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Abstract: Superfluidity has been predicted and now observed in a number of different electron-hole
double-layer semiconductor heterostructures. In some of the heterostructures, such as GaAs and
Ge-Si electron-hole double quantum wells, there is a strong mismatch between the electron and hole
effective masses. We systematically investigate the sensitivity to unequal masses of the superfluid
properties and the self-consistent screening of the electron-hole pairing interaction. We find that the
superfluid properties are insensitive to mass imbalance in the low density BEC regime of strongly-
coupled boson-like electron-hole pairs. At higher densities, in the BEC-BCS crossover regime of
fermionic pairs, we find that mass imbalance between electrons and holes weakens the superfluidity
and expands the density range for the BEC-BCS crossover regime. This permits screening to kill the
superfluid at a lower density than for equal masses.

Keywords: superfluidity; electron-hole; exciton; BEC; BEC-BCS crossover; unequal masses; mass
imbalance

1. Introduction

Pairing of fermions with significantly different masses is currently of great theoretical
and experimental interest in condensed matter and nuclear physics. In such systems,
there is potential to generate novel superfluid phenomena including a complex structure
of the vortex state, with the vortex-core density depleted in a very different manner for
the light and the heavy fermion components [1]. There is also the possibility of exotic
superfluid phases across the BEC-BCS crossover. These include the Fulde-Ferrell-Larkin-
Ovchinnikov [2] superfluid phase and the Sarma superfluid phase with two Fermi surfaces
(breached pair phase) [3], and also possibly a Larkin-Ovchinnikov supersolid phase [4].

In ultracold atomic Fermi gases, Dy-K Fermi mixtures have been used to study mass-
imbalanced strongly interacting Fermi-Fermi mixtures [5]. However, the predicted transi-
tion temperatures for exotic phases are inaccessibly low [6], even if evaporative cooling
techniques are exploited.

Electron-hole double layer systems offer the intriguing possibility to generate mass-
imbalanced fermionic systems in the solid state [7,8]. Transition temperatures for exotic
phases are predicted to be a few Kelvin and thus experimentally accessible [9].

In these systems, the effects of the mass imbalance on superfluid properties can be
explored throughout the BEC-BCS crossover, by tuning the density or the separation
between the layers [10]. Thus mass imbalanced electron-hole double layer systems offer a
rich playground to explore novel quantum effects and exotic superfluid phases.

We have previously included the effect of mass imbalance on the electron-hole super-
fluid phase diagram in GaAs [11] and Ge/Si [12] double quantum well systems. Other
examples of candidate systems with mass imbalance are Transition Metal Dichalcogenide
heterostructures [13] and InAs/GaSb double quantum wells [14]. In the present paper, we
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systematically investigate the sensitivity of the superfluid ground state properties to varia-
tions in the ratio of the electron and hole masses in a model double-layer solid-state system.

In the BCS weakly-coupled regime, a primary issue of unequal masses is the mis-
matched Fermi energies at equal densities. In the deep BEC strongly-coupled regime
where the chemical potential becomes negative and the Fermi surfaces have collapsed, the
electron-hole pairs are Boson-like, compact, and strongly bound, and the effect of unequal
masses is much weaker.

Screening is known to play a central role in electron-hole superfluid properties, since
the Coulombic pairing interaction is long-ranged [15]. There is an interplay between screen-
ing and the superfluid energy gap, since the superfluid gap blocks low-lying excitations
out of the Fermi sea. This weakens the screening because those low-lying excitations are
the excitations needed to screen the electron-hole interaction [16]. In the BEC regime,
this small-q suppression of screening leads to strong electron-hole pairing for q ≤ 2kF
and, as a consequence, large superfluid gaps. In contrast, for the small superfluid gaps in
what would be the BCS regime, superfluidity is completely suppressed by the screening.
In the BEC-BCS crossover and BEC regimes, we will find that unequal masses mainly
affect the screening of the electron-hole pairing interaction. Because of the suppression of
superfluidity in the BCS regime, mismatch of the Fermi energies at equal densities is not a
significant effect.

We systematically investigate these points for our model solid-state system as a
function of the ratio of unequal electron and hole masses, in the two regimes of electron-
hole superfluidity, BEC and BEC-BCS crossover.

