplex
Green functions u®™ are ¥, is strictly smaller than in D. On the other hand, in Proposition
5.3, we provide specific (closed) necessary conditions for the “cloud” % (™M) to be properly
contained in D. At the end of the paper, we discuss how such conditions can be used to
construct explicit examples with % ™) C D and to determine biholomorphically invariant
sufficient conditions for propagations of regularity to the whole domain to occur.

Theorem 1.1 is obtained as a consequence of a more general result (Theorem 2.8) concern-
ing abstract complex manifolds with boundary, equipped with Monge-Ampere exhaustions of
regularity 4%, k > 5. Such result shows that the above phenomena of propagation of regularity
hold also for the ¢*-analogues of domains of circular type, in particular for strongly pseudo-
convex circular domains with boundaries of such regularity. We remark that the assumption
k > 5 is rather technical and determined by the special approach we exploit, namely the use
of the so-called manifolds in normal form. 1t is reasonable to expect that such lower bound
for k is not sharp and that the propagation phenomena for Monge-Ampere exhaustions and
pluricomplex Green functions should occur in full generality also if & > 3. This is actually
true if the considered complex manifold is already a manifold in normal form (Theorem 2.7).
We also notice that Theorem 2.8 holds also in the C*°-smooth category and that its C¢
version follows from ancillary results needed as part of its proof.

The structure of the paper is the following. In §2, we introduce the new notion of complex
manifolds with boundary of circular type of class €%, a minor modification of the original
definition of manifolds of circular type, and we state the main results of our paper. In §3, we
study one-parameter families of Monge-Ampere exhaustions of a manifold of circular type in
normal form, with centers at the point of a given segment of the manifold. We then prove the
existence of a bijection between such families and the so-called abstract fundamental pairs.
These are one-parameter families of pairs, formed by nonstandard complex structures and
vector fields satisfying appropriate conditions. Section 4 is dedicated to a detailed study of
the vector fields occurring in the abstract fundamental pairs, and in Sect. 5 it is given a crucial
result on the existence of abstract fundamental pairs and the proof of the main theorem.

2 Manifolds of circular type
2.1 Complex manifolds with boundary of class %@
Given k € NU {0, oo} and « € [0, 1], a (real or complex) tensor field 7' on a (real) smooth

manifold with boundary M = M U dM is said to be of class € on M if all components
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of T in any system of coordinates of the structure of the manifold with boundary M are of
class ©* and with a-Holder continuous k-th order derivatives up to the boundary.

In this paper, we need to exploit in many ways the relation provided by the Newlander—
Nirenberg Theorem between the notions of complex manifold M of dimension n, i.e., a
topological 2n-dimensional manifold equipped with a complete atlas . of C"*-valued home-
omorphisms between open sets of M and of C" with holomorphic overlaps, and of integrable
complex structure of class €k k> 1,0 < a < 1, on a real 2n-manifold M, which is a
tensor field J of type (1, 1) of class %% with Jf = —Idr, m at each point x and vanishing
Nijenhuis tensor Ny i.e., such that for all vector fields X, Y on M

N, X,Y)=[X,Y]-[JX,JY]+ JI[X,JY]+ J[JX,Y]=0.

A €% _complex structure J on M induces the direct sum decompositions TX(CM = TXI’OM &)
TXO‘IM of the complexified tangent spaces into =+i-eigenspaces of the linear maps J, :
TM — T, M. It TYOM < TCM is the complex bundle with fiber TXI’OM, x € M, a set of
J-holomorphic coordinates is any %l—map F = (Fl, .., FY % c M — C", which is
homeomorphic onto its image and satisfies, for any choice of local generators {X;}1<;<, of
TO0Mm:

X;(F/)=0 foranyl <i,j<n. 2.1)

By the Newlander—Nirenberg Theorem ([10,14,16,17,25]), if J is €% with k > 1 and
0 < «a < 1, then there exists an atlas </; of J-holomorphic coordinates F = (F y over M,
which makes (M, «7;) a complex manifold. Moreover, all C-valued functions F?, that are
components of some set of J-holomorphic coordinates, are of class at least #%*1-¢ relatively
to any set of real coordinates of the original real manifold structure of M.

Conversely, if (M, <) is a complex manifold of dimension n (hence, a manifold of real
dimension 2n), the real tensor field J having the form J = ia% ®dz/ — l% ® dz/ in any

chart (z') of the complex atlas <7, is easily seen to be a complex structure, for which the
charts of .27 are J-holomorphic coordinates. Such a tensor field J is of class €’ relatively to
the charts in <7 and, hence, of class €** relatively to any other atlas .7’ of real coordinates
that overlaps with those of .« in a €**1:¢ fashion.

Fork > 1 and @ € (0, 1), if M is a real 2n-manifold and J a complex structure of class
€% on M, we call the pair (M, J) a complex manifold of class €* "% and denote by .<7;
the €¥+1- atlas of J-holomorphic coordinates.

Let us now consider a convenient analogue of real manifolds with boundary.

Definition 2.1 Let M = M U 3M be a real 2n-manifold with boundary. A complex structure
on M of class R withk > 1, a € (0, 1), is a triple (J, 2, J@) where J is a complex
structure on M of class €%, 9 is a € codimension one distribution on dM, smoothly
extendible to a 2(n — 1)-dimensional distribution on a tubular neighborhood % C M of dM
and J7 is a tensor field of type (1, 1) on the distribution 2 of d M, with components of class
%% in any smooth frame field for the spaces Z,, x € M, of the distribution 2 subject to
the following conditions:

(i) the smooth extension of 2 on a tubular neighborhood % C M of M, can be taken to
be J-invariant;

(ii) the restrictions J|g, ,x € % \0M, together with the tensors J?, y € 0M, forma (1, 1)-
tensor field on the smooth extension of & in (i), with components of bounded €% _norm
in any smooth frame field for the spaces of 2.
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1298 G. Patrizio, A. Spiro

A manifold with boundary M, endowed with a triple (J, 2, J 7 ), is briefly denoted by the
pair (M, J). We may also write J7 = J\2,, and we call (7, J?) the CR structure of the
boundary of (M, J). In fact, by boundary regularity assumptions, the pair (2, J7) is an
integrable CR structure on d M. We say that the boundary oM is strongly pseudoconvex if
the boundary CR structure has strictly positive Levi forms at all points.

Note that if (N, J) is a complex manifold of class €% withk > 1 and @ € 0, 1), any
relatively compact strongly pseudoconvex domain D C N with smooth boundary is a man-
ifold with boundary, equipped with a complex structure (J, 2, J7) of class €% . Indeed,
Definition 2.1 is designed to capture precisely the properties of such domains.

2.2 Monge-Ampére exhaustions

Definition 2.2 Let (M = M U dM, J) be a complex manifold of class € with a strongly
pseudoconvex boundary d M. Givenk > 2 and o € (0, 1), we call Monge-Ampere exhaustion
for M of class €% a continuous exhaustion 7 : M — [0, 1], withdM = {x e M : 1(x) =
1}, such that:

() The level set {t = 0} C M consists of a single point x,, called center, and the pull

back p*(t) of T on the blowup p : M — M at x,, is of class €%%;
(i) On the complement M\{x,} = {0 < 7 < 1} of the center, the exhaustion 7 is a solution
to the differential problem

2i90t =ddt > 0,
2i09logT =ddlogt >0, (2.2)
(dd°logt)" =0 (Monge-Ampére Equation) ;

(iii) In some (hence, in any) system of complex coordinates z = (z') centered at x,, the
exhaustion t has a logarithmic singularity at x,, i.e.,

log 7(2) = logllz]| + O(1) .

Basic examples of Monge-Ampere exhaustions of class %% are given by the Minkowski
functionals pp of the strongly pseudoconvex complete circular domains D C C" with
boundary of class Yk >2 € (0, 1). In fact, by definition, pp is the function

0 ifz=0,
1/t,ifz #0,

where 1, = sup{t € R : tz € D}, sothat D = {up < 1} because D is balanced. Being D
strongly pseudoconvex, r::u% |p is a Monge-Ampére exhaustion of class %%, centered at
x, = 0.

Other crucial examples are given by (reparametrizations of) the Kobayashi distance func-
tions of the strictly convex domains in C". Indeed, by the results of Lempert in [12], if
D c C" is a strictly convex domain with a %k“""-boundary, k > 2, each point x, € D is
the center of a Monge-Ampere exhaustion () . D — [0, 1] of class %%, where %) (x)
is the squared hyperbolic tangent of the Kobayashi distance between x and x,. The same is
true for strictly linearly convex domains in C" in the C*° and the C® case ([13]).

Lett : M — [0, 1] be a Monge-Ampere €% _exhaustion with center x, and

pup :C" —>[0,+00),  pup(z) = {

d
k:Tey,M ~C" — Rsg, K(v):=lim0 a\/r(y,) , (2.3)
to—> t=t,
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where y; is any smooth curve with y9 = x, and y = v. Such « is well defined and coincides
with the Kobayashi infinitesimal metric of M at x,, ([21]), itis of class &’ ke on T,,M\{0} and
satisfies « (Av) = |A|k(v) for any A € C so that the (closed) indicatrix at x, of (M, J), T)
defined by

S={veT ,M: k) <1} C T ,M=C", (2.4)

is a complete circular domain.

Letp:.# — Zand p’ : M — M be the blowups of .# and M at 0 and x,,, respectively. A
word by word repetition of the arguments in [20], where it was assumed 7 to be of class €,
shows that if the Monge-Ampere exhaustion t is of class <Kk‘i,for somek > 3anda € (0, 1),

there exists a unique €*=>*-diffeomorphism ¥ : % — M satisfying the following three
conditions:

(]) lp|p—](0) = Idp/—](o);
(ii) Foreacht € (0, 1] the map

w0 o S M. WOl )= (). 12) .

is a diffeomorphism between 9.7 and {7 = 17} mapping the real distribution of the CR
structure of 9.7 into the real distribution of the CR structure of {t = 2};
(iii) For each ([v], z) € 9.7, the map

FUOZ M, FUO@=w (e

is proper holomorphic and injective and FI1D(A\{0}) is an integral leaf of the distri-
bution 2, given by the spaces 2, = kerdd‘t,.

Such a map ¥ is called circular representation of (M, J) determined by .
The proof shows also that this circular representation ¥ is such that:

(a) The projection onto .# of the pulled-back exhaustion To ¥ : & — [0, 1] coincides with
the Kobayashi infinitesimal metric « and is of class @2 on.v \{0};

(b) Ifk > 4, the pulled-back complex structure J = w*(J) on .7 is integrable and of class
¢3¢ je., (7, T') is a €% 2% complex manifold.

By classical results on blowups and Remmert reductions, the complex manifold (.#, T
has a blow-down, which can be naturally identified with the manifold with boundary 7,
equipped with an appropriate nonstandard atlas < of complex charts. Denoting by J’
the tensor field, for which & is the atlas of J A"-holomorphic coordinates, we conclude
that the €*=>%-diffeomorphism ¥ : % — M determines a (J', J)-biholomorphism
v (F,]) — (M, J) and induces the ¢k Monge-Ampere exhaustion k:=t o ¥
on (Z,J).

We stress that, despite of the fact that the tensor field J’ on .# has smooth components
in each chart of the atlas <7, such tensor field has in general non-smooth components in the
standard coordinates of .# C C". Indeed, they are in most cases not even (yfferentiable at
0. Nonetheless, J’ has the same regularity of J” at the points of Z\{0} = #\p~ 1 (0)—we
refer to [23] for a more detailed discussion of all this. (Here and in all what follows, for
any blowup we tacitly identify the complementary region of the exceptional divisor with its
image in the blow down.)
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2.3 Manifolds of circular type with boundary

The discussion of the previous section leads to the following notion.

Definition 2.3 Given k > 2, a € (0, 1), we call manifold of circular type with boundary of
class €% (or, simply, &5 manifold of circular type) a pair ((M, J), t) formed by

— a complex manifold (M, J) of class €% with strongly pseudoconvex boundary, diffeo-
morphic to the closed unit ball B" = B" U 3dB" of C";

— aMonge-Ampere exhaustion T : M — [0, 1] of class % in each set of J-holomorphic
coordinates.

The main example of a ©°°-manifold of circular type to keep in mind is the pair
((B", Jg), T,)), where B" C C" is the closed unit ball centered at 0, equipped with the stan-
dard complex structure J; of C”* and the standard Monge-Ampere exhaustion 7,(x) = ||x||?
where || - || is the Euclidean norm of C”. This basic example comes with two special distri-
butions in the tangent space 7 (B"\{0}), which have direct analogues in any other manifold
of circular type. The first is the Jg-invariant distribution 2 C T (B"\{0}) of the spaces

). (2.5)
The second is the distribution .7 of the complementary subspaces
=(Z) =weTlB" :<v % >=0}, (2.6)

d
Zo={v e T,B" : (8alog 7,)(v, ) = 0} = Spanc <z Py

where < -, - > denotes the standard Euclidean inner product of C”.

These distributions are not defined at 0, but they both admit smooth extensions at all points
of the exceptional divisor of the blowup p : B" —> B" at 0. Note also that Z is integrable,
with integral leaves given by the straight disks through 0. On the contrary, .77 is not integrable.
In fact, the restriction of .7 to each sphere S,:={||x|| = r}, 0 < r < 1, coincides with the
contact distribution underlying the CR structure of such sphere. Both distributions 2 and .7
are Jg-invariant, so that the complex distributions 2 10 901 = #Cand %10, 0 ¢ #C,
of the (+i)- and (—i)-eigenspaces of Jy, are well defined at each point of B”. The complex
distributions 2’10, %! admit smooth extensions up to the boundary, where they determine
the standard CR structure of 0B".

We now introduce a crucial class of deformations of ((B", Jy), 7,).

Definition 2.4 Let k > 2 and @ € (0, 1). We call é—complex structure of class ¢h—Llea g

complex structure J of class €%~1-¢ on the blowup B" of (B", Jy) at the origin, satisfying
the following conditions:

) iL leaves invariant all spaces of the distributions 2 and .77;
(i) J|z = Julz;
(iii) there exists a homotopy J,, t € [0, 1], of class %1% in the parameter ¢, between
Jt -0 = Jg and J, = J such that each J, is a complex structures of class gkLe
satisfying (i) and (ii).

