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Abstract

With the rapid development of complex networks, logical dynamic systems have been
commonly used mathematical models for simulating Genetic Regulatory Networks (GRNs)
and Networked Evolutionary Games (NEGs), which have attracted considerable attention
from biology, economy and many other fields. By resorting to the Semi-Tensor Product
(STP) of matrices, logical dynamic systems can be equivalently converted into discrete time
linear systems with algebraic forms. Based on that, this thesis analyzes the stability and
studies the control design problems of several classes of logical dynamic systems. Moreover,
the obtained results are applied to investigate the control and optimization problems of
NEGs. The main results of this thesis are the following.

• The stability and event-triggered control for a class of k-Valued Logical Networks
(KVLNs) with time delays are studied. First, some necessary and sufficient con-
ditions are obtained to detect the stability of Delayed k-Valued Logical Networks
(DKVLNs). Second, the global stabilization problem under event-triggered control is
considered, and some necessary and sufficient conditions are presented for the sta-
bilization of Delayed k-Valued Logical Control Networks (DKVLCNs). Moreover, an
algorithm is proposed to construct all the event-triggered state feedback controllers
via antecedence solution technique.

• The robust control invariance and robust set stabilization problems for a class of Mix-
Valued Logical Control Networks (MVLCNs) with disturbances are studied. First, a
calculation method for the Largest Robust Control Invariant Set (LRCIS) contained
in a given set is introduced. Second, based on the Robust Control Invariant Subset
(RCIS) obtained, the robust set stabilization of MVLCNs is discussed, and some
new results are presented. Furthermore, the design algorithm of time-optimal state
feedback stabilizers via antecedence solution technique is derived.

• The robust set stability and robust set stabilization problems for a class of Probabilis-
tic Boolean Control Networks (PBCNs) with disturbances are studied. An algorithm
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to determine the Largest Robust Invariant Set (LRIS) with probability 1 of a given
set for a Probabilistic Boolean Network (PBN) is proposed, and the necessary and
sufficient conditions to detect whether the PBN is globally finite-time stable to this
invariant set with probability 1 are established. Then, the PBNs with control inputs
are considered, and an algorithm for LRCIS with probability 1 is provided, based on
which, some necessary and sufficient conditions for finite-time robust set stabiliza-
tion with probability 1 of PBCNs are presented. Furthermore, the design scheme of
time-optimal state feedback stabilizers via antecedence solution technique is derived.

• The stabilization and set stabilization problems for a class of Switched Boolean Con-
trol Networks (SBCNs) with periodic switching signal are studied. First, algebraic
forms are constructed for SBCNs with periodic switching signal. Second, based on
the algebraic formulations, the stabilization and set stabilization of SBCNs with peri-
odic switching signal are discussed, and some new results are presented. Furthermore,
constructive procedure of open loop controllers is given, and the design algorithms of
switching-signal-dependent state feedback controllers via antecedence solution tech-
nique are derived.

• The dynamics and control problems for a class of NEGs with time-invariant delay in
strategies are studied. First, algebraic forms are constructed for Delayed Networked
Evolutionary Games (DNEGs). Second, based on the algebraic formulations, some
necessary and sufficient conditions for the global convergence of desired strategy pro-
file under a state feedback event-triggered controller are presented. Furthermore, the
constructive procedure and the number of all valid event-triggered state feedback
controllers are derived, which can make the game converge globally.

• The evolutionary dynamics and optimization problems of the networked evolutionary
boxed pig games with the mechanism of passive reward and punishment are studied.
First, an algorithm is provided to construct the algebraic formulation for the dynamics
of this kind of games. Then, the impact of reward and punishment parameters on the
final cooperation level of the whole network is discussed.

Keywords: Semi-tensor product of matrices; Logical dynamic systems; Networked evo-
lutionary games; Stability; Stabilization; Antecedence solution technique
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Introduction

Logical Dynamic Systems

Inspired by the human genome project, a newly developing discipline called systems biology
[45, 50], has been a widely focused research field, in which the essence of life phenomenon
is well studied. More precisely, systems biology investigates the dynamic behavior and the
interaction relationship of all the cells, proteins, DNAs and RNAs instead of the composed
individual element of the biological system. The target of systems biology is to understand
and express life systems from the systematic level, including the cellular networks and
GRNs. In the early 1960s, Jacob and Monod found that “any cell contains a number
of ‘regulatory genes’ that act as switches and can turn one another on and off” [117].
It shows that a genetic network is a logical one. Moreover, the logical nature of a cell
network was also pointed out by Paul Nurse: “the cell machines then need to be linked
and integrated together to define the modules and overall regulatory networks required
to bring about the reproduction of the cell. This task will require system analyzes that
emphasize the logical relationships between elements of the networks” [103]. Therefore, the
logical dynamic systems have naturally been a powerful tool in describing, analyzing and
simulating cellular networks or GRNs [39, 49, 110].