2. Materials and Methods

Without loss of generality, in our model system we will fix the electron effective mass
me = 0.2 m0 and vary mh, the hole effective mass. m0 is the bare electron mass.

We calculate the zero temperature superfluid properties at equal electron and hole
densities with a range of values for the effective mass ratio, 0 < mh/me ≤ 1.

2.1. Mean Field Equations

Considering only equal electron and hole densities ne = nh = n at zero temperature,
the superfluid energy gap ∆k can be determined from the mean-field equations of BCS
theory, even in the strongly interacting BEC-BCS crossover and BEC regimes:

∆k = − 1
L2 ∑

k′
Vsc

k−k′
∆k′

2Ek′
, (1)

n =
gsgv

L2 ∑
k

1
2

(
1− ξk

Ek

)
, (2)

Ek =
√

ξ2
k + ∆2

k , ξk =
1
2

(
ξe

k + ξh
k

)
, ξ`k =

k2

2m?
`

− µ ` = e, h . (3)

Vsc
k−k′ = Vsc

q is the attractive screened electron-hole interaction which we specify later.
gs = 2 and gv = 1 are the spin and valley degeneracy factors, and µ is the chemical
potential taken equal for the electrons and holes.

For a given density n, Equations (1)–(3) are self-consistently solved for ∆k and µ. We
use the condensate fraction CF, defined as the ratio of the condensed pair density to the
total density [17], to characterise the different regimes of the superfluid,

CF =
∑k u2

k v2
k

∑k v2
k

. (4)

The Bogoliubov amplitudes are u2
k = 1

2

(
1 + ξk

Ek

)
and v2

k = 1
2

(
1− ξk

Ek

)
.
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2.2. Self-Consistent Screening

Because the electron-hole interaction is Coulombic and long-ranged, it is essential to
include screening in Vsc

q . To determine the screening in the presence of a superfluid, we
evaluate the density response functions within the Random Phase Approximation [10]. Be-
cause of the different masses, there are distinct electron and hole normal polarizabilities [11].
The electron and hole normal polarizabilities in the presence of the superfluid are,

Πe(q) = −
gsgv

L2 ∑
k

[
u2

kv2
k−q

E+
k−q + E−k

+
v2

ku2
k−q

E−k−q + E+
k

]
, (5)

Πh(q) = −
gsgv

L2 ∑
k

[
u2

kv2
k−q

E−k−q + E+
k
+

v2
ku2

k−q

E+
k−q + E−k

]
. (6)

The anomalous polarizability for the density response of the superfluid electron-hole
pairs is,

Πa(q) =
gsgv

L2 ∑
k

∆k
2Ek

∆k−q

2Ek−q

[
1

E−k−q + E+
k
+

1
E+

k−q + E−k

]
, (7)

where

E±k = Ek ± δξk , δξk =
1
2

(
ξh

k − ξe
k

)
. (8)

In the long-wavelength limit (q = 0) we obtain from Equations (5)–(7):

Πe(q = 0) = Πh(q = 0) = −Πa(q = 0) = − gsgv

L2 ∑
k

∆2
k

2E2
k

[
1

2Ek
+

1
2Ek

]
. (9)

Note that the only mass parameter entering in Equation (9) is the reduced mass mr.
The expression for the static screened electron-hole interaction for unequal masses in

the presence of a superfluid is,

Vsc
q =

VD
q

1− [Πe(q) + Πh(q)]VS
q + 2VD

q Πa(q) + [(Vs
q)

2 − (VD
q )2][Πe(q)Πh(q)−Π2

a(q)]
. (10)

VS
q is the bare electron (hole) Coulomb repulsion within one layer, and VD

q is the bare
attraction between the electrons and holes in opposite layers separated by a distance d:

VS
q =

2πe2

ε

1
|q| ; VD

q = −2πe2

ε

e−d|q|

|q| . (11)

For our model system we will take d = 3 nm, and dielectric constant for a Si/Ge
bilayer system [12], ε = 13.7 ε0, where ε0 is the vacuum dielectric constant.

The screened interaction in the presence of the superfluid, Equation (10), is determined
self-consistently by calculating the polarizabilities Equations (5)–(7) using the ∆k and µ
determined in the preceding iteration from Equations (1)–(3).

