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Abstract

With the rapid development of complex networks, logical dynamic systems have been
commonly used mathematical models for simulating Genetic Regulatory Networks (GRNs)
and Networked Evolutionary Games (NEGs), which have attracted considerable attention
from biology, economy and many other fields. By resorting to the Semi-Tensor Product
(STP) of matrices, logical dynamic systems can be equivalently converted into discrete time
linear systems with algebraic forms. Based on that, this thesis analyzes the stability and
studies the control design problems of several classes of logical dynamic systems. Moreover,
the obtained results are applied to investigate the control and optimization problems of

NEGs. The main results of this thesis are the following.

e The stability and event-triggered control for a class of k-Valued Logical Networks
(KVLNs) with time delays are studied. First, some necessary and sufficient con-
ditions are obtained to detect the stability of Delayed k-Valued Logical Networks
(DKVLNSs). Second, the global stabilization problem under event-triggered control is
considered, and some necessary and sufficient conditions are presented for the sta-
bilization of Delayed k-Valued Logical Control Networks (DKVLCNs). Moreover, an
algorithm is proposed to construct all the event-triggered state feedback controllers

via antecedence solution technique.

e The robust control invariance and robust set stabilization problems for a class of Mix-
Valued Logical Control Networks (MVLCNs) with disturbances are studied. First, a
calculation method for the Largest Robust Control Invariant Set (LRCIS) contained
in a given set is introduced. Second, based on the Robust Control Invariant Subset
(RCIS) obtained, the robust set stabilization of MVLCNSs is discussed, and some
new results are presented. Furthermore, the design algorithm of time-optimal state

feedback stabilizers via antecedence solution technique is derived.

e The robust set stability and robust set stabilization problems for a class of Probabilis-
tic Boolean Control Networks (PBCNs) with disturbances are studied. An algorithm

v



to determine the Largest Robust Invariant Set (LRIS) with probability 1 of a given
set for a Probabilistic Boolean Network (PBN) is proposed, and the necessary and
sufficient conditions to detect whether the PBN is globally finite-time stable to this
invariant set with probability 1 are established. Then, the PBNs with control inputs
are considered, and an algorithm for LRCIS with probability 1 is provided, based on
which, some necessary and sufficient conditions for finite-time robust set stabiliza-
tion with probability 1 of PBCNs are presented. Furthermore, the design scheme of

time-optimal state feedback stabilizers via antecedence solution technique is derived.

e The stabilization and set stabilization problems for a class of Switched Boolean Con-
trol Networks (SBCNs) with periodic switching signal are studied. First, algebraic
forms are constructed for SBCNs with periodic switching signal. Second, based on
the algebraic formulations, the stabilization and set stabilization of SBCNs with peri-
odic switching signal are discussed, and some new results are presented. Furthermore,
constructive procedure of open loop controllers is given, and the design algorithms of
switching-signal-dependent state feedback controllers via antecedence solution tech-

nique are derived.

e The dynamics and control problems for a class of NEGs with time-invariant delay in
strategies are studied. First, algebraic forms are constructed for Delayed Networked
Evolutionary Games (DNEGs). Second, based on the algebraic formulations, some
necessary and sufficient conditions for the global convergence of desired strategy pro-
file under a state feedback event-triggered controller are presented. Furthermore, the
constructive procedure and the number of all valid event-triggered state feedback

controllers are derived, which can make the game converge globally.

e The evolutionary dynamics and optimization problems of the networked evolutionary
boxed pig games with the mechanism of passive reward and punishment are studied.
First, an algorithm is provided to construct the algebraic formulation for the dynamics
of this kind of games. Then, the impact of reward and punishment parameters on the

final cooperation level of the whole network is discussed.

Keywords: Semi-tensor product of matrices; Logical dynamic systems; Networked evo-

lutionary games; Stability; Stabilization; Antecedence solution technique
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Introduction

Logical Dynamic Systems

Inspired by the human genome project, a newly developing discipline called systems biology
[45, 50], has been a widely focused research field, in which the essence of life phenomenon
is well studied. More precisely, systems biology investigates the dynamic behavior and the
interaction relationship of all the cells, proteins, DNAs and RNAs instead of the composed
individual element of the biological system. The target of systems biology is to understand
and express life systems from the systematic level, including the cellular networks and
GRNs. In the early 1960s, Jacob and Monod found that “any cell contains a number
of ‘regulatory genes’ that act as switches and can turn one another on and off” [117].
It shows that a genetic network is a logical one. Moreover, the logical nature of a cell
network was also pointed out by Paul Nurse: “the cell machines then need to be linked
and integrated together to define the modules and overall regulatory networks required
to bring about the reproduction of the cell. This task will require system analyzes that
emphasize the logical relationships between elements of the networks” [103]. Therefore, the
logical dynamic systems have naturally been a powerful tool in describing, analyzing and
simulating cellular networks or GRNs [39, 49, 110].

Logical network is a discrete-time nonlinear networked system, where all the state,
input and output variables take finite values. When the gene state only takes logical values
1 or 0, that is, the gene expression is quantified to two different levels: active or inactive,
the logical networks become Boolean Networks (BNs), which were firstly introduced by
Kauffman [49] to model GRNs. In a BN, the evolution of each state variable relies on
a pre-assigned logical function, which is determined by its neighbouring genes, itself and
some logical operators. Furthermore, in order to describe the therapeutic interventions in
GRNs, the concept of Boolean Control Networks (BCNs) was formally proposed in [45].
Due to their simple structure and parameter free, both BNs and BCNs have drawn a large

amount of attention in biological systems [3]. Moreover, they have been used to simulate
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many biological models, such as segment polarity genes [3], A phage! decision circuit [52].
The gene interactions of A phage are summarized in Figure 1, where two genes, ¢/ and
cro directly affect this decision. When ¢l is ON (OFF) and cro is OFF (ON), the phage
is in the lysogenic (lytic) state. Whether or not gene ¢/ will be switched on, depends on
a subtle control process, which is determined by interaction between five phage genes, ¢/,

cro, cIl, cIIl, N, and the environmental state wu.

ol 9 [

(o

_—
I~

il (0

Figure 1: Gene interactions for the A switch. The edges represents either activation (—) or
inhibition ().

However, many complex real-world networks can not be described by BNs. For example,
in some biological models, the gene states are not limited to active or inactive, or when one
gene is not strongly affected by another gene, binary variables will not be able to accurately
describe the relationship between these genes. In a public goods game, each player may have
a same number of investment schemes (more than 2), or more generally, each player may
have a different number of investment schemes to compete with others. Based on that,
the more general logical networks, namely KVLNs and Mixed-Valued Logical Networks
(MVLNs) were proposed [20, 9]. Both of them have similar structure to BNs, but the
values that can be assigned at the nodes are different from BNs. In a KVLN;, all the states
take value from a finite set D, = {£=% | i € [1 : k]} and in an MVLN, each state takes
value from a finite set of different size Dy, = {H | j € [1: K]}, where i € [1 : n].
Thus, KVLN and MVLN can approximate a real cellular regulatory network better than

a BN. As claimed in [2], “One of the major goals of systems biology is to develop a control

!The X phage is a virus that grows on a bacterium.

2



theory for complex biological systems”, the interests in k-Valued Logical Control Networks
(KVLCNs) and MVLCNs have been increasing [51, 114]. Given a logical network, the basic
interesting topics are to study its topological structure [4, 41|, dynamic characteristics [1]
and modeling and analysis of biological systems [43]. The existing research methods mainly
include physical statistical method, graph theory method and computer simulation method
[2, 42]. However, a unified theoretical framework could not be established to analyze the
dynamic process of logical networks based on these methods. For example, only the fixed
points and cycles for a specific system are computed in [4, 41], instead of providing a unified
computation formula. Furthermore, since the dynamics of logical system are a process of
logical evolution, and there are less tools for logical operations, investigating logical network

becomes difficult. Hence, the investigation for logical dynamic system calls for a new tool.

STP of matrices was first introduced by Prof. Cheng to deal with Morgen’s problem
in 2001 [11]. It is a generalization of the conventional matrix product to the case that the
dimension matching condition is not satisfied. STP almost keeps all the major properties of
the conventional matrix product unchanged and has certain commutative properties, called
pseudo-commutativity. Because of these advantages, the STP is capable of dealing with
multi-linear and nonlinear functions. Using STP, a logical function can be converted into a
multi-linear mapping, called the matrix expression of logic [14]. Under this transformation,
an algebraic state- space representation approach can be established for logical dynamic
systems. In the light of algebraic formulation and classical control theory, many major issues
about the topology of logical networks including fixed points, cycles, basin of attractors,
and transient times, can be revealed easily by a set of formulas [12]. Moreover, a multitude
of fundamental and important results have been investigated for the analysis and control of
logical dynamic systems based on the algebraic state-space representation approach, which
include controllability [13, 17, 92, 150, 144, 145], observability [25, 132, 151, 35, 84, 149,
134], stability and stabilization [19, 58, 36, 62, 47, 66, 74, 154, 113, 86, 153, 93], disturbance
decoupling [82, 10, 135, 129, 55, 119, 88], input-output decoupling [105, 118, 30], optimal
control [16, 27, 143, 152, 125] and other related problems [72, 70, 24, 157]. It is worth
noting that [13] won “Automatica Paper Prize-Theory & Method (2008-2010)” issued by
IFAC in 2011, which shows that STP method is superior to other mathematical tools in
dealing with logical dynamic systems. On the other hand, STP method has been applied
to engineering related fields, such as power system [97], finite automata [126], information
security [89] and vehicle control [124].

As we all know, time delay is a very common phenomenon and frequently occurs in
real-world systems, such as transportation systems, chemical processes and communica-
tion systems. For instance, the information cannot be communicated instantaneously, and

there may exists time delay due to some physical factors. The slow process of transcription,
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translocation and translation in GRNs may cause time delay. As a source of instability,
time delays are unavoidable in various cases, and may result in poor performance. More-
over, the presence of time delays makes the analysis and control of logical networks much
more difficult and challenging. Therefore, it is interesting and significant to investigate
logical networks with time delays. Various works reported the theory and application of
delayed logical networks based on STP method. For example, [57] and [38] investigated the
controllability of BCNs with time-invariant delays in states and BCNs with time-invariant
delays both in states and inputs respectively. Furthermore, necessary and sufficient condi-
tions were presented to detect the controllability of BCNs. Compared with [57] and [38], a
more practical time delay was encountered in [136], and the controllability and observabil-
ity of BCNs with time-variant delays in states were studied. Moreover, the stability and
stabilization problems of BNs with time delays were investigated in [85, 100]. It is worth
noting that [100] first discussed the impact of stochastic delays on the dynamics of BNs.

Switching phenomenon between different models is widely observed in the real GRNs,
which may be triggered by inherent mechanisms of systems, external disturbances or asyn-
chronous behavior of GRNs. For instance, the growth and division of eukaryotic cells consist
of four processes, which are activated by a set of discrete events [54]. The genetic switch
in A phage consists of two distinct models: lysis and lysogeny [115]. Compared with ordi-
nary BNs, the existence of switched signals make the investigation of SBCNs much more
complicated. These facts reveal that the study of SBCNs is a meaningful and challenging
topic. Up to now, using STP method, many interesting results have been obtained for
SBCNs [79, 131, 73, 137, 78]. The switching form considered in the above publications is
an arbitrary transformation. However, in many practical biological systems, the switching
behavior between different subsystems is not arbitrary, but usually relies on certain bio-
logical thythms. For example, photosynthetic rate has a periodicity related to sunlight, the
oscillation period of enzyme synthesis and enzyme activity is from one to dozens of min-
utes. Zou and Zhu [156] mentioned that the physical meaning of periodically time-variant
BNs just lies in the periodic model transition among different BNs. Therefore, it seems
that periodical switching signal is more suitable for SBCNs to stimulate biological cycle
phenomenon. However, how the periodic switching signals affect the dynamic behavior of
SBCNs has not been fully investigated.

Note that the deterministic rigidity of traditional BN (BCN) limits the further appli-
cation in GRNs, since biological uncertainty and random perturbation always exist in real
GRNSs, and these phenomena can not be described via classical models. Hence, Shmulevich
et al. [110] proposed the PBN model, which can be regarded as an undetermined system
switching with a certain probability distribution among different sub-networks. Similarly,

a PBN with exogenous control inputs is briefly called a PBCN. The main advantage of
4



the PBN (PBCN) model over the deterministic BN (BCN) is that it cannot only share the
appealing properties of BN (BCN) but also cope with the presence of random perturbation.
PBN and PBCN have been recognized as the more flexible mathematical models of GRNs,
and the theoretical and practical importance of probabilistic models have been shown in
[37, 147, 57, 68, 75].

In a real GRN, external disturbances which maybe originate from gene mutations and
recombination are ubiquitous [8]. These unavoidable disturbances may steer the system
dynamics to some undesired behaviours [109]. For examples, cancer can be regarded as the
failure of organism in resisting uncertainties including gene mutations. In some practical
NEGs, the attackers can be regard as the disturbances to the strategy evolutionary dy-
namics of the games [112]. These cases show that it is indispensable to study the stability
problem of logical networks with disturbances. There are some works concerning robust
control invariance and robust set stabilization of BCN [67, 127, 71, 81, 83]. In particular,
Li et al. presented necessary and sufficient conditions for the robust stabilization of BCNs
and the constructive procedure for the controller [67]. Moreover, in [127] necessary and
sufficient conditions were proposed to detect whether the BCNs with impulsive effects can
robust stabilize to a given state set under a given state feedback control. In addition, the
robust control invariance was studied in [71], and all possible state feedback gain matrices

were characterized.

Stability and stabilization are two basic and important issues for logical dynamic sys-
tems and play a key role in some applications such as the explanation of some living
phenomena and the therapeutic interventions of disease. Note that stability is an inherent
attribute of systems, and it describes whether the network can converge to a certain desired
state or a state set, which are called stability [19] and set stability [36], respectively. On
the other hand, the ultimate goal of the GRNSs is to design an efficient therapeutic strategy
such that the organism can reach and maintain a desirable state. However, the system usu-
ally can not naturally evolve to the target state, thus external actions are necessary. This is
the significance of investigating stabilization problem [74, 26]. In other cases, it is essential
to study whether the system can be driven to a desirable subset of the state space instead
of a single point, which is known as set stabilization [36]. In fact, there are many typical
applications of set stabilization, such as synchronization [91], partial stabilization [111] and
output tracking [72]. Furthermore, the control design is always one of the most interesting
topics for the stabilization problems of logical control systems, and diverse design schemes
of controllers have been presented, such as reachable set approach [74], pinning control
technique [92], event-triggered control technique [55] and sampled-data control technique

[87]. Different control strategies have their own unique advantages. For instance, the main
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advantage of pinning control is that the desired control objective can be achieved by con-
trolling a small fraction of nodes [92], event-triggered control can effectively reduce the
control execution times [55] and sampled-data control can effectively reduce the time of
control updates [87]. Recently, a new method based on antecedence solution [53] has been
proposed and it has been used to design the state feedback controls. For example, using the
antecedence solution method, [48] investigated the stabilization problem of generic logical
systems. The dynamics and control problems of singular BCN were studied in [122] by
constructing the truth matrix of antecedence solution. Moreover, there are several works
concerning the existence of antecedence solution based on STP. For instance, [107] pre-
sented necessary and sufficient conditions to detect the existence of antecedence solution.
It is recognized that the main advantages of antecedence solution technique are (i) the clear
one-step evolutionary dynamics are presented by constructing a series of truth matrices;
(ii) the computations involved are very easy and straightforward; (iii) the algorithm can
be easily implemented with the help of software tools such as Matlab.

From the above discussion, it is clear that logical dynamic systems are widely used to
simulate and analyze various complex networks. Particularly, the evolutionary dynamics
of NEGs are a logical process, thus many theories and results of logical dynamic systems

can be applied to the investigation of NEGs directly.

Networked Evolutionary Games

NEGs have many applications in biology, economy, physics [28, 44, 102] and other areas
[104, 148]. In an NEG, nodes and edges represent players and the interactions among
players, respectively. The topological structure among players is not neglected and every
player only interacts with his neighbours in the network. That coincides with many practical
economic activities, where each person only plays games with relatives, friends or business
partners. Limited by the bounded rationality of the players, each player updates his strategy
according to certain strategy adjustment rule, which is affected by the local information of
his neighbours.

The strategies of players can be expressed as the truth values of logical networks and
the strategy updating rule can be interpreted as propositional logic formulas, based on
which, the dynamic process of the game can be transformed into a logical dynamic system.
Particularly, the strategy evolutionary dynamics of an NEG were firstly expressed as a
k-valued logical dynamic network in [18], which provided a precise mathematical model
for NEGs. Since then, some classical results obtained in logical dynamic system have been
used to analyze, control and optimize NEGs based on STP method, and many excellent

results have been proposed. For example, the results for the deterministic logical dynamic
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systems have been applied to the dynamic analysis and strategy optimization control of
NEGs, such as the (group) strategy consensus problem was transformed into the (set) sta-
bilization problem of KVLNSs in [140, 31]. The optimization problem of NEGs [32, 139] was
converted to the global convergence problem of a KVLCN. Besides, the results on robust
control theory of logical dynamic systems with state constraints have been applied to the
investigation of NEGs with attackers and forbidden profiles [77]. And the results on prob-
abilistic logical dynamic system have been applied to the study of stochastic evolutionary
games [22]. Last but not least, other comprehensive introduction about the applications of
logical networks to NEGs were reported [15, 29, 33, 141, 98, 133].

Compared with traditional methods, the main advantages of logical dynamic systems
lie in the overall manipulation of NEGs. Using the structural matrix and other information
of the system, the game problems can be equivalently transformed into the calculation and
analysis of the corresponding strategy transformation matrix, which can be easily solved

based on the classical matrix theory.

Motivations

In the above, we introduced the background and research status of several kinds of logical
dynamic systems, and their applications to NEGs. From that, it is clear that the research
on the stability and stabilization of logical networks is of great theoretical significance and
of practical worth. However, there are still some problems worthy of further study.

First, for the logical networks with time-invariant delay, the stability analysis and con-
troller design problems have not been fully investigated. Existing works mainly concentrate
on the delayed BNs, there are few results available on the stability and stabilization of
KVLNs with time delays. Moreover, for the controller design, there are still much room
to reduce the control costs. To the best of our knowledge, the event-triggered control and
antecedence solution technique have not been introduced into the investigation of DKVLNs
before. Furthermore, the interactions between players in NEGs can not take place instanta-
neously and their reactions can not be immediate, which will inevitably cause time delays
in strategies. Thus, the applications of KVLNs with time delays to DNEGs need to be
further explored.

Second, the robust (control) invariance of logical dynamic system has not been fully
studied. The robust set stability (stabilization) means that all the initial states can con-
verge to the robust (control) invariant set under the influence of disturbances. Thus, in
order to solve the robust set stability (stabilization) problem, we should first study its ro-
bust (control) invariance problem. However, due to the complicated effects of disturbances

variables on system dynamics, there are no results available on the computation of robust

7



invariant set (RIS) and the determination of robust set stability. Moreover, the existing
works just present the criteria to determine whether or not a given set is a RCIS, when the
given set is not a RCIS, there are no works concentrate on this situation. Thus, finding an
effective algorithm to calculate the RIS (RCIS) of logical dynamic systems is a problem
to be further studied. Besides, the previous models are limited to BNs and KVLNs, the
robust set stability and robust set stabilization problems of MVLNs and PBNs are not
investigated in the necessary detail. Compared with BNs and KVLNs, the structures of
MVLNs and PBNs are more complex, hence, the results in BNs and KVLNs can not be
generalized to MVLNs and PBNs easily.

Third, the impact of periodic switching signals on the dynamic behavior of SBCNs has
not been fully investigated. The existing works mainly concentrate on the stabilization and
set stabilization of SBCNs under arbitrary switching signals. However, the stabilization and
set stabilization problems of SBCNs with periodic switching signals have not been studied.
Moreover, for the controller design, the condition of switching-signal-dependent controller
is less conservative than the one of the switching-signal-independent controller. Thus, how
to design switching-signal-dependent state feedback controllers for the stabilization and set
stabilization problems of periodic SBCNs need to be studied carefully.

Finally, the scheme to avoid the free-rider phenomenon in the networked evolutionary
boxed pig games has not been fully investigated. Due to the lack of effective mathematical
tools, it is hard to systematically analyze the influence of passive reward and punishment on
the final cooperation level of the whole network. Thus, the investigation of the evolutionary
dynamics and optimization problems of the boxed pig games with passive reward and

punishment need to be further considered.

Main Contents

In reaction to the above problems, this thesis investigates the stability analysis and control
of several types of logical dynamic systems and the applications in game theory. The main
contents are summarized as follows:

Chapter 1 presents the preliminaries of this thesis, and mainly introduces the concept
of STP and some basic properties, the algebraic state-space representation of logical dy-
namic systems, the related concepts of NEGs and its algebraic state-space expression, and
the antecedence solution technique, which lay a theoretical foundation for the research of
subsequent chapters.

Chapter 2 investigates the stability and event-triggered feedback control problems of
DKVLNSs. First, we provide the algebraic formulations of DKVLNs and DKVLCNs under

the event-triggered control. Then, we present some necessary and sufficient conditions for

8



the solvability of stability problem of DKVLNs. Moreover, we derive the necessary and
sufficient conditions for the solvability of stabilization problem of DKVLCNs under the
event-triggered control and establish an algorithm to design all the event-triggered state
feedback stabilizers based on antecedence solution technique.

Chapter 3 investigates the robust control invariance and robust set stabilization prob-
lems of MVLCNS, and proposes a novel method to compute the LRCIS of MVLCNs and
obtains all the possible state feedback controllers to keep the robust control invariance.
We further present some necessary and sufficient conditions for the solvability of robust
set, stabilization of MVLCNs and provide an algorithm to design all the time-optimal state
feedback controls.

Chapter 4 investigates the robust set stability and set stabilization problems of PBCNs.
First, we introduce the concepts of RIS and RCIS with probability 1 of PBNs, respectively,
and propose the algorithms to compute the LRIS and the LRCIS with probability 1, re-
spectively. Second, we determine all the state feedback controls to keep the robust control
invariance with probability 1 of PBCN. Third, we propose the concept of finite-time robust
set stability of PBNs and provide the necessary and sufficient conditions for the solvabil-
ity of finite-time robust set stability with probability 1. Fourth, we introduce the concept
of finite-time robust set stabilization of PBCNs, and present the necessary and sufficient
conditions for the solvability of finite-time robust set stabilization with probability 1. More-
over, we construct an algorithm to design all the time-optimal state feedback stabilizers
for finite-time robust set stabilization of PBCNs.

Chapter 5 investigates the stabilization and set stabilization problems of periodic SBCNs.
First, we introduce the model of periodic SBCNs, the concepts of stabilization, set stabi-
lization, common control fixed point and common control invariant set of periodic SBCNs.
Second, we give the necessary and sufficient conditions for the solvability of stabilization
of periodic SBCNs, and present a constructive procedure of open loop controller and a
design algorithms of switching-signal-dependent state feedback controller via antecedence
solution technique. Furthermore, we drive the necessary and sufficient conditions for the
solvability of set stabilization of periodic SBCNs, and provide an algorithm to construct
all the switching-signal-dependent state feedback controllers.

Chapter 6 investigates the event-triggered control design problem for NEGs with time-
invariant delay in strategies. First, we formulate the model of DNEGs under the Myopic
Best Response Adjustment Rule (MBRAR), and present the algebraic expression of the
dynamics of DNEGs. Then, we propose the necessary and sufficient conditions to detect
whether the evolutionary dynamics can globally converge to the desired strategy profile.
We further establish an algorithm to construct the event-triggered control to assure the

global convergence of the game.



Chapter 7 investigates the algebraization and optimization problems of networked evo-
lutionary boxed pig games with passive reward and punishment. First, we introduce the
model of the boxed pig game with the mechanism of passive reward and punishment, and
propose an algorithm to construct the algebraic formulation of the evolutionary dynamics
under the Unconditional Imitation Strategy Updating Rule (UISUR). Then, we analyze
the evolutionary dynamics of the game, and present the necessary and sufficient conditions
for the global convergence to the full cooperation profile. Moreover, we discuss the impact
of reward and punishment parameters on the final cooperation level.

Chapter 8 summarizes the results obtained in this thesis and points out the further
research problems.

The main contents of this thesis are shown in Figure 2.

p
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Figure 2: The structure of the thesis
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Chapter 1

Preliminaries

In this chapter, we recall the definition and properties of STP, algebraic expression of
mapping on finite set, some basic concepts and the matrix expression of NEGs and the

antecedence solution technique, which will be used throughout this thesis.

1.1 Definition and properties of STP

This section mainly introduces the definition of STP and some basic properties related to

this thesis. For more information on STP of matrices, please refer to [14].

Definition 1.1.1. [1/] The STP of two matrices A € Ry, and B € Ry, is defined as
AxB=(A®I:)(B®Is), (1.1)

where a = lem(n, p).

Remark 1.1.1. Note that Ax B = AB when n = p. Therefore, the STP is a generalization
of the ordinary matriz product and keeps the major properties of ordinary matriz product,
such as associative law and distributive law. In this paper, the symbol “x ” will be omitted

without confusion.
Proposition 1.1.1. [14] The STP of matrices has the following properties:
1. (Associative law) Let A € Ryyxn, B € Ryxq, C € Ryxs, then

(AxB)x C=Ax (BxC).

2. (Distributive law) Let A, B € Ryxn, C € Ryxs, then
(A+B)x C=AxC+ BxC,
Cx(A+B)=Cx A+Cx B.

11
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3. (Pseudo-commutative law) Let X € Ryx1, A € Ryyxn, then

XxA=L®A) xX. (1.2)

Lemma 1.1.2. [14] (Power-reducing matriz, Swap matriz and Front/Rear-maintaining

operator)

1. Letx € A, then

Xz =Y, Xuz, (1.3)
where U, € L2+, is called a power-reducing matriz, which is defined as
U, =[0p X 6) 02X 62 - 5" x 8]
. Letx e Ay, u€ A, then
T X U= Wy X u KX, (1.4)
where Wiy, n) € Lynxmn 15 the so-called swap matriz, which is defined as
Winn = T S Ml O R el U Ml e e
. Given two integers p > 2, q > 2. The “front-maintaining operator” and “rear-
maintaining operator” are defined as
Dy =I,®17, Drf=1"®1, (1.5)

Then
Dffzy = x, Dizy =y,

where v € Ay, y € A,.