Logical network is a discrete-time nonlinear networked system, where all the state,
input and output variables take finite values. When the gene state only takes logical values
1 or 0, that is, the gene expression is quantified to two different levels: active or inactive,
the logical networks become Boolean Networks (BNs), which were firstly introduced by
Kauffman [49] to model GRNs. In a BN, the evolution of each state variable relies on
a pre-assigned logical function, which is determined by its neighbouring genes, itself and
some logical operators. Furthermore, in order to describe the therapeutic interventions in
GRNs, the concept of Boolean Control Networks (BCNs) was formally proposed in [45].
Due to their simple structure and parameter free, both BNs and BCNs have drawn a large
amount of attention in biological systems [3]. Moreover, they have been used to simulate
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many biological models, such as segment polarity genes [3], λ phage1 decision circuit [52].
The gene interactions of λ phage are summarized in Figure 1, where two genes, cI and
cro directly affect this decision. When cI is ON (OFF) and cro is OFF (ON), the phage
is in the lysogenic (lytic) state. Whether or not gene cI will be switched on, depends on
a subtle control process, which is determined by interaction between five phage genes, cI,
cro, cII, cIII, N , and the environmental state u.

Figure 1: Gene interactions for the λ switch. The edges represents either activation (→) or
inhibition (a).

However, many complex real-world networks can not be described by BNs. For example,
in some biological models, the gene states are not limited to active or inactive, or when one
gene is not strongly affected by another gene, binary variables will not be able to accurately
describe the relationship between these genes. In a public goods game, each player may have
a same number of investment schemes (more than 2), or more generally, each player may
have a different number of investment schemes to compete with others. Based on that,
the more general logical networks, namely KVLNs and Mixed-Valued Logical Networks
(MVLNs) were proposed [20, 9]. Both of them have similar structure to BNs, but the
values that can be assigned at the nodes are different from BNs. In a KVLN, all the states
take value from a finite set Dk = { k−ik−1 | i ∈ [1 : k]} and in an MVLN, each state takes
value from a finite set of different size Dki = { ki−jki−1 | j ∈ [1 : ki]}, where i ∈ [1 : n].
Thus, KVLN and MVLN can approximate a real cellular regulatory network better than
a BN. As claimed in [2], “One of the major goals of systems biology is to develop a control

1The λ phage is a virus that grows on a bacterium.
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theory for complex biological systems”, the interests in k-Valued Logical Control Networks
(KVLCNs) and MVLCNs have been increasing [51, 114]. Given a logical network, the basic
interesting topics are to study its topological structure [4, 41], dynamic characteristics [1]
and modeling and analysis of biological systems [43]. The existing research methods mainly
include physical statistical method, graph theory method and computer simulation method
[2, 42]. However, a unified theoretical framework could not be established to analyze the
dynamic process of logical networks based on these methods. For example, only the fixed
points and cycles for a specific system are computed in [4, 41], instead of providing a unified
computation formula. Furthermore, since the dynamics of logical system are a process of
logical evolution, and there are less tools for logical operations, investigating logical network
becomes difficult. Hence, the investigation for logical dynamic system calls for a new tool.

STP of matrices was first introduced by Prof. Cheng to deal with Morgen’s problem
in 2001 [11]. It is a generalization of the conventional matrix product to the case that the
dimension matching condition is not satisfied. STP almost keeps all the major properties of
the conventional matrix product unchanged and has certain commutative properties, called
pseudo-commutativity. Because of these advantages, the STP is capable of dealing with
multi-linear and nonlinear functions. Using STP, a logical function can be converted into a
multi-linear mapping, called the matrix expression of logic [14]. Under this transformation,
an algebraic state- space representation approach can be established for logical dynamic
systems. In the light of algebraic formulation and classical control theory, many major issues
about the topology of logical networks including fixed points, cycles, basin of attractors,
and transient times, can be revealed easily by a set of formulas [12]. Moreover, a multitude
of fundamental and important results have been investigated for the analysis and control of
logical dynamic systems based on the algebraic state-space representation approach, which
include controllability [13, 17, 92, 150, 144, 145], observability [25, 132, 151, 35, 84, 149,
134], stability and stabilization [19, 58, 36, 62, 47, 66, 74, 154, 113, 86, 153, 93], disturbance
decoupling [82, 10, 135, 129, 55, 119, 88], input-output decoupling [105, 118, 30], optimal
control [16, 27, 143, 152, 125] and other related problems [72, 70, 24, 157]. It is worth
noting that [13] won “Automatica Paper Prize-Theory & Method (2008-2010)” issued by
IFAC in 2011, which shows that STP method is superior to other mathematical tools in
dealing with logical dynamic systems. On the other hand, STP method has been applied
to engineering related fields, such as power system [97], finite automata [126], information
security [89] and vehicle control [124].

As we all know, time delay is a very common phenomenon and frequently occurs in
real-world systems, such as transportation systems, chemical processes and communica-
tion systems. For instance, the information cannot be communicated instantaneously, and
there may exists time delay due to some physical factors. The slow process of transcription,
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translocation and translation in GRNs may cause time delay. As a source of instability,
time delays are unavoidable in various cases, and may result in poor performance. More-
over, the presence of time delays makes the analysis and control of logical networks much
more difficult and challenging. Therefore, it is interesting and significant to investigate
logical networks with time delays. Various works reported the theory and application of
delayed logical networks based on STP method. For example, [57] and [38] investigated the
controllability of BCNs with time-invariant delays in states and BCNs with time-invariant
delays both in states and inputs respectively. Furthermore, necessary and sufficient condi-
tions were presented to detect the controllability of BCNs. Compared with [57] and [38], a
more practical time delay was encountered in [136], and the controllability and observabil-
ity of BCNs with time-variant delays in states were studied. Moreover, the stability and
stabilization problems of BNs with time delays were investigated in [85, 100]. It is worth
noting that [100] first discussed the impact of stochastic delays on the dynamics of BNs.