2.3. Transition Temperature

The superfluid transition temperature in this quasi-2D system is given by the Berezinskii-
Kosterlitz-Thouless (BKT) transition temperature [18],

TBKT =
π

2
h̄2

M
n

gsgv
. (12)

The transition temperature is linearly proportional to the carrier density n, and inversely
proportional to the mass of the pairs M = me + mh.
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3. Results
3.1. Superfluid Properties

The superfluid condensate fraction CF (Equation (4)) is used to characterise the
different superfluid regimes [19]. In the BCS regime, CF ≤ 0.2, in the BEC-BCS crossover
regime 0.2 < CF < 0.8, and in the BEC regime, CF ≥ 0.8.

Figure 1a shows the evolution of the condensate fraction with density n for different
values of mh/me. At small densities, all the systems are in the BEC regime. As the density
increases, they move out of the BEC regime into the BEC-BCS crossover regime. However,
before the BCS regime can be reached, the screening becomes so strong and weakens
the electron-hole pairing interaction so much that superfluidity is suppressed. Thus the
superfluid exists only below some onset density n0 [20].
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Figure 1. (a) Condensate fraction CF as a function of density n for different values of the mass ratio mh/me. The blue
shaded area is the BEC regime, the yellow area the BEC-BCS crossover regime and the unshaded area is what would be
the BCS regime. The respective onset densities n0 are indicated. (b) Relative percentage of the superfluid density range
occupied by the BEC regime as function of mh/me.

Comparing the behaviour of CF for different values of mh/me in Figure 1a, we see
that for smaller mh/me, the system leaves the BEC regime at a lower density and the
onset density n0 is also lower. Reducing mh/me while keeping me fixed, decreases the
reduced effective mass mr, and this has the effect of increasing the effective Bohr radius
a?B = h̄24πε/(mre2), decreasing the effective Rydberg energy Ry? = e2/(4πε2a?B), and
reducing the binding energy for an isolated electron-hole pair. Less strongly bound electron-
hole pairs weaken the strength of the superfluidity, narrow the density range for the BEC
regime, and reduce n0. It is interesting to note that the value CF = 0.5 at the onset density
remains the same, independent of mh/me.

Figure 1b shows the dependence on mh/me of the relative fraction of the superfluid
density up to n0 lying within the BEC regime. Large mass imbalances reduce the density
range of the BEC regime, for which the bosonic character of the pairs dominates and
the separate electron and hole masses are not important. Correspondingly, large mass
imbalances expand the range of the BEC-BCS crossover regime, for which the fermionic
nature of the pair components emerges and the superfluidity is sensitive to the separate
electron and hole masses. The exotic superfluid phases which are associated with unequal
masses, can therefore be expected to be restricted to the crossover regime. Thus, large mass
imbalances should expand the phase space for these exotic phases.
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Figure 2 shows, the superfluid gap ∆ as a function of equal electron and hole densities
n (Equation (1)). Above the onset density the superfluid gap is suppressed by strong
screening. Screening is too strong to permit existence of the superfluid in the weak-coupled
BCS regime, where by definition the superfluid gaps would be small compared with
the Fermi energy [16]. As the density is lowered below n0, the superfluid gap grows,
passes through a maximum and then decreases to zero as n decreases towards the zero-
density limit.
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Figure 2. Maximum of the superfluid gap ∆max as function of density for different values of mass
ratio mh/me.

At very low densities the behaviour of ∆ is insensitive to mh/me, but at higher densities
the maximum of ∆ is lower as mh/me is made smaller, and the onset density n0 also
decreases with decreasing mh/me. These properties of ∆ reflect the behaviour we noted in
the condensate fraction: the superfluidity weakens as mh/me is reduced below unity.

The transition temperature TBKT will be maximum at the onset density n0 (see
Equation (12)). Table 1 summarizes the effect of unequal masses on the onset density n0 and
the maximum transition temperature Tmax

c . Both n0 and Tmax
c are largest for equal masses.

Table 1. mh/me is the ratio between the masses. n0 is the superfluid onset density. Tmax
c is the

maximum transition temperature.

mh/me n0 [1011 cm−2] Tmax
c [K]

1 1.5 2.6
0.5 1.0 2.2

0.25 0.5 1.4
0.1 0.17 0.5

3.2. Polarizabilities

To understand the sensitivity of ∆ and CF to mh/me, we must examine the effect
of unequal masses on the polarizabilities in the superfluid state. The polarizabilities are
the building blocks of the screened electron-hole pairing interaction. As detailed in the
Materials and Method section, the polarizabilities are sensitive to the size of the superfluid
gap, so the screening must be determined self-consistently [10].