1.2 Algebraic state-space representation of logical dy-

namic systems

Definition 1.2.1. [1/] A function f : Dy, X Dk, X -+ - X Dy, — Dy, 1is called a miz-valued
logical function. If kg = k1 = -+ = kn = k, then f is called a k-valued logical function.

Particularly, when k = 2, it is called a Boolean function.

For ,’::{ € Dy,,j € [1:ki], i €[l:n],identify ﬁz:{ as a vector form (5@, then Dy, ~ Ay,.

Under the vector form, the mix-valued logical function

fZ’D]ﬂXDkQX---XDanDkO

can be equivalently expressed as

f:Ak1XAk2X"'XAkn—>AkO-
12
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Lemma 1.2.1. [14] Let f : Ag, X Ag, X+ -+ X Ay, —> Ay, be a miz-valued logical function.

Then there exists a unique matric My € Ly xk, called the structural matriz of f, such that
f(th%”' 7$n) :Mf [X?ZI L, (16)
where X! x; =11 X g X -+ X T € Ny, k=111 ki and x; € Ay,.

Following, some frequently-used logical operators and their structural matrices are in-

troduced.
e Boolean function
— Negation(—): =z = 1 — z. Structural matrix: M,, = §,[2 1].
— Conjunction(A): @ Ay = min{z, y}. Structural matrix: M, = d2[1 2 2 2].

— Disjunction(V): x V y = max{z, y}. Structural matrix: My = d5[1 1 1 2].

Conditional(—):  — y = =z A y. Structural matrix: M; = d2[1 2 1 1].
— Biconditional(+>): z <> y = (z — y) A (y — x). Structural matrix: M, = d[1 2 2 1].

Example 1.2.1. Assume

flzyy,2) = (xANy)V (yA—z),

where x,y,z € D.

Based on the vector form of logical variables and Lemma 1.2.1, we have

[y, 2) =(xAy)V (y A —2)
= Ma(z Ay)(y A —2)
= My(Mcry)(MeyM,z)
= MgM.(I; ® M,.)vy* M,z
= MM, (14 ® M)z VoyM, =
= MgM(Iy ® M.)(I2 ® Wa)(Iy ® My)zryz
=5[112221 2 2zye.

e k-valued logical function
In this case, the logical variables take value from Dy = {$=% | i € [ : k]}. As an

example, we take k = 3.

— Negation(—): -z = 1 — z. Structural matrix: M, 3 = 03[3 2 1];
13
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— Conjunction(A): x Ay = min{x, y}. Structural matrix: M.3 = d3[1 2322333 3].

Disjunction(V): x V y = max{x, y}. Structural matrix: My3=93[11112212 3].

Conditional(—): x — y = =& A y. Structural matrix: M; 3 =03[12312211 1].

— Biconditional(<+): z <> y = (z — y) A (y — x). Structural matrix: M. 3 = d3[1 2 3 2
2232 1.

e Mix-valued logical function

Definition 1.2.2. [14] Let v € Dy, ¢jq,) : Dp —> Dy. ¢ is a projection of dyq () :=
§ €Dy and

|£—9:|:;relg\w—yl~

Remark 1.2.1. If there are two such solutions as & > x and & < x, ¢ (v) 1= & is
called the up-round projection and ¢ () := &2 is called the down-round projection.
In the sequel, the default projection is the up-round projection. Moreover, denote the

structural matriz of ¢pqp as Prgp. For ezample, @39 = d3[1 3], P g = 02[1 2 2].
Definition 1.2.3. [14] Let o be an unary operator on Dy, and x € D,. Then
o(z) := o(¢kp(x)) € Di.
Let o be a binary operator on Dy, and v € D,, y € D,. Then
2oy = (Pkp) ()0 (Dlk,g) (¥)) € D
Example 1.2.2. Consider logical function
y = f(x1,29,23) = 11 A (22 <> T3),

where x1,x3 € D, 29,y € Ds.
Its algebraic expression can be computed as

y = f(z1,22,23) = 21 A (22 > x3)
= c,3(q>[3,2}$1)(Me,3332(q’[3,2]1‘3))
= M. 3P39/(I2 @ Me3)(Iy @ Pr39) 117273
5511111112332 laizozs.

Definition 1.2.4. [14] Let M € Ry, and N € Ryxy,. Then, the Khatri-Rao product of
M and N is defined as

M % N = [Coly (M) x Coly(N), -+, Col (M) x Coly(N)] € Rpgrm-
14
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Assume that a logical network with algebraic formulation is presented as follows

y1 = My K?:1 T,

Y2 = Mo X7 x4,

Ym = My X3 25

Then, with * = x}_,z; and y = x[2,y;, we have

y = Mpx, (1.8)

where Mp = My % Mg % -+ x M,,.

In the following, an illustrative example is given to show how to convert the logical form

of a BCN into the algebraic formulation.

Example 1.2.3. A simple BCN model for the XA phage decision circuit system shown in

Figure 1 can be derived as follows

where state variables

) A
) A
) Au(t) A (z1(t) V za(t), (1.9)
)) Au(t) Awi(t),

A

—~

—x3(t)),

T1, To, T3, Tg4 and s represent gemes N, cl, cll, cIIl and cro

respectively, and control variable u denotes an external factor.

Based on the above discussion, the first expression becomes

l’l(t—F 1) =

(m2a(t)) A (s (1))

= M My zs(t) Mpzs5(t)

= MM, (Is @ My)xa(t)xs(t)

= McMy(Iz ® My)D?2D7 " u(t)wy (t)ws (t)ws (t)aa ()25 (t)
= Myu(t)z(t),

where x(t) = x?_,z;(t) and

M,

= 52222222221212121
2222222221212121
15
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2222222221212121
2222222221212121]
Similarly, we can obtain
xi(t + 1) := Myu(t)z(t), i€[2:5],
where

My = 5[2121212121212222
2121212121212222
2121212121212222
212121212121222 2,

My = 82222222211 111111
2222222211221122
2222222222222222
2222222222222 22 2,

My = &[2222222211111111
2222222222222222
2222222222222222
222222222222222 2,

Ms; = 62222222222221111
2222222222221 111
2222222222221111
2222222222221111].

Thus, the algebraic expression of system (1.9) can be easily computed as
z(t+ 1) = Lu(t)x(t),
where L = My * My x M3 x My * My and

L = 0632[322432243224322426226225 9 25 9
3224 322432243224 28432827113115
322432243224 322432832831 153115

3224 3224 32 24 32 24 32 8 32 8 31 15 31 15].

16

(1.10)



1 — Preliminaries

Remark 1.2.2. The algebraic formulation of logical networks can be equivalently converted
into a logical form, one can refer [14] for details. Moreover, a Matlab toolbox! has been
developed to compute STP and convert the logical form and algebraic expression to each

other, all examples in this thesis are computed based on this toolbox.

The pseudo-logical function plays a key role in the investigation of NEGs. Here we

introduce the concept and the algebraic expression of pseudo-logical function.

Definition 1.2.5. [1}] A function f : [[;- Dr, — R is called a miz-valued pseudo-logical
function. If kg = ky = --- =k, = k, then it is called a k-valued pseudo-logical function.

Particularly, when k = 2, it is called a pseudo-Boolean function.

Under the vector form, the pseudo-logical function can be converted into algebraic

expression.

Lemma 1.2.2. [14] Let f : [[i= Ax, — R be a miz-valued pseudo-logical function. Then,

there exists a unique row vector Vy € Ry, called the structural vector of f, such that
f(xlvx%"' 733”) :Vf D<;"Lzl L, (1]‘]‘)

where x; € Ay, and k = T[j—, k;.

1.3 Algebraic state-space expression of NEGs

Definition 1.3.1. [18] A normal finite game is a triplet (N, S, P), where
(i) N ={1,2,--- ,n} is the set of players;

(ii) for each player i € [1:n| a strategy set S; = {1,2,--- ,k;}, 1 € [1 : n|, is defined and
S = 11 95; is the set of profiles;
i=1

(2
(i) for each player i € [1 : n| a payoff function p; : S — R, i € [1 : n], P is the set of
payoff functions.

Definition 1.3.2. [18]/ A normal game with two players is called a Fundamental Network
Game (FNG), if
Sl :SQ = SOI {1,2,-" ,k‘}

An FNG is symmetric, if p1(x,y) = p2(y,x), Yo,y € Sy, where p; = p;(x,y) is the payoff
function of playeri, i =1,2.

http://Isc.amss.ac.cn/~dcheng/stp /STP.zip
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Definition 1.3.3. [18] An NEG is a triplet (N, &), G,1I), where

(i) (N,E) is a network graph, with N = {1,2,--- ,n} the set of vertices, € C N x N
the set of edges. In the network, nodes and edges denote, respectively, players and

interaction relationship among players.

(it) G is an FNG, such that if (i,7) € €, then i and j play the FNG with strategies x;(t)
and x;(t), respectively. FNG determines the type of the game.

(7ii) 11 is a local information based strategy updating rule.

Definition 1.3.4. [18] Let N be the set of nodes in network and € C N x N be the set of
edges:

(i) if (i,7) € € implies (j,i) € &, the graph is undirected, otherwise, it is directed;

(ii) j € N is called a neighborhood node of i, if either (i,j) € € or (j,i) € E. The set of
neighborhood nodes of i is called the neighborhood of i, denoted by U(i). In particular,
ieUi);

(i) ignoring the directions of edges, if there exists a path from i to j with length less than
or equal to r, then j is said to be an r-neighborhood node of i. The set of r-neighborhood

node of i is denoted by U, (7).

Definition 1.3.5. [18] Let N = Z U U be a partition of N. If the strategies of any v € U
can be assigned arbitrarily, we call [(Z U U, E),G,1I] a controlled NEGs. Moreover, u € U

is called a control player and z € Z s called a state player.

Next, an example is given to explain the definition of NEGs and neighbor of player,
and show the effectiveness of STP method in converting the dynamics of the game into the

corresponding algebraic formulation.
Example 1.3.1. Consider an NEG with the following items:

« N ={1, 2, 3, 4, 5, 6} is the player set. The network topological structure among

players is shown in Figure 1.1.

o the FNG is the Prisoner’s dilemma. The payoff bi-matrixz is shown in Table 1.1, where
T=0R=-1,P=—-6,5=-9 1If (i,j) € &, then players i and j can play the
Prisoner’s dilemma. For instance, player 1 plays game with players 2 and 6, however,

he does not play games with other players.

18
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5 4

Figure 1.1: The network graph with six players

Table 1.1: Payoff bi-matrix of Prisoner’s dilemma

P\P| C D
C | (R R | (ST
D | (T, S | (P, P)

o the strategy updating rule is the MBRAR [23], that is, each player forecasts that his
rivals will repeat their previous decisions, and the strategy choice at present time is

the best response against his neighbors’ strategies. Based on this, we have

zi(t +1) € Qi = argmax,, ¢ pypi(wi, 75(t) | j € U(D)\{i}), (1.12)

where x;(t) represents the strategy of player i at time t, U(i)\i means to remove i
from U(i). When the best response of player i is not unique, that is, | Q; |> 1, then
From Definition 1.3.4 and Figure 1.1, U(1) = {1, 2, 6}, Ux(1) = {1, 2, 3, 5, 6},
Us(1) = {1, 2, 3, 4, 5, 6}, U(\{1} = {2, 6}, U(6)\{6} = {1, 5}, UG\ {i} = {i—1, i+1},
i € [2:5]. Hence, the dynamics of the game can be expressed as follows
z1(t+1) = fi(wa(t), z6(1)),
zi(t +1) = fi(zim1(t), w1 (1)), i € [2:5],
ze(t + 1) = fo(x1(t), 5(1)).
Then, we need to compute the structural matrix of f;, j € [1 : 6]. Consider player 1 as
an example. First, the dynamics of player 1 can be converted into the following algebraic
formulation
z1(t+ 1) = Fao(t)ze(t).
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From the parameters in Table 1.1, we conclude that for player 1, no matter which strategy

his opponent chooses, he will choose defection at next time. Identify C' ~ d1, D ~ §3. Then
zi1(t+1) =03, Vao(t),z6(t) € {C, D}.

Since there are four profiles for players 2 and 6, that is, both players 2 and 6 choose C,
player 2 chooses C' and player 6 chooses D, player 2 chooses D and player 6 chooses C,
both players 2 and 6 choose D. Hence, the matrix F' has four columns, where each column
corresponds to the possible choice of player 1 at next time with four different profiles. For

example, when players 2 and 6 choose C, we have x5 (t)7¢(t) = 63 x 65 = 0. Thus,
xl(t + 1) = F.%‘Q(t)l’ﬁ(t) = Féi = COll(F) = 5%,

from which we obtain the first column of structure matrix F'. Similarly, we can compute

the other columns of F":

Coly(F) = Fé3 x 03 = Fo3 = 63,
Colz(F) = Fé3 x 0y = Fd3 = 63,
Coly(F) = Fé2 x 62 = Fo} = 63.

Therefore, F' = §2[2 2 2 2].

From Lemma 1.1.2,

x1(t + 1) = Fao(t)ze(t)
= FD*?x(t)wo(t)x6(t)
= FD>2D7 " a(t)
= Fa(t), (1.13)

where x(t) = x%_ 2;(t) and Fy = 522 2 --+ 2] € Loyos.

Similarly, we can obtain the algebraic expression of f;
zi(t+ 1) = Fx(t), i€ [2:6], (1.14)

where F; = §3[2 2 -+ 2] € Loyas.
Multiplying the left and right of (1.13) and (1.14) by STP, we have

x(t+1) = La(t),

where L = Fy % Fyx -+ Fg = 59620 20 ... 25] € L36,96. The matrix L is called the profile
transition matrix of the game. Based on this matrix, we can calculate the final evolutionary

dynamics of the game from any initial profile.
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1.4 Antecedence solution technique
Definition 1.4.1. [48] Let X1, Xo, -+, X,,, U1, Us, -+ , Uy, be Boolean variables. Given a
set of Boolean equations
Fi(X1,Xo, -+, X, U, Usy -+ Up,) = Cy, i €1 5], (1.15)
where C; € D is a constant. A set of Boolean functions
Uj=Gj(X1,X2,---,Xy), je[l:m], (1.16)
is called an antecedence solution of (1.15), if (1.16) implies (1.15).

Let x;, u; and ¢ be the vector form of X;, U; and Cj, respectively. Based on Lemma

1.2.1, the Boolean functions (1.15) and (1.16) can be expressed as follows:

Mpux = ¢, (1.17)

u= Gz, (1.18)

where © = X 7; € Agn, u = XJLju; € Agm, ¢ = Xj_j¢ € Ags, Mp € Lysyontm and
G € Lomyon.

The matrix T' € Bom«on given by
1, if Mpdyndl, = c,
[T)i; = {

0, otherwise,

(1.19)

is called the truth matrix of (1.17).
The following lemma shows under which conditions the antecedence solution condition
holds.

Lemma 1.4.1. [48] The equation u = Gz is an antecedence solution of Mpux = ¢, if and
only if G < T, where T is given by (1.19).

Replacing the single state ¢ € Ags in (1.17) by a set  C Ay and choosing x from set

W, concept of the generalized antecedence solution can be introduced.

Definition 1.4.2. [/8] Let W C Agn be a restricted set. Then (1.18) is called a W -
antecedence solution of (1.17), if when x € W and uw = Gz then Mpux € Q holds.

Similarly, the truth matrix Tqp € Bamxon of (1.17) with respect to 2 and restricted

on W can be constructed as follows:

1, if Mpéinds. €Q, V&, € W,
Towlij = { o (1.20)

0, otherwise.

The below lemma shows under which conditions the generalized antecedence solution

condition holds.
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Lemma 1.4.2. [}8] The equation u = Gx is a W-antecedence solution of Mpux € Q, if
and only if G, < Touw, where Touw is given by (1.20) and x € W.

In the following, an example is given to show how to verify the antecedence solution

and the generalized antecedence solution.

Example 1.4.1. Consider

Fl(Xl,XQ,U) = (Xl\/U) — X9 = 1,

(1.21)
Fy(X1, Xo,U) = Xy AU = 0.

Let o1, 75 and u be the vector form of X, X5 and U respectively, and identify 1 ~ 63
and 0 ~ 63. Based on Lemma 1.2.1, the algebraic formulation of (1.21) can be easily

calculated as follows
Mpuz = &3, (1.22)
where x = 1 X x5 and
My=64013242422].

The truth matrix of (1.21) is given by

1
1 0 1 1

Note that since there is no G € Loy such that G < T, thus, (1.21) has no antecedence
solution.
Let W = {0},83, 01}, replacing state 67 in (1.22) by Q = {62,031}, the truth matrix is
given by
0 0 1 1
T = ) 1.24
- [ o ] (129

Hence, from Lemma 1.4.2, there exists a W-antecedence solution of Mpuz € {2 and all the

solutions can be obtained as

u=02211 1]z,
u=109[2112|x,
u=109[212 1]z,
u=109[2122x
u=109[221 1]z,
u=0,[2212|x,
u=03[222 1]z,
u=03[2222x



Chapter 2

Stability Analysis and
Event-triggered Control of
Delayed k-Valued Logical

Networks

2.1 Introduction

A KVLN is a discrete-time nonlinear networked system, where all the state, input and
output variables take value from a finite set [6]. It has captured wide attention of numerous
scholars from different areas, including gene regulation [2, 49, 123], combinational logic
circuit design [90], NEG [18], finite automata [126], information security [89] and so on.
Using STP method, one can easily convert the dynamics of KVLNs into an equivalent
algebraic form. Up to now, many significant results of KVLN have been obtained via STP
method, ranging among controllability [60], output tracking [64], optimal control [143], and
other problems [80, 63, 21].

As we all know, time delay is very common in real-world system, such as transporta-
tion systems, chemical processes and communication systems. For example, time delay is
associated with the slow process of transcription, translation, and translocation or the fi-
nite switching speed of amplifiers in GRNs [146, 85]. As a source of instability, time delay
phenomenon is unavoidable in various cases and may result in some poor performance.
Moreover, the presence of time delay causes difficulties and challenges in the stability anal-

ysis and control design. Therefore, it is interesting and significant to investigate KVLN
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with time delays. The existing works mainly concentrate on delayed BNs with very few
results on the stability and stabilization of DKVLNs.

Event-triggered control is an effective control strategy and has been broadly used to
study logical control networks since it was first introduced into the investigation of dis-
turbance decoupling problem of BNs [55]. This control scheme consists of two elements:
a feedback controller that determines the control input, and a triggering mechanism that
decides when the controller need to be updated again [40]. The main advantage of event-
triggered control is that the control execution times and the computation costs can be
greatly reduced. Thus, the event-triggered state feedback control is utilized to study the
stabilization of DKVLNs.

This chapter investigates the stability and event-triggered control design problems of

DKVLNSs via the truth matrices technique. The main contributions are:
e Necessary and sufficient conditions for the stability of DKVLNs are established.

e Necessary and sufficient conditions for the stabilization of DKVLCNs under the event-

triggered control are given.

e A design procedure to compute all the event-triggered state feedback controllers is

presented.

2.2 Problem formulation

The dynamics of KVLNs with state delay can be described as follows:

Xi(t+1) = (Xt —7+1)),

Xo(t+1) = fo(X(t—7+1)), (2.1)

Xp(t+1)= fu(X(t—7+1)),

where 7 € Z; denotes the time delay, f; : D} — Dg, @ € [1 : n] are k-valued logical
functions and X (t) = (X1 (), Xa(t), -+ , X, (t)) € Dy are states at time ¢.
Let z; be the vector form of logical variable X;, ¢ € [1 : n]. Then, based on Lemma

1.2.1, system (2.1) can be converted into
r(t+1)=La(t —7+1), (2.2)

where L € Lgnypn and x(t) = X2 x;(t) € Agn.
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Similarly, a DKVLCN with n nodes, m control inputs is described as follows:

Xit+ ) =q(X(t—7+1),U(t—7+1)),

Xo(t+1)=g(X(t—7+1),U(t —71+1)), (2.3)

Xp(t+1) =g ,(X(t—74+1),Ut—7+1)),

where g; : D™ — Dy, i € [1: n] are k-valued logical functions and U(t) = (U (t), Ua(t), - - - ,
Un(t)) € D" are control inputs at time t.
Let u; be the vector form of Uj, again, following Lemma 1.2.1, system (2.3) can be

expressed as
w(t+1) = Lu(t — 7+ Da(t — 7 + 1), (2.4)

where L € Lynygmin and u(t) = XL ug(t) € Agm.

The event-triggered control mechanism is an intermittent control scheme based on a
triggering event set I' € Agn. When the current state does not belong to the set I', no
control is activated and the dynamics of the system will evolve desirably in the form (2.2).
Otherwise, the control input is operated and the system will maintain in the form (2.4).
Therefore, the overall dynamics of DKVLCNs under the event-triggered control can be
expressed as

1) {Lx(tTJrl), a(t—7+1) € Ap\T, 05

Lu(t —7+ Dzt —7+1), 2t —7+1)el.
Equivalently, the algebraic form of DKVLCNs with event-triggered control can be re-
formulated as
w(t+1) =L Lju(t — 74 Da(t — 7+ 1) == La(t — 7 + Da(t — 7+ 1), (2.6)
where L € Lyny g (km+1), and the event-triggered control u(t—7+ 1) € Agm4q is constructed
from u(t — 7+ 1) as follows:
6’,::1%, z(t—74+1) € Apn\T,

2.7
[u(t — 7+ )T 07, z(t —7+1) €T, 27)

ut—7+1)= {

where 6,’;3,,11% denotes no control action.

In the next sections, the dynamics of DKVLNs (2.2) will be analyzed and all the event-
triggered state feedback controls

u(t) = Hx(t), (2.8)
where H € L(jm1)xkn, are designed, such that DKVLCNs (2.5) are globally stabilizable.
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2.3 Stability analysis of DKVLNSs

Definition 2.3.1. DKVLN (2.2) is said to be globally stable to a given state x* € Agn, if
for any initial states x(—1 + 1), (=7 +2), -+ ,2(0) € Agn, there exists an integer T* > 0,
such that x(t) = o*, Vt > T*.

Note that if DKVLN (2.2) is globally stable to z* = 05, € Agn, then 2* is a fixed point
of the system. However, the reverse does not hold. In the following, we discuss how to
determine whether system (2.2) is globally stable to a* = ...

For any p € Z4 and any initial state z(tg) € {z(—7 + 1),z(—7 + 2),--- ,z(0)}, the

dynamics of system (2.2) can be expressed as

x(to + 1) = Lx(to),
x(to + 27) = La(to + 1)
= L2l'(t0)7

z(to + pr) = La(to + (p — 1)7)
= L%x(to + (p — 2)7)

= Lp.T(t()).

Now, we are ready to present the following necessary and sufficient conditions for the global
stability of DKVLNs (2.2).

Theorem 2.3.1. Consider system (2.2) with initial states x(—7+ 1), z(—7+2),--- ,2(0),
and the given objective state x* = 6g.. Then system (2.2) is globally stable to x* = 0., if
and only if there exists an integer T* € [1 : k™ — 1], such that

Col(L™") = {62.}. (2.9)

Remark 2.3.1. The equation (2.9) is easy to be verified via Matlab. However, when the
dimension of the structural matriz L is large, the iteration process will take a lot of time
according to Theorem 2.5.1. Next, we try to find another way to detect the global stability
of system (2.2).

First, let Ry = {05} and construct the truth matrix T, € Bjn xjon:

1, if 1 = a, [L]a,j = 1,
(Tryli,j = _ (2.10)
0, otherwise.
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Compute Ry = {6}, | Col;(Tr,) # On}. Then, for t € Z,, construct a series of truth

matrices T, € Bynxpn as follows

1, if L;; = 1,V8i. € Ry,
(Tr,)ij = { ’ ‘

0, otherwise,

(2.11)

and compute Ry 1 = {0}, | Col;(TR,) # Ogn}. In fact, from the construction of Tg,, t € N,
we have the following three cases:
Case 1: if [Tg|a,q = 1, then Tg, | < Tg,, for all t > 1, or equivalently, Ry C Ry yq.
Case 2: if [Tg|a,o = 1 and [Try]a,; = 0, Vj # a, then [Tg, Jao = 1 and [Tr, ,]a; = 0,
Vj # a, for all t > 1, or equivalently, R; = Rj.
Case 3: if Tp, , = Tg,, for some A > 1, then T, , = Tg,_,, YVt > A, or equivalently,
R: = Ry.

The following criteria are proposed to detect the global stability of DKVLNs (2.2).

Theorem 2.3.2. Consider system (2.2) with initial states x(—7+1), x(—7+2),--- ,2(0),
and the given objective state x* = 6f.. Then system (2.2) is globally stable to x* = 07, if
and only if

(Z) [TRO]Q,Q =1
(i) there exists an integer t* € [1 : k™ — 1] such that Col;(Tr,._,) # Opn, ¥j € [1: k"].

Proof. (Necessity) Suppose that system (2.2) is stable to z* = 05 globally. Then dj, is a
fixed point of system (2.2), that is, Ldg, = g, or equivalently, [L]q,o = 1. Hence, condition
(i) holds.

Since all the initial states z(—7 + 1),2(—7 4+ 2),--- ,2(0) € Agn can reach 05, from
the computation of Ry, t € N, there exists an integer ¢* such that Ry = Agn, which is
equivalent to Col;(Tg,._,) # O, Vj € [1: k™.

Let t* be the smallest positive integer such that Col;(Tg,. ,) # Og», Vj € [1 : k"]. Now,
we will prove t* < k™ — 1. It is enough to show that the number of nonzero columns of
Tg, ,is |Ry| >t+1foranyte][l:t]

We use induction to prove it. When ¢ = 1, if the number of nonzero columns of Tg, is
|R1| < 2, then (Try)a,e = 1 and (Try)a,; = 0, Vj # «, and hence Ry = {05} by Case 2,
which is a contradiction.

Now assume that the number of nonzero columns of Tg, , is |Ri| > t + 1 for some
1 <t <t* Since [Try]a,a = 1, Case 1 shows that Tg, , < Tg,. Then, |Ry11| > |Ri| > t+ 1.
If |Ryyq| < t+2, then |Ryyq| = |R¢| = t+1. Thus, Ry = Ry11, which implies Tx, , = Tg, by
Case 3. Hence, the number of nonzero columns of Tx,. and Tg, , is equal, which contradicts
the minimality of ¢*. Therefore, k™ = |Ry+| > t* + 1, that is t* < k™ — 1.

