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Abstract: Interval-censored failure time data as a general type of survival data often arises in medicine
and other applied fields. Survival tree is a flexible predictive method for survival data because no
specific assumptions are required.
Generalized Log-Rank Test have good power with parameters for interval-censored failure time data.
We construct a special test statistic of Generalized Log-Rank Tests, and propose a new survival
tree with hyper-parameter by combining the test statistic with Conditional Inference Framework for
interval-censored failure time data. The effect of tuning hyper-parameter are discussed and hyper-
parameter tuning allows the tree method to be more general and flexible. Thus the tree method either
improve upon or remain competitive with existing tree method for interval-censored failure time data-
ICtree, which is a special case of ours. An extensive simulation is executed to assess the predictive
performance of our tree methods. Finally, the tree methods are applied to a tooth emergence data.
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1. Introduction

Interval-censored data is common in real world. For instance, in clinical trials or longitudinal study,
patients have periodic follow-up monitored discontinuously, hence the patient’s exact time of event
of interest is not observed, but only known to fall in an interval (the endpoints of an interval usually
represent two examination time). In those cases, interval censoring data occurs. Interval censoring is
a more general type of censoring in survival analysis, and both left-censoring and right-censoring are
special cases of it. When R = ∞ or L = 0 which represent the right endpoint and left endpoint of
the observed interval respectively, then the interval censoring becomes a natural generalization of the
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common right censoring and the less common left censoring case. We have an exact observation when
L = R. If we can only observe each study subject once and either L = 0 or R = ∞, then it is referred to
Case I interval-censored data. Otherwise if the interval-censored data include some finite intervals and
L is not always equal to 0, then it is referred to Case II interval-censored data [1].

Sun provides comprehensive overviews of statistical models and methods for analyzing interval-
censored data. The proportional hazard model proposed by Cox is a semi-parametric model for right
censored data [2], then developed by Finkelstein for interval-censored data [3]. Other semi-parametric
models have been mentioned, such as the proportional odds model, the additive hazards model, the
accelerated failure time model. In addition, Exponential model, Weibull model, Log-normal model as
parametric models are also discussed [4].

Compared with statistical models and methods, tree-based methods flexibly and effectively handle
high-dimensional problems. Moreover, no specific assumptions are required. The crucial points of
a tree method are splitting and stopping criteria. The general splitting criterion is to partition the
covariate space recursively by maximizing between-node heterogeneity or minimizing within-node
homogeneity. Stopping criteria is to decide the final size of a tree and some tree methods have a
pruning procedure to avoid overfitting [5].

A tree method for time-to-event data is called survival tree. A comprehensive review of tree-
structured methods for survival data with right censoring is provided, which introduces more than 20
survival tree methods developing from 1985 up to 2008 and some ensemble methods with survival tree
[6]. Some survival trees utilize logrank statistic or a parametric likelihood ratio statistic as a splitting
rule [7, 8]. Some tree methods adopt Wilcoxon-Gehan statistic and Kolmogorov-Smirnov statistic to
measure the heterogeneity between nodes [9, 10]. However, the majority of tree-structured methods
suffer from biased variable selection, which is induced by maximizing a splitting criterion over all
possible splits simultaneously [11]. Conditional Inference Framework (CIF) is also a tree method and
is not biased towards covariates with many values [12]. A permutation test framework [13] is applied
in CIF to guarantee unbiased variable selection for full data or censored data flexibly. An unbiased
survival tree is proposed for left-truncated and right-censored data based on CIF [14].

Some new survival tree methods are also shown in the ensemble methods, which are based on a
sizable set of survival trees as base learners. Ishwaran et al. proposed Random Survival Forest (RSF)
for right censored data, which is based on Random Forest (RF) [15] to predict the average estimator
value of cumulative hazard function at nodes of survival trees [16]. An extension of the censoring
unbiased transformations to general loss function is applied to construct some new algorithms of
censoring unbiased trees and ensembles for right-censored data [17].

However, only a few tree-based methods for interval censoring are proposed. A survival tree method
for interval-censored data proposed by Yin suffers from bias of splitting variable selection [18]. ICtree
is proposed as an unbiased tree method [19], which embeds the log-rank score into CIF for interval-
censored data [20]. The extremely randomized trees (ERT) combining with Wilcoxon rank sum test at
each iteration are proposed in a recursive forest and this forest is suitable for Case I interval-censored
data which is a special type for interval-censored data [21].

We propose an unbiased interval-censored tree by combining Generalized Log-Rank Tests (GLRT)
with CIF. GLRT is a test procedure for survival comparison based on interval-censored failure time
data, which is a generalization of Log-Rank Test, and has stronger test ability when appropriate
parameter is selected [22]. We adopt several special statistics with parameters based on GLRT, and

AIMS Mathematics Volume 7, Issue 10, 18099–18126.



18101

derive a new tree method with hyper-parameter denoted by ICS ρ,γ
1 tree and ICS ρ,γ

2 tree. We also discuss
other tree models based on other rank tests statistics. A comparison of predictive performance among
ICtree, ICS ρ,γ

1 tree, ICS ρ,γ
2 tree and other interval-censored trees is implemented.

ICS ρ,γ
1 tree is a competitive interval-censored tree method benefitting from the properties of GLRT

and hyper-parameter ρ, γ. Appropriate hyper-parameter values taken in ICS ρ,γ
1 tree improve the

performance of prediction. ICS ρ,γtree has more extensive adaptability to data because of choice of
hyper-parameter. In Section 2, we first review CIF and GLRT, and then we introduce new interval-
censored tree methods with hyper-parameter. The methods combine some new test statistics of GLRT
or other rank tests with CIF. An extensive simulation is executed in Section 3, and hyper-parameter
tuning is implemented by a grid searching cross-validation technique. The predictive accuracy of the
new tree methods are evaluated. In Section 4, we apply new tree methods to analysis a tooth emergence
data respectively [23].

2. New interval-censored trees

2.1. Overview of conditional inference frame

Let X = (X1, X2, . . . , Xm)T denote a m-dimensional vector of covariates and let Y denote a response
variable. Let X = X1 × X2 · · · × Xm be the sample space of X. Let Y be the sample space of
response variable Y . Let Ln = Y × X be the sample space of n iid observations, specifically,
Ln = {(Yi, X1i, X2i, . . . , Xmi)T ; i = 1, 2, . . . , n}.