If T is an L-complex structure of class €%~ 1% on B, let J be the (nonstandard) complex
structure on B" that makes (B", J) the blow-down of the complex manifold with boundary
(B", J ) (It exists by the above-mentioned facts on Remmert reductions.) By the results in
[23] and the following remark, each pair of the form (B, J), 1,), with J coming from an
L-complex structure J as above, is a #**-manifold of circular type, called in normal form.
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Remark 2.5 The fact that 7, is of class € in the charts of (B"\ {0}, J) can be easily checked
as follows. By construction, the components in standard coordinates of the complex structure

J are of class €¥~1-¢ at all points of B"\ {0} = B"\ p~'(0). This implies that each chart of J-
holomorphic coordinates of (B"\{0}, J) overlaps in a ** way with the standard coordinates
(see § 2.1). Being 7, = || - I of class € in the standard coordinates outside the origin, it
must be of class %% when it is expressed in J-holomorphic coordinates.

The interest for the manifolds in normal forms comes from the fact that, for k > 4, any
%*%_manifold of circular type is biholomorphic with a *~2%-manifold of circular type in
normal form. This property was proven in [22] just for the case of ¢°°-manifolds of circular
type, but a careful check of all arguments in that paper shows that they actually go through
for each %**-manifold of circular type, provided that k > 4. More precisely:

(1) By the remarks in Sect. 2.2, if (M, J), 1) is a ¢*%_manifold of circular type with
k > 4, a € (0, 1), the circular representation determines a (J, J’)-biholomorphism from
(M, J) into the €*~22-manifold of circular type (A, 7)), k), given by the closed indicatrix
# of the Kobayashi infinitesimal metric « at the center x,, an appropriate complex structure
J' of class €%—3:% on .7 and the exhaustion «, which is €% in the complex charts of (7, J).

(2) Since dd€k is of class k=22 and k > 4, all arguments of the proofs of Moser’s
Theorem in [15] and of Lemma 3.5 and Thm. 3.4 in [22] remain valid and yield to the
existence of:

(i) A smooth family of €*=2¢ diffeomorphisms @, : C" — C” from the blowup C? of C"
at 0 into itself, satisfying all conditions of Lemma 3.5 in [22];
(i) A smooth isotopy of L-complex structures J; = @, (Jy) of class &* =3 petween

Jo = Js and a (nonstandard) complex structure J; = J” that makes (B, I, 1,)

biholomorphic to the blowup (.7, J') of (#, J') at the origin. Such a complex structure
J" projects onto a (nonstandard) complex structure J” on B that makes ((B", J"), 7,)
a €F=2%_manifold of circular type in normal form, biholomorphic to ((.#, J), /{2).

Combining (1) and (2) (as it is done in [22], Thm. 3.4), one gets

Theorem 2.6 Letk >4, o € (0, 1) and (M, J), 1) be afk’o‘-manijj)ld ofcircularLype with
center x,. Then, there is a (J, J')-biholomorphism & : (M, J) — (B", J') from (M, J), T)
1o a €= > manifold in normal form ((B", J'), t,) with the following properties:

(a) ®(x,) =0andt =71,0® = P*(1,);
(b) @ maps the integral leaves of the distribution on M\{x,}

2im=) /7. 2/"=(velM : ddjlogr(v,) =0} 2.7
xeM\{xo}

into the integral leaves of the distribution % of B", that is into the straight disks through
the origin of B".

A biholomorphism @ : (M, J) — (B", J'), mapping a ¢’ k.o _manifold of circular type into
one in normal form, satisfying (a) and (b) of the above theorem, is called normalizing map.

2.4 Statement of the main result

All results of this paper are consequence of the following theorem on manifolds in normal
form, the proof of which is divided in the remaining three sections.
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Theorem 2.7 Let ((B", J), t,) be a manifold of circular type in normal form of class ¢*
with k > 3. Then, for each v € C" with ||v|| = 1 there exists a value \, € (0, 1] such that:

(a) For each ) € (0, Ly) and the corresponding parameterized segment x;:=tAv between
0 and x| = v, there is a one-parameter family of Monge-Ampére exhaustions T
B" — [0, 1], with t € [0, 1], centered at x; and of class ¢kl for each a € (0, 1).
The restrictions of the T, t € I C [0, 1], on any open subset ¥ C D not containing
the centers x;, t € I, gives a real function on ¥V x I which is of class €*~1% in all of its
arguments, i.e., also with respect to t.

(b) If .y < 1, there is no Monge-Ampére exhaustion of class €*="% for any a € (0, 1),
which is centered at the point X = Ayv.

The set :={z € B" : z = Ayv , lv|| = 1} is the boundary of an open neighborhood

% cB" of 0 and is the projection onto B"\ p~'(0) of the intersection of two submanifolds,
uniquely determined by the complex structure J, of the bundle AT @ #C|=

" Bylo
B"\p~'(0).
Due to Theorem 2.7, this immediately implies our main result, which is

Theorem 2.8 Letk > 5and (M, J), T) be a €*-manifold of circular type. Then there exists
an open neighborhood M’ of the center x, of T with the property that for each x € M’ there
exists a Monge-Ampére exhaustion T : M —> [0, 11, of class €= for any o € (0, 1),
with center x. The dependence of the exhaustions T™ on the center x is also of class €.

By uniqueness of the Monge-Ampere exhaustions with given centers, Theorem 2.8 shows
that if a manifold with boundary of circular type M admits a Monge-Ampere exhaustion of
class €, hence of class ¢ for each k, it is equipped with 4> Monge-Ampgre exhaustions,
centered at all points of an appropriate open subset M’. In fact, as we shall point out later on,
the determination of the maximal open set M’ with the properties described in Theorem 2.8 is
independent of k as long as k > 5. Furthermore some of the steps in the proof of Theorem 2.7
show that its €“ version holds. Thus, we also have:

Theorem 2.9 Let (M, J), T) be a €°°-manifold (resp. €“-manifold) of circular type. Then
there exists an open neighborhood M’ of the center x, of T with the property that for each
x € M’ there exists a Monge-Ampere exhaustion T : M — [0, 11, of class € (resp.
€?), with center x. The dependence of the exhaustions T on the center x is also of class
E> (resp. €°).

Direct consequences of this are Theorem 1.1 and the properties of pluricomplex Green
functions, which have been discussed in the Introduction.

3 One-parameter families of Monge-Ampére exhaustions
3.1 Quasi-diffeomorphisms and quasi-regular vector fields

Letk > 2, ¢ € (0, 1) and assume that (M, J) and (W, J') are two complex n-manifolds
with boundary of class €% and let

T M—M, 7 :M—M
be the blowups of M and M’ at some fixed interior points x, x" with exceptional divisors
77 (x) ¢ M and 7'~ (x") € M’ both biholomorphic to CP"~!.

@ Springer



Propagation of regularity for Monge-Ampére exhaustions and... 1303

Definition 3.1 A %k*“-diffeomorthism F: M — M is called tame if it maps diffeomor-
phically the exceptional divisor of M onto the exceptional divisor of M’, so that F induces a
homeomorphism F : M — M’, mapping x into x’, which is of class %% on M\ {x}. We call
any such homeomorphism a quasi-diffeomorphism between M, M’ of class €%2, pointed at
x. The associated tame diffeomorphism F, inducing F, is called tame lift of F.

Among the various reasonable infinitesimal counterparts of the notion of quasi-
diffeomorphism, the one that better fits with our purposes (and which we formally introduce
at the end of this section) is rooted in the following observations. Let x; : [0, 1] — M =
M\&M be a €2 curve entirely included in the interior M. For each ¢ € [0, 1], consider

the blowup 7, : M; —> M of M at x;. A one-parameter family F;, : M —> M of quasi-
dlffeomorphlsms of class €% pointed at the x; induced by a family of tame diffeomorphisms
F, M, — M of class £, B > 0, in the coordinates of Uze[o 1 M, ~M; x[0,1], s
called €-P-family of €** quasi-diffeomorphisms, pointed at the points x;.

For any such family, at a fixed ¢ € [0, 1], we may consider the vector field X;, defined at
the points x € M\{x;} by

dF, s (F!
Xt’ — t+s( t

N o 3.1)

s=0

It is a vector field of class €*% on M\{xl = F;(x;)}, whose restriction to dM is always
tangent to the boundary and of class %%, Moreover, if we extend X, at the point x| by
setting (for the existence of this derivative, see the argument below)

dFys(xr)

Xt|x1 dS

) 3.2)
s=0

we get a vector field over the whole M with the following property: for each sequence
Yk = x1, with yp € M\{F;(xs), s € [0, 1]},

lim XI'yk = XI|X1 .
k— 00

Indeed, this can be checked as follows. At each point y, the vector X,|,, is the tangent

vector at s = 0 of the curve n( bo._F 1+s (F (yk)) with s in some fixed small interval

[—e&, €]. Note that, by the assumption on the sequence yi, for each s € [—¢, ¢], the point

) satisfies

) = o0 e = P Ry =x1

(t1yi)

t+s (775

This implies that each curve 7y admits a unique ¢"# lifted curve n( ) on the blowup

‘M. Moreover, by the regularity assumptions on the family of diffeomorphisms F;, when
Yk — x1, the lifted curves 7' ) tend uniformly in ¢! -norm to a curve 7 in M. Such a limit

curve projects onto the €1 curve

s = Fras(F7 (x1) = Fras (x0) -

This implies that the vectors X, |y, (that are the tangent vectors at s = 0 of the curves mtlv") )

tend to the tangent vector of ny at s = 0, that is to (3.2).
All this motivates the following
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Definition 3.2 Let (@J ) be a complex manifold of dimension n with boundary of class
¢ and x € M = M\dM. A vector field X on M is called quasi-regular of class €%,
pointed at x, if:

(i) Ttis of class €5 on M\{x} and tangent to M at boundary points;
(ii) There is an open and dense subset of % C M\ {x}, such that lim;_, oc X[y, = X| for
each sequence y; € % converging to x.

3.2 Curves of centers and families of quasi-diffeomorphisms

Consider now a manifold of circular type in normal form ((B", J), 7,) of class &5 with
k>1,a € (0,1). Let also v € B"\{0} and x; the straight curve

x; =tv:[0,1] — B". (3.3)

If (B",J) admits Monge-Ampere exhaustions t; of class k> 4, a € (0,1),
centered at the points x;, then it also has a one-parameter family of normalizing maps
@, (B, J)), ;) — (B, J,), 1,) for appropriate nonstandard complex structures J;.
On the base of this, we consider the following notion.

Definition3.3 Let £k > 2 and ¢ € (0,1). We call curve of Monge-Ampeére quasi-
diffeomorphisms of class €**, guided by the curve (3.3), a ¢*%-family of quasi-
diffeomorphisms @; of (E”, J), each of them pointed at x; = tv, t € [0, 1], with the property
that @, (x,) = 0 for each 7 and satisfying the following condition: each pushed-forward com-
plex structure JN, = &, (T ) of the complex structure J of the blowup 7y : E? — B" at the
point x;, is an L-complex structure, so that its projected complex structure J; determines a

normal form ((B", J;), 1,).
We have the following

Proposition 3.4 If @, is a curve of Monge-Ampére quasi-diffeomorphisms of class €%,
guided by (3.3), then for each t € [0, 1] the function

_ 0 ifx = x;
7, :B" —[0,1], ©(x):=
(tp © @;)(x) otherwise

is a Monge-Ampére exhaustion of (B", J) of class €*®, centered at x,.
8 P

Proof By the properties of t,, each exhaustion t; satisfies (i) and (iii) of Definition 2.2. Hence,
we only need to show that each t; satisfies also (ii) on (B", J). This is in turn equivalent to
prove that 7, = 7; o @, ! satisfies (2.2) on the complex manifold (B", J,). For this, we need
to the following lemma. O

Lemma 3.5 IfJ is the complex structure of a normal form (B", J), t,) then ddj T, = dd;st 7,
at all points different from 0.

Proof Let J be the L-complex structure on B” which induces the complex structure J on B”.
We recall that J preserves both distributions 2, .7 and that J|» = T | = Jst|# . Hence,
if we denote by (-)Z the natural projection of each tangent space T, B" = %, @ %, onto the
subspace %, we have that
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dd5ty(X,Y) = =X(JY (1)) + Y(J X (1)) + J([X, Y])(1,)
— XM (1) + YT (X)?Z (1)) + T(X, Y1) (%)
= —X(Ja(V)Z (1) + Y (U (X)Z () + Jse([X, Y17 ) (2,)

= dd, 1(X. Y).

[}

By this lemma, the 2-form ddjl 7, is nowhere degenerate and hence it is positive definite
on (@”\{O}, Jy), since J; is isotopic to Jg. Similarly, one has that ddjt log 7, > 0 and that

dd;l log 7, satisfies the Monge-Ampere equation on B”\{0}. Thus all conditions of (2.2) are
satisfied. O

Proposition 3.6 If @, is a curve of Monge-Ampére quasi-diffeomorphisms of class €%,
k> 2, a € (0,1), the corresponding family of complex structures J;:=®,.(J) is such that,
foreacht € [0, 1], on B"\{0} one has

dJ; do;

= —Y%x,Ji  where X, is defined by X,|y:= .
dr ds @100,

3.4)

Proof First of all, consider the one-parameter family of quasi-regular vector fields ¥;, defined
at each point x € B"\{x,} by
do;!