(Sufficiency) The proof of sufficiency is obvious and we omit this part. O
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2.4 Event-triggered control for stabilization of DKVL-
CNs

Definition 2.4.1. DKVLCN (2.6) is said to be globally stabilizable to a given state x* =
0p € Ngn, if for any initial states x(—7+1),2(—742),--- ,2(0) € Agn, there exist a state
feedback event-triggered control u(t) = Hx(t) and an integer T* > 0, such that x(t) = dfa,
vt > T,

Remark 2.4.1. If the given state x* € Agn is reachable from some initial state, then there

exists a state feedback control, such that it can be reachable in at most (k™ — 1) steps.

In the following, we will study how to design H € Lmi1)xi» for the stabilization
problem of DKVLCNSs.
First, split the matrix L into (k™ + 1) equal blocks:

L = {zl ZQ s ka+1]7 (212)

where L; € Lynxgn, @ € [1 1 k™ + 1]. Then, Algorithm 1 can be utilized to design all the

state feedback event-triggered controls via the truth matrices method.

Algorithm 1 Constructing event-triggered state feedback stabilizers

Step 0: Let Ry = {0g.} and construct the truth matrix Try g, € Bkm41)xkn:

1, if j = aand [Lj]aa =1,
(2.13)

{TRO‘RO]'L'J - .
0, otherwise.

Check whether Colo(Try|r,) 7 Orm 1. If Cola(TRy|R,) = Okmi1, 6jn is not a (control)

fixed point, and the construction problem of stabilizers is not solvable, stop the

algorithm. Otherwise, construct the truth matrix TRO‘ Ro € Brmi1)xkn:

_ gmtl if (T ma1s=1,
COlj(TR0|R0) - i ( ROlRO)k i (2.14)
Col;(Try|Rr,), otherwise,
and go to Step 1.
Step 1: Let W = Agn\Rp and construct the truth matrix Tgy\w, € B (gmi1)xpn:
1, if (Lj)a,; = 1,Y00, € W,
[TRO\WJZ'J - v " (2'15)
0, otherwise.

28



2 — Stability Analysis and Event-triggered Control of Delayed k-Valued Logical Networks

Compute Ry = {07, Colj(Tryw,) # Ogmi1}. Check whether Ry # (0. If Ry = 0, the

construction problem of stabilizers is not solvable and stop the algorithm. Otherwise,

construct the truth matrix TRO\Rl € B(pm41)xkn:

— 5k7,:+17 if T m ; — 17
Coly(Tryr) = ¢ o -1 (2.16)
Col;(Tryw, ), otherwise.
If RgUUR1 = Apn, set t* =1 and go to Step 3; otherwise, go to Step 2.
Step 2: Let W; = Ag\[USZ, RyJ, where t > 2. Construct the truth matrix
TRt—l‘Wt S SB(k:"L—‘rl)Xk":
1, if Col;(L;) € Ry_1,Y5., € W,
(TR aiwilig = ’ * (2.17)
0, otherwise.

Compute Ry = {6, | Colj(Tg,_,jw,) # Okmy1}. If Ry = 0, the construction problem of
stabilizers is not solvable and stop the algorithm. Otherwise, construct the truth matrix

TR,k € Bmi1)xhn:

_ ger+l if (T ma1; =1,
Coly T n) = |4 s 219
Colj(Tr,_,jw,), otherwise.
If
t
U B = Age, (2.19)

A=0

the stabilization problem is solvable. Denote the minimum number such that (2.19) holds
as t* and go to Step 3; otherwise, set t =¢ 4 1. If t > k™ — 1, the construction problem of
stabilizers is not solvable and stop the algorithm. Otherwise, go to Step 2.

Step 3: The event-triggered state feedback stabilizers H € Lgm1)xxn can be

constructed as follows:

H, <T ,
{ 7o = = Fol o (2.20)

H‘Rt < TRt—llRtv te [1 : t*],

Theorem 2.4.1. DKVLCN (2.6) is globally stabilizable to x* = 05, if and only if Algo-
rithm 1 reaches Step 3.

Proof. (Sufficiency) Assume Algorithm 1 reaches Step 3, then we prove that DKVLCN (2.6)
is globally stabilizable to 5. under the state feedback event-triggered control u(t) = Hx(t),
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where the state feedback gain matrix H € Lm1)xpn is given by (2.20). From Step 0, when

o is a fixed point of system (2.6), there exists a control Hog, = (5’,::11%, such that

TkM+lca o

L6km+15kn i L5k7t
Ve
- 6k7L

When 0, is a control fixed point of system (2.6), there exists at least a control Hop, =

52%“, where h, € [1: k™], such that

Loy 0 = Loja 0
_ S«
- 5kn

From Step 1, for any z(tg) = 6 € Ry, z(to) € {a(—7 +1),2(=7 +2),--- ,2(0)}, there

exists at least a control H 5@1 = 52},1 41, such that

x(to +7) = Lu(to)z(to)
= T, 0

_ s«

If hy = k™41, then x(to+7) = L5£1n = 0}, that is, 5@1 can naturally evolve to df, in one
step. If hy € [1: k™], then z(tg + 7) = 55,}%5& = 0, that is, (5@1 can be driven to g, in
one step. No matter in which case, z(tg + p7) = 0, Vp € Z+.

Similarly, for any (o) = 014 € Ry, t € [2: t*], x(to) € {x(—74+1), 2(—7+2), -, 2(0)},

there exists at least a control H 5%, = 5an 41, such that

x(to +7) = Lu(to)z(to)
= f52¢n+15?;%
€ Ry

If hy = k™ + 1, then z(tp + 7) = L5itn € R;_q, that is, 6%1 can naturally evolve to R;_1
in one step. If hy € [1 : k™, then x(tg + 7) = LoI%.dl. € Ry_y, that is, 6%, can be driven
to R;_1 in one step. No matter in which case, there exists a positive integer p, such that
z(to + pr) = 05, Vp > pand p € Z,.

If (2.19) holds when ¢ = t*, then any initial state x(t) € {z(—7+1),2(—7+2),--- ,2(0)}
can reach 0, in t* steps. Therefore, DKVLCN (2.6) is globally stabilizable to z* = d..

(Necessity) We prove it by contradiction. Suppose that DKVLCN (2.6) is globally sta-
bilizable to * = 0y, but the Algorithm 1 never reach Step 3. That implies that equation
(2.19) does not hold until ¢t = k™ — 1. Assume Rjn_1 # () and

k" —1
U R)\ % Akn.
A=0
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Therefore, there exists a state T € Ayn\[Ur—o" Ra] that cannot reach [Us—5' Ry in (" —1)
steps. Hence, state Z can not reach 4y, which contradicts the condition that delayed system
(2.6) is stabilizable to 5. O

Corollary 2.4.2. System (2.6) is globally stabilizable to x* = 05, under the state feedback
event-triggered controlleru(t) = Hx(t), if and only if there exists an integer t* € [1 : k" —1],
such that

COIZ(T) 7é Okm+1, \V/Z 6 {1 . kn],

where T = TRo\Ro + Zf\*zl TE%I‘RA. Moreover, all the event-triggered state feedback gain
matrices H € Lgmy1yxkn under which system (2.6) is globally stabilizable to x* can be
characterized as

H<T,

and the triggering event set is given by I' = Akn\{éin|Colj(H) = 5',§m+1 .

2.5 An illustrative example

In this section, we provide an illustrative example to demonstrate the applicability of the

results obtained in this chapter.

Example 2.5.1. Consider the following delayed Kleene-Dienes type three-valued logical

control networks under event-triggered control:

{Xl(t+1) = X1 (t — 1) Ag Xo(t — 1), 1)
Xo(t+1) = Xy (t— 1) =5 Xo(t — 1),

X1(t+1) ZU(t—l) —3 (Xl(t—l) N3 Xg(t—l)), (2 22)
Xo(t+1) = Ut — 1) A (X1(t — 1) =5 Xo(t — 1)). '

When the control input is triggered for certain states, system (2.22) works; otherwise, the
evolution follows (2.21).

The algebraic formulations of system (2.21) and (2.22) are given, respectively by:

x(t+1) = La(t — 1), (2.23)

w(t+1) = Lu(t — D)a(t — 1), (2.24)
where z(t) = x1(t) X 22(t) € Ag, u(t) € Ag, and

L = 615945877717,
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L = d9[159458777256555555333333333].

The dynamics under the event-triggered control can be re-expressed as

z(t+1) = Lu(t — 1zt — 1),

(2.25)

where L = [Z L] € Lox36 and u(t) € A4. Now, we can design all the event-triggered state
feedback controls such that (2.25) is globally stabilizable to the state z* = &3.
First, according to Algorithm 1, let Ry = {§¢}. The truth matrix Tro|rR, € Baxo is

given by
0 0 0 0 0 O
00 0 0 0 O
T —
Bl =19 0 0 0 0 0
00 0 0 0 O
From (2.26), 2* = 4§ is a fixed point and the truth

_ o O =

0
0
0
0

(2.26)

o O o O

matrix TROlRO € B9 is given by

o 0 0 o o0 o 0 o0 o
— O 0 0 0 0O 0 0 0 o
T = 2.27
Bolfo =10 0000 0 0 0 0 0 (2.27)
o 0 0 0 o0 o0 1 0 O
Then, denote W1 = Ag\ Ry and the truth matrix Tg,w, € Baxg is given by
O 0 0 0 O O O 1 1
O 0 0 0 O O 0 0 o
T = 2.28
B0 00 0 0 0 0 0 0 (2.28)
O 0 0 0 O o o 1 1
From (2.28),
Ry = {65,080}
Next, construct the truth matrix TRU| R, € Buaxo
(000 0 00 0O 0 0 0]
_ o 0 0 o0 o0 o 0 o0 o
T = 2.29
Bl =10 000 0 0 0 0 0 (2:29)
i o 0 0 o o o o0 1 1 |
Then, compute Wy = Ag\(Ro U R1) and construct the truth matrix Tg, i, € Baxo
(00001 0 0 1 0 0 0]
O 0 0 0 O O O o0 o
T = . 2.30
BW2"010 0 0 0 0 0 0 0 0 (2:30)
(000 1 00 1 0 0 0]
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From (2.30),
Ry = {55, 65}

Next, construct the truth matrix TR1| Ry, € Buaxo

0000000 0 0
_ 0000000 0 0
T 9231
B0 000000 0 0 0 0 (2:31)
00 1 0010 0 0

Furthermore, compute W3 = Ag\ (1o U R1 U R2) and construct the truth matrix Tg,w, €
Byxg

O 0 0 0 0O 0O 0O 0 O
e M 232
O 0 0 0 0O 0O 0 O O
From (2.32),
Ry = {9,833, 83}
Now, construct the truth matrix T g, p, = Tryw;-
Based on the above discussion, we have
3
T =Tryr, + ZTR)\—1|R)\
A=1
O 0 0 0 0O OO 0 O
{0 0 0 0 0 0 0 0 0
/110 1 1 0 0 0 0
0o 01 0 0 1 1 1 1

It is obvious that for t* = 3 we have that all the columns of matrix 7" are nonzero. Therefore,
system (2.25) is globally stabilizable to d¢ under the event-triggered control u(t) = Hz(t),
where the state feedback gain matrix H € L4«9 is given by

H=264334334444)].

Besides, the triggering event set I' = {44, 62,94, 03 }.

2.6 Conclusions

In this chapter, the stability and event-triggered control design of DKVLNs have been

investigated. We derived the necessary and sufficient conditions to detect the stability of
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KVLNs with time delays. Furthermore, we presented necessary and sufficient conditions for
the stabilization of DKVLNSs, and designed all the event-triggered state feedback controllers
which can stabilize the DKVLNs to a desired state. Finally, an example was given to

illustrate the effectiveness of the results obtained in this chapter.
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Chapter 3

Robust Control Invariance and
Robust Set Stabilization of
Mix-Valued Logical Control
Networks

3.1 Introduction

Compared with BN and KVLN, MVLN is a more general and representative finite-valued
logical network. In an MVLN, each state takes value from a finite set of different size, and
in order to manipulate MVLN, control inputs are introduced. In addition, the MVLCNs
have been widely used to characterize the control problems of practical networks [7, 143,
46).

It is well known that the performance of practical MVLCNs may be influenced by
internal or external ubiquitous disturbances. This is true, for example, in GRNs the dis-
turbances may be the gene mutation, the duplication or deletion of fragments phenomenon
in genetic recombination, and external environmental stimuli etc. These disturbance in-
puts often make the system unstable [109], as in case of cancer, which can be regarded as
the failure of organism in resisting uncertainties including gene mutation. Therefore, it is
meaningful to design a suitable control scheme such that the system with disturbance is
robustly stabilized to a singleton state or a state set. Some fundamental and important
results on robust stabilization or robust set stabilization problems [67, 127, 71, 81, 56] are

available in the scientific literatures. For the robust control invariance, the existing works
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only concentrate on the criteria to determine whether or not a given set is a RCIS and
provide algorithms to design all possible state feedback gain matrices to keep the robust
control invariance of the given set. Moreover, for the robust set stabilization, the only exist-
ing results concern how to make the system stabilize to a pre-assumed RCIS. Besides, the
existing models for the robust control invariance and the robust set stabilization problems
are limited to BCNs or KVLNs, and these two problems for MVLCNs are not studied in
the necessary detail.

This chapter investigates the robust control invariance and the robust set stabilization
problems of MVLCNs. Moreover, a state feedback control is designed if the robust set

stabilization problem is solvable. The main contributions of this chapter are:

e An algorithm is proposed to compute the LRCIS of any given set.
e Necessary and sufficient conditions for the robust set stabilization of MVLCNs are
derived, and a constructive procedure is presented to design all the time-optimal state

feedback controls.

e It is shown that the obtained results can be used to effectively deal with robust partial
stabilization problem of MVLCNs.

Consider the following MVLCNs with disturbance inputs:

Xo(t+1) = fo(X(@); U(t); (1)),

Xn(t+1) = fu(X(8); U(t); E(1)),

where X (t) = (X1(t), Xa(t), -+ , X, (t)) are the states, U(t) = (Ur(t), Ua(t),- -+, Un(t)) are
the control inputs, Z(t) = (Z1(t), Z2(t), - - - , Z4(t)) are the disturbance inputs; X;(t) € Dy,,
lel:n],Ujt) € Dy, j€[l:m]and Zi(t) € Dy, i € [1:q].

Let x;, u;, and &; be the vector form of X;, U; and =Z; respectively. Then in the light of

the matrix expression, system (3.1) can be expressed in the following algebraic form:
z(t+ 1) = LE()u(t)z(t), (3.2)

where L € Lixpuw, 2(t) = XjLy21(t) € Ay, u(t) = x[Lu;(t) € Ay, E(t) = xI_1&(t) € Ay,
k=TIt ki, v =111 vj and w = [T{_; wi.
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Now, consider a state feedback control in the form of

(3.3)

whose algebraic form is
u(t) = Hx(t), (3.4)

where H € L,y is called the state feedback gain matrix, such that system (3.2) is robustly
stabilizable to the target set.

Remark 3.1.1. There is a standard procedure to transfer any finite-valued logical function

into its algebraic formulation. One can refer to [14] for more details.

3.2 Computation of RCIS

In this section, a novel algorithm to compute the LRCIS of a given set is proposed. More-
over, all the possible state feedback controllers under which the obtained set is the LRCIS
are determined.

From the definition of RCIS of BCNs [71], the following definitions follow.

Definition 3.2.1. (RCIS) A nonempty set S C Ay is called a RCIS of MVLCNs (3.2),
if for any x(t) € S, there exists at least a control u(t) € A,, such that x(t + 1) € S,
VE(L) € A,

Definition 3.2.2. (LRCIS) The subset 1.(S) is called the LRCIS of S, if it is a RCIS of
S, and each RCIS of S is a subset of I.(S).

In the following, for a given nonempty set S C Ay, we will discuss how to compute its
LRCIS.

First, we need to consider the algebraic expression (3.2) of MVLCNs. Let us split
L € Lyxru, into w equal blocks as

L=[L Ly - Ly, (3.5)
where L; € Lixpy, @ € [1 : w]|. Additionally, split each L; into v equal blocks

Li=[L; L} - Lf], (3.6)
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where Lg € Lixk, j€[1:v].
A truth matrix Tsis € Byxk 1s given by

1, if L6l €S, Vie [1:w], VL €S,

0, otherwise.

Let 81 = {6}, | Coli(Tss) # 0,}. It is obvious that S C 8. If Sy = 0, then I.(S) = 0.
Otherwise, for any 52 € 81, there must exist at least a control 8%, such that S is one step
robustly reachable from L. If S; = S, then S is a RCIS and I.(S) = S. It is obvious that
also the reverse holds.

Otherwise, if Sy ; S, then a truth matrix T, |5, € B,xx can be constructed as follows:

1, if LI6L € 8y, Vie[l:w], VoL €8,
[T51|31]j,l= { 1 L5 0p 1, Vv [ W] k 1 (3.8)

0, otherwise.

Compute now S = {8}, | Col;(Ts,is,) # 0,}. It is obvious that S € S;. If Sy = (), then
I.(8) = 0. Otherwise, for any §! € Sy, there must exist at least a control 87, such that S;
is one step robustly reachable from d¢. If Sy = Sy, then for any z(t) = 0% € Sy, there exists

a control u(t) = 47, such that
(t+1) = LoLoIst = L1oL € S, Vi e [1:w].

That implies that S; is a RCIS contained in S. Thus, §; C I.(S). On the other hand, for
any 6L € (S\S1), we can not find a control such that S is one step robustly reachable from
6t d.e. 0L ¢ I.(S), VoL € (S\ Sp). That is, I.(S)N(S \ S1) = 0. Furthermore,

L.(S) € S LS\ ).

Thus, I.(S) C & and therefore, I.(S) = S;.

Otherwise, the above procedure can be executed. Since S is a set with finite number of
states, there must exist an integer ¢ € [1 : |S|], such that S; = S;—1 and Sy #+ 0, Vi’ < t,
where Sy = S. Therefore I.(S) = S;_1, if Sy = 0, then I.(S) = 0.

Remark 3.2.1. From the computation of set S1, the necessary and sufficient conditions
to detect whether or not a given set S is a RCIS can be immediately derived.

Based on the above discussion, we propose the following algorithm to compute the
LRCIS of S.

Algorithm 2 Computation of the LRCIS
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Step 0: Set Sy = S.
Step 1: For t > 1, construct the truth matrix Ts, 15, € Bk

1, if L6 € Sy, Vie [1:w], VoL € S_q,
Tsiaisioalio = { e [Lrel, V8 € Sia (3.9)

0, otherwise.

Compute &; = {0}, | Coli(Ts, ,is,.,) # 0u}. If S; = 0, then I.(S) = 0 and stop the
algorithm. Otherwise, check whether

S =81 (3.10)

If (3.10) holds, denote the minimum number such that (3.10) holds as ¢, and go to Step 2.
Otherwise, let t =t + 1. If t > |S], then I.(S) = ), stop the algorithm, otherwise, go to
Step 1.
Step 2: The LRCIS contained in S is obtained as follows

I.(S) =&

t—1°

(3.11)

Remark 3.2.2. Compared with the robust control invariance proposed in [71], Algorithm
2 does not only provide the method to compute the LRCIS of MVLCNs (3.2), but also

determine all the possible state feedback controllers.
The proof of the following corollary is obvious.

Corollary 3.2.1. The nonempty LRCIS of system (8.2) is S; |, if and only if the nonzero
columns of truth matrices Ts. |s. and Ts. |s. are identical. Moreover, all possible state
t—1' t—1 t—2 t—2

feedback gain matrices H € L, xy under which S | is the LRCIS can be characterized as

! (3.12)

3.3 Robust set stabilization of MVLCNs

In this section, necessary and sufficient conditions for the robust set stabilization of MVL-
CNs based on RCIS are established, and an algorithm to design all the time-optimal state
feedback controls via antecedence solution technique is presented.

From the definition of robust set stabilization of BCNs [81], the following definition

follows.
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Definition 3.3.1. (Robust set stabilization) The MVLCN (8.2) is said to be robustly
stabilizable to the nonempty set S C Ay, if for any initial state x(0) € Ay, there exist a
state feedback control u(t) = Hx(t) and an integer T > 0, such that z(t) € S, Vt > 7 and
{&(t):t e N} C A,.

Lemma 3.3.1. The MVLCN (8.2) is robustly stabilizable to S, if and only if it is robustly
stabilizable to 1.(S).

The proof of Lemma 3.3.1 is trivial.

Remark 3.3.1. If the set I.(S) is robustly reachable from some initial state, then there
exists a state feedback control, such that it can be robustly reachable in at most (k—|I1.(S)])

steps.

In the following, we will study how to design H € L, for the robust set stabilization
problem of MVLCNSs based on the algebraic forms (3.2) and (3.4).

First, for a given set & C Ak, we compute its LRCIS applying Algorithm 2. When
I.(S) # 0, then Algorithm 3 can be used to design all the time-optimal state feedback

controls via antecedence solution technique.

Algorithm 3 Constructing time-optimal state feedback stabilizers

Step 1: Let Wo = I.(S), Wi = Ay \Wj and construct the truth matrix TWO|W1 € B,k

1, if LI6L € Wo, Vi€ [1:w],Vo, € Wy,

(T3 jwr )it = { (3.13)

0, otherwise.

Compute Ry (I.(S)) = {4 | Coli(Tig,w,) # 0v}. Check whether Rq(1c(S)) # 0. If

Ry (1.(S)) = 0, the construction problem of robust set stabilizers is not solvable and we
can stop the algorithm. If 1.(S) U R1(1.(S)) = Ak, set t* = 1 and go to Step 3; otherwise,
go to Step 2.

Step 2: Compute Wy_; = 3;10 RA\(1.(S)) and W; = Ax\W;_1, where

Ro(I1.(S)) = I.(S), t > 2. Construct the truth matrix TWt_l\Wt € B,k

(3.14)

T | {1, if L6l € W,_y, Vi€ [1:w], VoL € W,
Wi |[Welid =

0, otherwise.

Compute R;(1.(S)) = {6L | Coli(Tiw, yw,) # Ou}- If Ri(1e(S)) = (), the construction

problem of robust set stabilizers is not solvable and we can stop the algorithm. If

U Ba(1u(S)) = As. (3.15)
A=0
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the robust set stabilization problem is solvable. Denote the minimum number such that
(3.15) holds as t* and go to Step 3; otherwise, set t =t + 1. If ¢t > k — |I.(S)], the
construction problem of robust set stabilizers is not solvable and we can stop the
algorithm. Otherwise, go to Step 2.

Step 3: The time-optimal state feedback stabilizers H € L, can be constructed as
follows:

H,  <T ,
{ e < Tr()I1s) (3.16)

T;

Hg, sy < Tw, ruas)) T E [1:¢%],

where the truth matrix 77, (s)1.(s) is obtained from Algorithm 2 and

Coly(Ty, ,w,)- if 0 € Ri(L(S)),

0ym, otherwise.

Coll(Tiz, | \r,(1.(s)) = {

Algorithm 3 is depicted in Figure 3.1, where Ry(I.(S)) # 0, A € [1 : t*], and

o

Figure 3.1: Representation of Algorithm 3

Ri(I(8)) [ Rj(1(S)) = 0,Vi,j € [0: 1*],i # j,

which implies that ¢* is the shortest time for all initial states to reach I.(S) under the

disturbances.

Theorem 3.3.2. The MVLCN (3.2) can be robustly stabilized to I.(S) by a state feedback
control u(t) = Hx(t), if and only if

U Ba(1e(8)) = Ay, (3.17)
A=0

where t* and Rx(I.(S)), A € [0: t*] are obtained from Algorithm 3.
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Proof. (Sufficiency) Assume condition (3.17) holds, then for any 6t € Ry(I.(S)), there
exists at least a control Hdy' = ¢/t such that Ry(I.(S)) is one step robustly reachable from
6l € Ry(1.(S)). Then, for any 6> € Ry(I.(S)), there exists at least a control H}> = §72
such that Ro(1.(S)) U R1(I.(S)) is one step robustly reachable from this state. It implies
that state 5? can reach Ry(1.(S)) in one step under arbitrary disturbance, or (5,22 can reach
R1(I.(S)) in one step under any disturbance in set T'; and 6% can reach Ry(I.(S)) in one
step under all the disturbances in I's, where I'; |JI's = A, is a partition of disturbance
inputs. No matter in which case, I.(S) is robustly reachable from Ry(1.(S)) after two steps.

Similarly, for any 6 € Ry(I.(S)), t € [3 : t*], there exists at least a control Hdy =
such that J\Zh Ra(I.(S)) is one step robustly reachable from 6% € Ry(I.(S)). Since there
exists a positive integer t* such that [J5_, Ra(1.(S)) = Ay holds, then all the states can be
robustly steered to I.(S), and therefore, the system (3.2) is robustly stabilizable to I.(S).

(Necessity) Suppose now that the MVLCN (3.2) is robustly stabilizable to I.(S), and
assume by contradiction that the equation J5_q Rx(1.(S)) = Ay does not hold until ¢ =
k —|1.(S)|. Assume Ry, (s)(Ic(S)) # ) and

k7|16(8)|

U BaLe(S)) # Ay
A=0

Then, there exists a state T € Ak\[Ui;‘OIC(S)I R\ (I.(S8))], such that no control can drive it

to | ];;‘OIC(S” R\(1.(S))] under the influence of disturbances. Hence, state T can not reach

I.(S) under any disturbance, which contradicts the condition that the system (3.2) is
robustly stabilizable to 1.(S). O

Based on the above discussion, the following corollary is obvious.

Corollary 3.3.3. System (3.2) is robustly stabilizable to S C Ay under the state feedback
controller u(t) = Hx(t), if and only if

(i) 1(S) # 0,

(ii) there exists an integer t* € [1: k —|I.(S)|], such that
Coly(T) +0,,Vi € [1: k],

where T = T (s)1.5) + Xzt T,y |ry(1.(8)-

Moreover, if (i) and (ii) hold, then for all the time-optimal state feedback gain matrices
H € L, under which the system (3.2) is robustly stabilizable to S can be characterized
as H < T.
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Remark 3.3.2. The results obtained in this chapter can be utilized to investigate the
computation of RCIS, robust set stabilization problem of BCNs or KVLCNs. Moreover,
these results can be used to study robust partial stabilization problem of generic logical

system.

3.4 An illustrative example

In this section, we provide an illustrative example to show how to use the proposed method

to investigate the robust partial stabilization problem of MVLCNs.