Figure 3 shows the polarizabilities for the superfluid state: the normal polarizabilities
for electrons and holes, Πe(q) and Πh(q) (Equations (5) and (6)), and the anomalous
polarizability for the superfluid electron-hole pairs, Πa(q) (Equation (7)). The panels show
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the polarizabilities for two densities, the first chosen in the BEC-BCS crossover regime near
the onset density n0 for each value of mh/me, and the second in the deep BEC regime.
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Figure 3. Polarizabilities in the superfluid state for different values of mh/me. Normal polarizabilities
Πe (solid line) and Πh (dashed-dotted line) for electrons and holes, respectively, and anomalous
polarizability Πa(q) (dotted line). (a) For densities in the BEC regime with CF = 0.95; (b)For densities
in the crossover regime close to the onset density with CF = 0.5.

We recall that for q/kF ≤ 2, the momentum transfer range affecting the screening,
the polarizabilities Π(N)

e (q) and Π(N)
h (q) for the normal state are given by the respective

density of states (Table 2). The normal polarizabilities Πe(q) and Πh(q) for the superfluid
state shown in Figure 3 are seen to be much smaller. The physical argument is that a gap in
the energy spectrum will exclude low-lying excited states from screening, and this very
significantly weakens Πe(q) and Πh(q).

Table 2. Polarizabilities in the normal state for different mh/me values. Π(N)
e,h (q) = me,h/(πh̄2) are

the values for the electron and hole polarizabilities for q/kF ≤ 2. Units are 1011 cm−2 meV−2.

mh/me Π
(N)
e (q) Π

(N)
h (q)

1 0.8 0.8
0.5 0.8 0.4

0.25 0.8 0.2
0.1 0.8 0.08
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In the screened interaction (Equation (10)), in addition to this reduction of the normal
polarizabilities, there are significant cancellations of the Πe(q) and Πh(q) with Πa(q),
the anomalous polarizability. It is these effects together, that lead to a suppression of the
screening and allow superfluidity [16].

In Figure 3, Πe(q = 0) = Πh(q = 0) = −Πa(q = 0) reflects the property that any
non-zero gap in the low-lying excitation spectrum must eliminate screening in the long-
wavelength limit (see Equation (9)). The anomalous polarizability scales with the reduced
mass of the electron-hole pairs. We are keeping me fixed and decreasing mh, so the system
with equal masses has the largest reduced mass and the largest Πa(q).

Figure 3a shows in the deep BEC regime that superfluidity strongly weakens the
normal polarizabilities Πe(q) and Πh(q) in the momentum transfer range important for
screening, 0 < q/kF ≤ 2. Appendix A demonstrates that the large superfluid gaps in the
BEC regime overwhelm any effects arising from differences in the electron and hole masses.
For this reason, the approximate equalities Πe(q) ' Πh(q) ' −Πa(q) extend out beyond
q/kF ' 2, and the resulting cancellation eliminates screening in this regime. The physical
reason is that the electron-hole pairs are strongly bound and are compact as compared with
the average inter-particle spacing. This makes the pairs act as approximately neutral, thus
minimising screening effects.

Figure 3b shows at the onset density in the BEC-BCS crossover regime where the
superfluid gap is relatively weak, that for unequal electron and hole masses me > mh,
Πe(q) is larger than Πh(q) for q 6= 0. Appendix B, Equations (A17) and (A18), show
that for weak superfluid gaps, Πe(q) and Πh(q) are proportional to the electron and hole
masses, respectively. In addition, Figure 3b shows for small q 6= 0, that Πh(q) ' −Πa(q),
but Πe(q) > −Πa(q). From Equation (A21) in Appendix B, we see that Πa(q) is driven
by the reduced mass mr and the lighter hole mass mh, but it is not sensitive to the electron
mass me. Because for large mass imbalance mr ' mh, Πa(q) will be closer to Πh(q) than to
Πe(q). A net result is that in the crossover regime, Πa(q) will not be able to cancel Πe(q),
and so screening is not efficiently suppressed. The optimum configuration in this respect
will be equal masses, since this maximises the cancellation of Πa(q) with both Πe(q) and
Πh(q). This is the reason the onset density n0 decreases as the mass difference increases
(Figure 2).