Yilpi= —2
tlx 4

(@ (x),1)

Note that, since @5 o @~ 1 — Idg, for each s, by taking the derivatives of both sides with
respect to s at a fixed x, we have

Lo, (955 X/lx + @ <Y| )
tx = Aflx tx tlp—1 s
@ ()0 ds P

from which we infer that, for each given ¢ and x, Y;|, and X;|, are related by

do;
0=
ds

(x.1)

Xilx = =P (YD) x - (3.5

We now recall that each complex structure J;, t € [0, 1], is well defined and of class %k/"’,
withk’ =k —1 > 1,a € (0, 1). Actually, by the considered regularity assumptions at t = 0
and 1 = 1, we may assume that J; is well defined and €*-¢ for each ¢ in a slightly larger
open interval of [0, 1], say (—e, 1 + ¢). Let us pick a fixed value ¢t € [0, 1] and, for each s
close to t, consider the the maps Fs:=®; o <P,_1, FS_1 =@, o <Ps_]. By the definition of Jg,
we have

Js = Psi(J) = Fou(P15(J)) = Fsx(Jy) (3.6)

We also remark that, from (3.5),

dF; dog
d = d = Xt|x 5
S E 0. S 1@ ().
1 1 3.7
dFy do
d = Dy d = Py (Yt|q)*1(x)) =Pn (YD)l = —X¢lx -
Sl SIRIEN)
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Consider now a (local) system of real coordinates £ = (x%) on an open set, on which the
tensor field J, the vector field Y and the map @; are of class ¢’ K. for all s in a small open
interval (t — 8, t + &), entirely included in (—¢, 1 4 ¢). In these coordinates, J;, X; and the
maps Fj, FS_1 , have the form

J[:Jl ®dx], X[:Xl

9 xt Toxi’
FS::(Evl(xl,...,xzn),...,Ef”(xl,...,xzn)),
Fol= (7D Gl ), (FTH L L)

We now 0bserv¢ that, by (3.6) and the classical coordinate expressions of push-forwards, the
components J ]’ of Jg|, have the form

_ o
T oaxt

d(Fhm
Pl 0x

Il

T 14 - (3.8)
X

So, differentiating (3.8) with respect to s at s = ¢, from (3.7) we get
i

. 1]

Jo e —

tmlx -
ox”" |,

X
t 8)6[ X

ax™
axJ |,

d .
= il T — X, (3.9)

As the right hand side is the coordinate expression of —Z%, J; |, the claim follows. O

The one-parameter family of pairs (J;, X;), given by the complex structures J; = @, (J)
and the vector fields (3.4), is called fundamental pair of the Monge-Ampére quasi-
diffeomorphisms ®;. Note that, if we extend each vector field X; at O by setting

_ dd; s (xr)

X¢lo:
tlo o »

, X =1V, (3.10)
then each X, is a quasi-¢*%-regular, pointed at 0 (Definition 3.2).

3.3 Abstract fundamental pairs and associated curves of exhaustions

Motivated by the correspondence of the previous section between curves of Monge-Ampere
quasi-diffeomorphisms and families of pairs (J;, X;) of complex structures and quasi-regular
vector fields, we now introduce the following

Definition 3.7 Let ((B”, J), 7,) be amanifold in normal form of class k> 2 0 € (0, 1),
and a one-parameter family of vectors v, € C"\{0}, of class '#, 8 € (0, 1) in the parameter
t € [0, 1]. We call abstract fundamental pair guided by v, a pair of isotopies (J;, X;), of
class at least #'1-#, B > 0, in the parameter ¢ € [0, 1], where

(1) J; is an isotopy of complex structure of class €% of a manifold in normal form
(B, 1), ), B

(2) X, is an isotopy of quasi-regular vector fields X; on B” of class €%, pointed at 0, with
Xl |0 = U,

satisfying the differential condition

dJ,
d—; = —%x,J;  with initial condition J|op = J . 3.11)
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From the discussion of § 3.2, it is clear that the fundamental pair (J;, X;) of a curve @; of
Monge-Ampere quasi-diffeomorphisms satisfies all conditions of the above definition. Our
main goal now is to show that a converse is also true, namely that each abstract fundamental
pair satisfying appropriate conditions is the fundamental pair of a curve of Monge-Ampere
quasi-diffeomorphisms and generates a one-parameter family of Monge-Ampere exhaus-
tions, with centers along a fixed straight line.

The proof of this crucial result requires a few preliminaries. For each x € B", we fix once
and for all an automorphism F, € Aut (B") of the standard closed ball (B", Jg), mapping
x into 0. We select such a distinguished automorphism IF; in such a way that Fy = Idg, and
that F, depends smoothly on the point x. For each vector 0 # v € B”, we consider the points
x; of the parameterized straight line x; = tv, and for each ¢ € [0, 1], we set

. dF; 4 (x;)
Vi=——

F;.=F d
t tv an ds 0

€ ToB" . (3.12)
Finally, for each ¢ € [0, ~], we cgnsider the blowup 7; : ﬁf - B" ofN B" at the point x;
and the lifted map F, : B" — B" of the automorphism F; between B” and the blowup
B" of the unit ball at the origin. By assumptions, each map F, transforms the exceptional
divisor of E’,’ (which~projects onto x;) onto the exceptional divisor of B" (which projects
onto 0). All blowups Ez of the complex manifold (B", J) are diffeomorphic one to the other
and, in particular, to E;L:O = B". On the other hand, the complex structure of B" is of
class €% with respect to the standard coordinates of ﬁ” and this implies that the complex
coordinates of B" are of class ¢**1-* with respect to the standard one. Thus each B is
¢*+1e_diffeomorphic to the standard blowup B” and, consequently, that each map F, is a
quasi-regular diffeomorphisms of class €**+!-¢ for the complex manifold (B", J), pointed at
Xt
t This settled, we may now state the following important lemma.

Lemma3.8 Let0 # v € B" and v, € C", t € [0, 1], the one-parameter family of vectors,
defined in (3.12). If (J;, X;) is an abstract fundamental pair of class ke k>2 a€(0,1),
of((E", J), 1), with X¢|o = V; for all t, then there exists a curve of Monge-Ampere quasi-
diffeomorphisms ®; of class ¢k, guided by the curve x; = tv, t € [0, 1], of which (J;, X;)
is the associated fundamental pair.

Proof We observe that any curve of Monge-Ampere quasi-diffeomorphisms of class €%,
guided by the straight curve x; = ftv, t € [0, 1], can be expressed as a composition of the
form @, = & o I, where ®? is a quasi-regular ¥*¢ diffeomorphism, pointed at 0 and
mapping 0 into itself. Hence, the curve of quasi-diffeomorphisms, of which we need to prove
the existence, corresponds to a one-parameter family of tame diffeomorphisms of the blowup
at the origin 53’ :B" — B", whose associated quasi-regular maps @/ are solutions to the
problem

d®? o F _
%s(m = Xilopm,o) » x €B'\(0}, with®df=1d,  (3.13)
s=t
d®? o F
dogoFi(x) ) _ v, | G1)
ds s=0

@ Springer



1308 G. Patrizio, A. Spiro

Being X, quasi-regular with X;|o = v;, by continuity, each one-parameter family of quasi-
regular maps @; that solve (3.13) necessarily satisfies also (3.15), proving that the latter is
redundant. Moreover, if @/ is a solution to (3.13), then, by Proposition 3.6, the fundamental
pair of the curve of quasi-diffeomorphisms @/ o F; is a solution to the same differential
problem satisfied by J; with the same initial condition. By uniqueness of such solution, we
get that also (3.14) is necessarily satisfied. In conclusion we only need to show the existence
of a one-parameter family of €% quasi-diffeomorphisms satisfying the differential problem
(3.13).
In turn, this is equivalent to the problem on (E”\{O}) x [0, 1],

doy(y)| - dF, F ')
ds ds

. PO

t

=Xilegyy, @o=1d (3.16)
y

s=t s=t

(here and below, for simplifying some formulas, we sometimes use the notation V- f for the
directional derivative V (f) of a function f along a vector field V). Let the maps @; be the
values at ¢ of a map @ : [0, 1] x B"\{0} — B” and V, W denote the vector fields

3 dF,(F'(y)
Vigyi=— + s )

s Wi yvy:=X¢|po
a7 ds (,y) t|¢[(y)

s=t

taking values in 7' ([0, 1] x B"\{0}) = R 4+ T([B"\{0}) and T (B"\{0}), respectively. In this
way, (3.16) can be equivalently formulated as

V-@°l4.y) — Wiy =0, P°0,y)=y. (3.17)
Now, amap @° : [0, 1] x B"\{0} — B" is a solution to this problem if and only if its graph
S=((t.y,0 1 x =y ) c (10,11 x B\(0}) x B"

is a (2n + 1)-dimensional real manifold, tangent at all points to the vector field

Tayy=o + Wi i+(Vq>0/| )i
(I,,V,x)'_at t,y) ayl ,y) 3)(/ .

The required graph S can be directly obtained by taking the union

s=J v, ¢ =flowofT
s€[0,1]

of the images lI/XT (So), under the diffeomorphisms of the flow of T, of the transversal 2n-
submanifold

So={t,v,x) € ([0, 1] xB"\{O) xB" : t=0, x=y}.

By classical properties of flows, each diffeomorphism ¥ is of class €%, 5o that S is the
graph of the unique solution of (3.16) of class %% on B"\{0}.

By the regularity assumptions on the maps I; and the limiting behavior of X; atx — 0,
we see that each map @7 = @°(z, -) has a unique extension to a map 51;’ : B" — B,
mapping the exceptional divisor into itself. On the other hand, since @; = @7 o F; is a
(J, Jy)-holomorphic map of B"\{0}, the unique continuous extension at x; is necessarily
(J, J;)-holomorphic also at x;, i.e., it is a holomorphic maps in the usual sense in J- and
Ji-holomorphic coordinates. The regularity assumptions on the lifts of J, J; at the levels of

the blow ups, imply that the continuous extension of 5,0 is of class €% on B" for each r.
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In order to conclude the proof, it remains to show that each map @, = 5;’ oF, isagke-

diffeomorphism or, equivalently, that each Jacobian J (5,) |y isinvertible atall y € B".Infact,
this would directly imply that the induced maps @; : B” — B" constitute a one-parameter
family of Monge-Ampgre quasi-diffeomorphism of class %%, guided by the curve x, = rv.

Note that, having proven that each @, (x) is well defined and smooth at each point (7, y) €

[0, 1] x B", all Jacobians J (@;)|y are bounded for each such (¢, y). Hence, in order to
prove what we need, we simply have to show that all these Jacobians have nonvanishing

determinants. Since this is surely true for the points (7, y) € {0} xB" and thus, by compactness
of B", for all points of [0, &) x B", with ¢ sufficiently small, the claim is proven if the set

A:={t €[0,1] : foreachs € [0, t), J(5f)|y is invertible at each y € B" }

coincides with [0, 1]. By the above remark and the semi-continuity of the rank, A is non-
empty and open and it remains to prove that A is closed, i.e., that for each sequence #; € A

converging to foo:=sup A, one has that limg_, |det J(5,k)|y| > 0 for all y € B" or,
equivalently,

Jim |det J (@, ")|y| < oo foreachy e B". (3.18)
—00
Since each quasi-diffeomorphism 5,k = 5{; o ﬁtk, t € A, satisfies (3.14), for each straight

disk A© = {¢c,c € A} C B", ¢ = (¢%) # 0, the restriction 5,:1 |5 maps properly and

biholomorphically A into B”. Therefore, on each such disk, the sequence of holomorphic

maps 5,; ! | 3@ converges uniformly to a proper holomorphic map foo : A©) — B" passing
through the point 5,; ! (0) = toov € B". This implies that foreach y € A(©), the restrictions of
=1

the push-forward @

rx |y to the tangent space TyA(C) have uniformly bounded components.
Since the tangent spaces TyA(C) coincides with the spaces 2 of the distribution 2, we

conclude that the restrictions 5,;: | are uniformly bounded and that the proof of (3.18)

reduces to check that the restricted linear map 5,; ,i |z, y € B", have uniformly bounded
components.

To prove this, we first focus on the limit behavior of the linear maps 5,;: |, at the
points y € dB". The exhaustion 7o, = 7, 0 @,__ is a regular defining functions for (B", J),
i.e., with dtoo # 0 at all points of dB”. This can be checked by simply noticing that
the derivatives of 7, at boundary points along vectors that are tangent to the limit disks

A =Timg_, o 5,; 1(A©) (which are transversal to dB" by Hopf Lemma) are equal to
the derivatives of 7, at boundary points along vectors that are tangent to the radial disks
A(c) and are therefore nonvanishing. Being 7, a regular defining function, the Levi forms
dd§Teo(-, J )y, and dd§Teo(-, J )|, at each y € dB" are multiples one of the
other by the values at y of a nowhere vanishing continuous function. This implies that the
limit (and bounded) 2-form

Ao (e, I ) apn = Jim @7 (ddS, T )| = @ (dds_nod))|

is strictly positive at all points of 9B" and that ker @, .|, = {0} for each y € dB". Thus

that the linear maps 5,;: |z, y € dB", have uniformly bounded limits and, consequently,
uniformly bounded components. We now show that indeed the coordinate components

of all linear maps 5,;i|;f\, y € B", are uniformly bounded. Consider at first a fixed
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—
~

closed radial disk A(), the associated lifted disk A“) in B", the corresponding limit disk

A€0):=limy_, oo 5@ '(A0)) inB" and, finally, the corresponding lifted closed disk A(¢)>

in the blowup B”. Since the lifted disks A©) form a regular foliation of B", we may consider
one-parameter families of maps fi(s) cA —> B", i =1,...,n — 1, with the following
properties:
(i) Each fi(s) is a J-holomorphic parametrization of a radial disk A©®) (recall that any
such map is also J; holomorphic for each ¢ € [0, 1], by the properties of the L-complex
structures J;);

(ii) The map f© is the standard holomorphic parametrization of A(o);
(iii) The vector fields ¥;, defined at the points of the disk A€ = £ (A), by the formula

a0

Yi(¢):= o ,
s=0

have J; -holomorphic components Y i(lo)oo that are linearly independent and generate

the J;. -holomorphic space %‘}10 lyey © #C|y(c) at all points of the disk fl.(o)(g) €
A(Co)'

Note that, since the complex structures J;, converge to the complex structure J; , fork — oo,
condition (iii) implies also that, for all sufficiently large k, the J; -holomorphic components

Yi(lo) ke f%”JIO of the vector fields Y; are linearly independent and generate the spaces jf]wly
I 7

at each point y € A©).
By construction, the components in J-holomorphic coordinates of the restricted linear
maps Q;l |, at the points of the disk y € @, 1(A«), are uniformly bounded if and only

if the sequences of vector fields ?i(]o)kzzqg,;i (Yi(lo)k), defined at the points of the disks

—

5,; '(A), have uniformly bounded components at all points of their domains. To prove
this claim, we first observe that the components of these vector fields in J-holomorphic
coordinates are necessarily holomorphic functions. Indeed, the components of the vector
fields Yi(lo)k, which take values at the points of A are actually derivatives with respect
to the parameter s of the expressions in J;, -holomorphic coordinates of the J;, -holomorphic
disks fl.(s) of (B", Ji.), which are in fact J;-holomorphic disks for any ¢, as we remarked.
Since J = 5,; i (J1.), this shows that the components in J-holomorphic coordinates of the
vector fields 200)1( = 5,;:(Yi(lo)k) are derivatives in s of coordinated expressions of the

J-holomorphic disks 5;1 ) fi(‘y). From this the holomorphicity of the components of the

?i(lO)k

vector fields follows immediately.