Switching phenomenon between different models is widely observed in the real GRNs,
which may be triggered by inherent mechanisms of systems, external disturbances or asyn-
chronous behavior of GRNs. For instance, the growth and division of eukaryotic cells consist
of four processes, which are activated by a set of discrete events [54]. The genetic switch
in λ phage consists of two distinct models: lysis and lysogeny [115]. Compared with ordi-
nary BNs, the existence of switched signals make the investigation of SBCNs much more
complicated. These facts reveal that the study of SBCNs is a meaningful and challenging
topic. Up to now, using STP method, many interesting results have been obtained for
SBCNs [79, 131, 73, 137, 78]. The switching form considered in the above publications is
an arbitrary transformation. However, in many practical biological systems, the switching
behavior between different subsystems is not arbitrary, but usually relies on certain bio-
logical rhythms. For example, photosynthetic rate has a periodicity related to sunlight, the
oscillation period of enzyme synthesis and enzyme activity is from one to dozens of min-
utes. Zou and Zhu [156] mentioned that the physical meaning of periodically time-variant
BNs just lies in the periodic model transition among different BNs. Therefore, it seems
that periodical switching signal is more suitable for SBCNs to stimulate biological cycle
phenomenon. However, how the periodic switching signals affect the dynamic behavior of
SBCNs has not been fully investigated.

Note that the deterministic rigidity of traditional BN (BCN) limits the further appli-
cation in GRNs, since biological uncertainty and random perturbation always exist in real
GRNs, and these phenomena can not be described via classical models. Hence, Shmulevich
et al. [110] proposed the PBN model, which can be regarded as an undetermined system
switching with a certain probability distribution among different sub-networks. Similarly,
a PBN with exogenous control inputs is briefly called a PBCN. The main advantage of
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the PBN (PBCN) model over the deterministic BN (BCN) is that it cannot only share the
appealing properties of BN (BCN) but also cope with the presence of random perturbation.
PBN and PBCN have been recognized as the more flexible mathematical models of GRNs,
and the theoretical and practical importance of probabilistic models have been shown in
[37, 147, 57, 68, 75].

In a real GRN, external disturbances which maybe originate from gene mutations and
recombination are ubiquitous [8]. These unavoidable disturbances may steer the system
dynamics to some undesired behaviours [109]. For examples, cancer can be regarded as the
failure of organism in resisting uncertainties including gene mutations. In some practical
NEGs, the attackers can be regard as the disturbances to the strategy evolutionary dy-
namics of the games [112]. These cases show that it is indispensable to study the stability
problem of logical networks with disturbances. There are some works concerning robust
control invariance and robust set stabilization of BCN [67, 127, 71, 81, 83]. In particular,
Li et al. presented necessary and sufficient conditions for the robust stabilization of BCNs
and the constructive procedure for the controller [67]. Moreover, in [127] necessary and
sufficient conditions were proposed to detect whether the BCNs with impulsive effects can
robust stabilize to a given state set under a given state feedback control. In addition, the
robust control invariance was studied in [71], and all possible state feedback gain matrices
were characterized.

Stability and stabilization are two basic and important issues for logical dynamic sys-
tems and play a key role in some applications such as the explanation of some living
phenomena and the therapeutic interventions of disease. Note that stability is an inherent
attribute of systems, and it describes whether the network can converge to a certain desired
state or a state set, which are called stability [19] and set stability [36], respectively. On
the other hand, the ultimate goal of the GRNs is to design an efficient therapeutic strategy
such that the organism can reach and maintain a desirable state. However, the system usu-
ally can not naturally evolve to the target state, thus external actions are necessary. This is
the significance of investigating stabilization problem [74, 26]. In other cases, it is essential
to study whether the system can be driven to a desirable subset of the state space instead
of a single point, which is known as set stabilization [36]. In fact, there are many typical
applications of set stabilization, such as synchronization [91], partial stabilization [111] and
output tracking [72]. Furthermore, the control design is always one of the most interesting
topics for the stabilization problems of logical control systems, and diverse design schemes
of controllers have been presented, such as reachable set approach [74], pinning control
technique [92], event-triggered control technique [55] and sampled-data control technique
[87]. Different control strategies have their own unique advantages. For instance, the main
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advantage of pinning control is that the desired control objective can be achieved by con-
trolling a small fraction of nodes [92], event-triggered control can effectively reduce the
control execution times [55] and sampled-data control can effectively reduce the time of
control updates [87]. Recently, a new method based on antecedence solution [53] has been
proposed and it has been used to design the state feedback controls. For example, using the
antecedence solution method, [48] investigated the stabilization problem of generic logical
systems. The dynamics and control problems of singular BCN were studied in [122] by
constructing the truth matrix of antecedence solution. Moreover, there are several works
concerning the existence of antecedence solution based on STP. For instance, [107] pre-
sented necessary and sufficient conditions to detect the existence of antecedence solution.
It is recognized that the main advantages of antecedence solution technique are (i) the clear
one-step evolutionary dynamics are presented by constructing a series of truth matrices;
(ii) the computations involved are very easy and straightforward; (iii) the algorithm can
be easily implemented with the help of software tools such as Matlab.