CIF is a two-step tree method, because it separates the process of variable selection and splitting,
thus guarantees the unbiasedness of variable selection.

The two steps are as follows:

• Step 1 is variable selection. The association between response Y and covariates X is measured
based on p value according to pre-specified significant level, and thus the component X j0 of X
with strongest association with response Y as splitting variable is selected.
• Step 2 is searching for optimal splitting point by two-sample test based on the selected variable

X j0 .

In step 1, under global null hypothesis of independence between any component X j of covariates X and
the response Y , a test statistics T j(Ln, ω) is constructed, j = 1, 2 · · · ,m.

T j(Ln, ω) = vec(
n∑

i=1

wig j(X ji)h(Yi, (Y1, . . . ,Yn))T ) ∈ Rb jq, (2.1)

where g j : X j → R
b j is a transformation of the covariate X j, j = 1, 2 · · · ,m, influence function h :

Y ×Yn → Rq depends on all the observation values of responses variable in a permutation symmetric
way. ’vec’ operator converts a b j × q matrix into a b jq column vector by column-wise combination.
Here ω = (w1, . . . ,wn)T is a case weight vector presenting a node of the tree. wi is one when the ith
observation fall into the node, otherwise is zero.

An extended permutation test is applied to calculate the p value denoted by p j based on test statistics
T j(Ln, ω) [13], and X j0 is selected as splitting variable if the p j0 is the smallest among p j, j = 1, 2 · · · ,m.
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In step 2, a two-sample test is executed based on the selected splitting variable X j0 and the test
statistic TAj0 (Ln, ω). Here

TAj0 (Ln, ω) = vec(
n∑

i=1

wiI(X j0i ∈ A)h(Yi, (Y1, . . . ,Yn))T ) ∈ Rq (2.2)

whereA is an arbitrary subset taken from the sample space X j0 and I(·) is the indicator function.
TAj0 (Ln, ω) is a special case of test statistic (2.1) and is used to measure the discrepancy between the

samples {(Yi, X1i, X2i, . . . , Xmi)T ∈ Ln|X j0i ∈ A; i = 1, 2, . . . , n} and {(Yi, X1i, X2i, . . . , Xmi)T ∈ Ln|X j0i <

A; i = 1, 2, . . . , n} in one node.
The optimal splitting A0 is found by exhaustive search, which is the subset maximizing the test

statistic of two-sample test over all possible subsetsA of the sample space X j0 .
The extended permutation test, two-sample test and type of data determine the way how g j and

influence function h are chosen, and CIF is efficiently applicable to full data and right-censored data
when it takes specific g j and influence function h. Later we will discuss in detail the form of g j and h
taken for interval censored data in Subsection 2.3.

2.2. Overview of generalized log-rank test

Consider n independent subjects from k different populations. Let nl denote the number of subjects
from population l with survival function S l, l = 1, 2, . . . , k, and let Ti be survival time at which the
event of interest for subject i happens, i = 1, 2, . . . , n, where

∑k
l=1 nl = n. In addition, let xi be the

k-dimensional indicator vector related to the subject i whose lth element is 1 if it belongs to population
l, and 0 otherwise. (Li,Ri] is the censoring interval and satisfies

(Li,Ri] =


(0,Ui] Ti ≤ Ui

(Ui,Vi] Ui < Ti ≤ Vi

(Vi,∞) Ti > Vi

(2.3)

where Ui and Vi are non-negative random variables independent of Ti such that Ui < Vi, i.e., we assume
non-informative interval censoring. Right-censoring occurs when Ri = +∞. Without loss of generality,
let k = 2 in our tree methods.

The generalized log-rank test (GLRT) is applied to interval-censored failure time data for
comparison of survival function. The test statistic is Uξ =

∑n
i=1 xiUξ,i where score statistic

Uξ,i =
ξ(Ŝ (Li)) − ξ(Ŝ (Ri))

Ŝ (Li) − Ŝ (Ri)
. (2.4)

Here ξ(x) is a function over the interval (0,1) that satisfies the condition

lim
x→0

1 − ξ(1 − x) = lim
x→1

1 − ξ(1 − x) = c0, (2.5)

where c0 is a constant. This is one of sufficient conditions for asymptotic distribution of Uξ,i. Ŝ is a
non-parametric maximum likelihood estimator (NPMLE) of survival function, and is implemented by
the improved EMICM algorithm [24, 25], which is an extended form of the early EMICM algorithm
[26].
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Different score statistic Uξ,i can be obtained by using different functions ξ(x) according to (2.4). For
example, Uξ,i is exact the logrank score statistic when ξ(x) = xlogx. A specific ξ(x) = (logx)xρ+1(1−x)γ

with parameters ρ and γ as an example was given in [22], which inspires us to construct other new ξ(x)
with parameters ρ and γ to derive a new interval-censored tree with hyper-parameter.

2.3. A new interval-censored tree based on generalized log-rank test

Our idea about new interval-censored tree stems from more extensive test ability of GLRT with
parameters. We assign some new score statistics shown in (2.4) derived from newly constructed ξ(x)
to the influence function h in test statistic (2.1) and (2.2).

Firstly, ξ(x) = (logx)xρ+1(1 − x)γ is considered to obtain a new score statistic Uξ,i with parameters
ρ, γ according to (2.4), which is denoted by Uρ,γ

ξ1,i
.

Next we construct a new ξ2(x) = (tan(π2 (x − 1)))xρ+1(1 − x)γ and assign it to Uξ,i, and then a new
score statistic referred as Uρ,γ

ξ2,i
is derived.

Then we combine the new score statistics with the CIF to construct our interval-censored tree
methods.

Considering CIF introduced in Subsection 2.1, let Yi
T = (Li,Ri) where Li and Ri are the endpoints

of censoring interval specified in (2.3), and Yi is a bivariate response variable. Assume the covariates
are numeric. In step 1 of CIF, let g j(x) = x where x ∈ X j, and then Rb j = R. Let h = Uρ,γ

ξ1,i
and then

Rq = R. Thus the test statistic

T j(Ln, ω) =

n∑
i=1

wiX jiU
ρ,γ
ξ1,i
∈ R, (2.6)

is used for extended permutation test.