Observe that the limits for k — oo of the restricted vector fields ?(lo)kb]ﬁgn coincide

1
Yi(IO)oo

with the vector fields lomr = limy_ oo ‘PIZi lamn (Y. Z(lo)kla ), which are well-defined

and bounded because of previous discussion on the limit behavior of the @,;i ly, y € 0B".
This remark guarantees the existence of uniform upper bounds for the components of the
restricted vector fields Yi(lo)k |ag» . The holomorphic dependence on { € A of the components
of the vector fields Z(lo)k implies the existence of uniform bounds for such components at

all points of the disk @, ! (A€)), proving the desired claim.

@ Springer



Propagation of regularity for Monge-Ampére exhaustions and... 1311

Since the above arguments imply that the derived upper bounds depend continuously on

the parameter ¢, of the radial disk A, the compactness of B" yields the existence of a
uniform bound for all components in J-holomorphic coordinates of all linear maps @, _ i |y

y € B". This concludes the proof. O

Remark 3.9 Proposition 3.4 and Lemma 3.8 imply that if there is an abstract %% fundamental
pair (J;, X;) with X;|op = v;, k > 2, a € (0, 1), then there is also a one-parameter family
of Monge-Ampere exhaustions 7, of class €%, whose centers are at the points of the curve
x; = tv, t € [0, 1]. Due to this, the proof of Theorem 2.7 reduces to determine the exact set
of vectors 0 # v € B” for which there exists an associated fundamental pair (J;, X;) with
X t |0 =TIv.

4 Special vector fields of manifolds in normal form
The main purpose of this section is to prove that any vector field X;, in an abstract fundamental
pair (J;, X;), is subjected to very strong constraints, forcing X, to be in a very small class

of quasi-regular vector fields, called special vector fields. We shall need convenient complex
coordinates for C".

4.1 Generalized polar coordinates

Let £ : CP""\{z" = 0} — C"~! be the standard affine coordinates

1 n—1
Z _ Z
-’E([Zl coae Zﬂ])::(wl = Z?’ o, w" 1 — = )
and define ¢ : C"~! x §1 — §27=1\{z" = 0} by
; . 1
o', w ) =l (wl, L wth 1).

V] wt? + 1
This is a (real) diffeomorphism onto S\ (z" = 0} with the useful property that, for
each (w') € C" and ¥ € R, the corresponding point ¢(w', ') is in the complex line
[wh: w1 = e Yw!, ..., w" ). If | z|| denotes the euclidean norm of z and
n: C"\{z" = 0} —> C" is defined by

1 n—1 n
Z _ z Z
niz, ..., 7 = (w1 = L= ¢ =zl ), 4.1

z 2’ |27

one has n|cn-1,g1 = @~ This implies that 7 is a (real) diffeomorphism from C"\{z" = 0}
onto its image, whose inverse map is given by

ntwl, o) = S S (wl,...,wn_l, 1) .

I w41

We call n a generalized system of polar coordinates on C*\{z" = 0}. Note that a similar
construction can be performed if we replace {z” = 0} by any other affine hyperplane v C C”"
through the origin. The corresponding system of (generalized) polar coordinates on C"\x
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1312 G. Patrizio, A. Spiro

will be denoted by 7). In case 7 is a coordinate hyperplane 7r;:={z = 0}, we simply denote
itby 1.
For later purposes, it is convenient to have the explicit expressions of the coordinate vector

fields {% and ﬁ, 1 < o < n — 1, of the polar coordinates n = (w, ¢), in terms of the

standard coordinate vector fields %, % of C". Using just the definitions, one can directly
see that

ad ;0
C&ZZTZ”
d n 0 1z%" ;9 _ 0
awa:Z @—Ew<z TZI+Z g) 4.2)
:Z”i_lL<§i+zi>
©9zY 21+Z;;1] |wh2 \” 3¢ ac)

4.2 Adapted polar frame fields

Consider a fixed system of polar coordinates, say n¢,) = (£, w®), and a circular domain
D C C" of class %% determined by the Minkowski functional 1« = /¢ p. By the homogeneity
property of the Minkowski functionals, the expression of p in polar coordinates has the
form p(z, w®, 2, w%) = |¢|p(w?, w¥) for some p > 0 of class €%, Associated with the
considered polar coordinates and the circular domain D, there is the set (Z, e) of complex
vector fields defined by

z=c2
-—§a§,
9 pr 8 1 we -9 9
ta =ef) =0~ LY IR wrieal K Sl S
ow Jw*” 9¢ 21+Zﬁ=1|wﬂ| ag a¢

= e ow¥ ~d¢ 2 Jw¥

—1 2
9 dlogp? d 181°g(1+22—1|wﬂ|)(_ 9 3)

L 9 ap? w® ;9
=2 oa "\ gpe T T s 8n )F A
< w1 [wh z

We call it adapted polar frame field, associated with the circular domain D and the coordi-
nates (¢, w*). The fields of these frames satisfy the equations

ZH =p?, e =e(CPpH) =0, Jgew =ieq 4.4)

where we denote by Jg; the standard complex structure of C". This means that Re(Z) and
Im(Z) are generators for the distribution 2 Jsiott? , defined in (2.7), of the manifold of circular
type (D, Jy, T = Mz) and that the vector fields (Re(ey), Im(ey)) are generators for the Jy-

invariant distribution /%" which is ddjSl t-orthogonal and a complementary distribution
2 .. = =, . . .
of 2" We recall that a normalizing map @ : (D, Ji) — (B", J) maps the distributions
2 2 . . . s . . .
117 and #7741 onto the distributions 2 and 57 of B" discussed in §2.3. It is useful to
explicitly express the Lie brackets between such generators:

d -0
[Zsea]:()v [Zva]:()s [e()lveﬂ]:ov [edva]:ga'g <§8§__C82> ) (45)
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where
- Sap(1+ 2070 [w? ) — whw® 5210 p2
op (1 + 202 w22 Jw*dwh
= 872 (logp2 + log (1 + Z;ﬂ;ll Iw”lz)) )
dwYowh

The coefficients (4.6) are strictly related with the components of the 2-form dd;st T, with Jg
standard complex structure of C". In fact, from (4.5),

(4.6)

ddS T(eq, e5) = Jalew, ez1(t) = 201017 p% 8,5 = 2iT8, 5 - (4.7)

4.3 Special vector fields of a manifold in normal form

We now want to characterize the quasi-regular vector fields X, pointed at 0, of a manifold
in normal form ((B", J), t,), whose (local) flows preserve the restriction J|z of J to the
distribution 2. For stating our result, we need to fix some notation.

Consider the Kobayashi infinitesimal metric « at the center x, = 0 of (B", J), 1,),
the (closed) indicatrix (.7, J~st) CNTOE” ~ C", determined by «, and the corresponding
circular representation ¥ : . — B" (see § 2.2). Note that the standard coordinates of B"
in general do not overlap in a €% fashion with the atlas of complex manifold structure
of (B", J). On the contrary, by the properties of the circular representations, any chart of
the form 1) o ¥~ with Ny = (£, w¥) generalized polar coordinates on 7 — C", does
overlap in a ¥¥~>%-way with the atlas of the complex manifold of (B", J). We call this kind
of coordinates adapted polar coordinates of (B", J), t,). The corresponding polar frame
fields (Z, ey, = eff)) where p is such that k = |¢|>p(w, W), are called associated adapted
polar frame fields. From now on, the only sets of coordinates we consider on (B", J) are
either adapted polar coordinates or coordinates of the form & o vl with & = (z') standard
coordLnates of # C C". We also denote by Jy the comglex structure on B” induced via
W : .7 — B" from the standard complex structure of .# C C". This complex structure
should not be confused with the classical complex structure J, of B", where B" is considered
as a domain of C". In fact, the components in a set of adapted polar coordinates of the tensor
field J, are possibly not even continuous in x, = 0, while the components of J in such
coordinates are actually constant.

Each real vector field on B"\{0} of class 5 k> 1,a € (0,1), admits a unique
expansion of the form

X =XZ 4+ X% + XOZ + X%, (4.8)

where Z, ¢, are the complex vector fields (4.3) of some adapted polar frame field. In (4.8),
the components X, X* are functions of class €% of the polar coordinates on the open
subset {¢ # 0}.

Lemma4.1 Letv = W) #0 and X a quasi-regular vector field, pointed at 0, of class ¢k
on (B", J) and with X |y:=Re(v! %) If

(Zx D)% =0, (4.9)

where ()% T (B"\{0} — Z is the pr{)jection onto %, then, for each domain %y of
affine coordinates & : Uiy = CP" " \{z/ = 0} — C"1, there exist two real functions
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1314 G. Patrizio, A. Spiro

K, p: %y — Rofclass €% the first unconstrained, the second with p > 0 and ddp > 0
at all points, such that: B
(1) The components X* = X“(w, w, ¢, {) are necessarily of the form

Y (w, w)

XY = + YW, w, ¢, 0) (4.10)

with Y*(w, w) defined by

Y (w, ) = (v —v"w®) /3w’ P+ 1 4.11)

and Y* = Y*(w, w, ;“’,VZ) functions such that, for each sequence x; € B"\{0} converging to
0, the limits limy_, oo (Y*¢)|x, are O;

(2) The component X 0'in (4.8) has necessarily the form

0 7 -
X0 = w + ik (w, ) — YO(w, w)C (4.12)

where YO is the complex function on CP"~!

9 (log p* + log(1 + V|2
YO(w, i):=0" Y, [w? |2 + 1 + ¥ (log p* +log(1 + 37 w” ) . (413)

Jw¥ (.)

Proof Condition (4.9) is actually equivalent to the pair of conditions
(ZxJ(2)” = (I (2)7 =0. (4.14)

However, since X and J are real, these equations are one conjugate to the other, so that they
are both satisfied if and only if just the second one holds. Using the fact that J |y = Jy|# ,
this is in turn equivalent to

0=1[X,JZ1% —(J[X,ZD)?

_ _ _ _ 4.15
=X, JuZ1? — Ju([X, Z2)%) = —i[X, Z]% — JulX,Z17 , 19

meaning that [X, Z1¥ is a complex vector field taking values in the anti-holomorphic dis-
tribution TJOSIl (B"\{0}) of the standard complex structure J. The Lie bracket [ X, Z] can be

easily computed using (4.5). One gets that [X, Z]? is in T})Stl (B"\{0}) if and only if

Z-X= EaXO 0 (4.16)
=0 .

This yields that, along each straight disk A©:={w = ¢}, the complex vector field
X©:=(x%2)| Alnjoy 18 a vector field of type (1, 0), holomorphic in the polar coordinate

¢. Since we are also assummg that X 1s quasi-regular (hence with a continuous extension
at 0), it follows that X© = x0 [a@C 37 £ | A©\(0) extends continuously at the origin and that

the function a:=X | A©O\(0} has at most one pole of order 1 at the origin. On the other hand,

since the vector field X is tangent to the boundary at the points of dB", the vector field X (©)
is tangent to 9 A©) at all boundary points. This implies that

Xy 40 +m=s<iz _i7> @.17)

9A©
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for some smooth real function s : 9A¢) — R. This is equivalent to require that
a:=X" ’ A©O\(0} is such that aly 4«) = —aly . Very standard arguments show that the above

two conditions imply that a = % + ik — AZ for some complex number A and some real

number « which depend only on ¢ = (¢®). From this we obtain that X° has the form (4.12)
for some appropriate function Y°(w, ).

Consider now a sequence of points x; in B"\ {0} converging to 0. With no loss of generality,
we may assume that all points x; are in the domain of the polar coordinates 1,y = (w, ¢)
and that their expressions in polar coordinates x; = (wg, ¢x) converge to an n-tuple (wg, 0)
with 0 < |w,| < oo.

We now consider the sequences of complex values C*(xg):=(X“¢)|x,. Up to a subse-
quence, we may assume that the limits C% = lim_, C,‘C"l exist even if they might not be
all finite. Then: (i) From (4.3) and using (4.1) to relate (z/) and (w®*, ¢), we have that the
sequence of vectors X%eg ’Xk converges to the vector in 7pB" (here, some components might
be equal to c0)

C—ﬁ 8% o 810g:02 _ M i
Z|w3:|2+ 1 awﬁ (Wo,Wo) 1 +Z|w()7/|2 az¢ 0
< dloe p* L @.18)
S+t \ 0wy T+ XIwgl ) 92l :

(i1) Using once again (4.2) and the fact that X 0 has the form (4.12), the sequence of vectors

xz }xk converges to the vector in ToB"

Yo(wo’ wo)wg a + Yo(w()s W) ad

ot P10 o S P 41 07

The condition that X is continuous at O is equivalent to requiring that for any sequence xj
as above, the limit lim,, .o X/, exists and does not depend on the choice of the sequence.
From (i) and (ii), we infer that the vector

(4.19)

0

CﬁSg 9
> lwy P+ 19
o a1 2 Cﬁ—ﬂ P
+L Yo(wm W) — Cﬁ Ogl;o N % 9,0
> w41 Iwh {5, T+ 2wl 2 ) 82%
1 3 log p? chw? 5
Y w,, w,) — C* Og/f _% 2
D owh P41 Ik e, 5, 142w l? ) 92" g
(4.20)
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is independent of w,. Necessary and sufficient conditions for this are:
(a) there is a constant v” such that
4 log p? chPwb

owh |z 1+ wd|?