From the above discussion, it is clear that logical dynamic systems are widely used to
simulate and analyze various complex networks. Particularly, the evolutionary dynamics
of NEGs are a logical process, thus many theories and results of logical dynamic systems
can be applied to the investigation of NEGs directly.

Networked Evolutionary Games

NEGs have many applications in biology, economy, physics [28, 44, 102] and other areas
[104, 148]. In an NEG, nodes and edges represent players and the interactions among
players, respectively. The topological structure among players is not neglected and every
player only interacts with his neighbours in the network. That coincides with many practical
economic activities, where each person only plays games with relatives, friends or business
partners. Limited by the bounded rationality of the players, each player updates his strategy
according to certain strategy adjustment rule, which is affected by the local information of
his neighbours.

The strategies of players can be expressed as the truth values of logical networks and
the strategy updating rule can be interpreted as propositional logic formulas, based on
which, the dynamic process of the game can be transformed into a logical dynamic system.
Particularly, the strategy evolutionary dynamics of an NEG were firstly expressed as a
k-valued logical dynamic network in [18], which provided a precise mathematical model
for NEGs. Since then, some classical results obtained in logical dynamic system have been
used to analyze, control and optimize NEGs based on STP method, and many excellent
results have been proposed. For example, the results for the deterministic logical dynamic
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systems have been applied to the dynamic analysis and strategy optimization control of
NEGs, such as the (group) strategy consensus problem was transformed into the (set) sta-
bilization problem of KVLNs in [140, 31]. The optimization problem of NEGs [32, 139] was
converted to the global convergence problem of a KVLCN. Besides, the results on robust
control theory of logical dynamic systems with state constraints have been applied to the
investigation of NEGs with attackers and forbidden profiles [77]. And the results on prob-
abilistic logical dynamic system have been applied to the study of stochastic evolutionary
games [22]. Last but not least, other comprehensive introduction about the applications of
logical networks to NEGs were reported [15, 29, 33, 141, 98, 133].

Compared with traditional methods, the main advantages of logical dynamic systems
lie in the overall manipulation of NEGs. Using the structural matrix and other information
of the system, the game problems can be equivalently transformed into the calculation and
analysis of the corresponding strategy transformation matrix, which can be easily solved
based on the classical matrix theory.

Motivations

In the above, we introduced the background and research status of several kinds of logical
dynamic systems, and their applications to NEGs. From that, it is clear that the research
on the stability and stabilization of logical networks is of great theoretical significance and
of practical worth. However, there are still some problems worthy of further study.

First, for the logical networks with time-invariant delay, the stability analysis and con-
troller design problems have not been fully investigated. Existing works mainly concentrate
on the delayed BNs, there are few results available on the stability and stabilization of
KVLNs with time delays. Moreover, for the controller design, there are still much room
to reduce the control costs. To the best of our knowledge, the event-triggered control and
antecedence solution technique have not been introduced into the investigation of DKVLNs
before. Furthermore, the interactions between players in NEGs can not take place instanta-
neously and their reactions can not be immediate, which will inevitably cause time delays
in strategies. Thus, the applications of KVLNs with time delays to DNEGs need to be
further explored.

Second, the robust (control) invariance of logical dynamic system has not been fully
studied. The robust set stability (stabilization) means that all the initial states can con-
verge to the robust (control) invariant set under the influence of disturbances. Thus, in
order to solve the robust set stability (stabilization) problem, we should first study its ro-
bust (control) invariance problem. However, due to the complicated effects of disturbances
variables on system dynamics, there are no results available on the computation of robust
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invariant set (RIS) and the determination of robust set stability. Moreover, the existing
works just present the criteria to determine whether or not a given set is a RCIS, when the
given set is not a RCIS, there are no works concentrate on this situation. Thus, finding an
effective algorithm to calculate the RIS (RCIS) of logical dynamic systems is a problem
to be further studied. Besides, the previous models are limited to BNs and KVLNs, the
robust set stability and robust set stabilization problems of MVLNs and PBNs are not
investigated in the necessary detail. Compared with BNs and KVLNs, the structures of
MVLNs and PBNs are more complex, hence, the results in BNs and KVLNs can not be
generalized to MVLNs and PBNs easily.

Third, the impact of periodic switching signals on the dynamic behavior of SBCNs has
not been fully investigated. The existing works mainly concentrate on the stabilization and
set stabilization of SBCNs under arbitrary switching signals. However, the stabilization and
set stabilization problems of SBCNs with periodic switching signals have not been studied.
Moreover, for the controller design, the condition of switching-signal-dependent controller
is less conservative than the one of the switching-signal-independent controller. Thus, how
to design switching-signal-dependent state feedback controllers for the stabilization and set
stabilization problems of periodic SBCNs need to be studied carefully.