Example 3.4.1. Consider the following MVLCN:

Xi(t+1) = [((X1(t) A2 X2(t) V2 E(F) =2 U(1)]
2 [Xi(t) A2 —2(Xa(t) <23 X3(2))],

Xo(t+1) = [(X1(t) ©2 (Xa(t) <23 X5(1))) V2 E(t)] =2 U(1), (3.18)
X3t +1) = {{(X1(t) 42 (Xa(t) ¢33 X5(1))) V2E@)] =2 U(t) }
<3 {[(Xa(t) =3 Z(1)) V3 U(1)] =3 [X1(t) <22 (Xa(t) <23 X3(1))]},

where X1, Xo € D, X3 € D3 are the states, U € D3 is the control input, and = € D is the
disturbance input. For more details about the definitions and notations of logical operators

for miz-valued logical variables (refer to [1]]).

In the following, we aim to design the time-optimal state feedback controllers such that
the states of the first two nodes of system (3.18) are globally convergent to x? under any
disturbance € € A, where 22 = 2§ x 2§ = §3.

Let M = {63 x 04| 1 € [1 : 3]} = {07,,6%,,07,}. In this case, the robust partial stabi-
lization problem of MVLCNs (3.18) can be transformed into the robust set stabilization
problem.

Using the matrix expression of mix-valued logical function, system (3.18) can be con-

verted to

z(t + 1) = LE(t)u(t)x(t), (3.19)
where z(t) = x3_,7(t) € Aqa, u(t) € Ag, £() € Ay, and
L = 612[783327987789783327987789
451212114654456783327987789

7833279877894593210981010119].
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First, split L into 2 blocks as L = [L; L] and split each L;, i € [1 : 2] into 3 equal

blocks as
LT = 612[783327987789], LY =0615783327987789],
I = 612[783327987789], L2=015[783327987789],
L3 = 012/451212114654456], L3 =012[45932109810 10 11 9).

Then, according to Algorithm 2, let Mo = M. The truth matrix T r, € Bsxiz2 is
given by

0o 0 000 0 1 1 1 0 0 O
Tafme=10 0 0 0 0 0 1 1 1 0 0 O (3.20)
O 0 0000 0 0 0 0 0 O
From (3.20),

My = {53275%»5?2} = Mo.

It is obvious that M is a RCIS. Then, according to Algorithm 3, let Wy = M, W,
Au\WO and construct the truth matrix TW0|W1 € Bsxi2

1 1.0 0 0 1 0 0 0 1 1 1
Tpgw, =1 1 0 0 0 1 0 0 0 1 1 1 (3.21)
0o 000 0 0 O0OOO0OTO0OTO0O0
From (3.21),

Rl(M) = {5%27 5%27 5?27 5%3) 5%57 5%5}

Ro(M)URl(M) and W2 = Alg\Wl, where Ro(M) = M
Construct the truth matrix TW1|W2 € Bsxi2

Then, compute W

o 0o 001 00 0 0 o0 0O
TW1\W2 =0 0 0 0 1 0 0 0 0 0 0 O (3.22)
o 0o 101 00 0 0 0 0O
From (3.22),

Ro(M) = {315, 03, }.
Furthermore, compute Wy = Rg(M) | R1 (M) U Ra(M), W3 = A15\W3 and construct

the truth matrix Ty, w, € B3x12
0o oo 1 0 0 0 0 00 00
w,w, =10 0 0 1 0 0 0 0 0 0 0 0 (3.23)
o oo 1 0 0 0 0 O0O0 0 0
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From (3.23),
R3(M) = {01y}

It is obvious that (J5_o Ra(M) = Aja. Then the robust stabilizers of set M is given by

Hy o < Taro Mmoo

Hlnl(/vt) < TWO\Rl(M)’ (3.24)

o = T, 1Ry (M)

o < Ty msmy

where Tz, vy = Tiwgwn T irevy = Tivawe 20 Ty py gy = T
From (3.24), it follows that the possible choices of matrix H € L3x12 are

Coly(H) € {63,602}, 1 € [1:12]\ {3,4,5}, (3.25)
Cols(H) = 33,

Cols(H) € {03,43, 53},

Coly(H) € {63,63,65}.

Based on the above discussion, the states of the first two nodes of the system (3.18)
keep 22 = §} forever regardless the disturbance inputs under the state feedback control

u(t) = Hx(t), where a state feedback gain matrix is given by

H = 6223231221122

3.5 Conclusions

In this chapter, we have investigated the robust control invariance and robust set stabi-
lization problems of MVLCNs with disturbance inputs. An algorithm has been proposed
to determine the LRCIS for MVLCNs of any given set. Moreover, necessary and sufficient
conditions to detect the solvability of robust set stabilization problem of MVLCNs have
been derived. Using an antecedence solution technique, a constructive algorithm has been
established to design all the time-optimal stabilizers. Finally, an illustrative example has
been presented to show the applications of the results obtained in this chapter to robust
partial stabilization problem of MVLCNs.
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Chapter 4

Robust Set Stability and Set
Stabilization of Probabilistic

Boolean Control Networks

4.1 Introduction

Recently, set stability and set stabilization have been one of the hot topics in deterministic
model [36, 137, 59] and probabilistic model of GRNs using STP method [37, 147, 61]. Set
stability of BN implies that all the initial states can reach the only invariant set while
set stabilization of BCN means that all the initial states can be steered to the desired
control invariant set by control inputs. Several kinds of concepts of set stability and set
stabilization of PBCN were provided in [37, 147, 75, 142, 99]. It is obvious that if the target
set becomes a single-point set, then the corresponding problems are converted to the usual
stability and stabilization problems [74, 75, 73], respectively.

In a real GRN external disturbances are ubiquitous and may lead the network dynamics
to some unexpected behaviours [109]. Therefore, it is important to study set stability and
set stabilization of PBCN with disturbances. There are some works concerning robust
control invariance and robust set stabilization of BCN [67, 127, 71, 81]. Nevertheless, due
to the effect of disturbance inputs and stochastic nature of PBCN, the results in BCN
are not easily generalized to PBCN. In [83], the robust control invariance of PBCN was
investigated via event-triggered control. To the best of author’ knowledge, there are no

results available on robust set stability and robust set stabilization of PBCN at present.

This chapter investigates the robust set stability of PBN and the robust set stabilization
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of PBCN. Using the STP method, PBNs and PBCNs with disturbances can be converted
into the disturbed stochastic discrete time systems with algebraic forms, based on which
the classical control theory and methods can be used to analyze and control logical systems.

The novelties are the following:
e The LRIS and LRCIS with probability 1 are calculated for the first time.

e The criteria to determine the finite-time robust set stability and robust set stabi-
lization with probability 1 are firstly derived. The results obtained can be utilized to
study several unsolved disturbed PBCN problems, including finite-time robust output

tracking, robust synchronization and robust partial stabilization with probability 1.

e A design procedure is proposed to calculate all the time-optimal robust feedback
stabilizers via antecedence solution technique. Compared with the traditional design
method, the controls can be obtained directly from the nonzero columns of the truth

matrices, and the computation involved can be easily executed by Matlab.

A disturbed PBN is a randomly switched Boolean network with disturbances
X(t+1) = f7O(X(1);2(1)), (4.1)

where X (t) = (X1(t), Xa(t), -+, Xn(t)) € D™ and =Z(t) = (E1(t), Za(t), - -+ ,E4(t)) € DT
are the states and disturbance inputs, respectively. Moreover, o(t) € [1 : N] is a stochastic
switching signal and N denotes the number of possible sub-systems. Finally, f* : D""9 —
D", v € [1: NJis an n-dimensional logical function.

Based on the matrix expression, we identify 1 ~ 63, 0 ~ 63 and v ~ 6%, where v € [1 :
N]. Then, in the vector form, the disturbed PBN (4.1) becomes

z(t +1) = Lo(t)§(t)z(t) = [Ly Ly -+ Ly]o(£)€(t)x(t), (4.2)

where L, € Lonyon+q is the structural matrix of f¥, v € [1: NJ, 2(t) = X 2;(t) € Agn,
£(t) = xi1&(t) € Aga and o(t) € Ay. Here, we assume that o(t) is an independent
identically distributed process with probability distribution

P{o(t) = 0%} = P{subnetwork j is selected} = pj, (4.3)

where 0 <p7 <1,j € [1: N]and Zévzl pj = 1. Denote the probability distribution vector
of o(t) as P? = [p] pg - - p%]T. Then the transition probability matrix of disturbed PBN

(4.1) is expressed as follows:

P=LxP°:= [Pl P2 cee ]?2(1]7 (44)
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where [Pyl;j = P{x(t + 1) = 0hu|2(t) = 8., 6(t) = 05}, k € [1: 29 and 0 < [Pyli; < 1,
¥ Prliy =14, € [1:27).

The dynamics of a disturbed PBCN with stochastic switching signals can be denoted
by

X(t+1) = fOX)ER):; U®), (4.5)

where U(t) = (Uy(t),Ua(t), -+ ,Un(t)) € D™ are control inputs. Similarly, the disturbed
PBCN (4.5) can be converted into the following algebraic formulation

z(t+1) = Lo() () u(t)x(t), (4.6)

where L € Lony non+m+e and u(t) = X u;(t) € Agm. Furthermore, the control-dependent
transition probability matrix of disturbed PBCN (4.6) is expressed as P = L x P°. Split

now the matrix P into 29t™ equal blocks:

P:[ﬁﬁf Ff

—om

m 152 ) =2
P2P2 P2 P2q P2q qu], (47)
where [ﬁ;]” = P{x(t+1) = 6u|z(t) = 6, E(t) = 05, u(t) = 6bn}, k€ [1:29], 1 € [1:27]
and 0 < [Pyli; <1, X2 [Pyliy = 1,05 € [1:27).
For PBCN (4.6), we consider the state feedback controllers in the form

u(t) = Ha(t), (4.8)

where H € Lomyon is called the state feedback gain matrix to achieve our control objectives.

4.2 RIS with probability 1 of PBNs

Definition 4.2.1. (RIS) A nonempty set S C Agn is called a RIS with probability 1 of
PBN (4.2), if for any x(t) € S and £(t) € Aga, it follows that P{z(t+1) € S|z(t) € S} = 1.

Definition 4.2.2. (LRIS) The subset 1(S) is called the LRIS with probability 1 of PBN
(4.2) contained in S, if it is a RIS with probability 1, and each RIS with probability 1 in S
is a subset of 1(S).

Definition 4.2.3. (RCIS) A nonempty set S C Agn is called a RCIS with probability 1 of
PBCN (4.6), if for any x(t) € S and &(t) € Aqga, there exists at least a control u(t) € Agm,
such that P{z(t +1) € S|z(t) € S} = 1.

Definition 4.2.4. (LRCIS) The subset I.(S) is called the LRCIS with probability 1 of
PBCN (4.6) contained in S, if it is a RCIS with probability 1, and each RCIS with proba-
bility 1 in S is a subset of I.(S).
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In the following, for a given nonempty set S C Agn, we discuss how to compute its
LRIS with probability 1. Here, we only investigate the RIS and RCIS with probability 1,
for the convenience of discussion, the statement “with probability 1”7 is omitted without
confusion.

First, a truth matrix Tss € Boaxzn is constructed, where

1, if Y5 cslPilij =1, V& €S,
[Tsislj = { P €S (4.9)

0, otherwise.

Compute S; = {6jn Col;(Tsis) = 1a¢}. It is obvious that S; C S. If §; = 0, then
I(S) = 0. Otherwise, for any 0}, € S;, S is one step robustly reachable from ¢}, with
probability 1. If S = S, then S is a RIS and I(S) = S. Conversely, if I(S) = S, then
S =8.

Otherwise, if S; ;Cé §, then a truth matrix T, |s, € Baaxan can be constructed as follows:

1, if Zégne& [Pk]i,j =1, vé%n S 81,

Tsy 151k, = { (4.10)

0, otherwise.

Compute now Sy = {5%n | Colj(Ts,s,) = 1aq}. It is obvious that Sy € Sy. If So = (), then
I(S) = 0. Otherwise, for any 6;71 € 8Ss, 81 is one step robustly reachable from 5§n with
probability 1. If S, = Sy, then for any z(t) = 63, € S;, we have Col;(Ts,|s,) = 124, or
equivalently, [Ts,|s,Jx,; = 1, Vk € [1 : 29]. That implies that

1= Y [P,
5én651

= 3 Pla(t+1) =0 |a(t) = 0. € Si,E(t) = 0%}

5;,1 €S
=P{z(t+1) € S | x(t) = & € S1,£(t) = 0%, ), Yk e [1:29].
Thus 8 is a RIS of system (4.2) contained in S. Hence, S; C I(S). On the other hand, for

any &, € (S \ 81), S is not one step robustly reachable from &1, with probability 1, i.e.,
8, & 1(S), V8%, € (S8\ Sy). That is, I(S)N(S\ S1) = 0. Furthermore,

1(8) € S S\ ).

Thus, I(S) C &1, and therefore, I(S) = S;.
Since S is a set with a finite number of states, there must exist an integer p € [1 : |S]],
such that S, = S,—1, where Sy = S and thus I(S) = S,_1. If S, = 0, then I(S) = 0.
Based on the above discussion, we propose the following algorithm to compute the LRIS

with probability 1 of PBN (4.2) contained in S.
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Algorithm 4 Computation of the LRIS

Step 0: Set Sp = S.
Step 1: For ¢ > 1, construct the truth matrix Ts, \|5,_, € Boaxan:

1, if 257‘, S, [Pk]z, =1, V(S%n € S,
[T, 11501k = ot (4.11)
0, otherwise.
Compute S; = {03, | Col(Ts,_yis,_,) = 12a}. If §; = 0, then I(S) = ), and stop.
Otherwise, check whether
St — St—1~ (412)

If (4.12) holds, denote the minimum number such that (4.12) holds as #, and go to Step 2.
Otherwise, let t =t + 1 and go to Step 1.
Step 2: The LRIS of system (4.2) contained in S is given by

I(S) =8

t—1°

(4.13)

In fact, from Step 1 of Algorithm 4, we immediately have the following proposition to

determine whether a given set S is a RIS.

Proposition 4.2.1. Given nonempty set S C Aon, the following conditions are equivalent:
(i) S is a RIS of system (4.2).

(ii) S = {8 | Col;(Ts;s) = 1aa}.

(i) 3si,es i1 [Piliy =27, Y6}, € S.

Proof. (i) = (ii) Suppose that S is a RIS with probability 1 of PBN (4.2). Then for any
z(t) = 6. € S and £(t) = 05, € Ag, it holds that

1=P{z(t+1) € Slz(t) € S}
= > Pla(t+1) =0} | 2(t) = 6}, € S}
6in €S
= > [Pulij, Vke[1:27.
6in€S
It implies that [Tsslx; = 1, Yk € [1 : 29] or equivalently, Col;(Tss) = 124. Hence, (ii)
holds.
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(i) = (iii) Since S = {8 | Col}(Ts)s) = 1ad}, then for any 8. € S, we have
COlj(TS\S) = 194, that is [TS\S]k,j =1,Vk € [1 : 2q]_ Hence, Zz?%nES[Pk}i,j =1,Vk e [1 : Zq}.
Thus,

24 24 '
SN Pilii= Y Y [Py =29, V8. €S
k=14i, €8 oin €S k=1
(13i) = (i) From the above equation and 0 < Z&;neS[Pk]i,j < 1, we have that
> [Piliy =1,Vk € [1:29).
din €S
Then, for any z(t) = 63, € S and £(t) = 65, € Aga, we have Z&;nes[Pk]i,j =2 51,8 P{z(t+
1) = 0k | 2(t) = 6}, } = 1. Thus, S is a RIS of system (4.2). O

Similarly, the following algorithm computes the LRCIS of PBCN (4.6) contained in any
nonempty set S C Agn.

Algorithm 5 Computation of the LRCIS

Step 0: Set Sp = S.
Step 1: For ¢ > 1, construct the truth matrices Ts, |s,_, € Bamxan, where

Lt Y esy Lie1[Piliy = 2% Vo3 € S,
Tsi_iisi-ilts = e ’ (4.14)
0, otherwise.
Compute S; = {03 | Col;(Ts,_,is,_,) # Oam}. If S; = 0, then I.(S) = (), stop the
algorithm. Otherwise, check whether
S =8-1. (4.15)

If (4.15) holds, denote the minimum number such that (4.15) holds as ¢, and go to Step 2.
Otherwise, set t =t + 1 and go to Step 1.
Step 2: The LRCIS of system (4.6) contained in S is given by

L(S) = S-

t—1°

(4.16)

Remark 4.2.1. Since S is a finite set, Algorithm & will terminate within | S | steps.
Moreover, from Algorithm 5, all the state feedback gain matrices H € Lomyon to keep the

robust control invariance of PBCN (4.6) can be determined as

H <T
‘Sj;l - S’tlllS/t\—17

< .
\(Agn\sttl) = 12mX2"|<A2n\s;1>
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4.3 Finite-time robust set stability with probability 1
of PBNs

Definition 4.3.1. (Robust set stability) The PBN (4.2) is said to be finite-time robustly
stable to the nonempty set S C Agn with probability 1, if for any initial state x(0) € Agn,
there exists an integer T > 0, such that P{z(t) € S | (0) = xo} = 1, V&t > 7 and
{&(t) - t € N} C Aga.

Lemma 4.3.1. The PBN (4.2) is finite-time robustly stable to S with probability 1, if and
only if it is finite-time robustly stable to I1(S) with probability 1.

Remark 4.3.1. Without causing confusion, the robust set stability mentioned below is the

finite-time robust set stability with probability 1.

In the following, we consider how to determine whether system (4.2) is robustly stable
to § C Agn. Firstly, compute the LRIS with probability 1 according to Algorithm 4 and
assume [(8S) # 0.

Then, let Wi = Age\I(S) and construct the truth matrix T7s)w, € Baaxan:

Lt Y ens)[Palig = 1, V05, € Wi,

(Tr(sywilky = { (4.17)

0, otherwise.
Compute Ry(1(S)) = {8, | Colj(Ty(syw,) = lae} and denote Wy = Agn\W,;_y, where
Wiy = Uy Ra(I(S)), Ro(I(S)) = I(S), t > 2 and t € Z,. Then, construct the truth

matrices T L, € Boayon as follows:

L if Y o, [Piliy =1, V8. € W,
B, ywilki = Q".G ’ ’ (4.18)
0, otherwise,
and compute Ry(I(S)) = {6}, | Col;(T; W w,) = laa}. For t € Z,, it is obvious that
Ri(I(S)) C W,. Let Wy = I(S) and construct the truth matrix Ty A R(1(S)) € Basxan:

Coly(Typ, ), if 630 € Ri(I(S)),

094, otherwise.

Coli(Tyy,_, 1k, (1(s))) = { (4.19)

From the computation of the robust reachable sets Ri(I(S)), t € Z,, we know that
there exists at least a state in each Ry(I(S)) and R;(I(S)) N R;(I(S)) =0, Vi,j € N,i # j.
If there exists an integer ¢ such that R{I(S)) = 0, then R,(I(S)) = 0, V¢ > . Hence, there
are at most (2" — |I(S)|) nonempty sets. For any initial state 2(0) = 3., i € [1 : 2"], if
I(S) is robustly reachable from &5, with probability 1, then there must exist an integer \,
such that 65, € Ry(I(S)) and X < 2" — |I(S)].
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Remark 4.3.2. If the set I(S) is robustly reachable with probability 1 from some initial
state, then it can be robustly reachable with probability 1 within (2" — |1(S)|) steps.

The evolutionary dynamics of system (4.2) can be depicted in Figure 4.1, where t* €
[1:2" —|I(S)]].

G N)

R (I(S)) o —[Ry(I(S) lf—1 JR:(1(S5)) @

e )

Figure 4.1: Hlustration graph of evolutionary dynamics of PBN (4.2)

Based on a series of truth matrices Ty, \\ryas) t € Ly constructed in (4.19), the
following criteria are provided to detect the robust set stability of PBNs.

Theorem 4.3.2. System (4.2) is robustly stable to S C Agn, if and only if
(i) 1(8) # 0,
(it) there exists an integer t* € [1: 2" — |I(S)]] such that
T = 1g0x9n,

where T = Trs)s) + S T, L ira(1(8)
Proof. (Necessity) Suppose that system (4.2) is robustly stable to & C Agn, then system
(4.2) is robustly stable to I(S), which implies that I(S) # 0.

Since system (4.2) is robustly stable to I(S), then there exists an integer t* € |1 :
2" — |1(S)|] such that Js_y Ra(I(S)) = Age and Ri(I(S)) N\ R;(I(S)) = 0, Vi, j € [0 : t*],
i # j. Moreover, from Algorithm 4, we have

{1% if 63, € I(S),
Colj(Tr(s)1(s)) = (4.20)
094, otherwise.
From the construction of the truth matrices TWX_1|WA € Boaxan and (4.19), we immediately
have

Wi_1|RA(I(S)) (4.21)

024, otherwise,

- {12q, if 63, € RA(I(S)),
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where A € [1: t*]. Based on the above discussion, we obtain
A t*
T =Tusyis) + 22 Tw, mais)
A=1
- 12q><2n.

(Sufficiency) Assume that I(S) # () and suppose that there exists an integer t* € [1 :
— |1(S)|] such that T = 1yexon. Let Ag = {j | 63, € I(S)}, Ay = {j | &4 € Rx(I(S))},
A€ [1:t*]. For any j € [1:2"], we have

— Col;(Tys) +ZCol W R (1(S)))

= Col;(Tys)i1(s)) + CoLi (T, 1(5)+
Col;(T; W1 |Ra( 1(3))) -+ Col;(T; Wes 1| R (1(S)) )-
Since I(S) # 0, from (4.20), it follows that Vj € Ay,

{001 i(Trs)rs)) = Las,
Coli(Tyg, _,|ry(1(s))) = 020, VA€ [1:¢7].

(4.22)

Moreover, Ry(I1(S)) # 0, A € [1: t*]. In fact, if not then T' < 1gqxon, which is a contradic-
tion to condition (ii). Thus, from (4.21), we obtain Vj € Ay,, Ao € [1 : t¥],

Col(Tys)1(s)) = 024,

Col; (T Wag—1]Rag ( (1(s))) = Las, (4.23)

Coli(Tiw, | |ry(1(s))) = O20: YA F Ao, A€ [L:¢7].

According to (4.22) and (4.23), we have S25_ | Ay |[= 2" and A;A; =0, Vi, 5 € [0 : 7],
i # j, that is, s_g RA(I(S)) = Agn and R;(I(S)) N R;(I(S)) =0, Vi,j € [0: t*], i # j.
From the computation of Ry(I(S)), A € [1 : t*] and taking into account that I(S) is a RIS
with probability 1 of system (4.2), then system (4.2) is robustly stable to I(S), which is
equivalent to system (4.2) is robustly stable to S. O

4.4 Finite-time robust set stabilization with probabil-
ity 1 of PBCNs

Definition 4.4.1. (Robust set stabilization) The PBCN (4.6) is said to be robustly sta-
bilizable to the nonempty set S C Agn, if for any initial state x(0) € Agn, there is a state

54



4 — Robust Set Stability and Set Stabilization of Probabilistic Boolean Control Networks

feedback control u(t) = Hx(t) and an integer T > 0, such that P{z(t) € S| z(0) = xo} =1,
Vit > 1 and {&(t) 1 t € N} C Aga.

Lemma 4.4.1. The PBCN (4.6) is robustly stabilizable to S, if and only if it is robustly
stabilizable to 1.(S).

In the following, we will study how to design H € Lomon for the robust set stabilization
problem of PBCN.

For a given set & C Ao, compute its LRCIS according to Algorithm 5. Assume that
I.(S) # 0, then the following procedure is proposed to design all the time-optimal state

feedback controls via antecedence solution technique.

Algorithm 6 Constructing the time-optimal state feedback stabilizers

Step 1: Let Wy = I.(S), Wi = Ag.\Wj and construct the truth matrix

TWolVVl € Bomyon:

. 5l j
L, if ZsénEWo i1[Pilig = 29, Y6}, € W,

(Tiggon s =

Wo| Wyl (4.24)

0, otherwise.

Compute Ry (I,(S)) = {8 | Colj(Ti,w, ) # O2m}. Check whether Ry (1:(S)) # 0, if
R1(1.(8)) = 0, stop the algorithm. If I.(S) U R1(1.(S)) = Agn, set t* =1 and go to Step
3; otherwise, repeat Step 2.

Step 2: For t > 2, compute W,;_; = 5_{) Ra(1.(S)) and W, = Aga\W,_;, where
Ro(1(S)) = I(S). Construct the truth matrix Ty, |y, € Bamxan:

1Lif Sy o 2 [Phiy = 29, V8L, € W,
T, wilis = n Wiy SELE R ’ (4.25)
0, otherwise.
Compute R;(1:(S)) = {8 | Coly(Typ, ,w,) # Oan}. If Ry(1e(S)) = 0, stop the algorithm.
If

U Br(1(S)) = Aar, (4.26)
A=0

denote the minimum number such that (4.26) holds as t* and go to Step 3; otherwise, let
t=t+ 1 and go to Step 2.
Step 3: The time-optimal state feedback stabilizers H € Lomy9» can be constructed as

follows:

H, <T )
{ s < Th(s)1.68) (4.27)

Hy, sy < T ruas)y £ € [1:t%],
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where the truth matrix 77, (s)1.(s) is obtained from Algorithm 5 and

Coly(Typ, w,): if 6 € Ri(IL(S)),

Col; (T ©)) =
T\ W1 |Re(1(S)) {02,”’ otherwise.

Remark 4.4.1. If the set 1.(S) is robustly reachable with probability 1 from some initial
state, then there exists a state feedback control, such that it can be robustly reachable with
probability 1 within (2" — |1.(S)|) steps. Thus, if the robust set stabilization problem of
PBCN s solvable, Algorithm 6 will terminate within (2" — |1.(S)|) steps.

Theorem 4.4.2. The PBCN (4.6) is robustly stabilizable to 1.(S) under the state feedback
control u(t) = Hx(t), if and only if there exists an integer t* € [1: 2" — |I.(S)|], such that

U BA(L(S)) = Ao, (4.28)
A=0

where H € Lomyon and Ry(1.(S)), A € [0 : t*| are obtained from Algorithm 6.

Proof. (Sufficiency) Assume that there exists an integer t* € [1 : 2" — |I.(S)]], such that
ﬁ\;o Ry(I(S)) = Agn. First, for any 63, € Ry(I.(S)), there exists at least a control
H63, = 6%, such that

24
> Z[ﬁ;]ml =24,

(%n eWo k=1

Since 0 < X5 7, [ﬁiﬂm& < 1, then
QTL

1= 3 P

5;” GWO
= > P{z(1) =8} | 2(0) = 64, £(0) = 65, u(0) = 4 }
6;7,, EWO

= P{x(1) € Wo | 2(0) = 65, £(0) = 65, u(0) = 6%}, VE € [1:29).