In step 2 of CIF, let g j0(x) = I(x ∈ A) where x ∈ X j0 andA ⊂ X j0 , then Rb j = R. Let h = Uρ,γ
ξ1,i

and
then Rq = R. Thus the test statistic

TAj0 (Ln, ω) =

n∑
i=1

wiI(X j0i ∈ A)Uρ,γ
ξ1,i
∈ R (2.7)

is used for two-sample test.

Then the new interval-censored tree is derived, which is denoted by ICS ρ,γ
1 tree. In particular, the

ICtree is a special case of ICS ρ,γ
1 tree when ρ = γ = 0.

Similarly, we assign the Uρ,γ
ξ2,i

to influence function h, and propose another new tree with hyper-
parameters ρ and γ, which is called ICS ρ,γ

2 tree.

The Algorithm 1 explains the ICS ρ,γ
1 tree, and the setting of hyper-parameters is discussed in the

Algorithm 2.

AIMS Mathematics Volume 7, Issue 10, 18099–18126.



18104

Algorithm 1 ICS ρ,γ
1 tree

Given:

• (ρ, γ): selected values of hyper-parameter.
• X = (X1, X2, . . . , Xm)T : m dimensional covariates.
• Y: response variable.

Procedure:
For each node:

I/ Testing the global null hypothesis of independence between any component of the covariates
X and the response Y by permutation test. The test statistic (2.6) is associated with (ρ, γ).

(a) If the global null hypothesis can be rejected according to a pre-specified nominal level
α, then X j0 satisfying the j0th component of covariate X with the strongest association to
Y is selected as the splitting covariate, i.e., the index j0 satisfies that the p value is the
smallest.

(b) If the global null hypothesis can not be rejected, then stop.

II/ Considering X j0 which is selected splitting variable in (i), two-sample test is utilized to search
the optimal binary split {X j0 ∈ A} and {X j0 < A} where the null hypothesis is the two samples
are statistically equivalent. Exhaustive search is executed for every allowable split, and A0

satisfies that the test statistic (2.7) is maximum among all the allowable subsetA ⊂ X j0 .

The step I and step II are reapplied to each of children nodes.

We also utilize other rank test as influence function to explore the predictive performance of
ICS ρ,γ

1 tree ICS ρ,γ
2 tree. Our improved tree methods are based on CIF, so the time complexity is the

same with CIF.

2.4. Interval-censored tree methods based on other rank tests

Gρ,γ test is a class of rank test for interval-censored data to evaluate whether the survival function
under each group is equivalent or not [27]. The test statistic is UG =

∑n
i=1 xicρ,γ,i, where

cρ,γ,i =
Ŝ (Li)B(1 − Ŝ (Li); γ + 1, ρ) − Ŝ (Ri)B(1 − Ŝ (Ri); γ + 1, ρ)

Ŝ (Li) − Ŝ (Ri)
(2.8)

and the incomplete beta function B(·) satisfies

−B(1 − t, γ + 1, ρ) = −

∫ 1−t

0
xγ(1 − x)ρ−1dx = λ(t).

Here n, Li, Ri, Ŝ and xi have the same meaning as Section 2.2. Gρ,γ test coincides with the log-rank
test when ρ = γ = 0 and λ(t) = log(t)tρ(1− t)γ. Then tree method denoted ICGρ,γtree is obtained when
cρ,γ,i is considered as the influence function under CIF.
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A generalized Wilcoxon test for interval-censored data [28] is also applied to CIF, and

Ui,W = Ŝ (Li) + Ŝ (Ri) − 1, (2.9)

is assigned to the influence function, where Ui,W is the rank score of generalized Wilcoxon test and is
utilized for comparison of survival function of two groups. We refer to this tree as ICWtree.

2.5. Hyper-parameter tuning

It is important to set an appropriate hyper-parameter value to adapt our tree methods to the data sets.
We use a grid search cross validation technique [29] to explore the hyper-parameter optimization. The
whole hyper-parameter tuning procedure is shown in Algorithm 2.

Algorithm 2 Hyper-parameter tuning
Given:

- A: training set.
- NA: size of training set A.
- [aρ, bρ] × [aγ, bγ]: two-dimensional search space of hyper-parameter (ρ, γ).
- 4sρ: step size in direction of ρ.
- 4sγ: step size in direction of γ.
- K: the fold number of cross validation.
- φ(·) is a measure for evaluation of the predictive performance.

Procedure:
For given two-dimensional search space [aρ, bρ] × [aγ, bγ],

- [aρ, bρ] is divided into B1 subinterval [ρi−1, ρi] of equal width 4sρ = (bρ−aρ)/B1, i = 1, · · · , B1,
and ρ0 = aρ.

- [aγ, bγ] is divided into B2 subinterval [γ j−1, γ j] of equath width 4sγ = (bγ − aγ)/B2, j =

1, · · · , B2, and γ0 = aγ.

- For i=1 to B1, j=1 to B2

I/. Split the training set A into K non-overlapping groups randomly with the
approximately same size, the kth group is considered as a internal test set Atest

k ,
then the remaining parts together are considered as a internal training set Atrain

k ,
k = 1, · · · ,K.

II/. φ(·) is applied for evaluating predictive accuracy of a tree model with hyper-
parameter (ρi, γ j) by K-fold cross validation, where the model is fitted in Atrain

k and
evaluated in Atest

k , k = 1, · · · ,K. The outcome of K-fold cross validation is denoted
by φ(·)i j.

Output
The best hyper-parameter values (ρ̃, γ̃) = (ρi∗ , γ j∗), where i∗, j∗ satisfies that the value of {φ(·)i∗ j∗} is
optimal.
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3. Simulation

Let Ti be the failure time of interest for subject i, and suppose (Li,Ri] to be the censored interval
to which Ti belongs. Here Li = τ j and Ri = τ j+1 for some j, where τ j+1 > τ j, τ0 = 0 and τl = +∞,
j = 1, . . . , l − 1. The gap between adjacent endpoints of the interval is denoted by len j = τ j − τ j−1.