3.3. Excitation Energies

The origin of the differences in functional behaviour between the electron and hole
normal polarizabilities in the superfluid state can be better understood by examining
the excitation spectrum of the systems. The behaviour of Πe(q) and Πh(q) is driven by
changes the superfluid gap makes to the excitation spectrum when going from the normal
to the superfluid state. We examine the same systems as in Figure 3.

Figure 4 shows for different mh/me, the normal state spectrum ξh
k (ξe

k) for the hole
(electron) single-particle excitations and the corresponding superfluid state excitation
spectrum E+

k (E−k ) (Equation (8)). We recall that the E±k differ by the mass difference factor

±δξk = ± 1
2

(
ξh

k − ξe
k

)
. The colour-coded shaded areas show the low-energy states in ξh

k

(ξe
k) that the superfluid gap excludes from E+

k (E−k ). The excluded states are blocked from
contributing to the polarizability, and this weakens the screening.

We recall in the BEC regime that ∆k/EF � 1 and ∆k is approximately constant from
k = 0 out to large k/kF. In this way, ∆k blocks a very large number of low-lying excited
states from the screening. Figure 4a shows that the E±k is shifted up in energy by ∼ 20EF

relative to ξe,h
k . Since ∆k � δξk, it follows that Ek ' E−k ' E+

k , so in the BEC regime the
unequal masses have little effect on the polarizability properties.

In contrast, in the BEC-BCS crossover regime we find that excitation energies are
sensitive to unequal masses. Figure 4b is for a density in the crossover regime close to the
onset density. The green panels show that as mh/me is decreased, E−k moves down towards
ξe

k. This is because of the subtraction of δξk that becomes larger with decreasing mh/me.
For this reason the maximum in Πe(q) becomes larger as the mass imbalance increases
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(Figure 3b). For the holes (blue panels) δξk is added to Ek, and moves E+
k up and away

from ξh
k as mh/me decreases. As a net result, one can see that for electrons, the excluded

states are reduced as mh/me decreases, while for holes the range of excluded states expands.
Thus for unequal masses, the superfluid gap ∆k is less effective at blocking excitation states
for electrons than for holes over the full range of k/kF important for screening.
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Figure 4. The dashed lines are the normal state single-particle excitation spectrum ξh
k for the holes (blue panels), ξe

k for the
electrons (green panels) and ξk for the pairs (red panels), and the solid lines the corresponding superfluid state excitation
spectrum E+

k , E−k and Ek. (a) For densities in the BEC regime, with CF = 0.95; (b) For densities in the crossover regime close
to the onset density, with CF = 0.5.

A consequence of these results can be seen when ∆max as a function of n is scaled to
the electron and hole Fermi energies (Figure 5).

For equal masses, the onset density n0 is reached when ∆max ∼ 1.5EF. However for
unequal masses at n0, ∆max ∼ Eh

F but ∆max � Ee
F, a result that at first sight is surprising.

The reason is that to weaken the screening sufficiently for superfluidity to appear, ∆max
must be larger than both Ee

F and Eh
F, and only when ∆max > Eh

F will both inequalities be
satisfied. The critical value for ∆/Ee

F thus depends on Eh
F/Ee

F, and hence on mh/me. The
smaller mh/me, the larger the critical ∆/Ee

F.
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Figure 5. (a) Maximum superfluid gap ∆max scaled by the electron Fermi energies EF,e as a function
of density. (b) ∆max scaled by the hole Fermi energies EF,h.

4. Discussion

We find that the sensitivity of the electron-hole superfluid properties to unequal
masses is markedly different in the BEC regime and the BEC-BCS crossover regime. In the
BEC regime, the system properties are sensitive only to the reduced mass of the electron-
hole pairs mr, so the properties are not affected by changes in the mass ratio mh/me,
provided mr remains fixed. This is consistent with the picture in the BEC regime of tightly
bound electron-hole pairs.

In contrast, in the BEC-BCS crossover regime, unequal masses lead to new effects. In
this regime the electron-hole pairs are significantly less strongly bound when the masses
are unequal. With decreasing mh/me, the system transits from the BEC regime into the
BEC-BCS crossover regime at a lower density, and the superfluidity becomes weaker. The
onset density n0 at which superfluidity is killed by screening is smaller and the maximum
transition temperatures TBKT is lower.