That implies that 625 € Ry(I.(S)) can reach I(S) in one step with probability 1 under
any disturbance & € Agq. Moreover, for any 032 € Ra(I.(S)), there exists at least a control
H6}: = 6%, such that
249
=l
> D Pl =20
(%n EWI k=1
Then, 62 € Ry(I,(S)) can reach I.(S)|JR1(I.(S)) in one step with probability 1 under
any disturbance £ € Age. Let Age = I't U2 UI's be a partition of disturbance inputs
set, where I'; N\T; = 0, Vi,j € [1 : 3], i # j. The reachability of 82 € Ry(1.(S)) to
I.(S) U R1(1.(S)) implies the following cases:
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(1) for any 6%, € I'y, 622 can reach R;(I.(S)) in one step with probability 1;
(2) for any 554 € Ty, 633 can reach I(S) in one step with probability 1;

(3) for any 551 € Ty, 622 can reach Ry (1.(S)) in one step with probability p;; (the probabil-
ity is related to the disturbance) and 2% can reach I.(S) in one step with probability
I —pr.
Note that T'y # Ag, otherwise, 622 can reach I.(S) in one step with probability 1 under
any disturbance & € Ay, it means that 62 € Ry(I.(S)), which is a contradiction to
Ry (1.(S))N R2(I.(S)) = 0. No matter in which case, I.(S) is robustly reachable from
Ry(1.(S)) with probability 1 after two steps.

Similarly, for any 65, € Ry(I.(S)), t € [3 : t*], there exists at least a control H&, = 6%,
such that (J5_) Rx(1.(S)) is robustly reachable from R;(I.(S)) with probability 1. If (4.26)
holds, then all states can be robustly steered to I.(S) with probability 1. Therefore, PBCN
(4.6) is robustly stabilizable to 1.(S).

(Necessity) We prove it by contradiction. Suppose PBCN (4.6) be robustly stabiliz-
able to I.(S), but the equation (4.26) does not hold until ¢ = 2" — |I.(S)|. Assume

Rgn,“c(g)‘([C(S)) # @ and
2" |1e(S)]

U BaL(S)) # Do,
A=0

It implies that there exists a state T € AQn\[UiiB‘IC(SH R\(1.(S))] such that no control

can drive it to [U?\Z)HC(S}I R\ (I.(8))] with probability 1 under the influence of disturbances

n (2" — |1.(S)|) steps. Hence, state T can not reach I.(S) with probability 1 under any
disturbance { € Agq, which contradicts the condition that the system (4.6) is robustly
stabilizable to I.(S). O

Based on the above discussion, the following corollary is obvious.

Corollary 4.4.3. The system (4.6) is robustly stabilizable to S C Agn under the state
feedback controller u(t) = Hx(t), if and only if

(i) 1(S) # 0,
(ii) there exists an integer t* € [1: 2" — |I.(S)|], such that
Coli(T) # Ogm, Vi € [1:27,
where T = Ty, (s)j1.(5) + S5o1 T,y (105

Moreover, if (i) and (ii) hold, then all the time-optimal state feedback gain matrices H €

Lomyon under which system (4.6) is robustly stabilizable to S can be characterized as H <
T.
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4.5 Illustrative examples

In this section, we presents two examples to demonstrate the applicability of the results

obtained in this chapter.

Example 4.5.1. Consider a disturbed PBN of the form (4.2), with n = 3, ¢ = 1, and
suppose that

Ly =0s[1313515111115555], pJ=0.9, (4.29)
L, =05[1331556231335555], pg=0.1.

Then, the transition probability matriz of the disturbed PBN (4.29) is given by

P = p{ Ly + p§ * Ly

1 0 09 01 0 09 0 09 09 1 09 09 0 0 0 0]

00 0 0 0 0O 01 0 0 0 0 0 0 0 0

0 1 01 09 0 0 0 01 0 01 01 0 0 0 0
oo 0o 0 0 O 0 0 0 0 0 0 0 0 0
1o 0 0o O 1 01 09 0 O O O O 1 1 1 1]

o0 0 0 0O 0 0L O O 0O O O 0 0 0 0

00 0 0 0 O 0 0 0 0 0 0 0 0 0

(000 0 0 0 0 0 0 0 0 0 0 0 0]

=[P, Py).

Let verify now whether PBN (4.29) can be robustly stable to S = {4}, 63,3}
First, according to Algorithm 4, denote Sp = S. The truth matrix Ts,|s, € Baxs is
given by
1 0 1. 0 1 O 0 O
T. = . 4.30
11 001 01 0 0 0 (4.50)
From (4.30),
Sy = {68,03,05} = So.

It is obvious that S is a RIS with probability 1 of system (4.29). Let now Wy = S,

W1 = Ag\Wy and construct the truth matrix TWO\Wl € Boys

0 1 0 1 0 1 0 O

/— 4.31
WoWi ™" 1'g 1 0 1 0 1 1 1 (431)

From (4.31), it follows that
Ry(S) = {45, 03, 05 }-
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Construct now the truth matrix TW0|R1(S) € Boysg

(4.32)

. Jo 10 1 01 0 0
Wolts@® = 1 g 1 o9 1 0 1 0 0]

Then, compute W1 = Ro(S) U R1(S) and Wy = Ag\W1, where Ry(S) = S. Construct
the truth matrix TW1|W2 € Boysg

0000 0 0 1 1
]. (4.33)

Te o =
Wl [00000011

From (4.33), it follows that

Moreover, construct the truth matrix TW1| Ra(S) = TW1\W2'

Based on the above discussion, we have

T'=Tss+ TWO\Rl(S) + TW1|R2(S)
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1

It is obvious that for * = 2 we have T = 1ays. Therefore, system (4.29) is robustly stable
to S.

Example 4.5.2. Consider the reduced disturbed PBCN model of FEscherichia coli intro-

duced in [59], which consists of the following two subnetworks:

fi = (Xa(t) VX3(8),U(t) AXa(8),U(t) V(E(E) AXa(t), pT =09, (4.34)
fo = (Xa(t) vV X5(1),U(t) A Xa(t), X5(1)), p5 = 0.1,

where the states X1, X2 and X3 denote the lac mRNA, the lactose in high concentrations,
and the lactose in medium concentrations, respectively; the control input U denotes the
extracellular glucose and the disturbance input = denotes the virus invading the Escherichia

coli network.
Under the framework of algebraic formulation, we obtain

Ly =0)11153337333744481115333744484448], pJ=0.09,
Lo =03[12163438343834381216343834383438], p3=0.1.
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Then, the control-dependent transition probability matrix of the disturbed PBCN (4.34)
is given by

P =p{ *L; + pg * Ly
(109

0.9
0.1

o O O O

0.9
0.1

o O O O O O

0.9
0.1

o O O o o O

0.9
0.1

O O O O O O O =B O O O oo o o o -
o
Ne}
SO O O O O DO O B O O O o o o o =
O O O O O H O O O oo o o o = oo
O O O O O B O O O o oo o = o o
OOOOQQOOOOOOOHOO
No R
OOOOHOOOOOOOQQOO
™)
OOOOQQOOOOOOOHOO
Nol
HOOOOOOOQQOOOOOO
— O
O O O O B O O OO OO0 oo = o o o
_ O O O O O O O H O O o o o o o

o O O O

—1 =2 =1 =2
= [P P] Py Pyl
Consider now the problem of designing all the time-optimal state feedback controllers
such that system (4.34) is robustly stabilizable to the state set S = {4}, 63,05}
First, according to Algorithm 5, let So = S§. The truth matrix Ts,\s, € Baxs is given
by
1 0 1 0 0 0 0 1
T. = : 4.35
=10 00 0 0 0 0 1 (4.85)
From (4.35),
S1 = {63,03,05} = So.
It is obvious that S is a RCIS with probability 1 of system (4.34). Then, according to
Algorithm 6, let Wy =S, Wi = Ag\Wj and construct the truth matrix TWo\Wl € Boys

000 00 0 1 0
. (4.36)

Tf:
WolWh [00001000

From (4.36),
Ry(8) = {3, 0}
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Then, compute W1 = Ry(S) U R1(S) and Wy = Ag\W;, where Ry(S) = S. Construct
the truth matrix TW1|W2 € Boys

0 0o 0 1 0 0 0 O

/— 4.37
WilWz""1'g 0 0 0 0 0 0 0 (437)

From (4.37),
Ry(S) = {45}
Then, compute Wy = Ro(S) U R1(S) U R2(S) and W3 = Ag\W,. Construct the truth

matrix TW2|W3 € Boysg

0 0 0 0 0 1 0 O

/— 4.38
WelWa ™" 1'g 1 0 0 0 1 0 0 (4.38)

From (4.38),
Ry(S) = {63, 35 }-
Based on the above discussion, we have TW0| Ri(S) = TW()'Wl, TW1\ Ra(S) = TW1\W2 and

TW2|R3(S) = TW2‘W3. ThUS,

3
T=Tss+ ) T, \|rys)
A=1

It is obvious that for #* = 3 we have that all the columns of matrix 7' are nonzero. Therefore,
system (4.34) is robustly stabilizable to S = {43, 63, 0§} under the state feedback control
u(t) = Hz(t). Moreover, there are 4 choices of time-optimal state feedback gain matrices
H e Loys:

= &[12112111],
= 512112112
= 5[12112211]
= 512112212

)

)

SuESESUIIESCRSY

4.6 Conclusions

In this chapter, the finite-time robust set stability with probability 1 of PBNs and finite-
time robust set stabilization with probability 1 of PBCNs, have been investigated respec-
tively. On one hand, we proposed an algorithm to compute the LRIS with probability 1
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contained in a given state set and presented necessary and sufficient conditions to deter-
mine the finite-time robust set stability with probability 1 of PBNs. On the other hand,
we have constructed an algorithm to compute the LRCIS with probability 1 contained in a
given state set. Based on this RCIS, we derived some necessary and sufficient conditions to
detect whether the PBCNs are finite-time robustly stabilized to the given set with proba-
bility 1. Furthermore, we have shown that all the time-optimal controllers can be obtained
via antecedence solution technique. Illustrative examples have also been given to show the

effectiveness of the main results of this chapter.
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Chapter 5

Stabilization and Set
Stabilization of Periodic

Switched Boolean Control

Networks

5.1 Introduction

It is well known that stabilizability analysis plays one of the most basic and important roles
in control theory. A typical example is therapeutic interventions, that is, driving the GRN
to a healthy state, and maintain this state forever [74]. In other cases, it is necessary to
study whether the system can be globally stabilized to a given state set instead of a single
point, which is known as set stabilization. However, until now, there have been few results
on stabilization or set stabilization of SBCNs. For instance, under arbitrary switching
signal, Yerudkar et al. investigated the design of switching-signal-dependent state feedback
and output feedback controllers for the stabilization of SBCNs [130]. Li et al. presented
necessary and sufficient conditions for set stabilization of SBCNs under arbitrary switching
signal for the case of switching-signal-dependent controller or switching-signal-independent
controller [59], and pointed that “the condition of switching-signal-dependent controller is
less conservative than the one of the switching-signal-independent controller.” To the best
of our knowledge, the problem of stabilization or set stabilization analysis for SBCNs under
periodic switching signal has not been addressed before.

This chapter investigates the stabilization and set stabilization problems of SBCNs with
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periodic switching signal, and both open loop stabilizers and state feedback stabilizers are

designed if the problems are solvable. The main contributions of this chapter are:

e Necessary and sufficient conditions for the global stabilization and global set stabi-

lization are derived.

e A constructive procedure is proposed to design open loop controller for the stabiliza-

tion problem.

e Algorithms based on antecedence solution technique are established to design switching-
signal-dependent state feedback controllers for the stabilization and set stabilization

problems.

5.2 Problem formulation

The dynamics of periodic SBCNs with n nodes, m control inputs and a periodic switching

signal with w values can be described as follows:

Xi(t+1) = 7YX @0);U1)),

Xo(t+1) = 59X ) U)), (5.1)

Xo(t+1) = fIOX(1); U1)),

where X (t) = (X1(t), Xa(t), -+, X,(t)) € D" and U(t) = (Uy(t),Us(t),--- ,Upn(t)) € D™
are the state and control, respectively. Here, X; € D,i € [1 : n|, U; € D,j € [1 : m] are
logical variables, and f; @ prtm D, i € [1: n]is a logical function. Moreover, the

periodic switching law with period w has the following form:

1, tmodw =0,
2, tmodw=1,

w, tmodw=w-—1.

Remark 5.2.1. A periodic switching signal with w values may have w! different expres-
sions, that is, all the possible permutations of {1,2,--- ,w}. Here we just consider one of
the possible periodic switching forms, and all the results obtained in this chapter can be

generalized to any other periodic switching expressions.
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Let z; and u? be the vector form of X; and U; respectively. Based on Lemma 1.2.1,

for any logical function fg(t)

7% i € [1: n], there exists a unique structural matrix M; ® ¢

Loy on+m such that system (5.1) can be converted into
2t +1) = M Du(t)z(t), i€l (5.3)

where u(t) = xJL u/(t) € Agm and x(t) = xj;2;(t) € Agn. Then, multiplying all the

equations yields
2(t+1) = Loqu(t)a(t), (5.4)

where Ly ;) = Mf(t) *Mg(t) % -*Mg(t) € Lonygn+m. Furthermore, let L = [Ly Ly -+ L,] €
Lonyontm and i ~ 6. i € [1 : w], then when o(t) = ¢, we have Lo(t) = L;. Thus, the

w?

algebraic formulation of system (5.1) is given by
x(t+1) = Lo(t)u(t)z(t). (5.5)
In this chapter, two kinds of controls are considered:

(i) Open-loop controller: the control is a free Boolean sequence, that is, the control is a
designed sequence U(0),U(1),--- .

(ii) Switching-signal-dependent state feedback controller: the controls are expressed by

state variables satisfying certain logical rule under periodic switching signal, such as

Uo()(t) = P10y (X1(2), Xa(t), -+, Xu(t)),
Uso(t)(t) = ho oy (X1(t), Xa(t), -+, Xn(t)),

~—

(5.6)
Um,o‘(t) (t) = h’m,a(t) (Xl (t)v Xg(t), e 7X'fl(t))7
whose algebraic form can be expressed as
Ug(t) (t) = Ha(t)x(t)v (57)

where H, ;) € Lomxan is the switching-signal-dependent state feedback gain matrix.

Definition 5.2.1. (Stabilization) The SBCN (5.1) is said to be globally stabilizable (or
feedback stabilizable) to a given state x* € Agn under periodic switching law (5.2), if for
any initial state £(0) € Agn, there exists a control sequence u(0),u(1), -+ (or a feedback
control law ) (t) = Hyx(t)) and an integer T > 0, such that x(t) = x*, for every
t>1T.
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Definition 5.2.2. (Set stabilization) The SBCN (5.1) is said to be stabilizable (or feedback
stabilizable) to the nonempty set T' C Aogn under periodic switched law (5.2), if for any
initial state x(0) € Agn, there exists a control sequence u(0),u(1),--- (or a feedback control
law uy ) (t) = Hypyx(t)) and an integer T > 0, such that x(t) € I' holds, for everyt > T.

Definition 5.2.3. (Common control fized point) A state * = 03, € Ngn is said to be
the common control fized point of (5.5), if for any sub-system x(t + 1) = Lyu(t)z(t), there

exists a control u,, € Agm (the control is related to the subsystem), such that L,u,x* = z*.
Furthermore, define
Ci = {054 L1650, = 60, k1 € [1: 2™},
Cy = {052 Ly6%2,63, = 63, ko € [1: 2]},

Lemma 5.2.1. The state x* = 5;n is a common control fixed point if and only if C + 0,

for any v € [1: w]. In particular, the state * = 63, is a common control fized point under
common control if and only if (o_, Ck + (.

It is obvious that if z* = §3, is a common control fixed point, then for any sub-system,
there exists at least a control u, such that L,u,z* = 2* Vv € [1 : w]. Thus, u, € C}.
Conversely, if C; #+ 0, Vv € [1 : w], then z* = 4], is a control fixed point of each sub-
system.

Definition 5.2.4. (Common control invariant set) A nonempty set ' C Agn is said to be
the common control invariant set of (5.5), if for any sub-system x(t+1) = L,yu(t)x(t) and

any x(t) = 8. € T, there exists at least a control U(y,5) € Agm (the control is related to the

subsystem and the state in I'), such that LZ,U(VJ)(Sgn el.

Let now N 3 A .
Cr; = {0gn” | L1650 " 03 €T, if &, €T},

C ;= {0537 |Lo652" 6}, €T, if 63, €T,

= {05 | L8 5, €T, if 8 €T}
The following lemma is proposed to detect whether a given set is a common control

invariant set of system (5.5).

Lemma 5.2.2. The nonempty set I' C Agn is a common control invariant set if and only
if CEJ £+ 0, for any v € [1: w], for all 8. € I. Particularly, the nonempty set T C Agn is a

common control invariant set under common control if and only if (5 _; CEJ + (), Vo, eT.
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5.3 Controller design for stabilization of periodic
SBCNs

In this section, we study whether the SBCNs with periodic switching signal can be sta-
bilized by open loop controller and state feedback controller respectively, and present the
constructive procedures of open loop controller as well as the design algorithms of switching-

signal-dependent state feedback controller via antecedence solution technique.

Theorem 5.3.1. Consider SBCNs (5.5) with periodic switching signal. The system is
globally stabilizable to a common control fized point x* = 6. under a free-type control

sequence if and only if there exist an integer T* = pw +q+ 1 and o € [1: 27"™], such that

Blko(L) = don[y vy - 1), (5.8)

on

wherep >0, q € [0: w—1] and L = [Lys1 (Iomn @ Ly) (Tppm ®@Ly_1) - - - (Toam @ L1 ) (Tntar1ym @ Ly, )
(Iya+2sm @ Liy—1) * + * (Iytwraym @ L1) (Tgrarnym @ L) (Igwiat2ym @ Ly—1)  + + (Iywtraym @ L1) - -

(Io(r-1ywrarnym & L) (Lyw-1wtar2ym @ Ly—1) -+ (Iggwtraym @ L1)] € Lon gonirem. In addition, if
(5.8) holds, then the free-type control sequence which makes the system globally stabilized

s given by
u(t), 0<t<T*-1,

oL € Cr, t>T* and t mod w = 0,
u(t) = 5'2“3,1 e€eCy, t>T"andt mod w=1, (5.9)

62m eCl, t>T" and t mod w=w — 1,
where (T — )i(T" — 2)---(0) = 03p-,.

Proof. For any t € Z, the dynamics of system (5.5) can be expressed as

2(2) = Lo(1)u(1)z(1)
= L&%u(1)L1u(0)z(0)
= LQ([Qm & Ll)u(l)u(())a:(()),

)
(1
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z(w—1)=Lo(w —2)u(w — 2)z(w — 2)
= Lo(w —2)u(w — 2)Lo(w — 3)u(w —3) - - La(1)u(1) Lo (0)u(0)z(0)
= Lo¥ Mu(w — 2) Ly—o(Tom @ Liy—3)(Toom @ Liy—4) - - (In-3m @ Ly)u(w — 3) - - -
u(0)z(0)
= Ly—1(Iam ® Ly—2)u(w — 2)(Iam @ Ly—3)(lozm @ Ly—4a) -+ (Igw-sm & L1)
u(w —3) - u(0)z(0)

= Ly—1(Iam ® Ly—2)(Io2m @ Ly—3) -+ - ({gw-2m @ L1)u(w — 2)u(w — 3) - -
u(0)x(0),
z(w) = Lo(w — Du(w — 1)z(w — 1)
= LoZu(w — 1) Ly—1(Iam & Ly—2)(Io2m @ Liy—3) - -+ (Igw—2m @ L1)u(w — 2)
u(w —3) -+ -u(0)x(0)
= Ly,(Iom ® Ly—1)u(w — 1)(Iem @ Ly—2)(Ipem @ Liy—3) -+ (Iyto-2m © L)
u(w —3) -+ -u(0)x(0)

= Ly(lom @ Ly—1)(Ig2m @ Liy—2) -+ (Ige-1m @ L1)u(w — Du(w —2) - - - u(0)
(0),

x(t) = Lo(t — Du(t — 1)x(t — 1)
= Lg+1(Iom @ Lg)(Ig2m @ Lg—1) -+ - (Ioem @ L1)(Ipariym @ L) (Loat2ym @ Ly—1) - - -
(Ip@tam @ L1)(Lyerarnm @ L) (Tgwrarzim @ Ly—1) - -+ (Iyeutom ® Ly) - -
(Lyr-vwtarnm @ L) (Ir-newtar2ym @ Ly—1) -+ (Lowram © L1)u(t — 1) - -u(0)
x(0)
= Lu(t — Du(t — 2) - - - u(0)z(0),

where t = pw+q+1,p>0,g€ [0:w—1]and L = [Ly1(Tom @ Ly) (Tozm @ Lg_1) - - - (Tpam @
Ly )(1y+1m @ Liy) (Loat2ym @ Ly—1) - - - (Lyraym @ L) (Lg@+arnm @ Ly) (Lg@+atzym @ Ly—1) - - -
([2(2w+q)m ®L1) e (12((p—1)w+q+1)m ®Lw)([2((p—l)w+q+2)7n ®Lw_1) e (I2(pw+q)’rn ®L1)] € £2n X on+tm.

(Necessity) Assume that the dynamics of system (5.5) are globally stabilizable to z* =
9. Then, for any initial state x(0) € Agn, the iterative sequence will converge to dg.. Then

there must exist an integer 7* = pw+¢-+1, and a sequence of control u(0), u(1),- -, u(T*—
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1), where u(T* — 1)u(T* — 2) - - - u(0) = 07+,,, such that
2(T*) = Lu(T* — D)u(T* — 2) - - u(0)z(0)
= Blk, (L)%
= dgn, Vi€ [1:2"],
which implies that (5.8) is satisfied. Moreover, for ¢ > 7™, it holds that
z(t+1) =",

Thus, z* = Lo (t)u(t)x* for all ¢ > T, then (5.9) must hold.

(Sufficiency) Suppose that (5.8) is satisfied. We prove that the system (5.5) is globally
convergent to z* under the free-type control sequence (5.9). From (5.8), one can obtain
that for any z(0) € Agn,

#(T*) = Blko(L)2(0) = dnly 7 -+ 7)2(0) = 3.

Since z* = 0, is a common control fixed point of system (5.5), hence the system (5.5)

globally converges to z* = §3,. O

In the following, we provide an illustrative example to show how to design an open loop
controller such that the SBCNs with periodic switching signal can globally stabilize to a

common control fixed point.

Example 5.3.1. Consider the following reduced Boolean model for the lactose operon in

the bacterium Escherichia coli, which is presented in [116].

Xi(t+1) = =Us(t) A (Xa(t) V X5(2)),
Xo(t+ 1) = Ui (t) ANUs(t) A X4 (1), (5.10)
Xs(t+1) = 2Ui(t) A (U2(t) V (Us(t) A Xa (1)),
where X1, Xo and X3 are states which denote the lac mRNA, the lactose in high concentra-
tions, and the lactose in medium concentrations, respectively; Uy, Uy and Us are controls

which represent the extracellular glucose, the high extracellular lactose, and the medium

extracellular lactose, respectively.

Fix Uy(t) = 0 and let Vi (t) = Us(t), Va(t) = Us(t); then system (5.10) can be converted
to
Xl(t + 1) = X2(t> \Y X3(t),
Xg(t—|— 1) =Vi(t /\Xl(t

( (5.11)
Xs(t+1)=Vi(t

~—

)
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Assuming that the state X3 in system (5.11) does not update its value, then system (5.11)

can be expressed as

Xi(t+1) = Xa(t) vV X3(t),
Xo(t+1) =Vi(t) A Xu(2), (5.12)
XS(t + 1) = Xg(t).

If system (5.11) and (5.12) are sub-systems of a SBCN, then the SBCN can be epressed

Xa(t+1) (X1 (1), Xa (1), X5(1), Vi (1), Va(t),

X2(t+ 1) (Xl(t>aXQ(t)aX3(t>7‘/i(t)7‘/é(t))7 (513)
Xt +1) = f9(X1(8), Xa(t), Xs(t), Vi (1), Va(t)),

= 1Y
= £

where fl = f2 = Xao(t) V X5(t), f3 = f3 =Vi(t) A X1(t), f1 = Vi(t) V (Va(t) A X1(t)), and
f2 = X3(t). Assume the periodic switching law has the following form:

1, tmod?2 =0,
o(t) = (5.14)
2, tmod?2=1.

Denoting z(t) = x¥_,z;(t) € Ag, v(t) = x3_jv;(t) € A4 and identifying the switching

signal 1 ~ 01, 2 ~ 2, the algebraic form of system (5.13) can be expressed as:
x(t+1) = Lo(t)v(t)x(t),
where L = [Ly L], and

Ly =6(1115333711153337333744483337444358],
Ly =0g/121634381216343834383438343834335|.

Assume that the equilibrium z* = §3, which represents the lactose operon being on. We
are now ready to design a free-type control sequence to stabilize system (5.13) to x* = §3.

First, we have

Ci = {0 L0703 = 03,1 <k < 4} = {6, 03},
C; = {01°|L20708 = 3,1 <k < 4} = {63, 83}

A straightforward calculation shows that 7% =2, « = 9, and

Blko(L) = 65[33 33333 3],
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where L = Ly(Ip» ® L1) € Lysyor. Since 63 x 0} = 0%, from (5.9), one can design the
free-type control sequence as follows

81, t=0,

8, t=1,

u(t) = (5.15)
Sh ey, t>2andt mod 2 =0,

6P ey t>2andt mod2=1.

In the following, necessary and sufficient conditions to determine whether the SBCNs
with periodic switching signal can be stabilized under switching-signal-dependent state
feedback controllers are investigated. Moreover, the constructive algorithm of state feedback

controllers is presented.

Remark 5.3.1. If the state x* = 03, is reachable from some initial state, then there exists

a control sequence such that it can be reachable within w - (2" — 1) steps.

The switching-signal-dependent logical matrices Hy(;) € Lamx2n which can stabilize the

system (5.5) to x* = d5. can be constructed as follows.