We assume that censoring mechanism is non-informative, i.e., the failure time of interest is
independent of the censoring intervals. Ti is randomly generated from a specific distribution F(t),
len j is a random variable from a specified distribution G(x) for each j. The type of interval-censoring
is Case II. The censoring mechanism are similar to [19] for the purposes of comparison.

The observations are right-censored when the survival time T fall into interval (τl,+∞). The right
censoring rate is controlled by adjusting the number of intervals. Three right-censoring rates are
considered to explore the impact of right-censoring rate on the performance of the tree methods: 0%,
20% and 40%.

3.1. Evaluation of predictive accuracy for classification

In real world, the distribution of lifetime or failure time is uncertain. A good model for classification
can distinguish the observations with high hazard rates from the ones with low hazard rates, i.e.,
it can tell the distributions with one parameter value from the other parameter value, and correctly
classify the samples into the corresponding categories from the a pool of distribution with different
parameters. What’s more, a survival tree method can select the important covariates [30]. To evaluate
these classification performances of tree models, tree structured data sets are constructed which are
synthetic data sets.

3.1.1. Tree structured data

Tree structured data sets shown in Figure 1 are constructed which are easily divided into several
categories according to the character of covariates.

X1 

1 >1 

X2 X3

0 >0 2 >2 

    

Figure 1. Tree structured data.

Covariates X = {X1, . . . , X6}
T is a 6 dimensional vector, and

• X1 is from discrete uniform distribution {1, 2, 3, 4};
• X5 is from discrete uniform distribution {1, 2, 3, 4, 5};
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• X2 and X6 follow the Bernoulli distribution with p = 0.5;
• X3 and X4 are uniform in the interval [1, 3].

The failure time of interest T is generated from a distribution F(t) determined by the values of
X1, X2, X3 according to the relationship of structural tree shown in Figure 1. More specifically, the
distribution F(t) involves in 4 parameters, thus T is denoted by T̃1, T̃2, T̃3 and T̃4 respectively according
to the value of parameter chosen by F(t), which are labelled by 4 categories. We consider four data
scenarios that vary in terms of the distribution F(t) as follows.

1. Exponential distribution with parameter λ ∈ {0.08, 0.25, 0.6, 0.95};

2. Weibull distribution with shape parameter α=7 and scale parameter λ ∈ {1, 6, 14, 30}, which have
an increasing failure rate with time, we refer to this case as Weibull1;

3. Weibull distribution with shape parameter α=0.8 and scale parameter λ ∈ {1, 6, 14, 30}, which
have a decreasing failure rate with time, this case is denoted by Weibull2;

4. Log-normal distribution with parameter pairs (µ, σ) which is equal to
(0, 0.25), (2, 0.25), (3, 0.4), (4, 0.1).

The distribution G(t) of the interval length len j is [0.7,1.5] uniform distribution. Let the sample size
be N, and the ith observation is denoted by Oi = (Li,Ri, X1, X2, X3, X4, X5, X6)T ∈ Ln, i = 1, . . . ,N,
where (Li,Ri) = Yi is response variable.

Here we take the first data scenario in simulation as an example to illustrate the simulative data
specifically. T̃1,T̃2,T̃3,T̃4 are from Exponential distribution with parameter λ ∈ {0.08, 0.25, 0.6, 0.95}
respectively. As we known, λ is the constant hazard function h(t) = λ. So the simulative data has
four classes which have different level of hazard rates, Class1, Class2, Class3 and Class4, The survival
function of each class is S (t) = exp(−λt), λ > 0, t > 0. Specifically, the samples belonging to
the first class (Class1) has the lowest hazard rate and the survival function is S (t) = exp(−0.08t);
the ones belonging to the fourth class (Class4) has the highest hazard rate, and the survival function
is S (t) = exp(−0.95t). The categories are associated with the values of covariate, so the class an
observation should belong to is unique.

Obviously, a perfect tree method based on this simulative data should grow a recursive structure
shown in Figure 2. The terminal nodes ID are 3, 4, 6 and 7 respective, and they correspond 4 classes.
Each observation will fall down a terminal node of the perfect tree method according to the values of the
covariate of samples and recursive structure of a tree. The terminal node ID to which an observation
falls down is unique. Hence the category of each observation is labelled by node ID of perfect tree
method .

For example, if an observation satisfies X1 = 1, X2 = 1, X3 = 2.3, X4 = 1, X5 = 5, X6 = 0, then the
observation should be assigned to terminal node ID 4, and the category of it is Class2.

AIMS Mathematics Volume 7, Issue 10, 18099–18126.
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[[1]]                                                                                  
[1]root 
|   [2] X1 <= 1                          
|   |    [3] X2 <= 0*               
|   |    [4] X2 > 0*                       
|   [5] X1 > 1                                          
|   |     [6] X3 <= 2* 
|   |     [7] X3  > 2* 

Figure 2. Recursive structure of data set.

3.1.2. Measure for evaluation of classification accuracy

Let N∗(Oi) be the terminal node ID into which Oi should fall according to Figure 2, i = 1, . . . ,N, N is
sample size. Whereas let N∗∗(Oi) be the terminal node ID in which the observation Oi falls according to
various tree methods, i = 1, . . . ,N. If N∗(Oi) = N∗∗(Oi), then the observation Oi is correctly classified
by the tree methods, i = 1, . . . ,N.