3 (log p? + log(1 + Y |[w) [»)
dwh

YO (w,, w,) — C

= Y%(w,, w,) — CP

="\ D w41
(Wo,Wp)

(4.21)

and, in particular, all limits C* are finite;
(b) the vector (4.20), which can now be written as

B N % o 3n ,
Vo lwh P41 9zFlo 92"

does not depend on w,,.

This last condition is equivalent to require that there exist constants v# such that C* =

P — v”wf), / Z lwk |2 + 1. Replacing this into (4.21) and (4.18), claims (1) and (2)

follow.

m}

The above lemma motivates the following notion, which enters as crucial ingredient in the
proof of our main result. In what follows, p : CP"~! — R is always the positive function,
determined by the Kobayashi metric k,—o of (B", J) and gives the Minkowski function of
the indicatrix .%) C TyB" = C".

Definition 4.2 Consider a vector v = (v') € C", a real valued function o : cprl 5 R

of class ¥%% and n — 1 complex functions ye . B — C, which are of class %% on
B"\{0} and with limy_, oo (Y*7) |, = 0 for any sequence x;x — 0 in any set of adapted polar
coordinates of (B, J), t,). We call special vector field of (B", J) determined by v, o and
Y the quasi-regular vector field of (B", J), pointed at 0, whose expansion in terms of an
adapted polar frame field (Z, e,) has the form

ga Yo — Ye o
xlPw.o. Y% — (? +io — YO;)Z + (? + Y“) ey

(YO _ 0->7 YYo=\
+|=—-io=YC)Z+ | =+Y*)ey
¢ ¢

with Y0 and Y® as in (4.13) and (4.11), respectively.

4.22)

From the proof of Lemma 4.1, the next corollary follows immediately.

Corollary 4.3 A quasi-regular vector field of class €**, pointed at 0, on (B", J), with
X|o = v and satisfying (4.9) is a special vector field X = X'"PIV-0Y) for some triple
(v, o, 17“). Conversely, for each choice of a triple (v, o, ?"‘), the corresponding special vec-
tor field {(["](“*"’ YYisa quasi-regular vector field of class €% pointed at 0 on (B", J), with
X110 Y0\ — o and satisfying (4.9).
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Moreover, we have the following technical remark.

Lemma4.4 In each set of polar coordinates (¢, w®), the functions Y°, Y®, defined in (4.13)
and (4.11), satisfy the identities

Yo — H, Yo —
ep <? - Y%) = ?" — (Hg = Y0ezllog p)¢. 5 (? - Y0§>

(4.23)
Hj - .
=7 (Hﬂ — Y0z (log p ))g,
( 2 72
where, if hog:="1%2 Hop+ 3 i),
“ 0 (log p* + log(1 + 37 [w”1) 3 (p + log(1 + 3 [w” %))
Hﬂ::Y haﬂ +
fwe Jw? (4.24)
Hﬁ::Yagag

Proof We first observe that

Yoewh Yewh
ep(Y*) = =" 1+ w' PP+ —— e, (V)= — .
¢ # f 20+, wr'y” F 21+, w2

Then

Y? 1 3 (logr? +log(1 + Y [w” %)
N — _p- n Y12 o
eﬂ(() ;eﬂ<vVZV|w|+l+Y dwe
| dlog (1+Zy|wy|2> ., .
g (VD)

1 3 log (1 +, |wy|2> (Y“ 3 (logr? +log(1 + Y- |wV|2))>

2¢ dwh Jw®
1, wh L] yewh 3 (logr? +log(1 + Y [w” %))
= —UV —

2y e+ 204, ) due

Y. 1, wh

- —v
2 2
¢ ¢/, w41

s Youwh 3 (logr? +log(1+ Y |w"1») Y985 Hp

21+, W) due ¢ ¢

Similarly one gets that eg (YTO> = %. From this and eg (§E2p2):e/§(§;:2p2):0, one can
also derive the expressions for eg (W{), g (W;) and get (4.23). m]

5 The proof of the propagation of regularity theorem

5.1 The differential problem characterizing fundamental pairs

In this sgction, we show that the abstract fundamental pairs (J;, X;) of a manifold in normal
form ((B", J), t,) are precisely the solutions of an appropriate differential problem. By
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Remark 3.9, this reduces our main result to the proof of the existence of solutions to such
problem.

Proposition 5.1 Let (J;, X;) be an abstract fundamental pair of class €%% on a manifold
in normal form ((B", J), t,), guided by the curve v, = X,|o, t € [0, 1], and let (¢, w®) be
a system of polar coordinates with associated polar frame field (Z, ey). Then each X, is a
special vector field X, = XP@We-00-Y5) \oith components

~ 7 Hyy, H,
Y,“zig“ﬂe,g(aa— (J,—Jst)“ ‘”( ; +§’V)—<Jf—Jst)“ ”( .t )

i —
+*(Jz — Jst)%gsy ((Ht)? - Y,oe,g(log pzz))f + (th e‘y (log Pt >

+ (Jt—m,;g 7 ((Hiy = ¥0e, (g p2))¢ + (Hiy = YPey(log pD) E) . (5.1)

where (g"‘g) is the inverse matrix of (4.6), Hyg, HtB are as in (4.24), (J; — Jgt)]f J; — Jgt))i
are the components of (J; — Jst)(eg) in the frame (eq, eq) and Y7, Y0 are as in (4 11), (4. 13)
with v = v; and p; determined by the Kobayashi metric at 0 of B", J;), as described above.

Conversely, if X; = XedeonYE) ' e [0, 11, is a one-parameter family of special vector
Sfields, with Y as in (5.1), and if J; and p; are one-parameter families of complex structures
and positive real functions on CP" ™1, which satisfy the differential problem given by (5.7)
and

— == Ji, Jo=1J, 5.2
o X, Jt 0 (5.2)

then (J;, X;) is a fundamental pair guided by the curve v;.

Proof Since (J;, X;) is a fundamental pair, the one-parameter family i consists of complex

structures that are pushed-down onto B" of L-complex structures of B”. This implies that
Jilwe = Il and J;(W¥) Cc o foreachtr €[0,T].
Since Jo = J, this is tantamount to say that

dJ, dJ,
—1 =o, —t(%”) c  forallt. (5.3)
dt fé/’

Let us focus on the first of these conditions. Combining it with the property %, J; = —%,

this is equivalent to Zx, J;(Z) = Zx, J; (Z) = 0 at all points of E”\{O}. However, being X;
and J; real, these equations are one conjugate to the other, so that we may consider just the
second one. This is in turn equivalent to

0= (X, i Z] = X1, Z) = [Xy, JaZ] = [ Xs, Z) = =il X,, Z) = D] X1, 21, (5.:4)

meaning that [X;, Z] is a complex vector field taking values in the J;-anti-holomorphic
distribution T21 (B"\{0}). Consider now the expansion of the vector fields X, in terms of a
polar frame field (Z, e ), associated with a set of polar coordinates

X, = X0Z + X0eq + X0Z + Xf'eg .
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since 7' E\(ODl = 2 @ (7' B \(O0DL: N H4E), we have that [X,, Z] is in
T}jl (B"\{0}) if and only if

Zx% =0,

= ya Ya— Zyva Zyva\o— 01 pn C (.5
(Z. X0eq + XTeq] = Z(XV)eq + Z(Xf)eg € T3 (B"\(0) N#C .

The first part of the proof of Lemma 4.1 shows that the first condition in (5.5) is equivalent
to the condition (ZY, J)Z = 0. Hence Corollary 4.3 applies and, for each ¢, the vector field

X, is a special vector field X, = X21(-00.Y") In particular, X9 is equal to

O -
X} = w +ioy(w, ) — YO (w, )¢ (5.6)

with ¥ defined in (4.13). _
Letus now consider the second conditionin (5.5). Since the 2-form — 5-dd To| ¢ e is
non-degenerate and J,-Hermitian, it can be equivalently stated saying that foreacht € [0, 1],

i

2T

i

ddS, 1o (1Z. X{'ew + Xieq. Flo=— 5

ddjstfo([fv X;Xea + T?E], F);=0

for any complex vector field F in jﬁOl =N TJOIIE". Since ff(zirddjsl 7,) = 0, this is
equivalent to

- ;—tddil T (X% + X%, [Z, F]) =0  forany F € . (5.7)

This relation is actually an identity that is a consequence of the integrability of the J;, a claim
that can be directly checked using deformation tensors of complex structures ([3,22]). For
reader’s convenience, we give the details of such an argument at the end of § 5.2.1 below.
Let us now focus on the second part of (5.3), which we did not consider yet. Once again,
since J; and X; are related by (3.11), this is the same of requiring that, for any E € /7,

(Zx,J)(E) = [X;, JE] — J,[X, E] € . (5.8)
This is also the same of saying that for any E € 57
dto((Xs, JE]) — dt,(J;[X;, E]) = 0. (5.9)
‘We now observe that
dto( Xy, JED = X, (dto(J E)) — JE (dto(X1)) = —1, (J,E(X?) + J,E()T?)))
(5.10)
and
—dt,(Ji[X,. E]) = —dd$, 7,(X;. E) — X, (dto(J,E)) + E (dt,(J; X))
= —dd, 7,(X,, E) + i, (E(x?) - E()T?))
= —dd1o(X0Z + X0Z, E) — ddS t,(X%eq + X g, E) +itoE(X" — X)
= —dd$ T,(X%eq + X{Cq, E) + it E(X? — X0)

Lemma 3.5

2 ddS, 1y(XCeq + Xiea, E) +it, E(XY — X?) (5.11)
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From this and (5.10), it follows that (5.9) is equivalent to
ddS, 7o (X eo + Xgew, E) = iy ((E + i, EYXD)—(E — i E)YXD) )

= it (X0 = XD) + id(X? + X0 0 ;) |, () 5

io (AXP = XD +id(X) + XD 0 4y ) | ()
— d (X2 + X0) 0 (Jy — Jg)| ,, (E) .

Moreover, denoting by (ddjsl 7,) ! the (2, 0)-type tensor field, with components given by
the inverse matrix of the components of daljbl T,, (5.12) becomes

X{eq + X7eg = i7o(ddS, 7)™ (d(X) = XD +id(X + XD 0 Ji) |

_ (5.13)
— (5, 7) " (AX) + XD 0 (= ) )
so that, by (4.6) and (4.23),
Z l - R
X = g"eg(X]) = 58 (U = I ey (X[ + X7)
i - — R
= 58" (U = ey (X] + X7)
Ye 5 iz H, H;
= +igepon = 38U = (% + TV)
. H o (5.14)
_ l, 0‘5 _ ]Z 7’}7 ity
28 (J; Jst)ﬁ< c + E >
i .z _
+ 58" U = J0 ((th — YPegllog p2) )¢ + (Hiy — Y, (log p?) z)

i z - _
+ 58P0 = ] ((Hiy = ¥0e, (0g p2))¢ + (Hi — Yfe; (log p7) ;) .
It is now convenient to recall that, by Lemma 3.5, for any X, Y € /7,

dd°t,(1;X.Y) = dd§7,(J;X.Y) = —dd§ 7,(X, ];}Y) = —dd°t,(X, ],Y) .
This implies that (J,)&.g, 5 = — (I} 8wy and (J1)) 8,5 = —(J1)&gay and hence

g P = —Ungs™ . P UE =~

Using this property, we see that (5.14) can be also written as

Y® 3 i 5, (Hiy Hy
X =7 +igPeplon = 50U = Jfe™ <i + ﬂ)

¢ ¢
_L = g (P By
Z(Jr Js)s & ( ¢ + E >

+%(Jt — I ((Ht;? — ¥Pe;(log ;02))4“ + (Hyy, — YPe, (log p?)) E)

42 (= J0%8" ((Hpy — Y2ey (log p2)¢ + (Hig — Y07 (log p»)) ) .
2
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Since X; must be a special vector field, determined by v; and some appropriate functions oy,
Yt , we see that the Y Y mustbe equal to (5.1). Note also that such functions (5.1) automatically
satisfy the condmon llmk_>oo(Y {)lx, = 0 for each sequence x;x — 0. To see this, it
suffices to remember that Jy is the standard complex structure of the indicatrix .#,—g of
((B", J;), 7,) and coincides with J; at x = 0. Hence both the limits limj_, oo (J; — Js0)§ e
limy 5o (J; — JS[)‘§‘|Xk are surely 0.

The last claim of the proposition is an immediate consequence of the fact that if X; is
a special vector field satisfying (5.1) and J; satisfies the differential problem (5.2), the first
part of the proof implies that the J; are complex structures on B" induced by L-complex

structures on B”. O

5.2 Proof of Theorem 2.7

The proof of Theorem 2.7 is a consequence of the following existence result on abstract
fundamental pairs.

Lemma5.2 Let (B", J), 7,) be a manifold of circular type in normal form of class €*,
k >3, and v¢, s € [0, 1), a fixed one-parameter family of vectors in ToB" of class €* in
s. Then there is a maximal value s, € (0, 1] such that for all 0 < s < s, there exists a
fundamental pair (J;, X;) on (B", J), t,) of class %k_l’“for any a € (0, 1), guided by the
curve v;: _vm t € [0, 1], in which X, is the special vector field X; = XLPdeon Y5 i
or =0, the Y as in (5.1) and p; = p for each t. The dependence of X, on t is at least
k=L In case the maximal value s, is strictly less than 1, there exists no fundamental pair
(Jt, Xp), t € [0, 1], guided by the curve v,:=v§’so, t €[0,1].

Indeed, given a vector v € C" with ||v|| = 1, one can consider an associated curve of
vectors vy, s € (0, 1), defined as in (3.12). By Theorem 2.6, Remark 3.9, Proposition 5.1 and
Lemma 5.2, for each A € (0, A,:=s,), there is a one-parameter family of Monge-Ampere
exhaustions 77 : B" —> [0, 1], t € [0, 1], centered at the points of the straight segment
x;:=t(\v), each of class ¥~ 1 for all « € (0, 1). The last claim of the lemma implies that,
if 1, < 1, then there is no one-parameter family of Monge-Ampere exhaustions centered at
the points of the straight segment x;:=¢(A,v) that is well defined also in x;=1.