The onset density occurs before the superfluidity can enter the weak-coupled BCS
regime. For this reason, effects of unequal masses from mismatched Fermi seas at equal
densities are not important. Away from the BCS regime, the influence of unequal masses
on superfluid properties acts primarily through the screening polarizabilities.

Since in the BEC-BCS crossover regime, unlike in the BEC regime, there is a significant
sensitivity to unequal masses, it is in the crossover regime that the experimental search for
exotic electron-hole superfluid and supersolid phases should be conducted.
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Appendix A. Polarizabilities in the Deep BEC Limit

The deep BEC limit is characterised by a very strong superfluid gap ∆k � EF, with
∆k having its maximum at k = 0, and remaining approximately constant out to k . 4kF.
Thus we can assume:

(i) Ek ∼ ∆k (Equation (3));
(ii) ∆k � δξk , so that E+

k ∼ E−k ∼ ∆k (Equation (8));
(iii) ∆k ' ∆k−q ' constant, for q < 2kF.

Equations (5)–(7) for q < 2kF can thus be approximated:

Πe(q)=−
gsgv

L2 ∑
k

[
u2

kv2
k−q

∆k−q + ∆k
+

v2
ku2

k−q

∆k−q + ∆k

]
=− gsgv

L2 ∑
k

[
u2

kv2
k−q

2∆k
+

v2
ku2

k−q

2∆k

]
, (A1)

Πh(q)=−
gsgv

L2 ∑
k

[
u2

kv2
k−q

∆k−q + ∆k
+

v2
ku2

k−q

∆k−q + ∆k

]
=− gsgv

L2 ∑
k

[
u2

kv2
k−q

2∆k
+

v2
ku2

k−q

2∆k

]
, (A2)

Πa(q)=
gsgv

L2 ∑
k

∆k
2∆k

∆k−q

2∆k−q

[
1

∆k−q+ ∆k
+

1
∆k−q+ ∆k

]
=

gsgv

L2 ∑
k

1
4

[
1

2∆k
+

1
2∆k

]
. (A3)

The Bogoliubov amplitude products can be approximated,

u2
kv2

k−q + v2
ku2

k−q =
1
2

(
1 +

ξk
Ek

ξk−q

Ek−q

)
∼ 1

2

(
1 +

ξ2
k

∆2
k

)
∼ 1

2
, (A4)

so that Equations (A1)–(A3) become:

Πe(q) = Πh(q) = −Πa(q) = −
gsgv

L2 ∑
k

1
4∆k

. (A5)

Equation (A5) shows in the BEC limit that the normal and anomalous polarizabilities
have the same q-dependence. They are driven purely by the superfluid gap ∆k and so are
approximately constant out to q < 2kF, as shown in Figure 3a. Importantly, because ∆k
depends only on the reduced mass mr, the polarizabilities are insensitive to the mass ratio
mh/me in the BEC regime.

Appendix B. Polarizabilities in the BCS Limit

The BCS limit is characterised by a weak superfluid gap ∆k < EF with a narrow peak
at k = kF. To calculate Πe(q) and Πh(q) in this limit, we expand the excitation energies
(Equations (3) and (8)):
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Ek =
√

ξ2
k + ∆2

k = |ξk|
(

1 +
∆2

k
2ξ2

k

)
, E±k = |ξk|

(
1 +

∆2
k

2ξ2
k

)
± δξk . (A6)

In the BCS limit, the Bogoliubov amplitudes are approximately step functions,
u2

k ∼ Θ(k− kF) and v2
k ∼ Θ(kF − k) and the product u2

kv2
k−q (v2

ku2
k−q) is only non-zero for

k > kF and k− q < kF (k < kF and k− q > kF). We calculate the Πe(q) and Πh(q) for these
two cases.