Now we define a performance measure cr for classification task to calculate the ratio of the
observations falling into a terminal node correctly, i.e., the ratio of observations labelled correctly.

cr =

∑N
i=1 I{N∗(Oi)=N∗∗(Oi)}

N
,

where IA is an indicator function defined on set A. cr describes the ratio that observations (e.g., patients)
that have high (low) hazard rates are correctly classified into the corresponding class with high (low)
hazard rate by a classifier ( e.g., a tree method).

cr is a reasonable measure to evaluate the correctness of a tree method covering the tree-structured
data sets, because the correctness of the tree structure generated by tree methods are closely related to
it’s value. If a tree method grows a tree structure with wrong splitting based on tree structured data,
like the case shown in Figures 3 and 4, some observations will be misclassified. This in turn leads
to lower value of cr. For example, if an observation with covariates X1=2, X3=1.7 should belong to
the third category (Class3) and fall down terminal node 6 according to data structure shown in Figure
2. But a splitting point of the tree method (Figure 3) is inconsistent with the character of data, so
this observation is incorrectly assigned to terminal node 7. And even worse in some cases that no
observation has any chance to fall down the correct terminal nodes due to the wrong tree structure
grown by a tree method. A very wrong tree structure grown by a tree method shown in Figure 4 has no
terminal node 6 and 7, and the observations which should belong to a terminal node 6 and 7 fail to fall
there, then cr is much lower. Thus the more wrong splitting by tree methods, the lower cr is, and cr is
a reasonable measure to evaluate the predictive accuracy for classification.
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[[1]] 
[1]root 
|   [2] X1 <= 1 
|   |    [3] X2 <= 0* 
|   |    [4] X2 > 0*  
|   [5] X1 > 1 
|   |     [6] X3 <= 1.68818* 
|   |     [7] X3  > 1.68818* 

Figure 3. Wrong splitting structure grown by a tree method.

[[1]] 
[1]root 
|   [2] X1 <= 1 
|   |    [3] X2 <= 0* 
|   |    [4] X2 > 0*  
|   [5] X1 > 1 

Figure 4. Wrong splitting structure grown by a tree method.

3.1.3. Hyper-parameter tuning

The hyper-parameter tuning is executed to explore the appropriate hyper-parameter values of tree
methods for tree-structured data according to Algorithm 2. Let sample size N be 1200, where the ratio
of training set to test set is 5:1, i.e., the size of training set A is 1000 and the size of test set D is 200.
The training set A is used for tuning (ρ, γ) and test set D is for evaluation, which means the process of
choice of hyper-parameter and evaluation is separated.

Let two-dimensional search space of hyper-parameter (ρ, γ) be (0.01, 0.81) × (0.01, 0.81) and B1 =

B2 = 40. Here cr is taken as measure φ(·), and 5-fold cross validation is applied to calculate φ(·)i j. The
optimal hyper-parameter is

(ρ̃, γ̃) = arg max
(ρ,γ)
{φ(·)i j}

Consider the first scenario of tree structured data where T is from Exponential distribution with
different right censoring rates. The optimal hyper-parameter values chosen by Algorithm 2 are partially
shown in Table 1. We also discuss the optimal values of hyper-parameter in other scenarios of data sets
where T is from Weibull1 distribution, Weibull2 distribution and Log-normal distribution, The results
are listed in Tables 9–11 in Appendix.
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Table 1. The hyper-parameter tuning for tree-structured data under Exponential distribution.

Type of Trees
0% 20% 40%

(ρ̃, γ̃) (ρ̃, γ̃) (ρ̃, γ̃)

ICS ρ,γ
1 tree (0.03,0.09) (0.13,0.05) (0.05,0.03),(0.05,0.21)

ICS ρ,γ
2 tree (0.69,0.55) (0.69,0.49) (0.03,0.03 )

0%,20% and 40% denote the right censoring rate of tree-structured data.

The optimal values of hyper-parameter depend on the data and the tree models, right censoring rate
also affects the choice of hyper-parameter values. We find in most cases the optimal hyper-parameter
values are around (0.05,0.05), (0.5,0.03), (0.05,0.21) for ICS ρ,γ

1 tree. While for ICS ρ,γ
2 tree, they are

around (0.21,0.01), (0.69,0.03), (0.69,0.51) and some other values. The value of cr for ICGρ,γtree is
much lower than the one of ICS ρ,γ

1 tree and ICS ρ,γ
2 tree, and thus selections of hyper-parameter values

are not concerned for ICGρ,γtree.

3.1.4. Evaluation of predictive accuracy for classification

The predictive performance of various tree models are evaluated for classification. The mean of
cr from 1000 trials denoted by cr is calculated for evaluation on the test set D. Different values of
the hyper-parameters are considered for our tree models. Especially, the values around (0.05,0.05),
(0.5,0.03) and (0.5,0.21) are almost adopted for ICS ρ,γ

1 tree under various distributions and they are not
always the optimal hyper-parameter values but just as recommended values.

Tables 2–5 show the predictive performance. ICS ρ,γ
1 tree almost performs better than ICtree under

all scenarios.

According to the result of Tables 2–5, (ρ, γ) = (0.05, 0.03) is recommended for the interval-censored
data of which the right censoring rate is lower than 40%, and (ρ, γ) = (0.5, 0.21) is appropriate for the
data with over 40% right censoring rate. Although (ρ, γ) = (0.05, 0.03) and (ρ, γ) = (0.05, 0.21) are
not always the best hyper-parameter values for different data, the values of (ρ, γ) around them make
ICS ρ,γ

1 tree well adaptive to the data and perform well. ICS ρ,γ
2 tree performs better in particular type

data than ICS ρ,γ
1 tree and ICtree. However, as a whole, it shows instability in tree-structured data.

Performance of ICWtree is seriously affected by the level of right censoring rate and the distribution
type of T , and predictive accuracy sharply deteriorate in case of high right censoring rate.
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Table 2. Predictive accuracy under Exponential distribution.

Type of Trees
Hyper − parameter 0% 20% 40%

(ρ, γ) cr cr cr

ICtree - 0.5130 0.4416 0.2723

ICS ρ,γ
1 tree

(0.05, 0.03) 0.5155 0.4466 0.2752
(0.05, 0.05) 0.5145 0.4456 0.2746
(0.05,0.21) 0.5137 0.4465 0.2761
(0.69,0.03) 0.4023 0.4393 0.2457

ICWtree - 0.4974 0.069 0.018

ICS ρ,γ
2 tree

(0.69, 0.49) 0.5073 0.4479 0.2650
(0.07, 0.05) 0.5083 0.3458 0.2744
(0.71, 0.61) 0.5083 0.4437 0.2669

cr is mean of cr based on 1000 trials on test set. 0%,20% and 40%
denote the right censoring rate of tree structured data. (ρ, γ) denotes the
value of hyper-parameter. The boxed values indicate the higher values
of cr derived from our tree methods than the one from ICtree.

Table 3. Predictive accuracy under Weibull1 distribution.