Proof Consider a set of polar coordinates (2, w¥, ¢, w®), an adapted polar frame field

(Z,eq = e(p )) and the corresponding dual coframe field (Z*, e‘i), both determined by the
function p which gives the Minkowski function of the indicatrix .# ,—¢ of (B", J). All tensor
fields J; of an abstract fundamental pair have the form

J=iZ®Z —iZ®Z*+ J, e“®e/5+J e“®e,3+lme ®epg+J, e“®elg,
(5.15)

for C-valued ¥*~1-* functions J g‘ satisfying the reality conditions J, f} = Jf;, Jia b _ =Jg ﬂ

Hence, the lemma corresponds to the existence of complex functions Jm ,JE 4 t € [0, 1],

ta’
satisfying the required regularity conditions and such that tensors (5.15) verify:

(@) Jo=1J; ~
(b) J = = foreacht € [0, 1] and x € B";
(c) the NljenhUIS tensor Ny, is identically zero for each ¢;
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(d) foreacht € [0, 1] and for any vector field E € 57

dJ,

th(Z) + (Lyiwoin J(Z) =0, (5.16)
dJ; .

E(E) + (ofx[p](v,.o,Y,"‘)Jz)(E) =0. (5.17)

Here, for Yto, Hyj, Hyy asin (4.13), (4.24) for v = vy,

~ i 5, (Hy Hig\ i o(Hiy  Hpy
Yy = _E(Jt - Jst)ggsy (% + él/) - E(Jt - Jst)ggsy (% + g)
l' - -
+§(Jt - Jst)ggsy ((sz - Y;Oey (log ,02))§ + (sz — Y,Oey (log ,02)) ;)
i _ -
+5r = 58" ((Hiy = Ye, (log o9)¢ + (i — Yep(log o)) ) -

(5.18)

We now observe that (5.16) can be safely neglected, since X [P1w.0.79) 4 o special vector
field and hence, by the proof of Proposition 5.1, such equation is identically satisfied. It is
also convenient to decompose the vector field X;:=X[P1@-0.Y*) into the sum

X, =X;+Y; where Y; = Zaea + 7,%5( and
g — Yo Yo o ve
Xr:(;_yt0§>z+—’ea+ L Y% Z + Les,
¢ ¢ e ¢

so that(5.17)can be written as

dJ,
E(E) + 2,4y, i (E) =0, (5.19)

Note that X is independent of J;, while Y; depends in a linear way on J; — Jg.

Our proof of the existence of ¢*—1-2 tensor fields J; satisfying (a) - (d) will follow from
the following three steps:

Step 1. Translate the problem into an equivalent one on the deformation tensors ¢, for the
L-complex structures J; (for the definition, see § 5.2.1 below).

Step 2. Prove that all conditions on the deformation tensors ¢, are satisfied if just the single
equation on ¢, corresponding to (5.19) is verified.

Step 3. Prove the existence of solutions to the equation corresponding to (5.19) for v, = vy,
t € [0, 1], for all A in an appropriate open interval (0, A,).

According to this, after a short introduction to the theory deformation tensors, the presen-
tation will be structured in three parts, one per each of such steps. After that, we discuss the
¢ and ¥ cases and make a short remark on examples.

5.2.1 An introduction to the deformation tensors of L-complex structures

Any tensor field J; of the form (5.15) is determined by its restrictions to the distribution .77
If we also assume that it is an almost complex structure—that is, condition (b)—then it is
actually determined by its associated J;-antiholomorphic distributions ! #°CIf the
family J; satisfies also (a), (c) and (d), then, by Lemma 3.8, it is a one-parameter family of
L-complex structure, according to Definition 2.4.
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Consider now the holomorphic and anti-holomorphic subdistributions 2’ 10 501 = 10
of #C c TB", given by the standard complex structure Jg of the indicatrix I g of
(B", J;—o = J) and the analogous distributions %10, ,%?01 = W c #C, given by the
+i-eigenspaces in .#°C of the almost complex structures J;, t € [0, 1]. By the results in
[3,22], each distribution %”01 is determined by a umque tensor field ¢, in 0 @ 10,

which allows to express all subspace .7,%! | CT.B" xe IB%" in the form

A i={v e #C|, 1 v=w+ ¢ (w) for some w”' € 2|} .

Such ¢; is called deformation tensor of J;.

Note that, in each set of adapted polar coordinates, the components of J; in the complex
frames field (Z, 2y :=eq + ¢1(ez), Z, ¢35 = ez + ¢;(eg)) are constant and all equal to =i or
0. This means that the regularity of J, with respect to the adapted polar coordinates is always
the same of the regularity of ¢, in those coordinates.

The properties that J; is an L-complex structure, i.e., it is integrable or, equivalently,
it satisfies (c), and that 7, is Monge-Ampere exhaustion for (B", J;), corresponds to the
following conditions on ¢;, to be satisfied for all 0 # X, Y € s#°L:

(A) foreach (¢, y) € [0, 1] x ﬁ”, one has that
ker (IT = —Piodh |y) is trivial ; (5.20)
(B) ddS, 7o(¢i (X). §y (X)) <ddS, 7,(X, X) and ddS,, 7(¢ (X), Y)+ddS, 7(X, ¢ (Y)) = 0
©) [Z,X+¢:(X)] € %01 or, equivalently,
Lo =0, (5.21)

where Z is the generator of % 10 defined in (4.3);
D) [X + ¢ (X). Y + (V)] € 7.
The geometrical interpretations of these conditions are the following.

(1) Condition (A) corresponds to the fact that the tensors ¢; € 0l & #10 determine a
direct sum decomposition #C = %”]0 &) %01 with

A =(v e A ) v=w+ ¢ w), w" € 2 }and 70 = 0 (5.22)

(see, e.g., [6]). If it holds, the one-parameter family of tensors ¢, defines an associated
family of (possibly non-integrable) complex structures J; on the distribution .77

(2) Condition (B) expresses the condition that each level set of 7, is strongly pseudoconvex
and hence that 7, is a Monge-Ampere exhaustion for (B", J;) if J; is the complex
structure determined by the direct sum decomposition (5.22). Note that (B) implies (A),
but (A) does not imply (B).

(3) Conditions (C) and (D) are equivalent to the condition of integrability for the one-
parameter family of complex structures J; determined by the decomposition (5.22).

The above conditions are also sufficient in the following sense: if a tensor field ¢; €
A @ 0! satisfies (A)—(D) (actually, (B)—(D) are enough, since (B) implies (A)), then
the corresponding distribution %’;01 c #C uniquely determines an L-complex structure J;
([3,22]). Finally we remark that conditions (A)—(D) are meaningful under very mild differ-
entiability assumptions: 4’2-smoothness on the data is sufficient.

We conclude this short review with the proof that the identity (5.7) is a consequence of the
integrability of the complex structures J;, as claimed in the proof of Proposition 5.1. Indeed,
using adapted polar frames, we may write (5.7) in the form
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Y® YY —
ddjslr(,(?’ea + ?teg, + Y, [Z, e5+ qb,(elg)]) =0 (5.23)

Since Z5¢, = 0 by (C), we have [Z, e+ ¢ (ez)] = 0 and (5.23) is satisfied.

5.2.2 Step 1: Translation into a problem on deformations tensors

By the previous discussion, our original problem translates into a problem on one-parameter
families of *~1-¢ deformation tensors ¢, satisfying (A)—(D) and the differential equations
(5.19) with initial condition ¢y = ¢, where ¢; is the deformation tensor that allows to
express J;—9 = J as deformation of the complex structure Jy = J(P of the indicatrix
of (B", J) at x = 0. Moreover, we claim that condition (B) is satisfied whenever all other
conditions hold and thus it can be neglected. This is because, if the ¢; satisfy (A), (C), (D)
and (5.19), then the family of integrable complex structures J;, determined by means of the
direct sum decomposition (5.22), surely satisfies all hypotheses of Lemma 3.8. This implies
that the exhaustion t, is Monge-Ampere for (B", J;) for each ¢ and that also (B) holds.

In the remaining part of this section, we derive a formulation of (5.19) as an explicit
condition on the ¢,. For this, recall that for each E + ¢;(E) € ,%ﬁm , we have that J;(E +
¢:(E)) = —i(E + ¢ (E )~) Taking Lie derivatives of both sides with respect to the vector

field % + X, of [0, 1] x B", we get
Za x, UNE+¢(E)) = —ill +iJ)ZLa x (E+¢(E)).
This means that (5.19) holds if and only if
Z%JFX’(E + ¢:(E)|x € ker(I +iJy)|x
for each (¢, x), i.e., if and only if
Ly x,(E+di(E) € A+ 2% forall E + ¢, (E) € #°" . (5.24)

On the other hand, since it is the special vector field described in Proposition 5.1, the vector
field X; necessarily satisfies (5.8). This implies that Zx, (E + ¢;(E)) is always in #C and
that (5.24) can be replaced by the weaker condition

Ly x,(E+di(E)) € AN + 7 forall E e 4O (5.25)

This condition can be stated as a system of p.d.e. as follows. Fix a (local) complex frame
field (eq) for #°! and for each ¢ consider the uniquely associated complex frame fields
(Eg = eq + ¢1(eg)) and (E;y = M) for %01 and 7] 10, respectively. Then, let g e
Hom (. x 7, R) be the only J;-invariant tensor field such that

g9 o Byp) =T — b0 d) 8,5 » (5.26)

where g, j are defined in (4.6) and where (-)%, (~)3)77 denote the components of the considered
(1, 1)-tensors of 5C in the frames (ey, €z). Note that if ¢ satisfies (B) (hence, [|¢/]l40 < 1
for each ¢ € [0, £]), then g(®) is non-degenerate on each space %, . Observe also that, by
construction and J;-invariance,
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g(¢’)(Et|&» Etlﬁ) =0,
89 (€a By p) = 8% (Bria. By ) — $log ™ (e7. By )
=8 By, By p) — $lu8® Buig Byyp) + (b1 0 9018 % ey By )
_ g(d”)(Ez\m E, 5 + (¢ o @)Kg“’”)(ey’ Eyp) -
(5.27)
In particular, from the last equality we get that
g9 (ew By ) = (I — 1 0 )DL (Bypy E.5) = 8ap - (5.28)

This identity will appear to be quite useful in the last part of the proof and it is the main
motivation for considering the above definition for g%,

Notice that using the tensor fields g‘®"), condition (5.25) becomes equivalent to the system
of p.d.e.’s

89N Ly sy, Erla. Eyyp) = 0. (5.29)

We now recall that in (5.25) the vector field X; = X; + Y, does depend on the unknown ¢y,
due to the fact that Y, depends on J; — Js.. We need to make such dependence fully explicit.
For this, we first recall that, for each 7, a vector field ¥ in #C uniquely decomposes not only
as a sum of holomorphic and anti-holomorphic components with respect to Jg, but also as a
sum of holomorphic and anti-holomorphic components with respect to J;. We denote such
two distinct decompositions by ¥ = 10 4 y! Y10 + Y01 On the other hand, we know
that the components Y, 10 Y01 have the form

for appropriate Y100 ¢ 10 and YOIO ¢ 01 A straightforward algebraic computation
shows that such vectors are expressed in terms of Y10, Y01 by

YOO =1 — ¢y 0 )" (' — 4, (Y1) |
POO=( = grog) (" —4:(x') (530

where each ¢, |, € Hom(i/ol H, l0) is here considered in Hom(if(C J/ ), acting trivially
on Jz, 10, Note that, due to condition (A), the linear operators (I — ¢, o ¢;) are invertible, so
that the above expressions are meaningful. It follows that the J;-holomorphic and J;-anti-
holomorphic parts of the e, € !0 are

ea = {(I—dr0p) " (ea) + (I — 1 0 b)) (ea))}
—{d =i 0od) ™ (br(ea)) + (I — G o)™ (drea)))]} -

Hence

Ji(ea) = i {(I = ¢r o) " (ea) + & (I — ¢y 0 d) " (ea))}
+i{(I —drod) ™ (Bi(ea)) + (I — 1 0 d) ™" (Br(ea)))}

and (J; — Jso)(ea) = Ji(ea) — ieq is

Jr = Js)(ea) = 2i {(I — ¢ 0 ¢) ™" (1 ea)) + ¢ (I — b0 p) ™" (fr(ea)))]} -
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From the identity ¢ o (I — ¢; o ¢:)~' = (I — ¢ o ¢:)~' o ¢ (it can be checked using the
expansion (I — ¢y o o) = Zfio(d’t o ¢¢)") we may also say that

(Jr = Js)(ea)=2i{ ((I — by 0 $) o) (ea)+ ((I — by 0 $1) ™5 (¢ 0 1)) ()}
from which we get the components of J — Jy w.r.t. (eq, € ﬁ). They form the matrix
U= J0)h=2i ((I~prof) ™V (@rod0)}  (Ji—Js)h=2i (I~ro)~ "o
= J0)h==2i((I~Gro8) ™D @Grod)]  (i—J)h=—2i((I~dro) Vs |
Thus, the explicit dependence of the 17;" on the ¢, we are looking for is

% z ~y sif Hi | Hpy
T = (T = ¢y 0 @) )2 o mggén(g + 3

~(Hiy — Yey(log p2))¢ — (Hyj — Y e (log p?)) E)

, s (H H;;
+( — ¢y o @)*U%%g“(% + %
—(Hyj — Y0ej(log p2))¢ — (Hyy — Y, ey (log p?)) 2) . (5.31)

Recalling that (1 — ¢, o &) Lod =¢r 0 — P 0¢)” " and that
(I—¢iog)  oprod)=U—dod)™' —1,
from (5.31) we see that Y, = )";,"‘ea + YT‘"e& has the form
Y, = Yy + 0 (Y1) + Yeo) + ¢ (Vi) + Y,
where
Hij _
¢

— (Hiz — Yej(log p*)) & — (Hiy — e, (log ;02))4“)65 :

. 5 57 (Hoy
Yoqy=(( — i o @)*‘@)fg“"(% +

Hiy
¢

_ (H”_I — Ytoeﬁ(log ,02))§ — (H,,, — Ytog,](log pz)) E)eﬁ s

Hiy

Y,<z>:=(<1—q3to¢t>—1>§g5"< g (532)

¢ ¢
Since Y2, (Yi(iy+¢ (Yi(iy)) is in 5! for each 1, if (D) holds, then also L5216
(E 4+ ¢;(E)) is in fljm. This means that, due to the integrability condition (D), in the set of
the three conditions, the equation (5.25) involving the (real) vector field X; = X; + Y; can
be replaced by the same equation with the (complex) vector field X; = X, + Y} in place of
X;. The crucial advantage of such replacement comes from the fact that the new vector field
X, is totally independent of ¢;.