Algorithm 7 Constructing switching-signal-dependent state feedback stabilizers

Step 1: Let Ro(z*) = {63.}, and construct the truth matrices TEO(;C*) € Bomyon,
ve[l:was:
U 17 lf Ll,déméén - 5;{7”
(Tho@))ig = _ (5.16)
0, otherwise.
Compute RY(z*) = {03, | Col, (Thy(z+)) # 02m}, v € [1: w] and check whether
€ Moy Ry (x*). If 2* ¢ N;_; RY(2*), then z* is not a common control fixed point, and
the construction problem of stabilizer is not solvable, stop the algorithm. If
Ri(z*) = Agn, denote T* = 1 and go to Step 5. Otherwise, go to Step 2.
Step 2: Construct the truth matrix Tég (@) € Bomyon :
1

1, if L164m 8%, € R3(2*), Y0}, € Agn\RL(z*),
[Tra )i = { _ (5.17)
0, otherwise.
Compute RY(z*) = {8 | Colj(T}?%(m*)) # 0gm }. If Ri(2*) # 0 and
Ri(z*) U Ry(2*) = Agn, denote T* = 2 and go to Step 5. Otherwise, go to Step 3.

Step 3: For ¢ € [3 : w], construct the truth matrix ng(lm*) € Bomyan:
1

1, if Ly_164.83. € RL(x*),
[th1 li; = { t=102mY3 1(z") (5.18)

0, otherwise.
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Compute RS (2*) = {83, | Col;(T4 ! .\) # Ogm} and construct the truth matrix

Y Ry (z*)
TRg—l(I*) € £B2m><2n :

(5.19)

[Trs )i = {17 if Le-20ndy € By (&),
Ry @)

0, otherwise.
Compute R 2(z*) = {63, | Colj(T;?_zl(z*)) # O9m }. Repeat this procedure, constructing
2
truth matrices T;?z ()’ T;;g—[lg () Tf%flz (z+) Tespectively, and compute R73 (%),
Rg_4($*), T R?—l(x*)'

Then, construct the truth matrix T}%Z (z*) € Bomyon
t—1

) 1, if L1866y € RZ | (2*),¥65, € Agn\(ULZY R (2%)),
[Tre | (@n)is = . (5.20)
0, otherwise.
Compute Ry (z*) = {5, | Colj(Tho  (py) # Oz} If Ri(a*) # 0 and
t
U Ri(a*) = Ag, (5.21)
k=1

the stabilization problem is solvable, denote the minimum number such that (5.21) holds
as T and go to Step 5. Otherwise, set t =t + 1. If t > w, go to Step 4. Otherwise, go to
Step 3.

Step 4: For ¢ > w + 1, construct the truth matrix TELW(W) € Bomyon:

1, if L6483, € R (z%),
[Th)_@))id = . ) (5.22)
0, otherwise.
Compute RY 1 (z*) = {8, Colj(Ti1 () # O2m} and construct the truth matrix
w1 ) t—w
The () € Bamn s
Tw_l o 1, lf Lw_lééméén S R;‘Lw+1 (x*), 5 23
[ Rf—w+1(x*)}i7j B . ( : )
0, otherwise.
Compute Ry ,(z*) = {3 | Col;(Ty! 1(:L,*)) # 0gm }. Repeat this procedure,
t—w-+
. . : w—2 w—3 2 :
constructing truth matrices TR;:}H (%)’ TRf:f+3 @y TR?,Q (@) respectively, and
ComPUte R(Z}:ﬁJrB(x*)a R(Z}:j+4(l‘*>, Ty R?—l(x*)
Then, construct the truth matrix 7%, , .. € Bomyon :
R? | (z*)
T, I = 1, if L165003, € RZ_((2%),¥63. € Agn\(ULZ) RE(2%)), (5.24)
R z*)1n) T .
1) 0, otherwise.
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Compute R} (z*) = {83, | Colj(Téz_lw)) # 0gm }. If R} (z*) # 0 and

t

U Ri@)JA = Ao, (5.25)

k=w+1
where A = s_; R}.(z*) # Agn. The stabilization problem is solvable, denote the
minimum number such that (5.25) holds as 7* and go to Step 5. Otherwise, set ¢t =t + 1.
If t >w- (2" — 1), the construction problem of stabilizer is not solvable, stop the
algorithm. Otherwise, go to Step 4.
Step 5:
Case 1: If T* < w, construct the switching-signal-dependent logical matrices

Ha'(t) € £2m><2n as follows:

< Tryeymey LE LT, (5.26)

Al @)
where

1 : J [ *
Col;(T* ) = CO]j(TRg(x*))? if o0 € Ry (27),
T BolenIB (=) 09m, otherwise

and [ € [1 : T*]. Moreover,

< 9
Bty oy S TRon o) im2, (@)’

s9—1 (5.27)
vel:w], sge2:T"— (W —-1)],
where
Coli(T%., . ), if 8. € RY (%),
COlj(Tﬁ19+l ): ]( R?ﬁtll(w )) 2 79( )
Ry ()| RY (%) )
0ym, otherwise,
and ¥ € [1:w], sy €[2:T* — (J—1)]. Besides,
H5|Ro<a:*) < TIS%O(I*”RO(J?*)’ s € [T* +1: w}v (528)
Case 2: If T* > w + 1, construct the switching signal-dependent logical matrices
Hy 1y € Lomyon as follows:
! .
gy ey = Troton i@y 1€ L7, (5.29)

where

Colj(Thy(ay)s if 03 € RY(2%),

Col; (TRo(x*)\Rﬁ(x*)> N {02m otherwise
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and [ € [1 : w]. In addition,

< 9
oty oy < TRot1 (@olme, (@) (5.30)
del w], syg=[2:T"— (9 —1)],

where RYH(2%) = Ri(2*), k > 1. Moreover,

Coli(T0y1 if 63, € RV (z*),

sy—1

")

Col;(T?,,, )= -
R )| RY *

519—1(37 )R, (@) 0o, otherwise,

and V€ [l:w], sy=[2:T"— (I —1)].

Remark 5.3.2. If (5.21) or (5.25) holds, each initial state can reach z*. Furthermore,
from Algorithm 7, we have (i—, RL(z*) = 0, which ensures that T* is the shortest time for

all initial states to reach x*.

Figure 5.1 helps in explaining Algorithm 7.

= /

[ R, («) ]4-[ Ri,l(z*)]_‘

[ Rle) J={ BLe) o —{Ran @)= (Blun@) )~ — Ri@)

Figure 5.1: Mlustration graph of Algorithm 7

Theorem 5.3.2. Consider SBCNs (5.5) with periodic switching signal. The system is
globally stabilizable to x* = 6. if and only if Algorithm 7 reaches Step 5.

Proof. (Sufficiency) Assume Algorithm 7 reaches Step 5, then we prove that SBCNs (5.5)
are globally stabilizable to z* = 3. under the switching-signal-dependent state feedback
control Uy ;) (t) = Hy)w(t), where the state feedback gain matrix H, ) € Lomxon is given
by (5.26)-(5.28) or (5.29)-(5.30). From Step 1, suppose that * € ";_; RY(2*), then z* is a

common control fixed point of the w sub-systems. If R} (z*) = Agn, then for any z(0) € Agn,

74



5 — Stabilization and Set Stabilization of Periodic Switched Boolean Control Networks

u1(t) = Hyx(t) makes all initial states to reach z* in one step and u, (t) = H,z(t), v € [1 : w]
stabilizes the system at z*.

Otherwise, if Ri(z*) # Agn and Ri(z*)J R(z*) = Agn, then for any z(0) € R}(x*),
uy(t) = Hyx(t) drives it to reach * in one step and Ri(2*) to reach R?(z*) in one step.
And wuy(t) = Haz(t) drives RZ(z*) to reach z* in one step. Moreover, u,(t) = H,z(t),
v € [1 : w| stabilizes the system at x*.

Continuing the above procedure, if there exists sy € [3 : w], such that Uioz_ll R} (z*) #
Agn and U2 | R} (2*) = Agn, then for any z(0) € Ri(z*), uy(t) = Hyz(t) drives it to reach
2* in one step and Rj(z*) to reach R3(z*) in one step, similarly, it can drive Rl (z*) to
reach R2 _ (z*) in one step. Moreover, uy(t) = Hox(t) drives Ri(z*) to reach z* in one
step; similarly, it can drive R2 _;(2*) to reach R3 _,(z*) in one step. Continuing the above
discussion, ug, (t) = Hs,x(t) drives R} (z*) to reach z* in one step. Besides, u, (t) = H,z(t),
v € [1 : w| stabilizes the system at x*.

For the more general case, if [Jf_; Ri(7*) # Agn and there exists s > w + 1 such that

STV RL(x*) # Age and Uj_; RE(2*) = Aga, then for any x(0) € Ri(2*), ui(t) = Hyx(t)
drives it to reach x* in one step and Ri(x*) to reach R?(z*) in one step. Similarly, it can
drive R!(z*) to reach R% ,(x*) in one step. Moreover, us(t) = Hox(t) drives R?(z*) to
reach z* in one step and R2_;(x*) to reach R3_,(z*) in one step. Similarly, it can drive
R% | (2*) to reach R? ,(z*) in one step. Repeating the above steps, u,(t) = H,x(t) drives
R{(z*) to reach x* in one step, similarly, it can drive RY__(z*) to reach R!_ ,(z*) in
one step. Without loss of generality, there exists u,(t) = H,x(t), such that RY(z*) can
reach z* in one step. Furthermore, the system will be globally stabilized to x* under the
switching-signal-dependent state feedback controllers u, (t) = H,x(t), v € [1 : w].

(Necessity) Suppose now that system (5.5) is globally stabilizable to z* = d3., and
assume by contradiction that the Algorithm 7 does not reach to Step 5, that is z* ¢
Mo_y RY(2*), i.e., x* is not a common control fixed point; or the equation (5.25) does
not hold until s = w - (2" — 1). It is obvious that the first case contradicts the condition
that the system (5.5) is globally stabilizable to 2* = d3.. For the second case, assume
Rolj.(zn—m(m*) # () and

w-(2n—1)

U Rha") # A,
k=1

That implies that there exists a state T € Agn\(U:ﬁn_l) R}(z*)) such that no switching-

signal-dependent state feedback control can drive it to 2* = §3,, which also contradicts the
condition that the system (5.5) is globally stabilizable to x* = §3,. O

Example 5.3.2. With reference to system (5.13) in Example 5.5.1, we aim to design

switching-signal-dependent state feedback controllers to stabilize system (5.13) to x* = §3.
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Based on the Algorithm 7, denote
Ro(z") = {33}.

Then the truth matrix T}%O(w*) € B,s can be constructed:

o 0 0 o 1 1 1 o0
o 0 0 o0 1 1 1 0
Th (o = 5.31
Bo(a") 1 110 0 0 0 0 (5.31)
1 1.1 0 0 0 0 O
From (5.31),
Ri(x*) = {83, 05,08, 63, 03, 03 }.
Next, the truth matrix T]%O (@) € B,«s can be constructed
o 0 0 o0 1 0 1 0
o 0 0 O 1 0 1 o0
T2 .\ = 5.32
Bo(a) 1 0 1 0 1 0 1 0 (5.32)
1 01 0 1 0 1 O

From (5.32),
Ri(2") = {03, 65, 63, 65 }-

It is clear that 2* € Ri(z*) (N R%(z*). Then, construct truth matrix T}%Q(I*) € Byxsg as
1

Theoe) = (5.33)

o O O O
o O O O
oS O O O
—_ = =
o O O O
o O O O
o O O O
o O = =

From (5.33),
Ry(x") = {05, 65}

Since R}(x*)J Ri(2*) = Ag, we have that T* = 2, and we can construct the switching-

signal-dependent state feedback gain matrices as

1
Al 0y < TRo@1BI @) (5.34)
1
iy oy < TRa @) RY @)
where Tfl%o(Z*ﬂR}(a:*) = T}EO(Z*) and T}Iﬁ(z*)m;(w*) = é%(w*). Moreover,
2
2190y < TRo(a) B2 @) (5.35)

76



5 — Stabilization and Set Stabilization of Periodic Switched Boolean Control Networks

2 _ 72
where T, goyiae) = Thoae)-

From (5.34), it follows that all the possible choices of matrix Hy € Lo2493 as follows
Colj(H1) € {63,04}, j € [1:3], (5.36)
Col;(Hy) € {61,03}, 1€ 58],
Coly(H1) € {85, 0%, 63,05}

Similarly, from (5.35), we have all the possible choices of matrix Hy € Lo2493 as follows

Colj(Hz) € {03,05}, j = 1,3, (5.37)
Colj(Hy) € {04,683,63,64}, 7 =5,7.

Putting (5.36) and (5.37) together, the switching-signal-dependent logical matrices Ho ;)

are given by

Hy, tmod?2=0,
Hyqy = (5.38)
Hy, tmod?2=1,

where Col;(Hs), i = 2,4, 6,8 can be chosen arbitrarily.

5.4 Controller design for set stabilization of periodic
SBCNs

In this section, we study whether the SBCNs with periodic switching signal can be set
stabilized by switching-signal-dependent state feedback controller, and present the design
algorithm via antecedence solution technique.
It must be noted that if the set I' is reachable from some initial state, then there exists
a control sequence such that it can be reachable within w - (2" — r) steps, where r = |T|.
Similar to Algorithm 7, the switching-signal-dependent logical matrices Hy(y) € Lomyon

which stabilize the system (5.5) to I' can be constructed as follows.

Algorithm 8 Constructing switching-signal-dependent state feedback set stabilizers

Step 1: Let Ro(I') =I', and construct the truth matrices T3 ) € Bomxon, v € [1: w] as:

) 1, if L0463, €T,
[Trom)lig = . (5.39)
0, otherwise.
Compute RY(T) = {8, | Col;(TH,ry) # O2m}, v € [1 : w] and check whether
TN RY(T). T € N2_y RY(I'), I' is not a common control invariant set, and the
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construction problem of stabilizer is not solvable, stop the algorithm. If RI(I') = Ay, set
T* =1 and go to Step 5. Otherwise, go to Step 2.
Step 2: Construct the truth matrix T}%Q (r) € Bomyon :

1

1, if L6485, € RY(D), V63, € Agn\RY(D),
[T}%%(r)]i,j = _ (5.40)
0, otherwise.
Compute RY(T) = {6}, | Colj(Thop)) # O2n}. If RY(T) # 0 and RY(I) UR}(T) = Agn, set
T* = 2 and go to Step 5. Otherwise, go to Step 3.

Step 3: For ¢ € [3: w], construct the truth matrix Tf%?(lr) € Bomyon:
1

1, if Li—104m 6%, € RY(T),
[Ty ry)is = 10O € () (5.41)
! 0, otherwise.
Compute RS (D) = {8 | Colj(T;%Z(lr)) # Ogm } and construct the truth matrix
1
T;g?l(r) & %megn :
~ 1, if Li_965m63, € RS (D),
(Th2 i = s (5.42)
2 0, otherwise.

Compute RS 2(T) = {84, | Colj(T}%i (F)) #+ Ogm }. Repeat this procedure, constructing

truth r;natrices TE?Q )’ th-‘c;l?’ oy T]%?_Q () respectively, and compute Ry 3(T), RE*(T),
e R (D).

Then, construct the truth matrix T}iz o € Bomson :
t—1

) |1 La6hadd. € RE (), V8. € Apn\(UiZh RE(T)),
[TRffl(F)]iJ = . (5.43)
0, otherwise.
Compute R} () = {6}, | Colj(T}ig_l(F)) # Ogm }. If R}(T) # 0 and
¢
U Bi(@) = Aon, (5.44)
k=1

the set stabilization problem is solvable and denote the minimum number such that
(5.44) holds as T*, go to Step 5. Otherwise, set t =t + 1. If t > w, go to Step 4.
Otherwise, go to Step 3.

Step 4: For ¢ > w + 1, construct the truth matrix Tg},w(l“) € Bomyon:

y 1, if L6483, € R (),

0, otherwise.
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Compute RY_, . 1(T') = {8}, | Col;( f%_w(l“)) # O9m } and construct the truth matrix

-1
TEJ‘{L (D) S %megn :

(5.46)

[wal ( )} L {1’ if wal(s%mé%” S R;‘,U—w-i-l(F%
Re , (D)ii =

0, otherwise.

Compute Ry ,(T') = {5 | Coly (T ! ) # 09m }. Repeat this procedure,

"o (D)
w41
constructing truth matrices T° ;:T:il“ (ry’ T;;’_%H RSLE Tf?filz ) respectively, and compute

Rf—_u?—&-?x(r)ﬂ (Z}—_j+4<r)7 Tty Rgflaj)
Then, construct the truth matrix T}%Q (r) € Bomyon :

t—1

1, if L104nd3, € R2 (T),¥03, € Agn\(ULZY RL(D)), (5.47)
0, otherwise. .

Tre (r)ig = {

Compute R} (I') = {8, | Col;(T}hy ) # Ogm}. If RY(T) # 0 and

(D)

t

U RUD)UA = Ay, (5.48)
k=w+1

where A = i_; R}(T') # Agn. In this case, the set stabilization problem is solvable,
denote the minimum number such that (5.48) holds as 7%, and go to step 5. Otherwise,
set t =t+ 1. If t > w- (2" — r), the construction problem of set stabilizer is not solvable,
stop the algorithm. Otherwise, go to Step 4.

Step 5:

Case 1: If T* < w, construct the switching-signal-dependent logical matrices

Hey() € Lomyon as follows:
HllRll(F) < TJZ%O(F)|R11(I‘)’ le [1 : T*]v (5.49)

where

COlj(

1 : j [
R {Colj(TRO(F)), if 63, € RL(T),
o(D)| RS (T)

09m, otherwise,
and [ € [1: T*]. Moreover,
H’l9| 9 S T’&ﬂ+1 9 9
Rsﬁ (T) qug—l(r)lelg (F) (5.50)
vel:w], sge2:T"— (W —1)],
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where
Col;(T? ), if 03, € RY (T),
COlj (T}gﬂﬂ 9 ) = ! R?;lll(r) 2 v
o1 (MR, (T) .
0o, otherwise,
and ¥ € [1:w], sy €[2:T*— (¥ —1)]. Besides,
Hylpo oy < Thoyrory S € [T* +1: w, (5.51)

Case 2: If T* > w + 1, construct the switching-signal-dependent logical matrices

Hy(y € Lomxan as follows:

l .
HllRll(F) = TR@(F)IR%(F)’ le [1 : w]? (5.52)
where

Col;(Th, 1)), if 3. € RY(T),
Coby (T vy ) = { i

09m, otherwise,
and [ € [1 : w]. In addition,
Hz?| < Tﬂﬂ-ﬂ 9 5
RY, () = TR (D)RY ()
vel:w], sye2:T"— (¥ —-1)],

(5.53)

where Ry (') = RL(T), k > 1. Moreover,

(T oo 9

Col;(T? ) = Colj(Tga, ry)» 1 O € B, (T,
Ot Re iRy, ) = |
’ 0ym, otherwise,

and V€ [l:w], sye2:T"—(J—1)].

Similarly, here T™ is the shortest time for all initial states to reach I'.

Corollary 5.4.1. Consider SBCNs (5.5) with periodic switching signal. Then the system
is globally stabilizable to a set I if and only if the Algorithm 8 reaches Step 5.

Example 5.4.1. Consider system (5.10) in Example 5.3.1. Let U1(t) = 0 and we obtain
system (5.11). Fiz Us(t) =1 and let Vi(t) = Uy(t), Va(t) = Us(t), then system (5.10) can

be converted to

Xi(t+1) = “Vi(t) A (Xa(t) V Xs(t)),
Xa(t+1) = =Vi(t) A Xa (2), (5.54)
Xs(t+1) = =Vi(1).
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Assume that system (5.11) and (5.54) are sub-systems of a SBCN with periodic switch-
ing law (5.14) and the algebraic formulation of SBCN can be expressed as

z(t+1) = Lo(t)v(t)z(t),
where L = [Ly Ly], and

Ly =6)1115333711153337333744483337444358],
Ly =0388888888888888881115333711153337].
It is obvious that z* = &3 is not a common control fixed point. Then, we aim to design
switching-signal-dependent state feedback controllers to stabilize the new SBCN to a set
" which contains z* = §3. In the following, we consider I' = {8}, 63,65}
Based on the Algorithm 8, we have
Ro(T) =T = {03, 63, 65 }-

Then the matrix 7'} can be constructed
Ro(T)

1 11 0 1 1 1 O
1 1 1 0 1 1 1 O
Th i = 5.55
Bo(T) 1 110 0 0 0 1 (5.55)
1 1.1 0 0 0 0 1
From (5.55),
R%(F) = {55%)6%753753’5375;52}'
Next, the matrix TIQ% (ry can be constructed as
0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
T2 o = 5.56
Bo(T) 1 11 0 1 1 1 0 (5.56)
1 1 1 0 1 1 1 0
From (5.56),
R%(F) = {(%v55755:5))’6&1752752’5;5;}‘
It is clear that
rc RO RD).
Then, construct Tzlaf(r) as
O 0 01 0 O 0 O
O 0 01 0 0 0 O
Th = 5.57
BO™ 1o 00 1 0 0 0 0 (5.57)
O 0 01 0 O 0 O
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From (5.57),
Ry(T) = {55}
Since R{(I')J R3(I') = Ag, then T* = 2, and we can construct the switching-signal-

dependent state feedback gain matrices as

1
il = Tryoyimiry

1 (5.58)
Hlln;m < Tray|my(ry:
1 e alt ol
where Ty ) g1y = Tro(ry and le{%(r)‘ mr) = Tra(r)- Moreover,
Hz‘R%(r) < Téo(FHR%(F)? (5.59)

_ 2
o(O)RT) = LRo(r)-

From (5.58), it follows that all the possible choices of matrix Hy € L2493 as follows:

2
where TR

Col;(Hi) € {03,063, 63,03}, j € [1:4], (5.60)
Col;(Hy) € {03, 03}. j € [5:7),
Colg(Hy) = 65 € {63,634}

Similarly, from (5.59), we have all the possible choices of matrix Ho € Lo2493 as follows:
Col;(Hy) = 65 € {81, 0%, 01, 01}, (5.61)
j=123,56,7,

Col;(Hz) = 03 € {65,05}, j = 4.8.
Putting (5.60) and (5.61) together, the switching-signal-dependent logical matrices Hy )

are given by

Hy, tmod?2=0,
Howy = (5.62)
Hy, tmod?2=1,

which can stabilize the SBCN to I' = {4}, 63,5}

5.5 Conclusions

In this chapter, we have investigated the stabilization and set stabilization problems of
SBCNs under periodic switching signal. Necessary and sufficient conditions to detect the
solvability of stabilization and set stabilization problems of SBCNs under periodic switch-
ing signal have been derived. Moreover, a constructive procedure has been presented to
design open loop controller. Using an antecedence solution technique, the design algorithms
have been established to construct switching-signal-dependent state feedback controllers.

[lustrative examples have been presented to show the effectiveness of the obtained results.
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Chapter 6

Event-triggered Control Design
for Networked Evolutionary
Games with Time-Invariant

Delay in Strategies

6.1 Introduction

It is well known that the dynamics of NEGs may converge to several different equilibria
[155], which may lead to undesired benefits for players. Thus, it is necessary to develop con-
trol means in the investigation of NEGs. In the early stage of the study for controlled NEGs,
pseudo-players were always regarded as control to influence the evolutionary dynamics of
the game, whose strategies can be assigned freely [18, 32, 140, 29, 139]. However, in these
literature, the control inputs need to be executed at each time instant. It is no doubt that
this control paradigm is a waste of resources. In reaction to this problem, event-triggered
controls have been considered for the study of NEGs in [34]. Differently from normal
controls, in [34], the control only works for some certain strategy profiles, which can be
regarded as event-triggered conditions. The main advantage of event-triggered control is
that the costs for control can be reduced and the evolutionary dynamics can be remain at
the same time. Up to now, this kind of control has been applied to the investigation of set
stabilization [81], disturbance decoupling problem of BNs and MVLNs [55, 120].

It must be noted that the NEGs mentioned in the above are considered without time

delays in strategies. However, the time delays phenomenon is very common in real world,
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and logical networks with time delays have been studied [85, 146]. It is recognized that
the interactions between players can not take place instantaneously and their reactions can
not be immediate, which will unavoidable cause time delays in strategies. Furthermore,
time delays may result in some undesired performance of the games and make the analysis
of evolutionary dynamics much more complicated. Thus, the investigation of DNEGs is a
very significant topic. Wang et al have investigated the modeling and stability of a class of
finite evolutionary games with time delays in strategies [121], and a sufficient condition to
assure the stability of the delayed evolutionary potential games at a pure Nash equilibrium
was derived. To the best of our knowledge, the DNEGs have not been fully investigated.
This chapter first studies the dynamics and control problems of DNEGs, and an event-
triggered state feedback controller is designed to guarantee the global convergence of the
desired strategy profile. Note that the DNEGs can be regarded as a delayed logical dynamic
system. By using the STP method, the delayed logical dynamic system can be converted
into a conventional delayed discrete time system with algebraic form, which makes possible
to use the classical control theory and method to analyse evolutionary dynamics and design

controller for DNEGs. The main contributions of this chapter are:
e The dynamics of DNEGs are converted into algebraic forms.

e An event-triggered state feedback controller is constructed, and necessary and suf-
ficient conditions for the global convergence of the desired strategy profile of the
DNEGs are derived.

6.2 Dynamics analysis of DNEGs

Assume that all strategies have a time-invariant delay 7 + 1 in the NEGs, that is, the
strategy of player i at time ¢+ 1 depends on the behaviors of all players at time ¢t — 7. This

can be described as
ri(t+1)= fi(rr1(t = 7),22(t = 7),+ -+ ,xy(t — 7)), P €N, (6.1)

where 7 € Z, and f; is determined by the strategy adjustment rule.
When the topology structure of the network is considered, then, for any player ¢ € N, his

strategy updating rule based on local information can be expressed with a set of mappings:
wi(t+1) = fi({z;(t = )i € UG)}), 20, i €N, (6.2)

where z;(t — 7) denotes the strategy of player j at time ¢ — 7, and U(i) is the set of
neighborhood nodes of player .
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The payoff of each player can be calculated as follows:

pi(t) = > pij(i(t), z;(1), i € N,
JEU(@)
where p;;(z;(t), ;(t)) : So x So — R is the payoff of player ¢ playing with his neighbor j
at time ¢t when i takes strategy x;(t) and j takes strategy z;(t), and Sy is the strategy set.
Note that when the network graph and FNG are selected, the strategy profile dynamics
are uniquely determined by the strategy updating rule. In this chapter we consider an
MBRAR with minimum priority [23], which is described as:

BR; := argmax,, ¢g pi(@i, x;(t) | 7 € U(7)). (6.3)

Here, each player forecasts that his opponents will repeat their present strategies, and the
strategy choice at next time is the best response against his neighbors’ strategies of the
present step. Moreover, if z;(t) € BR;, then z;(t + 1) = x;(t). If the strategies with best
payoff are not unique, that is, | BR;| > 1, then player i chooses one corresponding to the
minimum priority: x;(t + 1) = min{z|z € BR;}.