Type of Trees
Hyperparameter 0% 20% 40%

(ρ, γ) cr cr cr

ICtree - 0.9164 0.9059 0.9212

ICS ρ,γ
1 tree

(0.05,0.03) 0.9165 0.9076 0.9192
(0.05,0.05) 0.9175 0.9070 0.9211
(0.05,0.21) 0.8916 0.8843 0.9248
(0.57,0.33) 0.9225 0.9097 0.9152
(0.53,0.37) 0.9160 0.9132 0.9169

ICWtree - 0.9202 0.9211 0.4210

ICS ρ,γ
2 tree

(0.21,0.01) 0.9440 0.9413 0.9324
(0.29,0.21) 0.9364 0.9337 0.9348

cr is mean of cr based on 1000 trials on test set. 0%,20% and 40%
denote the right censoring rate of tree structured data. (ρ, γ) denotes
the value of hyper-parameter. The boxed values indicate the higher
values of cr derived from our tree methods than the one from ICtree.
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Table 4. Predictive accuracy under Weibull2 distribution.

Type of Trees
Hyperparameter 0% 20% 40%

(ρ, γ) cr cr cr

ICtree - 0.6358 0.5871 0.4997

ICS ρ,γ
1 tree

(0.05,0.03) 0.6383 0.5881 0.4994
(0.05,0.05) 0.6385 0.5884 0.5002
(0.05,0.21) 0.6264 0.5827 0.49325
(0.09,0.09) 0.6397 0.5874 0.4993
(0.41,0.01) 0.5972 0.5739 0.5029

ICWtree - 0.5810 0.4352 0.3175

ICS ρ,γ
2 tree

(0.61, 0.45) 0.6276 0.5812 0.4973
(0.41, 0.17) 0.5963 0.5972 0.5074
(0.21, 0.01) 0.1433 0.3366 0.5101

cr is mean of cr based on 1000 trials on test set. 0%,20% and 40%
denote the right censoring rate of tree structured data. (ρ, γ) denotes
the value of hyper-parameter. The boxed values indicate the higher
values of cr derived from our tree methods than the one from ICtree.

Table 5. Predictive accuracy under Log-Normal distribution.

Type of Trees
Hyperparameter 0% 20% 40%

(ρ, γ) cr cr cr

ICtree - 0.9181 0.9215 0.9265

ICS ρ,γ
1 tree

(0.05,0.03) 0.9232 0.9235 0.9291
(0.05,0.05) 0.9200 0.9193 0.9267
(0.05,0.21) 0.6264 0.8965 0.9275
(0.17,0.01) 0.9234 0.9196 0.9239

ICWtree - 0.9294 0.9335 0.4126

ICS ρ,γ
2 tree

(0.21, 0.01) 0.5514 0.9510 0.9448
(0.29, 0.37) 0.5061 0.8593 0.9395
(0.41, 0.01) 0.9495 0.9404 0.9304
(0.71, 0.61) 0.9219 0.9188 0.9267

cr is mean of cr based on 1000 trials on test set. 0%,20% and 40%
denote the right censoring rate of tree structured data. (ρ, γ) denotes
the value of hyper-parameter. The boxed values indicate the higher
values of cr derived from our tree methods than the one from ICtree.
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All in all, ICS ρ,γ
1 tree slightly improves the predictive accuracy with appropriate values of hyper-

parameter. Although the algorithm 2 searches out the optimal values of hyper-parameter for tree
methods depending on data, later the (ρ, γ) = (0.05, 0.03) and (ρ, γ) = (0.05, 0.21) as recommended
values are assigned to hyper-parameter and parameter tuning can be omitted to save time cost, and the
right censoring rate should be considered for the choice of hyper-parameter values.

3.2. Comparison of predictive performance for regression

The synthetic tree-structured data is constructed to explore the performance of classification of tree
models in Subsection 3.1. Next we discuss the predictive performance of tree models for survival time,
and consider more general data structure for simulation.

3.2.1. Complex structure data

A simulation setup of complex structure data is executed to evaluate the predictive performance
of the new survival trees with hyper-parameter, The setup is similar to [19] for comparison. The
dimension of the covariates are six, and X1, . . . , X6 are independent, where

• X1 is from discrete uniform distribution { -1, 0};
• X2 is uniform in the interval [-0.5,0];
• X3 and X5 is from Bernoulli distribution with p = 0.5;
• X4 and X6 are uniform in the interval [0,1].

The distribution F(t) of survival time T is

1) Exponential with parameter λ = eϑ;
2) Weibull with increasing hazard, scale parameter λ = 4eϑ and shape parameter α = 7(denoted as

Weibull1);
3) Weibull with decreasing hazard, scale parameter λ = 4eϑ and shape parameter α = 0.7(denoted

as Weibull2);

Here the value of location parameter ϑ depends on the covariates X1 and X2. Specifically,

ϑ = −sin[(X1 + 2X2) · π] +
3
2

√
−X1 − 2X2.

The censoring mechanism is introduced at the beginning of this section. The gap of interval is randomly
generated from G(x) which is uniform [0.5,1], and different right-censoring rates are also considered.

3.2.2. A measure of predictive accuracy for regression

Mean square error (MSE) of prediction has been ever considered as a measure to evaluate predictive
accuracy of survival time, which is calculated by

1
N

N∑
i=1

(Ti − T̂ (Xi))2.

where N is the sample size, Ti is the true failure time of interest of subject i and T̂i is predictive failure
time for the ith subject, i = 1, 2, · · · ,N. However, the results given are almost inevitably inaccurate
and unsatisfactory based on MSE [31].
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Integrated Brier Score (IBS ) is a popular method measuring average discrepancies between true
status of event of interest and estimated predictive value, which was first proposed for right censoring
data [31]. Later it is extended to the form

IBS =
1
N

N∑
i=1

1
max(T )

∫ max(T )

0
[Ŝ i(t) − I(Ti > t)]2dt, (3.1)

for interval-censored data [32], where Ti is the true failure time of interest of subject i, Ŝ i(·) is an
estimator of survival function for the ith subject, max(T ) = max{T j}

n
j=1. Here I(Ti > t) are calculated

by the formula

I(Ti > t) =
Ŝ i(t) − Ŝ i(Ri)

Ŝ i(Li) − Ŝ i(Ri)

where Li < t ≤ Ri. Otherwise, I(Ti > t) = 1 when t ≤ Li, and I(Ti > t) = 0 when t > Ri.
Mean integrated squared error (MIE) is another measure for survival data [33], which is calculated

by integrating the square difference between the two curves with respect to time and averaging over all
observations

MIE =
1
N

N∑
i=1

1
max(T )

∫ max(T )

0
[Ŝ i(t) − S i(t)]2dt,

where S i(t) is true survival function for the ith subject. The meanings of Ti and Ŝ i(·) are same with the
ones in formula of IBS.