_ H H.: -
Y= — gPn <ﬂ 42 (H,,—, - Y,Oeﬁ(logpz))g - (H,,7 - Ytoen(logpz)) {)e,g .
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Summing up, our problem is now reduced to proving the existence of a one parameter

family of tensor fields ¢, € 77 @ #10 of class €*~1% on [0, 1] x B" satisfying the initial
condition ¢r—y = ¢, the non-degeneracy condition (5.20) and the system of equations

[Z,E + ¢ (E)] € 20, (5.33)
[E 4 ¢:(E), F + ¢;(F)] € A", (5.34)
Ly (E+(E)) € A" + 2C (5.35)

forall E+ ¢:(E) € ,}ﬁm. Note that (5.35) can be equivalently stated as (5.29) putting X,
in the place of X,.

5.2.3 Step 2: Reduction to a single equation

In this subsection, we prove that if ¢, is a ¢*—1-@ solution of (5.35) with initial condition
¢i=0 = ¢, then (5.33) and (5.34) are automatically satisfied. In fact, we prove this claim
only in the case of the ¥¥~1-* solutions ¢;, which can be obtained as limits of sequences
of real analytic solutions qb,("). This weaker result is enough for our purposes, because the
solutions, of which we prove the existence in the final step, are precisely of such a kind.

As usual, given a solution ¢y to (5.35), let J; be the corresponding one parameter family of
(possibly non-integrable) complex structures of the form (5.15), for which ¢ is the deforma-

tion tensor relatively to Jg. Moreover, for any x € B", consider a (locally defined) complex
frame field (Z, E,, Z, Ez:=FE,) on a neighborhood of x, in which the E5 are generators
for the distribution #°!. (For instance, we may consider an adapted polar frame field.) For
each ¢, we denote by (Z, Eyq, Z, Esa = Eo) the associated complex frame field, where
the vector fields E; g = Ez + ¢ (Eg) generate the J;-antiholomorphic distribution ! and
the E/|o :=m the distribution .7 10 We also denote by (Z*, Ef“, Z*, Eﬁ) the dual coframes

field of (Z, Ey|q, Z, Ena = M) and we set
Fap=[Ea + ¢(Ea), Eg + ¢ (Ep)] = [Eja, K, ] -
Observe that, since they are tangent to the level sets of t,, they have the form

__ Y 12 _ 0 >
Fuiap = FiagBry + Jyapley + fyap(Z = 2)

with fIT&E = E)\(F,2p), f,“’&g = E)\(F,2p), ftol&g = Z*(F,55)- Note also that, being J

integrable, the functions ft are zero, while (5.34) holds if and only if the

T&ﬁ |z=0’ ft(l]o_tﬁ |z=0
functions f; T& 5 ft ?& K vanish identically for each ¢ € [0, 1].

Assume for the moment that the integrable complex structure J;—y = J, the solution ¢, to
(5.35) and the family v, we consider are all real analytic, so that also the components of the
complex vector field X are real analytic. We want to show that, under these assumptions, the
fr}|/& 5 ft (l)& K are identically 0 and that (5.34) holds. For this, we need the following technical
result.

Sublemma 5.3 Assume that all components of the complex vector field X} on [0, 1] x B" are
real analytic and consider a system of partial differential equations on [0, 1] x B" for an
unknown U : [0, 1] x B* — CN having the form in sets of polar coordinates

d S —
<E+X§>(U“)zﬁ”(t,z,i,w’,w',Ub), l<a<N, (5.36)
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with % real analytic in (t, g, C,w, E) and polynomial in UP. Then, for each t € [0, 1]
and each real analytic V B* — CN, there is a unique local real analytic solution U on
[ty —e&,t,+ €] % E”Nthat satisfies (5.36) with initial condition U |;—;, = V. Furthermore, if ./’
is a subset of € (B", CN), for which there exists an a priori upper bound for the €°-norms
of all solutions to (5.36) with initial conditions in 7, then for each V € 7 there exists a
unique real analytic solution U : [0, 1] x B" — CN to system (5.36) with U|;—o = V.

Proof For each point (¢,, x,) € [0, 1] x B", consider a neighborhood % C [0, 1] x B,
on which we may consider a system of real coordinates (x'), which allow to identify %
with an open subset of C2**! N {Im(z’) = 0}. Assume also that % is sufficiently small so
that all restrictions to % of the components of X, and of the coefficients of the polynomials
Z(U, U) extend as holomorphic functions of some open neighborhood # c C2"*! of «.
In this way, the complex components X of the complex vector field % + X, on [0, 1] x B"
can be taken as the restrictions to % of some holomorphic functions of the form A’ +i B/ on
# . These complex functions are such that the A’ and B/ take only real values at the points
of Z ¢ # N {Im(z') = 0}. In other words,

d .0 .0 9 .9 ) .9

- X/= Ali. Bli = Ati. .Bji. Al I .BJ - .

a ( o 7! Bx-/) '% ( a7 e T T az./> L,
Any local real analytic solution U = (U“) of (5.36) admits a holomorphic extension on an
open neighborhood of %7 ¢ R?**! in C?**+!. Being holomorphic, such extension of U is
solution to the system of differential equations

~ . -~ .0 .0
Xy — Fg(z‘, U =0 with X:=A'"— +iB/ (5.37)

a7 az)
The graphs in C>"*! x CV of the holomorphic solutions U : # — CV to (5.36) coincide
with the complex submanifolds of C?*+! x CN that are tangent to the holomorphic vector
field

a

aua
These graphs can be constructed as in the classical method of real characteristics, namely by
taking unions of complex holomorphic curves tangent to the holomorphic vector field W (they
do exist by complex Frobenius Theorem—we call them complex characteristics), passing
through the points of the graph of an initial condition V' : {t,} x # C # — CN.This method
of construction gives local solutions of (5.37). Restricting them to = # N {Im(z)) = 0},
we get the desired local real analytic solutions of (5.36). By previous observations, any local
real analytic solution of (5.36) can be obtained in this way and, by construction, any such
solution is uniquely determined by its values at some level set at 1 = 7, for some fixed
t, € [0, 1]. This implies the first claim of the sublemma. _

W:=X|, + .F(z, U)

(5.38)

For the second claim, observe that by compactness of B", the above construction allows
to determine a unique real analytic solution U to (5.36) for each initial value U;—g = V € .%/

and we may assume that U is defined on a set of the form [0, 7,] x B" for some t, € (0, T].
If there exists an a priori bound for the %¢° norm of such solution, the vector field (5.38)
has components that are a priori bounded at the boundary points of the graph of the solution

U : [0,1,] x B" — CN. This implies that such solution can be extended to a solution
U : [0, t,+¢] x B" — CV for some ¢ > 0. A standard open and closed argument yields the

existence of a solution to (5.36) on [0, 1] x B". O
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Let us now go back to our discussion on the functions f f under the assumption

of real analyticity of the data. We recall that we are assumlng that d), is solution to (5.35),
i.e., that

$%+X;IE,|,-] tlnEtW + Gth + "th (5.39)
for some complex functions Gt‘lln’ atom, 7+ Note also that, by (5.5),
Lo Z=2s,,Z=0. (5.40)
Hence, by duality,
La ,x B = o BN + oy Z" + pthZ L4y 2t = PO B+ pl BN (5.41)

for appropriate complex functions p,),, oo, £,

0
t|()’ Prip> Prl
We now claim that the functions ot(fn and otln

functions f 0~ deﬁned above. Indeed, we recall that the (complex) vector field X differs

from the (real) vector field X, by the vector field Zl 1Yoy + o (Yey) € %01 We may
therefore write that X; = X; + YYE, )5 for some functions Y¢ and

are actually linear combinations of the

O(Z%-"-X;Etlﬁ = $%+X’E[\;, + Y;L]F,hjﬁ — ]E,W(Y:L)Etm . (5.42)

Since X, is a special vector field as described in Proposition 5.1, by (5.8), we have that
.fdAJrX En; € #C. Comparing (5.42) with (5.39) and using the general structure of the
1 t

vectors IFH ap> We get that

Gl\'/ YMftlun ) Gt\n Yﬂfrwn ) (5.43)

ie., O't(?r—’, Gz(\)n are linear combinations of f O, _, as claimed.

Now, combining (5.39), (5.40), (5.41) and (5.43), we get
d
(d )(f,mﬂ) = p,m ,laﬁ + (p,|0 P,|o)f,\a,s +E} (L xEna, By gD
+E} (B, Za x Byl
= ptyluftlraﬁ + ('Otylo - p:]d)fz(\)&ﬁ
+o 75+ ol a1 fina ] (2. By 5] — B ((Z. By 5])

+YI £ 5 ,([Eﬂa, Z) — B} (B, Z1) (5.44)

d
(dr >(ft\otﬂ) = Piafyap + Piiatlas + 72 (L Era By )

+Z ([EH&? ‘Z£+X/]Et\5])

_ Iz
= Pt lap — floa¥i Fa

+Ul\&ft\,llﬁ + Yﬂfzm&(Z*([Zs Eﬂg]) - Z*([f, Et“é]))
o5 i + Y1 15 (2 (Brja, ZD) = Z* (B, ZD) . (549)

@ Springer



1330 G. Patrizio, A. Spiro

This shows that the functions fo - and f v satisfy a system of the form (5.36). Note
also that (5.44) and (5.45) admit the trivial s01ut10n for the initial value problem f

£ o
lap e
that, under the above real analyticity assumptions, the condition (5.34) is identically satisfied.

Assume now that J;—¢ = J and that ¢; and v; are not real analytic, but that nonetheless
(n)

tlap |t =0~
= 0. By the uniqueness of the local solutions, proved in Sublemma 5.3, this implies

there is a sequence of real analytic curves v, ~ converging in ¢’ k_norm to vy, a sequence
of real analytic complex structures J ", converging in ¥*-norm to J, and a corresponding
sequence of real analytic solutions ¢ to (5.35) with initial data ¢[(l)0 = ¢,, converging in
%*-norm to the solution ¢;. Note that, for each of these sequences, the convergence is also
in #5~1.¢ for any & € (0, 1) and that the ¥*~1-“-norms of the elements of the sequence
converge to the finite value of the ¥*~1®-norm of the limit. In this case, the associated

sequences f (")y ft ()0 converge in ¥¥~2-norm to the functions f ft| Fi determined by

¢;, and their %k 3% _norms converge to finite values. Since:

(n)y f(n)O

(a) the equations satisfied by the f are linear,

(b) the coefficients of the systems have ‘ﬁk 3-%_norms which tend to the ¥¥~3-%-norms of
the coefficients of the equations determined by the ¢y,
(c) the initial data tend to the zero functions in ¥¥~3-%-norm,

we conclude that also the limit functions f; )I/& FE fz?& 5 are identically vanishing and that
(5.34) holds also in this case.

It remains to prove that any solution ¢, to (5.35), with ¢y—9 = ¢, necessarily satisfies
also the integrability condition (5.33). For doing this, we first observe that, since we just
proved that (5.34) is surely satisfied, by the discussion of § 5.2.2, we also have that the (real)
special vector field X,:=X] + Y,y + ¢ (Y,1y) + Yi2) + ¢ (Yi(2)) is so that Lax, i =0.

Now, let g; be a one-parameter family of J;-invariant Riemannian metrics on B” such that
.,2”(% x, 8 = 0. Since we know that & 4 1x, J; = 0, one can construct such a one-parameter
family g; by considering the flow @; on R x ﬁ”, determined by the vector field % + X;, and
impose that, for each pair vector fields W, W’ e T ({t} x ﬁ"),

i .
g (W, W=~ Edd‘fj@ft*(W), JP_ (W) .

The family of these Riemannian metrics is clearly invariant under the flow @;, but it is also
Ji|x-invariant at each (¢, x), since also the family J; is invariant under that flow. Finally, we
set

Fiop:=IZ, Ez + Bi(Ep] =Z, B, 51, foop7 =8 Frop, Euiy) -

Note that all the vector fields Fz|() 3 are in ##C and that (5.33) holds if and only if ft‘() Gy = 0
for each ¢. Notice also that ft‘()f;); l;=0 = 0, being J;—o = J integrable.

Imitating the above arguments, our next goal is to prove that the functions f;jop, are
constrained by a differential problem, which has the trivial map as unique solution. This
would imply our desired result. For proving this, we recall that being ¢, solution to (5.35), it
also satisfies (5.29) and, due to (5.4),

fxlf € %01 foreachr € [0, 1].
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Hence, from .i”di Z =0, (5.35) and (5.34), we obtain
= = 01 01 01
f(%JrXt F0p) =[x, Z. E, 51 + [Z,f%+X[(E,|5] e + 27,77, (5.46)

This means that these Lie derivatives can be written as linear combinations of the ;5 and
; _ B 01 o001 5001 _
of the ;0. Since X%ertg, =0, X%H(t (Eqp) C 277" and g, (227", 2477") = 0, we get

d
<a + Xz) (ft\ﬁﬁy) g,(iﬂd L+ X, tIOﬂ’ Ez\y) + gt(]F,‘()'B’ $A+X1Et|)7)

; 5 4

= Cropp& Fyoe Buig) + Dijy &1 (Fyog, Byyg) 47
B _ 5

Chio5 Trioe7 + Py fuogs

for appropriate complex functions C# 0By and D? Thus, along each integral curve of the

tly*
k=1 yector field d + X, of [0, 1] x IB%” the functions ftl()ﬂ satisfy a system of linear
ordinary differential equatlons which admit a unique solution for each given initial value.