For DNEGs, we use a Parallel MBRAR as strategy updating rule, that is, all the players
update their strategies simultaneously. Based on Lemma 1.2.1, we can obtain the algebraic

form of the evolutionary dynamics of each player as follows
zi(t+1) = Myx(t —7), i € [1:n], (6.4)

where M; € Lyxpn and z(t — 7) = X7 2;(t — 7).
Based on (6.4), the algebraic formulation of dynamics for the DNEGs can be expressed

x(t+1) = Lx(t — 1), (6.5)

where L = My x My x -+ % M,, € Lpnxpn.

Note that there is a standard procedure [32] to convert the evolutionary dynamics of
cach player into its algebraic form (6.4). In fact, (6.5) is exactly the algebraic form of
a DKVLN. In other words, the dynamics of the DNEGs are equivalently expressed into
a DKVLN. In the following, the results of stability analysis and control of DKVLNs in
Chapter 2 can be applied to study DNEGs easily.

Remark 6.2.1. The evolutionary dynamics of system (6.5) are affected by the T+ 1 initial
strategy profiles x(—7),x(—7+1),--- ,2(0). That is the main difference with NEGs without
delay.
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6.3 Control design of DNEGs

In this section, we consider necessary and sufficient conditions for the evolutionary dynam-
ics to globally converge to the only desired strategy profile. Moreover, the strategies of the
control players are presented.

In order to reduce the control task execution times and costs, and obtain the desired
evolutionary performance of the game, an event-triggered control is considered for DNEGs.
This kind of control can be regarded as an intermittent control, which only works for some
specific strategy profiles.

Without loss of generality, we assume that U = {1,2,--- ,m} is the set of players who
are affected by external intermittent controls and I' is the set of special events in which
the control can be triggered.

Based on the above analysis, if (¢t — 7) € T, that is, the event-triggered condition

occurs, then the algebraic form of DNEGs under control can be formulated as
r(t+1) = Lu(t — 7)z(t — 7), (6.6)

for some L € Lynypnim, u(t — 7) = X7 u;(t — 7) and z(t — 7) = X 2i(t — 7).

If x(t —7) ¢ T, there is no control action and the game dynamics will evolve naturally.
In this situation the corresponding algebraic form is (6.5).

To obtain the general algebraic form of DNEGs under event-triggered control, we can
regard the no control action as a special control strategy ug, and let ug ~ 5’,;::1%, the
control strategy Oim ~ Oim 41, @ € [1 2 k™. Thus, the algebraic form of DNEGs under

event-triggered control can be formulated as
z(t+1)=[L Llu(t—7)z(t —7), (6.7)

where (t — 7) = ug(t — 7), if 2(t — 1) € Agn \ IT'. Otherwise, u(t — 7) = u(t — 7).
Assume 7* = &, be the desired only strategy profile of DNEGs, such that

La* = z*. (6.8)

The objective is to design an event-triggered state feedback controller in the following

algebraic form
u(t) = Hx(t), (6.9)

where H € Ljm 1 1)xgn, such that under the controller (6.9), the dynamics of DNEGs (6.7)

are global convergent to z* = §Y,,.
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It is obviously that the designing problem of state feedback event-triggered controller
becomes the construction of feedback control matrix H € Lm41)xk». Plugging (6.9) into
(6.7), we can obtain that

a(t) =

—

Lu(t—7—1)z({t—7—-1)
LIHz(t —7—1Dz(t —7—1) (6.10)
LHmz(t — 7 — 1),

~ T~

where [L L] € Lynygmiyen and z(t —7 — 1) = X[ z;(t — 7 — 1) € Apo.
Let y(t) = xj_,, ,@(l) € Aperun. Then (6.10) is transformed into

y(t+1) = z{t+7+a(t+71)---2(t+1)
= [L LHYwmz)z(t+71)---z(t+1) (6.11)
= [f L]H\I/knW[krn’kw]y(t) '
= Py(t),
where ® = [ LIH U0 Wigrn jn] € Lyr+nxp-+n. Thus, we have
y(t) = ®FTy(—7). (6.12)

The following theorem states necessary and sufficient conditions to determine whether
the evolutionary dynamics of (6.7) can globally converge to the desired only strategy profile

under the event-triggered control.

Theorem 6.3.1. Consider DNEGs (6.7) under the state feedback event-triggered controller
(6.9) with initial strategy profiles x(—7),x(—7 + 1),--- ,x(0) € Agn. The evolutionary
dynamics of (6.7) converge to the strategy profile x* = 6. globally, if and only if there
exist a logical matriz H € Lgmy1)xpn and an integer T € [7+1: (14 1)(k" —1)] such that

Col(®") = {(67.)"""}, (6.13)

where ® = [L LIHM[,,Wigrn jn) € Lt ypirinn and (60,)7 = 60 X 00 X e 8

T+1

Proof. (Necessity) Assume that the evolutionary dynamics of (6.7) globally converge to
the strategy profile z* = 6zn under the controller (6.9). Then there exists an integer M €
[0: (74 1)(k™ — 2) + 1] such that

x(t) = 0%.,Vt > M.
Thus, we have

y(M) = 2(M +7)a(M +7 — 1)---2(M) = (50)".
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Since y(M) = ®M*7y(—7) holds for any initial strategy profiles y(—7) = x;7x(i), we
have
Col(M+7) = {(57.)" '}

Choosing T'= M + 7, (6.13) is satisfied.

(Sufficiency) Suppose that (6.13) is satisfied. We will prove that the evolutionary dynam-
ics of (6.7) globally converge to the strategy profile z* = 6, under controller u(t) = Hux(t).
Since y(t) = x!_, (i) € Aye+vn, then

7
y(T —7) = Ty(=7) = (3.)"".
For any initial strategy profiles x(—7), z(—7+1), -+ ,2(0) € Agn, and V¢t > T — 7, we have

z(t) = DFUFat+ )zt +T 1) 2(t)
= DY)
= DRy ()
— Dﬁf”,k" (I)T(I)H_T_Ty(—T)
= DT s ()
= DL
s

Thus, the evolutionary dynamics will converge to the strategy profile * = 67, globally
under controller u(t) = Hax(t). O

Similarly, we have the following corollary.

Corollary 6.3.2. The evolutionary dynamics of (6.7) globally converge to the desired
only final strategy profile x* = 8%, under controller (6.9) for any initial strategy profiles
r(—7),x(=7+1),--- ,2(0) € Apn , if and only if there exist a logical matriz H € L(jm 4 1)xpn
and an integer o € [1 : k™ — 1] such that

Col(([L LIHML.)*) = {6%.}. (6.14)

From Theorem 6.3.1 or Corollary 6.3.2, the controller design problem for event-triggered
state feedback controller is equivalent to solve (6.13) or (6.14). Since the solution H €
L gmy1)yxkn is very difficult to calculate directly, we next try to design the state feedback
event-triggered controller by calculating the reachable sets.

First, from (6.6), we can split the matrix L= IW[M’W] into £™ blocks

T = [Blky(L) Blks(L) --- Blky (L)],

~

where Blk;(L) € Lynypm, i € [1:k"].
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Then, we introduce two kinds of reachable sets as follows:

E,(5p2) = {51,

Jr € [1: k"], such that Col;(L") = 6:%,},

E(5) = {6, | 6% € Col(BIk,(L)),j € [1: k"]}.

It is easy to recognize that E,.(d}3) is the set of all the strategy profiles which can evolve
to 520" naturally in r steps, while E((ﬁﬁl) denotes the set of all the strategy profiles which
can be steered to 0,3 by control in one step.

In particular, if S = {5,?”, (5,’;%1, e ,5};@}, then we define
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Next, for the desired strategy profile x*

follows.

(i) S =38;U8;,i>1, (6.15)

where S; = E(S;—1) N[Ar \ U= Sul, Si = E-(Si) \ Si.

We can easily see from (6.15), all the strategy profiles in Sy can naturally evolve to z* =
6., in which the control scheme will not be triggered. When the given profile z(t—7) ¢ Sp,
it is complicated to detect whether the control scheme will be triggered or not. In fact, the

event-triggered scheme can be represented as Figure 6.1.

_ ~
S, Sa
° ‘\u * ......
T~ S:1 T §2
So
~ 51 Sa

Figure 6.1: The illustration graph of event-triggered scheme

First, we can determine the profiles which will be steered to Sy by control in one step,

and denote the set of these profiles as §1, in which all the elements will trigger the control
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scheme. When z(t — 1) & SoU Sy, then we need to detect whether z(¢ — 7) can naturally
converge to Sy or not. If z(¢t —7) can converge to 5; naturally, then z(t — ) will not trigger
the control scheme to reach §1, and we denote the set of all these states as 51. After the
states in S evolving to §1, the states will be steered to Sy by control in one step. Moreover,
let S; = S US;. If x(t — 7) can not converge to S naturally, then we need to find the
profiles which will be steered to S; by control in one step, and denote the set of these
profiles as §2, in which all the elements will trigger the control scheme. Similarly, we can
continue the above procedure to obtain the triggered conditions.

From the above procedure we have that, ¥i,j € {0,1,2,---}, 7 # j, S;NS; = 0. If
Sj, = 0, for some jo > 1, then S; = 0,5 > jo. Since there exist only finite strategy profiles,
then there exists a positive number 7' < k", such that Sry; = 0 and Y- |S;| < k™, the
constructing procedure for S;, 7 > 0, will terminate in most £" steps.

Based on the above discussion, we have the following result.

Theorem 6.3.3. The evolutionary dynamics of (6.7) globally converge to the strategy
profile x* = &Y, under a state feedback event-triggered controller (6.9), if and only if there
exists an integer T € [1: k™ — 1] such that Y- | S| = k™.

Proof. (Necessity) Assume that the evolutionary dynamics of (6.7) globally converge to
the strategy profile * = §%, under a state feedback event-triggered controller (6.9). Then
all the strategy profiles converge to z* = (52", and there exists an integer T such that
ST, 1Si] = k™. Let T be the smallest positive number such that -7 |S;| = k", then we
will prove that T" < k™ — 1.

It is enough to show that Y i |S;| > a+1, for every a € [1 : T']. We use induction on .
If 21 o |Si| < 2, then |So|+|S1| = 1. Thus, S; = 0,Vj > 1. That implies that Y7 |Si| = 1,
which is a contradiction. Let now 1 < a < T and assume by induction that S>9' [S;| > a.
Since Y355 [Si] < 2o ISil. Thus, S8, (8] > 3550 ISi = o I S0 [Si] < o+ 1,
then 3% o |Si| = 2250 |Si| = . Hence, S, = 0, and Y7 |Si| = 32954 [Si] = k™. This
contradicts the minimality of 7. Thus Y7 [Si| > o + 1.

From the above discussion, we have k" = 3°7_ |S;| > T + 1, and therefore, T < k" — 1.

(Sufficiency) The proof of sufficiency is constructive. Assume that there exists an integer
T € [1: k" —1] such that 3.7 |S;| = k™ Then U_,S; = Apn. For an arbitrary given
initial strategy profile z(tg) = 6%, € {x(—7),x(—7+1),--- ,2(0)} C Apn, either z(ty) € So
or z(tg) € UL, S; or z(ty) € UL, Si.

Let the feedback control matrix be H = 0gmi1[v1 V2 -+ vgn|, where each column of
matrix H can be designed as follows:

(i) If 6, € So,j € [1 : k], then
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(i) If 67, € U, S, 7 € [1 : k), then
vj € P(vj),

where P(v;) = {1/]-|Col,,j(Blkj(E)) € Si1}
(iii) Tf 67, € UL, S;,j € [1: k"], then

l/j:k?m+1.

Case 1: x(to) € So = E,(62,). From the construction of H, there exists a positive integer
ro € [1: k"], such that

x(to+ro(r+1)) = La(to+ (ro—1)(7 +1))
= L"§],

— 0
- 5]4:"'

Hence, from condition (6.8), we have z(to + k(7 + 1)) = 6%.,Vk > ro and k € N*.
Case 2: z(to) € UL, S;. Without loss of generality, let z(to) € S;,, then

z(to+ (T+1)) = Lu(to)z(to)
= LWy g (to)u(to)
= Blk;(L)u(to)
= Col,,(BIk;(L)) € Sip_1.
If 49 = 1, then x(to + (7 + 1)) € Sp. From the construction of Sy, there exists an integer
r1 € [2: k"], such that x(tg + r1(7 + 1)) = 6%.. Hence, x(tg + k(7 + 1)) = 8%,k > r1 and
keZt.

Otherwise, let ig > 1. Since S;,—1 = §i0_1 Ugio_l, we get that if x(to+ (7+1)) € §i0_1,
then z(ty + 2(7 + 1)) € S;,_o; otherwise, if z(tg + (1 + 1)) € S;,_1, then there exists a
positive integer 75, such that z(tg + ro(7 + 1)) € S;,_1. Repeating this procedure, we can
find a time T < T, such that z(ty + T(7 4+ 1)) € Sp. Based on the analysis above, we know
that x(to) will eventually converge to 62,.

Case 3: z(ty) € UL, S;. Without loss of generality, let z(fo) € S;,. Then z(ty) can
evolve to 6%, naturally in finite steps. Based on the above discussion, the dynamics will
converge to the strategy profile * = 8%, and maintain the desired profile unchanged.

From the arbitrariness of initial strategy profiles x(to) € {x(—7),x(—7+1),--- ,2(0)},
we obtain that z* = §¢,, must be reachable from any initial strategy profiles x(—7), z(—7 +
1), ,2(0) € Agn. Moreover, z* = %, is the fixed point of (6.5). Therefore, the evolu-

tionary dynamics can converge to the desired only final strategy profile globally. O

The following corollary immediately follows from Theorem 6.3.3.
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Corollary 6.3.4. If |, S; = {63,628}, the total number of different state feed-
back event-triggered controller which can make the evolutionary dynamics converge to the

desired only final strategy profile globally is Hé—zl |P(vj)].

Remark 6.3.1. The proof of sufficiency in Theorem 6.3.3 provides a method for construct-
ing all the valid state feedback event-triggered controllers of the evolutionary dynamics of
DNEGSs. The proposed algorithm is not sensitive to system parameters. Here, we concen-
trate our attention to the theory behind the method. In the future, we will apply these results

to the practical application of the method for given network.

Remark 6.3.2. In our model all players have the same time delay T+ 1. In this situation,
the time delay only affects the convergence time of the system. For the system with different
time delays, the time delays will affect both the stabilization and the convergence time. We

plan to investigate this kind of system in future works.

6.4 An illustrative example

In this section, we provide an illustrative example to show how to use the results proposed

in the previous sections to study the global convergence problem of DNEGs.
Example 6.4.1. Consider the following DNEG, which has the following items:

o N =1{1,2,3,4} is the player set; and each player has the same strategy set S = {1,2}.

The network topological structure for the four players is shown in Figure 6.2.

1 2
@ L
® ®
4 3

Figure 6.2: The network graph of Example 6.4.1

o the payoff bi-matriz of the FNG is shown in Table 6.1.

o the strategy updating rule is the Parallel MBRAR.
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Table 6.1: Payoff bi-matrix of DNEG

P\ P 1 2
1 (1, 2) | (0, 0)
2 0, 0) ] (2, 1)

Assume that the time-invariant delay is 7 + 1 = 2. Then the algebraic form of the

evolutionary dynamics for each player can be obtained as follows.

wi(t+1) = filea(t — 1), a1t — 1), 2a(t — 1)) = May(t — Day(t — Daa(t — 1),
wa(t+1) = folor(t — 1), 2a(t — 1), 25(t — 1)) = May(t — Dag(t — Das(t — 1),

s+ 1) = fylaa(t — 1), a3t — 1), 2a(t — 1)) = Mas(t — Dag(t — Daa(t — 1),
wat+1) = falws(t —1),za(t — 1), 21 (t — 1)) = Mas(t — Daa(t — Day(t — 1),

where M = 6,[12122222].

Then, based on Lemma 1.1.2, the algebraic form above can be transformed into
ri(t+1) = Mx(t —1), i € [1:4],
where
23,2
M, = MDf ’ W[QS’Z],
My = MD??,
Ms = MD>?,
23,2
My = MDf ’ W[22’22].

Finally, the evolutionary dynamics of the whole network can be converted into the

following algebraic formulation:
x(t+1) = La(t — 1), (6.16)

where L = d16[1 11 6 16 11 11 16 14 6 16 6 15 16 8 12 1].

It is obvious that there are a fixed point iz and two cycles {0%, 515}, {013,618} with
length two. For more details about the fixed point and cycle of NEGs, please refer to [14].

Next, we study the evolutionary dynamics of the DNEGs that ensure globally conver-
gence to the desired only final strategy profile z* = 14 under state feedback event-triggered
control. In the following, suppose that Player 1 is affected by an external player, and Player
1 imitates the strategy of controller unconditionally when the event is triggered, while the
other players will choose strategies based on the original updating rule.

Let the strategy of controller be 1 ~ 3,2 ~ §2 while the no control action is ug ~ d3.

The algebraic form of the game under event-triggered state feedback control is

x(t+1)=[L Llu(t —1)x(t —1), (6.17)
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where u(t — 1) € Az, z(t — 1) = X} 2;(t — 1) € Ags, and

L = 66/l 3 6 833 86686 788 41
9111416111116 14 14 16 14 15 16 16 12 9].

Then, we aim to find out all the valid feedback control matrices.
First, we split the matrix L= ZW[2472] into 24 blocks:

Blki (L) = d16[1 9], Blky(L) = 616[3 11], Blks(L) = 016[6 14], Blky(L) = 14[8 16],

Blks(L) = 614[3 11], Blkg(L) = 616[3 11], Blk7(L) = 016[8 16], Blks(L) = 16[6 14],
Blko(L) = 616[6 14], Blko(L) = d16[8 16, Blki1(L) = d1[6 14], Blka(L) = d16[7 15,
Blkys(L) = d14[8 16], Blki4(L) = 614[8 16], Blkys(L) = 1[4 12], Blkyg(L) = d16[1 9).

From the constructing procedure of S;,¢ > 0, we have
So = (5%6) - {5167 5%67 5I6> 5%((5)’ 5%27 5%2

Si = E(So) ([ \ So] = {815,013, 316}, S1 = En(S1)\ 81 = {875},
§2 = E(Sl) ﬂ{A% \ (SO U Sl)] = {6167 5?& 5%(15}7 52 = Er(§2) \ §2 {516a 5?& 5?6}'
Thus, for T = 2, Y7_, |Si| = 2.
Based on the above analysis, we have I' = S; U Sy = {6%, 8%, 614,612,614 612} and
P(vs) = {d3}, P(ve) = {03}, P(vi1) = {03}, P(v12) = {05}, P(114) = {03}, P(v15) = {05}
Thus, the only feedback control matrix H € L3494 is given by

H=0553323333323213213].

We consider the algorithm proposed in [74] to design traditional state feedback con-

troller. Then, we can obtain a sequence of sets as follows
El((S%G) = {5%675 h E2(516) - {51675167616a6167516>51675 g

E3(616) - {51656167616751675167616751676167516>61675167 %g’ } E4(516) A167

where E,(61s), r € [1 : 4] denotes the set consisting of all the initial strategy profiles which
can be steered to z* in r steps by a control sequence u(0),u(1), -+ ,u(r — 1). Therefore,
the control need to be executed at least 4 times to achieve global convergence. Moreover,
after the system is stable, a constant control should be executed all the time to maintain
the stabilization of the system. In the method proposed here, the control only need to be

executed 2 times to achieve the same target, and a constant control is not necessary to
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maintain the performance of the system considering that z* is a fixed point and it will not
trigger the control any more. It is no doubt that the event-triggered state feedback control
can greatly save the control costs.

Finally, the matrix ® is obtained as
O = dg56[1 161 209 241 --- 256 256 64 16].
By calculation, there exists T' = 8, such that
Col(®°) = {x2_, 5% ).

Therefore, the evolutionary dynamics can converge to the desired strategy profile 415 glob-

ally under state feedback event-triggered controller u(t) = Hx(t).

6.5 Conclusions

In this chapter, dynamics and control problems for a class of DNEGs have been investigated.
The dynamics of the DNEGs have been first converted into algebraic forms via the STP.
Using the algebraic forms, the dynamic behaviors of the DNEGs have been discussed.
Based on that, all valid state feedback event-triggered controllers are constructed to affect
the evolution of the game, and necessary and sufficient conditions are derived to assure the
global convergence of the desired only strategy profile of DNEGs. Moreover, the number
of all valid state feedback event-triggered controllers is obtained. An illustrative example

has been presented to show the effectiveness of the obtained results.
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Chapter 7

Algebraization and
Optimization of Networked
Evolutionary Boxed Pig Games
with Passive Reward and

Punishment

7.1 Introduction

The boxed pig game was firstly put forward by John Nash in [101]. As we all know, the free-
rider phenomenon of small pig is prevalent in the reality. For example, the retailers wait for
the bankers take the action called “the sedan chair” in stock market or the employees do not
create benefit but share the results in the enterprise. In reaction to this phenomenon, early
studies mainly focused on the areas such as economics and enterprise talent management,
ete, and scholars have analyzed the superiority of the mechanism of passive reward and
punishment in promoting the player’s cooperation behavior in theory [76, 96]. Due to the
lack of effective mathematical tools, it was hard to systematically analyze the influence of
passive reward and punishment on the final cooperation level of the whole network until

the emergence of STP.

Inspired by the successful applications of STP method in the analysis and control of
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logical dynamic systems [13, 14, 69, 65] and control and strategy optimization of evolu-
tionary games [32, 139, 29, 34|, this chapter investigates the impact of the passive reward
and punishment on the evolutionary dynamics of networked evolutionary boxed pig games.

The main contributions of this chapter are:

e The model of the boxed pig game with the passive reward and punishment is inves-
tigated, and an algorithm to calculate the algebraic form of evolutionary dynamics is

constructed by using STP method.

e The impact of the reward and punishment parameters on the final cooperation level

of the boxed pig game is discussed.

7.2 Model description

In this section, the model of the boxed pig game with the mechanism of passive reward
and punishment is introduced.

First, the traditional boxed pig game [108] can be described as follows.

There are a small pig and a big pig in the pigsty. On one side of the pigsty there
is a food storage vessel, and on the other side there is a pedal to control the supply of
food. When the pedal is pressed, a certain amount of food will be turned into the vessel,
while a certain amount of food will be expended during the process of pressing the pedal.

Then the payoff bi-matrix for the traditional boxed pig game is shown in Table 7.1, where

Table 7.1: Payoff bi-matrix of traditional boxed pig game

P\P [ C=1]D=2
C=1 1 (a,b) | (m,s)
D=2 | (ef) | (9,h)

e>a>m=s>b>0>f and g =h =0, P, and P, represent the big pig and the small
pig respectively, C' means press the pedal and D means wait.

It is easy to know that the payoff matrices of big pig and small pig are:

A

Through the payoff bi-matrix, it is enough to verify that (C, D) is a Nash equilibrium
of the game, 7.e. big pig will press the pedal and small pig will wait. That is, small pig
will choose the strategy means “free-rider”, while big pig will travel between pedal and
vessel constantly. It is obvious that both small pig and big pig do not give full play to their

motivation during the gambling process, and it is contrary to the fairness of the game.
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Then, we consider optimizing the original model according to the following manner.

We assume that someone (such as feeder) who can be contacted by all players will apply
to cooperator and defector reward and punishment respectively: for a player taking part
in the game, if he chooses cooperation, the feeder will provide to him a certain amount
of food as a reward for his cooperative behavior; on the contrary, the feeder will decrease
the amount of food if the player chooses defection. Under the mechanism of reward and

punishment, the payoff bi-matrix is shown in Table 7.2, where a and g represent the amount

Table 7.2: Payoff bi-matrix under reward and punishment

Pl\PQ C:1 D:2
C=1|(a+a,b+a) | (m+a,s—p)
D=2 (€_B7f+a) (g_ﬁah_ﬁ)

of reward and punishment applied by the feeder to cooperator and defector, respectively.
It is obvious that o > 0, 8 > 0. Thus, the payoff matrices of big pig and small pig can be

shown in the following form respectively:

A at+a m+ta 7
e—=pB g-—p

B b+a s—p0 .
f+a h-—p

We know that if (i, j) € £, then big pig and small pig play fundamental network game and

their payoffs can be calculated as follows, respectively:

ci(t) = VI (Azi(t)z;(t), (7.1)

cj(t) = VI (B)ai(t)z;(t)

r

= VT (B)YWya;(t)zi(t), (7.2)

where ¢;(t) and ¢;(t) represent the payoffs of big pig and small pig at time ¢ respectively;
z;(t) and xz;(t) represent the strategies of big pig and small pig at time ¢ respectively .

Remark 7.2.1. There must be some constraints on the reward o and punishment 3, which
depends on particular models. In our model, after the reward, the quantity of total food
should be less than certain upper limitation, e.g., vessel capacity; and punish quantity should

be less than food available in the vessel.
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7.3 Algebraic formulation of evolutionary dynamic pro-

cess

In the following, we consider the algebraic formulation and optimization problem of net-
worked evolutionary boxed pig game with the mechanism of passive reward and punish-
ment.

A networked evolutionary boxed pig game with multi-players is denoted as ((NV, &), G, II),

where

o N ={1,2,--- n} is the set of players, and each player may be small pig or big pig.
€ is a directed cycle network graph with n nodes to depict the positional relationship
among players. For any (7, ) € £, i represents the big pig and j represents the small

pig. Let its adjacency matrix be

E = (€ij)nxn
[0 e 0 0 - 0 e |
e21 0 e3 0O - 0 0
0 e 0 ey --- 0 0
0 0 0 o --- 0 €n—1,n
| en1 0 0 0 - epn-1 0 |

where e;; € {1,0}, and e;; = 1 if and only if (¢, j) € £. Obviously e;; A ej; = 0.

e (G is the fundamental network game, i.e., the boxed pig game with two players under

passive reward and punishment.
e II is the local information based strategy updating rule.