Finally, the scheme to avoid the free-rider phenomenon in the networked evolutionary
boxed pig games has not been fully investigated. Due to the lack of effective mathematical
tools, it is hard to systematically analyze the influence of passive reward and punishment on
the final cooperation level of the whole network. Thus, the investigation of the evolutionary
dynamics and optimization problems of the boxed pig games with passive reward and
punishment need to be further considered.

Main Contents

In reaction to the above problems, this thesis investigates the stability analysis and control
of several types of logical dynamic systems and the applications in game theory. The main
contents are summarized as follows:

Chapter 1 presents the preliminaries of this thesis, and mainly introduces the concept
of STP and some basic properties, the algebraic state-space representation of logical dy-
namic systems, the related concepts of NEGs and its algebraic state-space expression, and
the antecedence solution technique, which lay a theoretical foundation for the research of
subsequent chapters.

Chapter 2 investigates the stability and event-triggered feedback control problems of
DKVLNs. First, we provide the algebraic formulations of DKVLNs and DKVLCNs under
the event-triggered control. Then, we present some necessary and sufficient conditions for
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the solvability of stability problem of DKVLNs. Moreover, we derive the necessary and
sufficient conditions for the solvability of stabilization problem of DKVLCNs under the
event-triggered control and establish an algorithm to design all the event-triggered state
feedback stabilizers based on antecedence solution technique.

Chapter 3 investigates the robust control invariance and robust set stabilization prob-
lems of MVLCNs, and proposes a novel method to compute the LRCIS of MVLCNs and
obtains all the possible state feedback controllers to keep the robust control invariance.
We further present some necessary and sufficient conditions for the solvability of robust
set stabilization of MVLCNs and provide an algorithm to design all the time-optimal state
feedback controls.

Chapter 4 investigates the robust set stability and set stabilization problems of PBCNs.
First, we introduce the concepts of RIS and RCIS with probability 1 of PBNs, respectively,
and propose the algorithms to compute the LRIS and the LRCIS with probability 1, re-
spectively. Second, we determine all the state feedback controls to keep the robust control
invariance with probability 1 of PBCN. Third, we propose the concept of finite-time robust
set stability of PBNs and provide the necessary and sufficient conditions for the solvabil-
ity of finite-time robust set stability with probability 1. Fourth, we introduce the concept
of finite-time robust set stabilization of PBCNs, and present the necessary and sufficient
conditions for the solvability of finite-time robust set stabilization with probability 1. More-
over, we construct an algorithm to design all the time-optimal state feedback stabilizers
for finite-time robust set stabilization of PBCNs.

Chapter 5 investigates the stabilization and set stabilization problems of periodic SBCNs.
First, we introduce the model of periodic SBCNs, the concepts of stabilization, set stabi-
lization, common control fixed point and common control invariant set of periodic SBCNs.
Second, we give the necessary and sufficient conditions for the solvability of stabilization
of periodic SBCNs, and present a constructive procedure of open loop controller and a
design algorithms of switching-signal-dependent state feedback controller via antecedence
solution technique. Furthermore, we drive the necessary and sufficient conditions for the
solvability of set stabilization of periodic SBCNs, and provide an algorithm to construct
all the switching-signal-dependent state feedback controllers.

Chapter 6 investigates the event-triggered control design problem for NEGs with time-
invariant delay in strategies. First, we formulate the model of DNEGs under the Myopic
Best Response Adjustment Rule (MBRAR), and present the algebraic expression of the
dynamics of DNEGs. Then, we propose the necessary and sufficient conditions to detect
whether the evolutionary dynamics can globally converge to the desired strategy profile.
We further establish an algorithm to construct the event-triggered control to assure the
global convergence of the game.
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Chapter 7 investigates the algebraization and optimization problems of networked evo-
lutionary boxed pig games with passive reward and punishment. First, we introduce the
model of the boxed pig game with the mechanism of passive reward and punishment, and
propose an algorithm to construct the algebraic formulation of the evolutionary dynamics
under the Unconditional Imitation Strategy Updating Rule (UISUR). Then, we analyze
the evolutionary dynamics of the game, and present the necessary and sufficient conditions
for the global convergence to the full cooperation profile. Moreover, we discuss the impact
of reward and punishment parameters on the final cooperation level.

Chapter 8 summarizes the results obtained in this thesis and points out the further
research problems.

The main contents of this thesis are shown in Figure 2.

Figure 2: The structure of the thesis
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Chapter 1

Preliminaries

In this chapter, we recall the definition and properties of STP, algebraic expression of
mapping on finite set, some basic concepts and the matrix expression of NEGs and the
antecedence solution technique, which will be used throughout this thesis.

1.1 Definition and properties of STP

This section mainly introduces the definition of STP and some basic properties related to
this thesis. For more information on STP of matrices, please refer to [14].

Definition 1.1.1. [14] The STP of two matrices A ∈ Rm×n and B ∈ Rp×t is defined as

AnB = (A⊗ Iα
n

)(B ⊗ Iα
p
), (1.1)

where α = lcm(n, p).

Remark 1.1.1. Note that AnB = AB when n = p. Therefore, the STP is a generalization
of the ordinary matrix product and keeps the major properties of ordinary matrix product,
such as associative law and distributive law. In this paper, the symbol “n” will be omitted
without confusion.