Since ft|65;7 l;—0 = 0 and the submanifold {0} x B" is transversal to % + X, at all points,
the functions f, 55, must vanish along each of the above integral curves, hence at all points

of [0, 1] x B" as claimed.
5.2.4 Step 3: Existence of a solution to the equation (5.35)

Letus now fix some new notation. Given a one-parameter family of tensors ¢; € A @10
and a system of polar coordinates (¢, w®) on B", we denote by ¢ﬁ 5 the components of ¢, in

the associated adapted polar frame field (Z, ey, Z, ez) and we write ¢y = ¢,‘ €8 ® e
also set E;q:=eg + ¢ (eg) and, for simplicity, we use the convenient notation < -, - > for the
(0, 2)-tensor field g introduced in (5.26). In this notation, (5.35) (i.e., (5.29)) becomes

< f(%-fX; (eq + qbtﬁl&eﬂ), ey + (,bfb;e(; >=< $%+X; (eq + qbfl&eﬁ), E;y >=0.

Recalling that < eg, /5 >= gqj (see (5.28)) this can be also written as
d
(d ) (¢,|a)gﬁ)7 =— <[X]. eal, Eyy > —¢f|5[ <I[X;, el By > . (5.48)

Multiplying both sides by the inverse matrix (g°7) of (84 5), we get that
4 x)ef —Fg‘(txX/ ¢5-¢T) (5.49)
dr t)%ra = Fp \O Nt e Py Py ) o ’

for some appropriate real analytic functions Fg of the points (¢, x) € [0, 1] x B", of the

components of X; and of the components of ¢;.
So, by the previous sections, our proof is reduced to show the following:

there exists a maximum value s, € (0, 1] such that for each s € (0, s,) there is a one-
parameter family ¢; of tensor fields in A @ 10, which is solution to (5.49) for
t € [0, s] with initial condition ¢;—9 = ¢ and satisfies the nondegeneracy condition
(equivalent to (5.20))

det (85 — 611,07

ms) £0: (5.50)
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the value s, is less then 1 only in case such solutions are such that lim;_,, det

( ¢W¢t|ﬂ)

In the case of real analytic data, the proof is reached in a direct way. Indeed,

Proposition 5.4 Assume that J and v; are real analytic and, consequently, that also p and
¢ are real analytic. Then there exists a maximum value O < s, < 1 such that the system of
partial differential equations (5.49) with initial condition ¢—o = ¢ has a unique solution
forallt €[0,s,). The case s, < 1 occurs only if

Jim det ( ‘f’r\y‘%) (5.51)
Proof By Sublemma 5.3, there exists a unique local solution to (5.49) with initial condition
¢1—0 = ¢ on a compact set of the form [0, €] x B". Since ¢, is a deformation tensor of a
complex structure, then it satisfies (5.50). Thus, there exists a sgfﬁciently small ¢, such that

the obtained solution satisfies also (5.50) on the whole [0, £] x B". If we consider the subset
B C (0,1]

B = { s € (0, 1] : there is a solution on [0, s] x B" satisfying
the initial condition ¢;—¢ = ¢; and (5.50) } , (5.52)

then s, = sup B satisfies all requirements. By previous remark, s, > 0. On the other hand, if
s, < 1and the solutions on the intervals [0, s] are such thatlim,_, ;, det (8"‘ ¢t|y¢;| /3) #0,
the same argument shows that such solution extends to a solution defined on a larger interval

[0, s, + &'], contradicting the definition of s,. This implies the last claim of the proposition.
]

We now need to prove the existence of the maximal value 0 < s, < 1 also in case we
need to determine ¥~ 1-% solutions on intervals [0, s] C [0, s,), corresponding to (not real
analytic) ¢ initial datum ¢ ;. By considering the set B defined in (5.52), it suffices to show
that B # ) and then setting 5, = sup B. In other words, we only need to show the existence
of solutions with ¢” k initial datum ¢ and satisfying (5.50) over some compact set of the form
[0, €] x B" for some sufficiently small & > 0. The method of construction of the required
solution will also show that, in case 5, < 1, then necessarily lim,_, s, det (80‘ ¢t|y¢1| ﬂ)

0: otherwise, one might determine solutions on some larger interval [0, s, + &’], in contrast
with the definition of s,,.

The strategy consists in determining the desired solution ¢, as limit of real analytic solu-
tions ¢(,); of (5.49), whose initial values Y(,):=¢ )= are real analytic and approximate
the initial value ¢;. For simplicity, we first work under the additional assumption that p and

v, are real analytic. Consider a finite covering of B" by compact sets K;,i =1, ..., N, with
smooth boundaries, on each of which the initial data ¢3l 5 | . are approximated in %*-norm
(thus, also in ¥~ 1% _norm foreach & € (0, 1)) by a sequence l/le) 5 of real analytic functions.
Such approximating sequence 1//8‘1) 5 surely exists and it can be even assumed to be formed

by rational polynomials (see, e.g., [8], Thm. 6.10).
Now, given a compact set K = K; and an mteger n, let ¢¢

(5.49) and (5.50) with initial value ¢*

Y be the unique solution to

(=0l = (n)ﬂ on {0} x K, defined on some compact
)\.(”)

set of the form [0, #,,] x K, with 1,, less than the maximal value 1, * determined by Proposition
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5.4. We may assume that f,, is the infimum of the values ¢/, for which  sup ||¢z,)t|5 I <1
[0,/1x K

By the method of construction of solutions using complex characteristics described in the

proof of Sublemma 5.3, such infimum #, is bounded from below by some 7, > 0, independent

of n and determined by

— the value supg ”‘”&NB |, which we may assume to be less than or equal to sup || 1//%‘ Il +

&, < 1 for some ¢, > 0 for all sufficiently large n;

— the sup of the components of the holomorphic vector field X, determined through (5.37)
by the data in (5.49), taken over the compact set of C"t1 % CN, which is the cartesian
product [0, 1] x K and the hypercube in CV spanned by all possible values for ¢>§ with

norm bounded above by 2.

We may therefore assume that all solutions ¢Z¢) F are defined on a compact set [0, t,] x K,
with z, > 0, and that they are equibounded by o ?l%[iK ||¢?;),| F; | <1

We now want to show that the solutions ¢g1)z‘ ﬁ Ohave also equibounded first derivatives, so
that they are equicontinuous on [0, #,] x K. To check this, for all complex vector field e, and
ez in jfcl & » consider the unique real analytic extensions’e}m,’e}‘a in € [[0,1]x k satisfying
the differential problem

f%JrX/et\a = $%+X,e,‘& =0, e=0la = €y » €1=0la = €q - (5.53)

Since these differential equations have the form (5.36), with right hand side linear in the
unknowns ¢y, €/, such extensions exist on some set of the form [0,¢] x K, ¢ > 0
(Sublemma 5.3). They have also %°-norms that are uniformly bounded from above by the -
norm of the initial values multiplied by some fixed constant. This is indeed a consequence of
the fact that the differential equations along the complex characteristics are linear. It actually
implies that the /o, €¢ can be extended over the whole [0, 1] x K.

We may now observe that, differentiating both sides of (5.48) along the vector fields &;|4
and ¢;) and using the property that they commute with % + X’ by (5.53), the derivatives
€| (¢Zl)t\ 5) and?,\&@)(ynm E) are solutions of a system of the form (5.36), in which the right
hand side is linear in the unknowns. Using once again Sublemma 5.3 and the linearity of
the equations along the complex characteristic, we conclude that such derivatives are well
defined at all points of [0, 7,] x K, with %°-norm bounded above by the %0-norms of their

initial values times some fixed constant. Since the initial values w(yn) 5 converge in gkl

norm to gb; 5 with k > 2, we conclude that also the family of derivatives 'e}‘a (¢gl)f| 5) and
Y

_ follows,

ena(@” ) are equibounded. From this, the equicontinuity of the solutions ¢ 1

)1|p
as claimed.

As direct consequence of Ascoli-Arzela Theorem, the sequence of solutions ¢z/n)t| 5 con-

verges in 4 -norm to the components of the family of deformation tensors ¢;, with initial
value ¢;—0 = ¢,. An argument that is basically the same as the one used for proving equi-
boundedness of ¢!'-norms shows that also all derivatives up to order k — 1 of the solutions
¢Z1)t\ 5 are equibounded, proving in this way that the limit ¢, is at least of class #*~!. In
particular, it follows that the limit is a solution to the first order differential problem (5.49).

However we claim that also the Holder ratios of power « of the (k — 1)-th order derivatives

of the solutions ¢(Vn)t| 5 are equibounded. This can be checked as follows. First, observe that

the Holder ratios of the (k — 1)-th derivatives, evaluated for pairs of points that are in
the same complex characteristic, are equibounded because the restrictions to the complex
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characteristic of such (k — 1)-th derivatives are solutions of the above described linear system
of ordinary differential equations with equibounded coefficients. This means that, in order
to check the equiboundedness of the Holder ratios, we may restrict to considering those
evaluated at pair of points (z, X), (', y) € [0, 1] x K, with the same coordinate z. Now, for
each given pair of points x, y € K, consider the Holder ratio of the (k — 1)-th derivatives,

evaluated per each ¢ at the pair of points (z, x;, ¢ty| F (x1)), (¢, vy, ¢ty‘ F (y1)), belonging to the

two complex characteristics originating from (t = 0, x, ¢(})/IB(X)) and (r = 0, y, ¢g|5(y)),
respectively. Up to multiplication by a positive constant, such Holder ratios are equibounded
by the Holder ratios at their uniquely associated pair of points at 1 = 0, from which the
complex characteristics originate. Indeed, this is obtained by considering such Holder ratios
as functions of the (complex) variable ¢ of the pair of characteristics. Using the differential
equation satisfied by the (k — 1)-th order derivatives of ¢; in order to express the first
derivatives in ¢ of the Holder ratios, one can observe that they satisfy a simple linear system
of ordinary differential equations, with coefficients, given by rational functions in which
a) the denominators are bounded away from 0 by constants that are independent of ¢;, b)
the numerators depend on the functions ¢&m 8 and their (k — 1)-th derivatives, and are
equibounded. This implies the claimed existence of common upper bounds determined by
the Holder ratio of the corresponding pair of points at ¢ = 0.

Since the initial values converge to ¢1J/ F in ¥~1-*_norm, we derive in this way the desired

equiboundedness of the €*~1-*-norms of the ¢(yn)r| F and the property that the limit deforma-

tion tensor ¢, is actually of class ¥~ 1%, Note that, by the results of previous section, such ¢;
necessarily satisfies also the integrability conditions and the condition (B) of the deformation
tensors of the L-complex structures.

By uniqueness of the limits of the sequences of solutions ¢gm| g on the intersections
K;NK; of two compact sets of the considered covering {K; }, we also obtain that all solutions
constructed in this way on the sets [0, 75;] X K; combine together and give a global solution
over a compact set of the form [0, ] x B", for some appropriate ¢ > 0, under the considered
regularity assumptions.

Itremains to prove the existence of %*— 1% golutions to (5.49) and (5.50) under the assump-
tion that also the functions v, and p are not real analytic, but just of class ¥*. The method
is precisely the same as before with the only difference that, now, we have to approximate
with real analytic functions on compact sets K; not only the initial datum ¢; F |k, but also the

%* functions v; and p. A diagonal argument implies that also in this case the ¥~1-*-norms

of the solutions ¢(yn)t| 5 determined by the initial values ‘/’();) K and real analytic vector fields
(n)

X En)t, determined by the v, and p,, are equibounded. This implies the needed existence of

a ¢*~1-%_solution also in this case. O

5.2.5 The ©* and the ¥’ cases and Theorem 2.9

We end by observing that our arguments show that Theorem 2.7 may be rephrased both in
the °° and the ¢’ versions so that also Theorem 2.9 follows. Indeed, as we already pointed
out, the determination of the maximal value A, in Theorem 2.7 depends on the fulfillment
of the conditions (A)—(D) of Sect.5.2.1, which, as long as the data are at least of class
%2, is independent on the degree of smoothness. Because of the uniqueness of the Green
pluripotential with a given pole, the ¥"°° version of Theorem 2.7 is obtained applying the
statement Theorem 2.7 for all k > 5. Furthermore the steps of proof of the crucial Lemma
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5.2 are provided first in the €'“ case (see Sublemma 5.3 and Proposition 5.4) and therefore
also the ' version of Theorem 2.7 holds.

5.2.6 Afinal remark

As we already mentioned, the consideration of manifolds of circular type was motivated
by the relevance of two main classes of examples: the smoothly bounded, strictly convex
domains and the smoothly bounded strongly circular domains of C". However the manifolds
of circular type are described in abstract terms, an aspect that also allows explicit construction
procedures. In fact, as we know, each manifold of circular type is biholomorphic to a manifold
in normal form. This is nothing but the unit ball B"” equipped with a non-standard complex
structure J, obtained by deforming the standard one along special directions (Definition 2.4).
By [3,22,23], all such non-standard complex structures J are uniquely determined by their
deformation tensors which, in turn, are parameterized in an explicit (although non-trivial) way
by a single freely specifiable complex function /. By choosing appropriately such a function,
one can construct manifolds of circular type (B", J) with desired properties. For instance, this
idea has been successfully used in [23] to prove the existence of abstract manifolds of circular
type with prescribed regularity properties at the center. The same technique can be adopted
to generate many domains of circular type (B", J) for which there are points that satisfy
the (closed) condition (5.51), provided that such condition is translated, as we did in [23],
into manageable differential equations for the deformation tensor of the complex structure.
By our proof of Theorem 1.1, the existence of such points would imply that the “cloud” of
centers 7 (M%) g g proper subset of the constructed domain. Further, as in [23], such abstract
examples would be embeddable as domains of C” as long as their complex structures are
suitably small deformations of the standard euclidean complex structure. Conversely, we
also expect that a careful study of the mentioned condition (5.51) and of its translation as a
condition on the deformation tensor would suggest new biholomorphically invariant sufficient
conditions for the regularity propagation to occur globally. We plan to address these lines of
research in the future.
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