3.2.3. Evaluation of predictive accuracy

The size of simulation data set is 1000 and the data set is divided into training set and test set by
4:1. Here our tree models and ICtree grow in training set A and then we evaluate their predictive
performance in test data D.

The boxplots of IBS are drawn by 1000 trials in test data D. The predictive methods are numbered
in Table 6, here we just assign (ρ, γ) = (0.05, 0.05) to ICS ρ,γ

1 tree, (ρ, γ) = (0.69, 0.5) to ICS ρ,γ
2 tree,

(ρ, γ) = (0.01, 0.01) to ICGρ,λtree for comparison, these values are recommended in Subsection
3.1.4. In addition to ICtree, Proportional Hazards model for interval censored data (extended form
of Cox model) denoted by ICPH is also utilized for comparison. In order to evaluate the amount of
information loss caused by interval-censoring, we also consider Conditional Inference Frame (CIF)
and Proportional Hazards model using true failure time T , which are denoted by Ttree and T PH
respectively.

Table 6. Numbering of the various predictive methods in Figure 5.

No. model No. model No. model No. model
1 Ttree 2 ICtree 3 ICS ρ,γ

1 tree 4 ICWtree
5 ICGρ,γtree 6 ICS ρ,γ

2 tree 7 T PH 8 ICPH
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The results of comparison are shown in Figure 5. ICS ρ,γ
1 tree has slightly better performance than

ICtree in this setting, especially for the Weibull1 distribution with increasing hazards. ICS ρ,γ
1 tree and

ICS ρ,γ
2 tree show similar performance which outperform ICPH, which demonstrates the flexibility of

tree methods. ICWtree and ICGρ,γtree seem to be more sensitive to right censoring data. Although
there is no noticeable difference with ICS ρ,γ when the right-censoring rate is zero, the value of IBS
increases rapidly with increase of the right-censoring rate. Their performance are worse than ICS ρ,γ’s
with over 20% right-censoring rate. While the value of IBS for Ttree is much lower than tree methods
because it has no informative loss from interval censoring.

MIS are also applied to evaluate the predictive performance of tree methods. The boxplots are
drawn by 1000 trials to compare our tree methods to ICtree. The outcomes are shown in Figure 6,
where the tree methods are specified in Table 7.

The results of the predictive performance evaluated by MIE validate that ICS ρ,γ
1 tree has advantage

in predictive accuracy than other tree methods mentioned in Table 7. Besides, the values of MIE
increase with the increase of the right censoring rates of survival data, which means the higher right
censoring rates lead to lower predictive accuracy. These results are consistent with those provided by
IBS .

Table 7. Numbering of the various predictive methods in Figure 6.

No. model No. model No. model
1 ICtree 2 ICS ρ,γ

1 tree 3 ICWtree
4 ICGρ,γtree 5 ICS ρ,γ

2 tree
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4. Application

A real interval-censored data set is provided by the Signal Tandmobielr study [23]. The study
carried out a longitudinal survey of 4468 primary school pupils in Flanders (North of Belgium) about
emergence times of permanent teeth, caries development from 1996 to 2001. The data set denoted by
tandmob2 is available in R package bayesSurv containing the information on 28 teeth. The data set is
interval-censored, because the event of interest in study is the emergence of the permanent teeth, and
annual examinations for each child only record the interval that the emergence time belongs to rather
than the exact time of emergence. We shift the time origin to 5 years of age, as proposed by [35] firstly.
Covariates include

• geographical factor(the province of residence);
• gender;
• use of fluoride;
• type of education system;
• starting age of brushing the teeth;
• total number of deciduous teeth extracted due to orthodontic reasons denoted by BAD;
• total number of decayed,filled or missing deciduous teeth due to caries denoted by DMF.Score.

More details about the data set can be seen in [23, 34].

Figures 7–8 show the instances are classified into several categories by tree models, and the
important covariates are selected for the survival time. We conclude that both gender and DMF.Score
are more important than other covariates. ICS 0.05,0.05

1 show that gender is more important than
DMF.Score, which is consist with ICtree. Whereas the gender is critical factor only when DMF.Score
is less than or equal to 6 in the view of ICS 0.69,0.03

1 and ICS 0.69,0.03
2 .

ICWtree grows with fewer splitting on DMF.Score in the right branch and terminal nodes are also
fewer. As far as ICG0.01,0.01tree is concerned, DMF.Score=4 is the splitting rule of root node which is
quite different from the others.

Based on the survival curves in terminal nodes in ICS 0.69,0.03
1 tree in Figure 7, we find the time to

emergence of permanent tooth tends to be earlier for girls (value of Gender = 1) than boys (value of
Gender = 0), and permanent tooth of the children with more total number of decayed or missing
deciduous teeth due to caries (DMF.Score > 6) emerge earlier than others. This results are also
applicable for the ICWtree and ICG0.01,0.01tree in Figure 8.
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Figure 7. Interval-censored trees for the emergence of time in years of permanent first upper
right premolar 14.
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Figure 8. Interval-censored trees for the emergence of time in years of permanent first upper
right premolar 14.

The time to emergence of permanent tooth is considered as survival time, and we predict them by
tree methods. Here we show the results of permanent second premolar (tooth 15–45 in European dental
notation), for the results of other teeth are similar. The sample size of data set N=3036. We split them
into two parts by 2:1 as training set A and test set D respectively. Algorithm 2 is applied to the training
set A for hyper-parameter tuning with the measurement φ(·) = dmean.

dmean =

∑Nout
j=1 d j

Nout
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where d j denotes the distance between the predicted time T̃ j for the jth observation and the end point of
the observed interval (L j,R j] which is closer to T̃ j when T̃ j falls out of (L j,R j], Nout is the number of the
predicted time of permanent teeth emergence which fall outside of the corresponding observed interval
[36]. In a word, dmean represents the average absolute distance away from the observed intervals when
the predicted time fall outside of observed intervals. The smaller dmean is, the better the predictive
performance is.