Proposition 1.1.1. [14] The STP of matrices has the following properties:

1. (Associative law) Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rr×s, then

(AnB) n C = An (B n C).

2. (Distributive law) Let A,B ∈ Rm×n, C ∈ Rr×s, then

(A+B) n C = An C +B n C,

C n (A+B) = C n A+ C nB.
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1 – Preliminaries

3. (Pseudo-commutative law) Let X ∈ Rt×1, A ∈ Rm×n, then

X n A = (It ⊗ A) nX. (1.2)

Lemma 1.1.2. [14] (Power-reducing matrix, Swap matrix and Front/Rear-maintaining
operator)

1. Let x ∈ ∆n, then
xn x = Ψn n x, (1.3)

where Ψn ∈ Ln2×n is called a power-reducing matrix, which is defined as

Ψn = [δ1
n n δ1

n δ2
n n δ2

n · · · δnn n δnn ].

2. Let x ∈ ∆n, u ∈ ∆m, then

xn u = W[m,n] n un x, (1.4)

where W[m,n] ∈ Lmn×mn is the so-called swap matrix, which is defined as

W[m,n] = [δ1
n n δ1

m · · · δnn n δ1
m · · · δ1

n n δmm · · · δnn n δmm ].

3. Given two integers p ≥ 2, q ≥ 2. The “front-maintaining operator” and “rear-
maintaining operator” are defined as

Dp,q
f = Ip ⊗ 1Tq , Dp,q

r = 1Tp ⊗ Iq. (1.5)

Then
Dp,q
f xy = x, Dp,q

r xy = y,

where x ∈ ∆p, y ∈ ∆q.

1.2 Algebraic state-space representation of logical dy-
namic systems

Definition 1.2.1. [14] A function f : Dk1×Dk2×· · ·×Dkn −→ Dk0 is called a mix-valued
logical function. If k0 = k1 = · · · = kn = k, then f is called a k-valued logical function.
Particularly, when k = 2, it is called a Boolean function.

For ki−j
ki−1 ∈ Dki , j ∈ [1 : ki], i ∈ [1 : n], identify ki−j

ki−1 as a vector form δjki , then Dki ∼ ∆ki .
Under the vector form, the mix-valued logical function

f : Dk1 ×Dk2 × · · · × Dkn −→ Dk0

can be equivalently expressed as

f : ∆k1 ×∆k2 × · · · ×∆kn −→ ∆k0 .
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Lemma 1.2.1. [14] Let f : ∆k1×∆k2×· · ·×∆kn −→ ∆k0 be a mix-valued logical function.
Then there exists a unique matrix Mf ∈ Lk0×k, called the structural matrix of f , such that

f(x1, x2, · · · , xn) = Mf nn
i=1 xi, (1.6)

where nn
i=1xi = x1 n x2 n · · ·n xn ∈ ∆k, k =

∏n
i=1 ki and xi ∈ ∆ki .

Following, some frequently-used logical operators and their structural matrices are in-
troduced.

• Boolean function

− Negation(¬): ¬x = 1− x. Structural matrix: Mn = δ2[2 1].

− Conjunction(∧): x ∧ y = min{x, y}. Structural matrix: Mc = δ2[1 2 2 2].

− Disjunction(∨): x ∨ y = max{x, y}. Structural matrix: Md = δ2[1 1 1 2].

− Conditional(→): x→ y = ¬x ∧ y. Structural matrix: Mi = δ2[1 2 1 1].

− Biconditional(↔): x↔ y = (x→ y) ∧ (y → x). Structural matrix: Me = δ2[1 2 2 1].

Example 1.2.1. Assume

f(x, y, z) = (x ∧ y) ∨ (y ∧ ¬z),

where x, y, z ∈ D.

Based on the vector form of logical variables and Lemma 1.2.1, we have

f(x, y, z) = (x ∧ y) ∨ (y ∧ ¬z)

= Md(x ∧ y)(y ∧ ¬z)

= Md(Mcxy)(McyMnz)

= MdMc(I4 ⊗Mc)xy2Mnz

= MdMc(I4 ⊗Mc)xΨ2yMnz

= MdMc(I4 ⊗Mc)(I2 ⊗Ψ2)(I4 ⊗Mn)xyz

= δ2[1 1 2 2 2 1 2 2]xyz.

• k-valued logical function
In this case, the logical variables take value from Dk = { k−ik−1 | i ∈ [1 : k]}. As an
example, we take k = 3.

− Negation(¬): ¬x = 1− x. Structural matrix: Mn,3 = δ3[3 2 1];
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− Conjunction(∧): x ∧ y = min{x, y}. Structural matrix: Mc,3 = δ3[1 2 3 2 2 3 3 3 3].

− Disjunction(∨): x ∨ y = max{x, y}. Structural matrix: Md,3 = δ3[1 1 1 1 2 2 1 2 3].

− Conditional(→): x→ y = ¬x ∧ y. Structural matrix: Mi,3 = δ3[1 2 3 1 2 2 1 1 1].

− Biconditional(↔): x↔ y = (x→ y) ∧ (y → x). Structural matrix: Me,3 = δ3[1 2 3 2
2 2 3 2 1].