First, the algebraic form of the evolutionary dynamics of the game is investigated.
Denoting the strategy of player i at time ¢ by z;(¢), his local information based strategy

updating rule can be expressed with a set of mappings as follows :
zi(t+1) = fi({25(0),c;(®)]j € UG)}), > 0,i €N, (7.3)

where U(i) represents the set of neighborhood players of i. Moreover, the average payoff

[18] of player i is
1
Cl(t) = —— Z Cij(t),i € N,
UOI =1 o

where ¢;; : S x S — R is the payoff of player i playing with his neighbor j, S = {1,2} is

the set of strategies and 1, 2 represents cooperation and defection respectively.
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The strategy updating rule considered in this chapter is UISUR [18] with fixed priority:
the strategy of player i at time t+1, z;(t+1), is selected as the best strategy from strategies
of neighborhood players j € U (i) at time t. Precisely, if

J* = argmax;ep ;)¢ (£(t)), (7.4)
then

zi(t+ 1) = z;+(t). (7.5)

When the players with best payoff are not unique, i.e.,
arg max;ep ;)¢ (¢(t)) == {1, 73, jr}, (7.6)

then we may choose one corresponding to a priority as
j* = min {ulp € argmax;cyy i (2(t)) }. (7.7)
To construct the algebraic form of the game, one can take the following two key steps:

(i) convert the average payoff function of each player i € [1 : n] into an algebraic form;

(ii) construct the algebraic form for the evolutionary dynamic of each player 7.

For step (i), since the network graph is a directed cycle with n nodes, we identify
Tg = Tp,T_1 = Ty_1. Using the vector form of logical variables, let 1 ~ 63, 2 ~ 62, then
S~ A

Thus, the algebraic form of average payoff for any player i € [1 : n| is given below

a(t) = cizi(t),z;(1) | j € U)
- W(Z)1|—1 X U%\{} (eij‘/;T(A)xi<t)xj (t) + ejiv;«T(B)W[Q]l'i(t)$j (t))

% {(ei,iﬂ VI (A)zi(O i () + eV, (B)Wigzi(t)ziga (1)

+eiim1 VI (A)ai(t)zioa (t) + ei—l,iWT(B)Wp]xi(t)xi—l(t))}

)

2
“r(ei,i—lVTT(A) + €z‘—1,inT(B>W[2])W[Q}DEH 22W[2’}2"‘i]}x(t)
= Pu(t), (7.8)
where
1 2 on—2
P = 3 [(ei,i+1V,«T(A) + €i+1,iVTT(B)W[2])DJ% 2 Wizt gn-ivy)

100



7 — Algebraization and Optimization of Networked Evolutionary Boxed Pig Games with Passive Reward and Punishment

+(e5i-1V," (A) + ei—1, VT (B)Wg )Wy D3"72’22W[2i,2n7i]} € Ryxan

is the structural matrix of average payoff ¢;, Colx(P;), k € [1 : 2"] represents the benefit
of player i under the profile 65,. z;(t) € A is the strategy of player i at time ¢, and
z(t) = X2 zi(t) € Agn.

Since the network graph is a cycle, then for player i € [1 : n], according to the strategy
updating rule, to obtain the strategy of player ¢ at time ¢, we need to compare average
payoffs of player ¢ — 1,7+ 1, and ¢ at time ¢.

First, if z(t) = 0%., k € [1 : 2], then the strategy of the i—th player can be calculated

as follows:
zi(t) = D7 Wi ga(t). (7.9)

Let now
Hf = [Pi1d5n, Pid%n, Pia3], (7.10)
Ff = (DF* Wia g8, D Wiger 05, D™ Wiai 905, (7.11)

Thus, the problem of identifying the one who has the maximal average payoff among players

i—1,i+ 1 and 4, can be converted into finding the column index [%, k € [1 : 2], such that
Coly (Hf) > Col;(H}), j&[l:3]. (7.12)

If I} is not unique, one can pick out the unique column index according to the priority:
el = min {l};|Colli(Hf) > colj(Hf)}, (7.13)

where j = 1,2,3, then the strategy of player i at time ¢ + 1, can be chosen as z;(t + 1) =
Next, we identify Coli(L;) = Colsi(ﬂk),k € [1 : 27], for each player i, and we can

obtain the evolutionary dynamic equation as the following algebraic form

where L; € Loxon and x(t) = X x;(t) € Agn.
Based on the above analysis, we have the following algorithm to construct the algebraic

form for the networked evolutionary boxed pig games with passive reward and punishment.

Algorithm 9 Constructing the algebraic formulation of the game:
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Step 1: Calculate the structural matrix, P;, of the average payoff function for each

player i € [1 : n],
1 2 9on—2
Po= 3 [(ei,i+1VrT(A) eV, (B)Wia) D Wigies gneis
+(€i7i_1v;T(A) -+ BZ’_LiV;T(B)W[Q])W[Q]D%THQ’QZ W[Qi’gn—i] .
Step 2: Calculate matrices

Hk = [-szl(sé;"’ Pzégnv ‘P’L+15§"]7

Fik = [D;’QTH W[2i7272](5§n,D]2¢’2n7 W[2i71’2]55n7D§72n7 W[2i72}(5§n].
For all k € [1:2"], find the column index &, such that
i, = min {1} Coly, (HF) > Col;(HY), j € [1: 3]},

and let Col(L;) = Colgi(Fi’“).
Step 3: Construct the algebraic form of the game under study as

x(t+1) = La(t), (7.15)

where Col;(L) = Col;(L1) x Col;(Lg) x - -+ x Col;(Ly), 7 € [1 : n], and L € Lanyon.

Based on Algorithm 9, the evolutionary dynamics of networked evolutionary boxed pig
game can be equivalently formulated as a BN. Thus, the discussion about dynamic analysis
and optimization of the game can be resorted to the results of analysis and control of BNs.

Then, according to the strategy updating rule, we have
Coly (L) = 63, = 6305 - - 6,

Colgn (L) = 63, = 6203 --- 63,

i.e. 04, and 62, are two fixed points of the system, which shows that full cooperation and

full defection are two stable profiles of the given networked evolutionary boxed pig game.

Remark 7.3.1. Among all players {1,2,--- n}, if a player chooses cooperation as his

initial state, the full defection profile will not appear during the dynamic process.

Remark 7.3.2. It must be noted that we just considered a simple cycle network in this
chapter, and the construction of the algebraic form and the following main results can be

easily extended to other more general networks.
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7.4 Optimization of networked evolutionary boxed pig

games

In this section, we provide a necessary and sufficient condition to detect whether the final
dynamic behavior of boxed pig game with the mechanism of passive reward and punishment
can converge to full cooperation profile, and discuss how to adjust the values of reward and
punishment parameters «, 3, such that all initial profiles except full defection can converge

to a full cooperation profile.

Theorem 7.4.1. Consider the passive reward and punishment networked evolutionary
bozed pig game with the algebraic form (7.15). The initial profile x(0) = 8. converges
to full cooperation profile, if and only if there exists a time T € [0 : 2"], such that

Coly(LT) = 63, i € [1:2"]. (7.16)

Proof. For any initial profile z(0) = 3., the dynamics of system (7.15) can be expressed

as

(1) = Lz(0),
z(2) = Lxz(1)
= L*2(0),

x(t) = Lax(t—1)

= L'z2(0)

= L',

= Col;(L").
(Necessity) We prove it by contradiction. Assume for any time ¢, Col;(L!) # 64.. Then
we have Col;(LY) = L'04, = L'z(0) = z(t) # 0. That contradicts the fact that z(0)
converges to full cooperation profile 7, = d3.. Hence (7.16) is satisfied.

(Sufficiency) If there exists a time T, such that Col;(LT) = 3. holds, then for any
Vit > T, we have

z(t) = L'z(0)
= L7TL7%(0)
= L'"TColi(L")
- LtiT(S%n.
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Since 04, is the fixed point of system (7.15), we know that 03, = Ldi., and x(t) =

L7168}, = 63.. Therefore, 2(0) = 8%, converges to full cooperation profile. O

Remark 7.4.1. Let

T, = {5;n

Coli(L¥") = 63 }. (7.17)

Since there are 2" different profiles, for any initial profile x(0) = 8%., i € [1 : 27|, if the
initial profile x(0) = 8%, can not reach to x. = 63, after time 2", it will not reach to
full cooperation any more. Conversely, if it reaches to the profile x. = 63, within time 2",
it will maintain full cooperation x. = 83, unchanged. Then, if Col;(L*") = 04., we have
x(t) = L6, = L2 L2 68, = L6, = 64, for all t > 27, that is, the initial profile
z(0) = 84, i € [1 : 27, can converge to full cooperation. Then, x(0) converges to full
cooperation profile x¢, if and only if x(0) € T'e. We call T'. the convergence domain of the
game. If we denote the number of elements in convergence domain T'e as |Te|, it is obvious
that |Te| < 2" — 1.

The optimization goal is to maximize the number of elements in I'.. In the following,
we discuss how to adjust the values of reward and punishment parameters o and 3, such
that |T.| = 2" — 1.

According to UISUR, to make |I.| = 2™ — 1, we just need to adjust the values of o and
B, such that the average payoff of defector is lower than the average payoff of cooperator.
Then it will follow that the defector will imitate the strategy of cooperator.

For any player i € [1 : n|, according to the strategy updating rule, first we need to
calculate the average payoff of player ¢ and his neighbors ¢ — 1 and ¢ + 1. Those three
payoffs, are completely determined by Us(7). Thus, the average payoff of player ¢ can be
calculated as follows :

1

alt) = e 3 (e VT (At () + eV (B)Wigs(t)a; (1))
VOI=1 i@

\
= %{(61',1'4-1‘/1?(14)331'(0171'4—1(t) + 6i+1,iVTT(B)W[2]I'i(t)xi+l(t))

e VT (A)zi(t)zi1 (1) + eV, (B)Wigzi(t)zi1 ()]

1 2 o3
= § {(ei,i-',-l‘/rT(A) + 6i+17in(B)W[2]>D]2c 2 W[22722]
2 93 .
+(€i7i,1‘/;ﬂT(A) + eifl)inT(B)W[z])W[Q}D?‘ 2 W[2722]i| [X;‘i%—Z Ij(t)

. e 02 )
= M; x5 5, (1),
where

1 2 93
M;, = 5 |:(6i7i+1VTT(A) —+ €i+17iVTT(B)W[2})D12c 2 W[22722}
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+(eria1 VI (A) + eV, (B) W) Wig D} W[m].
Similarly, we have

cioa(t) = My x5, y(t),

cipa(t) = M x5, x4(t),
where

(ei-1iV,T(A) + es5-1V,T (B)Wy)) Dy DY Wy o

+(€Z‘,1’i,2V (A) +€i—2,i— 1V (B)W[Z])W[Q}D]Zc ? }’
[(€i+1,i+2VTT(A) + €z‘+2,z‘+1VrT(B)W[2])D33’22
(

+eip1iV,T (A) + €11V, (B)Wig)) Wiy D7 W[22 22]]

Obviously, M; € Ryy9s, j = ¢ — 1,4,% + 1 is the structural matrix of average payoff
¢j, Colg(M;), k € [1 : 2°] represents the benefit of player j under the profile 6% . Thus,
comparing the average payoff of player ¢ and his neighbors ¢ — 1 and i+ 1 is converted into
comparing the corresponding columns of matrices M;_1, M; and M.

First, for sake of discussion, consider the profile (z;_o, x;—1, i, Tit1, Tit2) = (1,1,1,2,1)
as an example.

Combined with the above analysis, we have

—_

Colz(M;—1) = 5[(61'—1,1‘—2 +ei—1,i)a+ (€i—2i-1 + €ii-1)b + 20/,
1
COI3(MZ') = §[ei,i+1m + 6i+17if + em-,la + 61',171'[) + 20[},
1
Colz(Miy1) = 5[(€i+1,i+2 +eiv1i)e + (Civ2iv1 + eiir1)s — 2],

To make defector imitate the strategy of cooperator, we need that
min{Cols(M;_1), Colg(M;)} > max{Cols(M;+1)},
i.e. min{%[2b + 2a], 3[b+ f + 20} > §[2e — 26]. Hence
a—|—5>1[e—b 11- (7.18)

Next, according to the strategy choices of players i —1, ¢ and i+ 1, we divide the profiles

of players i — 2, ¢ — 1,4, ¢+ 1, i + 2 in vector form into 8 groups :

{525,555,5%{3,6 } {625, 255 25,539} {625, 25,5%}76 } {5257 255 25,6
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{53575% 25,5%?} {6257 12 2575358} {6257 %gl? 257539} {5257 16 257535?}
and at the same time, the profiles of players ¢ — 1, ¢ and ¢ + 1 are respectively :
(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2).

Similar to the above discussion, when x; _o%; 12;2;11Ti10 = 620, 7 =4,19,20, i.e. the

second group except the profile 525, we have the following inequalities:

atB > %[e—b—f], (7.19)
at+ B > %[Qe—b—f}, (7.20)
atf > %[e—b—f]. (7.21)

In conclusion, when the strategy profile of players i — 1, ¢ and i+ 1 is (1,1, 2), to make

defector imitates the strategy of cooperator, according to inequalities (7.18)-(7.21), we have
1
a+5>§[26—b—f]. (7.22)

Similar results can be obtained for the third to seventh group, and the following in-

equalities are obtained:

atf > e—f, (7.23)
atB > %[6—2]"], (7.24)
at+B > %[2644}, (7.25)

atf > e—f, (7.26)
atf > gle—2f] (7.27)

Particularly, when both players i —1, i and i+1 select full cooperation (or full defection),
i.e. for the first group (or the eighth group) strategy profiles, no matter what value of «
and 3, we all have z;(t + 1) = 83 (or 2;(t + 1) = 62).

Based on the above analysis, for all strategy profiles, to make defector imitate the

strategy of cooperator, according to inequalities (7.22)-(7.27), we need
a+p > e—f,

i.e. when o, f € {a, Bla+ > e — [}, then we have |I'.| = 2" — 1.
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7.5 An illustrative example

In this section, we provide an illustrative example to show the impact of reward and
punishment parameters on the convergence domain of evolutionary boxed pig game with

the mechanism of passive reward and punishment.

Example 7.5.1. Consider a passive reward and punishment networked evolutionary bozed

pig game with the following items :

o denote by N ={1,2,3,4,5} the player set, and each player has the same strategy set

S ={1,2}, where 1,2 represent cooperation and defection respectively.

o the adjacency matriz is shown as follows :

E = (eij)sx5
[0 0 0 0 0 ]
1 0 0 0 0
=0 1 0 0 O
0O 0 1 0 O
10 0 1 0

o the payoff bi-matriz is shown in Table 7.3, wheree =9,a =5,m=s=4,b=1,f =
—1,9 = h =0, a and B represent the amount of reward and punishment applied by

the feeder to cooperator and defector, respectively, and a > 0, 5 > 0.

Table 7.3: Payoff bi-matrix of Example 7.5.1

Pl\Pg C=1 D=2
C=1|(a+a,b+a) | (m+a,s—p)
D=2 (6_57f+a> (g_67h_6>

Combined with the above analysis, to achieve the optimization goal, the sum of resources
expended by reward and punishment should satisfy a+ £ > 10. For example we can choose

a = 3 = 6. Then, according to the payoff bi-matrix, we have

VI(A)=[11 10 3 —6],

T

VIB)=[T —2 5 —6].

T

In the following, we convert the dynamics of the game into an algebraic form.
First, the algebraic forms of average payoffs for all players are given by:

a(z(t) = %[W(Bwpmt)xg(w+vTT<B>W[2}x1<t>x5<t>} = Pu(t),

107



7 — Algebraization and Optimization of Networked Evolutionary Boxed Pig Games with Passive Reward and Punishment

aat) = 3 [VIBWiza(thas(t) + VE(A)ra(t)a ()] = Por(t),
es(at) = 5 [V (B Weyrs(aa(t) + Vi (A)rs(thaale)] = Pra(t),
alat) = 5[V BWimBias(t) + Vi (A)ra(tas(n)] = Par(t),
(a(t) = 5 [VEAsm(n) + VI (A)s(Baa(t)] = Pralh),

where P; € Ryy9s5 is the structural matrix of ¢;(i € [1 : 5]), according to Algorithm 9, the

structural matrix of average payoff for each player can be calculated as follows:

1 2 53 2
Po= g {VTT(B)W[Q]D,% P+ VI (B)Wy Wi D2 W[2,24]]
= [7 6 7676766565605 6°5
-2 -4 -2 -4 -2 —4 -2 —4 —4—6—4—6—4—6—4—6],
1 2 93 3 92
P, = 5 [‘/;,,T(B)W[Q]ch 2 W[2724} + VTT(A)W[Q] DZ 2 W[gzg:s]}
= [9 9998 88805050505 —15 —15 —15 —15

85 85 85 85 75 7575 75 —4 -4 —-4-4-6-6 -6 —6],
1 2 93 3 92
Py = B {VTT(B)W@]D? 2 Wigz g5 + V,T (A)Wig D7 W[23,22]}
= 99880505 —-15—-15185857575—-4—-4—-6 -6
99880505 —-15—-158585 7575 —-4—-4—-6 —06],
1 2 93 3 92
Py = 5 [VTT(B)W[Q]DJ% 2 W[23’22} + V;.T(A>W[2]Dz 2 W[2472]:|
= 9705 —-158575—-4-69705—-158575—-4-6
9705 —-158575—-4 —69705—1528575—4 —6],
1 2 93 3 92
P o= 5 VT (A) D} Wigs g + VT ()W D22
= [11 3 105 —1.5 11 3 105 —1.5 11 3 105 —1.5 11 3 105 —1.5
105 =15 10 -6 105 —1.5 10 =6 105 —1.5 10 —6 105 — 1.5 10 —6].

Calculate matrices HF, FF i € [1 : 5], k € [1 : 2], respectively. Identify the column

index 52. Then

Ly = 1111111111111 111
1111111112121 22 2],
Ly = &1 111111111111111
1111111111112 22 2],
Ly = &1 111111111111122
l111111111111112 2],
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L, = »1111111211111112
l111111121111111 2],
Ly = &1 111111211111112
1112111211121112].

Therefore, the algebraic form of the game in this case is

x(t+1) = La(t), (7.28)

where

L=4%311111113111111538
11121114117 1189 25 29 32]

A simple calculation shows that there exist time 7" = 3, such that

IT=0p1111111111111111
111111111111111 32,

and from Theorem 7.4.1, the convergence domain of the game is
T = {08 |Coli (L?) = 04,0 € [1: 27}

Hence, the number of elements in ', : [[e| = 2° — 1, i.e. all initial profiles (except full

defection) are eventually stable to full cooperation profile.

7.6 Conclusions

In this chapter, we have investigated the model of networked evolutionary boxed pig game
based on the mechanism of passive reward and punishment. Using the matrix expression of
logic and STP, we have constructed the algebraic form of the evolutionary dynamics. Based
on the algebraic form, we have obtained necessary and sufficient conditions under which
the dynamic process of the game starting from any initial profile except full defection can
converge to full cooperation profile, and analyzed the impact of reward and punishment
parameters on the final cooperation level. The study of an illustrative example has shown

that our main results in this chapter are effective.
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Chapter 8

Conclusions and Future

Research

8.1 Conclusions

Using STP method, this thesis investigates the stability and control of several classes of log-
ical dynamic systems and the applications in game theory. Firstly, the stability of DKVLNs
has been analyzed and the event-triggered control has been designed such that all the initial
states can be globally stabilized to the target state. Secondly, the robust control invariance
and robust set stabilization of MVLCNs have been studied. Thirdly, the finite-time robust
set stability with probability 1 of PBNs and finite-time robust set stabilization with prob-
ability 1 of PBCNs have been investigated. Fourthly, the stabilization and set stabilization
of SBCNs with periodic switching signals have been addressed. Finally, the theoretical
results obtained were applied to investigate the optimization and global convergence of
NEGs, and a number of novel results have been obtained. The detailed research results can

be summarized as follows:

e The stability and event-triggered control of DKVLNs have been investigated. First,
the algebraic formulations for DKVLNs and DKVLCNs under event-triggered control
have been constructed respectively. Then, the criteria to detect the global stability
have been presented based on the iteration of the evolutionary process. Furthermore,
the antecedence solution technique has been introduced into the stability analysis and
the necessary and sufficient conditions have been presented for the global stability of
DKVLNs. Moreover, necessary and sufficient conditions for the global stabilization of
DKVLCNs have been given, and a constructive procedure has been proposed to design

the event-triggered state feedback control via the antecedence solution technique.
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e The robust control invariance and robust set stabilization of MVLCNs have been
studied. First, the dynamics of the disturbed MVLCNs have been converted into al-
gebraic expression. Then, an algorithm has been presented to compute the LRCIS
of any given set of MVLCNs, and all the possible state feedback controls have been
determined to keep the robust control invariance. Moreover, necessary and sufficient
conditions to detect the robust set stabilization of MVLCNs have been derived. Fur-
thermore, using the antecedence solution technique, a constructive procedure has been

provided to design all the time-optimal state feedback controls.

e The finite-time robust set stability with probability 1 of PBNs and finite-time ro-
bust set stabilization with probability 1 of PBCNs have been investigated. First, the
algebraic forms of PBNs and PBCNs with disturbances have been given. Then, algo-
rithms have been proposed to compute the LRIS with probability 1 and the LRCIS
with probability 1. Moreover, necessary and sufficient conditions have been derived
respectively to determine the finite-time robust set stability with probability 1 and
finite-time robust set stabilization with probability 1 of PBCNs. Furthermore, a con-

structive algorithm has been presented to design all the time-optimal controllers.

e The stabilization and set stabilization of SBCNs with periodic switching signal have
been studied. First, the algebraic formulation of periodic SBCNs has been constructed.
Then, necessary and sufficient conditions have been presented to determine the solv-
ability of the stabilization of periodic SBCNs, and the constructive procedures of
open loop controller as well as the design algorithms of switching-signal-dependent
state feedback controller via antecedence solution technique have been provided. Fur-
thermore, the criteria have been given to detect the solvability of set stabilization
of periodic SBCNs, and the design algorithm has been constructed to obtain the

switching-signal-dependent state feedback set stabilizers.

e The event-triggered control design of NEGs with time-invariant delay in strategies has
been investigated. First, using STP method, the evolutionary dynamics of NEGs with
time-invariant delay in strategies have been converted into a DKVLCN with algebraic
form. Then, necessary and sufficient conditions have been given to determine whether
the evolutionary dynamics can globally converge to the only desired strategy profile.
Moreover, all valid state feedback event-triggered controllers have been constructed
to assure the global convergence of the desired only strategy profile of DNEGs. Fur-
thermore, the number of all valid state feedback event-triggered controllers has been

obtained.

e The algebraization and optimization of networked evolutionary boxed pig games with
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passive reward and punishment have been studied. First, the evolutionary dynamic
process of this kind of games has been modeled as a BN, and an algorithm has been
presented to construct the algebraic formulation of the game. Then, necessary and
sufficient conditions have been presented to detect whether the final dynamic behavior
of boxed pig game with the mechanism of passive reward and punishment can converge
to full cooperation profile. Moreover, values of reward and punishment parameters
have been obtained assuring that all the initial profiles except full defection can

converge to full cooperation profile.

8.2 Future research

In this thesis, the stability analysis and control of several classes of logical dynamic systems
and the applications in game theory were systematically investigated, and some new re-
sults were obtained. However, many theoretical and practical problems need to be further

investigated in the future.

e The mathematical tool used in this thesis is STP. This method plays a very important
role in the analysis and control design of finite-valued systems, based on which, any
finite-valued system can be converted into the algebraic formulation. The dimension
of the state transition matrix of the system increases exponentially with the number
of network nodes, which is the greatest limitation of STP. Thus, how to effectively

reduce the computational complexity of STP will be a very meaningful research topic.

e The time-invariant delay is considered for KVLCNs and NEGs. This kind of time
delays may be too limited. In practice, the time-variant delays are more general. Thus,
the impact of time-variant delays on the evolutionary dynamics of KVLCNs and NEGs
is worthy of further study. Moreover, in order to reduce the control execution times,
the event-triggered control scheme is chosen for DKVLCNs and DNEGs, whether
there exists an adjustment method to further minimise the control times need to be

further discussed.

e The results obtained in logical dynamic system without disturbances have been suc-
cessfully applied to the analysis and control of NEGs. For the robust control theory
of logical dynamic system, there are few researches on its application to NEGs. The
investigation for NEGs with disturbances is meaningful. Some classical problems in
NEGs are worthy of further study, such as the robust optimization problem, the

robust stable degree analysis for profiles and the robust strategy consensus.
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An Appendix

A.1 List of publications

e Journal Papers

1.

Jianjun Wang, Renato De Leone, Shihua Fu, Jianwei Xia. Input-output decoupling
for mix-valued logical control networks via the semi-tensor product method. Interna-
tional Journal of Control, 2021, 94(9), 2419-2427.

Jianjun Wang, Renato De Leone, Shihua Fu, Jianwei Xia, Lishan Qiao. Stabilisation
and set stabilisation of periodic switched Boolean control networks. International

Journal of Control, 2021, doi: 10.1080/00207179.2021.2009576.

Jianjun Wang, Renato De Leone, Shihua Fu, Jianwei Xia, Lishan Qiao. Event-
triggered control design for networked evolutionary games with time invariant delay
in strategies. International Journal of Systems Science, 2021, 52(3), 493-504.

Jianjun Wang, Wen Liu, Shihua Fu, Jianwei Xia. On robust set stability and set sta-
bilization of probabilistic Boolean control networks. Applied Mathematics and Com-
putation, 2022, 422, 126992.

Jianjun Wang, Jianli Zhao, Shihua Fu. Algebraization and optimization of net-
worked evolutionary boxed pig games with passive reward and punishment. Asian
Journal of Control, 2019, 21(5), 2415-2424.

Jianjun Wang, Shihua Fu, Renato De Leone, Jianwei Xia, Lishan Qiao. On robust
control invariance and robust set stabilization of mix-valued logical control networks.
International Journal of Robust and Nonlinear Control, minor revision.

Conference Papers

Jianjun Wang, Renato De Leone, Shihua Fu, Jianwei Xia, Lishan Qiao. Input-output
decoupling of singular Boolean control networks. Proceedings of the 39th Chinese
Control Conference, Jul 27-29, 2020, Shengyang, China, 463-468.
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A.2 List of projects

e National Natural Science Foundation of China, (Grant No.61976110), 2020.01.01-
2023.12.31, Participant.

e Natural Science Foundation of Shandong Province, (Grant No.ZR2019BF023), 2019.07-
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