The optimal hyper-parameter values are around (0.5,0.03) and (0.05,0.21) for ICS ρ,γ
1 tree, (0.5,0.03)

and (0.69,0.21) for ICS ρ,γ
2 tree, which are quite different from the values in simulations. A possible

explanation is the right censoring rate is very high (over 58%), and larger than the one discussed
in previous simulations. In this case (0.05,0.21) are selected, this is in line with the guidance that
(0.05,0.21) is the recommended value when right censoring rate is over 40% in Subsection 3.1.4.

5-fold cross validation is executed in test set D to evaluate the predictive performance of tree models
with hyper-parameters. The outcome are reported in Table 8. The predictive accuracy is improved by
ICS ρ,γ

1 tree. Even when the hyper-parameters is not always the optimal, our tree methods are also
flexibly adaptive to data and have a good performance in prediction.

Table 8. Evaluation on permanent 2nd premolar data in Signal Tandmobielr study.

Models
Hyperparameter 15 (58%) 25 (57%) 35 (59%) 45 (59%)

(ρ, γ) d̄mean d̄mean d̄mean d̄mean

ICtree - 0.6696 0.6985 0.6797 0.6803

ICPH - 0.6982 453.35∗ 0.7154 0.7069

ICS ρ,γ
1 tree

(0.43,0.01) 0.6673 0.6798 0.6772 0.6724
(0.51,0.03) 0.6673 0.6806 0.6772 0.6593
(0.7,0.02) 0.6689 0.6773 0.6760 0.6615

(0.03,0.09) 0.6712 0.6958 0.6786 0.6898
(0.05,0.21) 0.6673 0.6932 0.6785 0.6806

ICWtree - 0.7066 0.6628 0.6410 0.6442

ICGρ,γtree
(0.03,0.03) 0.6675 0.6793 0.6797 0.6581
(0.27,0.01) 0.6696 0.6760 0.6789 0.6581
(0.01,0.01) 0.6696 0.6769 0.6797 0.6581

ICS ρ,γ
2 tree

(0.51,0.03) 0.6699 0.6819 0.6771 0.6593
(0.71,0.02) 0.6718 0.6735 0.6760 0.6615
(0.69,0.21) 0.6731 0.6846 0.6789 0.6769

The percentage in parentheses denotes the right-censored rate. The bolded values
are the smaller values of d̄mean from our tree methods than the one from ICtree.

The performance of ICWtree and ICGρ,λtree are also better ICtree for the real data, but are still
inferior to ICS ρ,γ

1 tree in a whole. What’s more, d̄mean from the various trees are smaller than the one
from ICPH introduced in Subsection 3.2.3. An unexpected result for ICPH (we emphasis it with *)
is obtained. A possible explanation is as follows: if the jth interval is a finite interval which means the
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observation value falling in the interval is not right-censoring, while one of the jth predicted value of
the ICPH is far from the endpoints of jth interval, but falls to right censoring area, then the predicted
time is not in the jth interval, so the distance between them is very large. Of course that is a terribly
bad prediction for ICPH.

5. Conclusions

The new test statistics of GLRT are constructed and applied to CIF, then ICS ρ,γ
1 tree and ICS ρ,γ

2 tree
with hyper-parameter for interval censored survival data are proposed. In simulation, hyper-parameter
tuning is explored, the predictive power of ICS ρ,γ

1 tree is improved by hyper-parameter tuning.
The optimal hyper-parameter values depend on the distribution and the right censoring rate of data.

However, we already find some recommended values for real data according to the right censoring
rate: (0.05,0.05) is considered as default hyper-parameter value for lower right censoring rate (≤ 40%),
(0.51,0.03) is for higher right censoring rate (> 40%). The results of simulation show that ICS ρ,γ

1 tree
has an advantages in predictive accuracy with the recommended hyper-parameter values.

Although in some cases the performance of ICWtree in predictive accuracy beat that of the other
tree methods in tree-structured data without right censoring occurring, ICS ρ,γ

1 tree is still more stable.
Those tree algorithms in this paper are provided with R code in github web *.

The ensemble method has powerful predictive performance, it would be interesting to construct the
ensemble method by utilizing our new tree methods with hyper-parameter, which will be our future
research work.
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Appendix

Table 9. The optimal hyper-parameter values (ρ̃, γ̃) for classification under Weibull1
distribution.

Type of Trees
0% 20% 40%

(ρ̃, γ̃) (ρ̃, γ̃) (ρ̃, γ̃)

ICS ρ,γ
1 tree (0.57,0.33) (0.53,0.37) (0.09,0.13)

ICS ρ,γ
2 tree

(0.21,0.01) (0.21,0.05) (0.25,0.21)
- - (0.29,0.21)

0%,20% and 40% denote the right censoring rate of tree-
structured data.

Table 10. The optimal hyper-parameter values (ρ̃, γ̃) for classification under Weibull2
distribution.

Type of Trees
0% 20% 40%

(ρ̃, γ̃) (ρ̃, γ̃) (ρ̃, γ̃)

ICS ρ,γ
1 tree (0.09,0.09) (0.09,0.01) (0.41,0.01)

ICS ρ,γ
2 tree (0.61,0.45) (0.41,0.17) (0.21,0.01)

0%,20% and 40% denote the right censoring rate of tree-
structured data.
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Table 11. The optimal hyper-parameter values (ρ̃, γ̃) for classification under Log-Normal
distribution.

Type of Trees
0% 20% 40%

(ρ̃, γ̃) (ρ̃, γ̃) (ρ̃, γ̃)

ICS ρ,γ
1 tree (0.17,0.01) (0.05,0.03) (0.09,0.09)

- - (0.07,0.03)

ICS ρ,γ
2 tree (0.41,0.01) (0.21,0.01) (0.29,0.37)

0%, 20% and 40% denote the right censoring rate of tree-
structured data.
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