• Mix-valued logical function

Definition 1.2.2. [14] Let x ∈ Dp, φ[q,p] : Dp −→ Dq. φ is a projection of φ[q,p](x) :=
ξ ∈ Dq and

| ξ − x |= min
y∈Dq

| x− y | .

Remark 1.2.1. If there are two such solutions as ξ1 > x and ξ2 < x, φ[q,p](x) := ξ1 is
called the up-round projection and φ[q,p](x) := ξ2 is called the down-round projection.
In the sequel, the default projection is the up-round projection. Moreover, denote the
structural matrix of φ[q,p] as Φ[q,p]. For example, Φ[3,2] = δ3[1 3], Φ[2,3] = δ2[1 2 2].

Definition 1.2.3. [14] Let σ be an unary operator on Dk, and x ∈ Dp. Then

σ(x) := σ(φ[k,p](x)) ∈ Dk.

Let σ be a binary operator on Dk, and x ∈ Dp, y ∈ Dq. Then

xσy := (φ[k,p](x))σ(φ[k,q](y)) ∈ Dk.

Example 1.2.2. Consider logical function

y = f(x1, x2, x3) = x1 ∧ (x2 ↔ x3),

where x1, x3 ∈ D, x2, y ∈ D3.

Its algebraic expression can be computed as

y = f(x1, x2, x3) = x1 ∧ (x2 ↔ x3)

= Mc,3(Φ[3,2]x1)(Me,3x2(Φ[3,2]x3))

= Mc,3Φ[3,2](I2 ⊗Me,3)(I4 ⊗ Φ[3,2])x1x2x3

= δ3[1 1 1 1 1 1 1 2 3 3 2 1]x1x2x3.

Definition 1.2.4. [14] Let M ∈ Rp×m and N ∈ Rq×m. Then, the Khatri-Rao product of
M and N is defined as

M ∗N = [Col1(M) n Col1(N), · · · ,Colm(M) n Colm(N)] ∈ Rpq×m.
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1 – Preliminaries

Assume that a logical network with algebraic formulation is presented as follows

F :



y1 = M1 nn
i=1 xi,

y2 = M2 nn
i=1 xi,

...

ym = Mm nn
i=1 xi.

(1.7)

Then, with x = nn
i=1xi and y = nm

i=1yi, we have

y = MFx, (1.8)

where MF = M1 ∗M2 ∗ · · · ∗Mm.
In the following, an illustrative example is given to show how to convert the logical form

of a BCN into the algebraic formulation.

Example 1.2.3. A simple BCN model for the λ phage decision circuit system shown in
Figure 1 can be derived as follows

x1(t+ 1) = (¬x2(t)) ∧ (¬x5(t)),

x2(t+ 1) = (¬x5(t)) ∧ (x2(t) ∨ x3(t)),

x3(t+ 1) = (¬x2(t)) ∧ u(t) ∧ (x1(t) ∨ x4(t)),

x4(t+ 1) = (¬x2(t)) ∧ u(t) ∧ x1(t),

x5(t+ 1) = (¬x2(t)) ∧ (¬x3(t)),

(1.9)

where state variables x1, x2, x3, x4 and x5 represent genes N , cI, cII, cIII and cro

respectively, and control variable u denotes an external factor.

Based on the above discussion, the first expression becomes

x1(t+ 1) = (¬x2(t)) ∧ (¬x5(t))

= McMnx2(t)Mnx5(t)

= McMn(I2 ⊗Mn)x2(t)x5(t)

= McMn(I2 ⊗Mn)D22,2
r D23,22

f u(t)x1(t)x2(t)x3(t)x4(t)x5(t)

:= M1u(t)x(t),

where x(t) = n5
i=1xi(t) and

M1 = δ2[2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1
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2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1].

Similarly, we can obtain

xi(t+ 1) := Miu(t)x(t), i ∈ [2 : 5],

where

M2 = δ2[2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2],

M3 = δ2[2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 1 1 2 2 1 1 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2],

M4 = δ2[2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2],

M5 = δ2[2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1].

Thus, the algebraic expression of system (1.9) can be easily computed as

x(t+ 1) = Lu(t)x(t), (1.10)

where L = M1 ∗M2 ∗M3 ∗M4 ∗M5 and

L = δ32[32 24 32 24 32 24 32 24 26 2 26 2 25 9 25 9

32 24 32 24 32 24 32 24 28 4 32 8 27 11 31 15

32 24 32 24 32 24 32 24 32 8 32 8 31 15 31 15

32 24 32 24 32 24 32 24 32 8 32 8 31 15 31 15].

16



1 – Preliminaries

Remark 1.2.2. The algebraic formulation of logical networks can be equivalently converted
into a logical form, one can refer [14] for details. Moreover, a Matlab toolbox1 has been
developed to compute STP and convert the logical form and algebraic expression to each
other, all examples in this thesis are computed based on this toolbox.

The pseudo-logical function plays a key role in the investigation of NEGs. Here we
introduce the concept and the algebraic expression of pseudo-logical function.

Definition 1.2.5. [14] A function f :
∏n
i=1Dki −→ R is called a mix-valued pseudo-logical

function. If k0 = k1 = · · · = kn = k, then it is called a k-valued pseudo-logical function.
Particularly, when k = 2, it is called a pseudo-Boolean function.