For k > kF and k− q < kF, u2
kv2

k−q = 1 and v2
ku2

k−q = 0, so Equations (5) and (6) become

Πe(q) = −
gsgv

L2 ∑
k

[
1

E+
k−q + E−k

]
, (A7)

Πh(q) = −
gsgv

L2 ∑
k

[
1

E−k−q + E+
k

]
. (A8)

Using Equation (A6), for k > kF, |ξk| = ξk:

E+
k = ξk + δξk +

∆2
k

2ξk
= ξh

k +
∆2

k
2ξk

, (A9)

E−k = ξk − δξk +
∆2

k
2ξk

= ξe
k +

∆2
k

2ξk
, (A10)

and for k− q < kF, |ξk−q| = −ξk−q:

E+
k−q = −ξk−q + δξk−q −

∆2
k−q

2ξk−q
= −ξe

k−q −
∆2

k−q

2ξk−q
, (A11)

E−k−q = −ξk−q − δξk−q −
∆2

k−q

2ξk−q
= −ξh

k−q −
∆2

k−q

2ξk−q
. (A12)

Equations (A7) and (A8) become:

Πe(q) = −
2
L2 ∑

k

 1

ξe
k − ξe

k−q +
∆2

k
2ξk
−

∆2
k−q

2ξk−q

, (A13)

Πh(q) = −
2
L2 ∑

k

 1

ξh
k − ξh

k−q +
∆2

k
2ξk
−

∆2
k−q

2ξk−q

. (A14)

In the second case, for k < kF and k− q > kF, u2
kv2

k−q = 0 and v2
ku2

k−q = 1, so:

Πe(q) = −
2
L2 ∑

k

 1

ξe
k−q − ξe

k +
∆2

k−q
2ξk−q

− ∆2
k

2ξk

, (A15)

Πh(q) = −
2
L2 ∑

k

 1

ξh
k−q − ξh

k +
∆2

k−q
2ξk−q

− ∆2
k

2ξk

. (A16)

Combining Equations (A13) and (A15) for Πe(q) and Equations (A14) and (A16) for
Πh(q), Equations (5) and (6) in this limit become:
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Πe(q) = −
2
L2 ∑

k

Θ(k− kF)−Θ(k− q− kF)

ξe
k − ξe

k−q +
∆2

k
2ξk
−

∆2
k−q

2ξk−q

 , (A17)

Πh(q) = −
2
L2 ∑

k

Θ(k− kF)−Θ(k− q− kF)

ξh
k − ξh

k−q +
∆2

k
2ξk
−

∆2
k−q

2ξk−q

 . (A18)

Thus, in this limit, the Πe(q) depends only on electron energy terms and Πh(q)
depends only on hole energy terms. This is the reason why with mass imbalance, Πe(q)
and Πh(q) behave significantly differently (Figure 3b).

Furthermore, by applying a binomial expansion,

Πe(q)=−
gsgv

L2 ∑
k

Θ(k−kF)−Θ(k−q−kF)

ξe
k − ξe

k−q

1

1 + 1
ξe

k−ξe
k−q

(
∆2

k
2ξk
−

∆2
k−q

2ξk−q
)



=− gsgv

L2 ∑
k

[
Θ(k−kF)−Θ(k−q−kF)

ξe
k − ξe

k−q

(
1− 1

ξe
k − ξe

k−q

(
∆2

k
2ξk
−

∆2
k−q

2ξk−q

))]
(A19)

Πh(q)=−
gsgv

L2 ∑
k

[
Θ(k−kF)−Θ(k−q−kF)

ξh
k − ξh

k−q

(
1− 1

ξh
k − ξh

k−q

(
∆2

k
2ξk
−

∆2
k−q

2ξk−q

))]
. (A20)

We see in the small ∆k limit, that Πe(q) and Πh(q) are the Lindhard functions for the
normal state [21] minus a correction term that is quadratically proportional to ∆k.

For the anomalous polarizability, using Equations (7) and (8) can be written as,

Πa(q) =
gsgv

L2 ∑
k

∆k
2Ek

∆k−q

2Ek−q

 1

Ek−q + Ek − 1
2

(
ξh

k−q − ξe
k−q

)
+ 1

2
(
ξh

k − ξe
k
)

+
1

Ek−q + Ek + 1
2

(
ξh

k−q − ξe
k−q

)
− 1

2
(
ξh

k − ξe
k
)
. (A21)

For large mass imbalance me � mh, we can neglect ξe
k in Equation (A21) compared

with ξh
k. Recalling that Ek depends only on mr and ξh

k depends only on mh, and that
mr ' mh, we conclude that Πa(q) is driven by the lighter mass mh, and hence that it
tracks Πh(q).
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