Under the vector form, the pseudo-logical function can be converted into algebraic
expression.

Lemma 1.2.2. [14] Let f :
∏n
i=1 ∆ki −→ R be a mix-valued pseudo-logical function. Then,

there exists a unique row vector Vf ∈ R1×k, called the structural vector of f , such that

f(x1, x2, · · · , xn) = Vf nn
i=1 xi, (1.11)

where xi ∈ ∆ki and k =
∏n
i=1 ki.

1.3 Algebraic state-space expression of NEGs

Definition 1.3.1. [18] A normal finite game is a triplet (N,S, P ), where

(i) N = {1, 2, · · · , n} is the set of players;

(ii) for each player i ∈ [1 : n] a strategy set Si = {1, 2, · · · , ki}, i ∈ [1 : n], is defined and
S :=

n∏
i=1

Si is the set of profiles;

(iii) for each player i ∈ [1 : n] a payoff function pi : S → R, i ∈ [1 : n], P is the set of
payoff functions.

Definition 1.3.2. [18] A normal game with two players is called a Fundamental Network
Game (FNG), if

S1 = S2 := S0 = {1, 2, · · · , k}.

An FNG is symmetric, if p1(x, y) = p2(y, x), ∀x, y ∈ S0, where pi = pi(x, y) is the payoff
function of player i, i = 1, 2.

1http://lsc.amss.ac.cn/∼dcheng/stp/STP.zip
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Definition 1.3.3. [18] An NEG is a triplet ((N, E), G,Π), where

(i) (N, E) is a network graph, with N = {1, 2, · · · , n} the set of vertices, E ⊂ N × N

the set of edges. In the network, nodes and edges denote, respectively, players and
interaction relationship among players.

(ii) G is an FNG, such that if (i, j) ∈ E, then i and j play the FNG with strategies xi(t)
and xj(t), respectively. FNG determines the type of the game.

(iii) Π is a local information based strategy updating rule.

Definition 1.3.4. [18] Let N be the set of nodes in network and E ⊂ N ×N be the set of
edges:

(i) if (i, j) ∈ E implies (j, i) ∈ E, the graph is undirected, otherwise, it is directed;

(ii) j ∈ N is called a neighborhood node of i, if either (i, j) ∈ E or (j, i) ∈ E. The set of
neighborhood nodes of i is called the neighborhood of i, denoted by U(i). In particular,
i ∈ U(i);

(iii) ignoring the directions of edges, if there exists a path from i to j with length less than
or equal to r, then j is said to be an r-neighborhood node of i. The set of r-neighborhood
node of i is denoted by Ur(i).

Definition 1.3.5. [18] Let N = Z ∪ U be a partition of N . If the strategies of any u ∈ U
can be assigned arbitrarily, we call [(Z ∪ U,E), G,Π] a controlled NEGs. Moreover, u ∈ U
is called a control player and z ∈ Z is called a state player.

Next, an example is given to explain the definition of NEGs and neighbor of player,
and show the effectiveness of STP method in converting the dynamics of the game into the
corresponding algebraic formulation.

Example 1.3.1. Consider an NEG with the following items:

• N = {1, 2, 3, 4, 5, 6} is the player set. The network topological structure among
players is shown in Figure 1.1.

• the FNG is the Prisoner’s dilemma. The payoff bi-matrix is shown in Table 1.1, where
T = 0, R = −1, P = −6, S = −9. If (i, j) ∈ E, then players i and j can play the
Prisoner’s dilemma. For instance, player 1 plays game with players 2 and 6, however,
he does not play games with other players.
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Figure 1.1: The network graph with six players

Table 1.1: Payoff bi-matrix of Prisoner’s dilemma

P1 \ P2 C D
C (R, R) (S, T )
D (T, S) (P, P )

• the strategy updating rule is the MBRAR [23], that is, each player forecasts that his
rivals will repeat their previous decisions, and the strategy choice at present time is
the best response against his neighbors’ strategies. Based on this, we have

xi(t+ 1) ∈ Qi := arg maxxi∈{C,D}pi(xi, xj(t) | j ∈ U(i)\{i}), (1.12)

where xi(t) represents the strategy of player i at time t, U(i)\i means to remove i
from U(i). When the best response of player i is not unique, that is, | Qi |> 1, then
xi(t+ 1) = C.

From Definition 1.3.4 and Figure 1.1, U(1) = {1, 2, 6}, U2(1) = {1, 2, 3, 5, 6},
U3(1) = {1, 2, 3, 4, 5, 6}, U(1)\{1} = {2, 6}, U(6)\{6} = {1, 5}, U(i)\{i} = {i−1, i+1},
i ∈ [2 : 5]. Hence, the dynamics of the game can be expressed as follows

x1(t+ 1) = f1(x2(t), x6(t)),

xi(t+ 1) = fi(xi−1(t), xi+1(t)), i ∈ [2 : 5],

x6(t+ 1) = f6(x1(t), x5(t)).

Then, we need to compute the structural matrix of fj , j ∈ [1 : 6]. Consider player 1 as
an example. First, the dynamics of player 1 can be converted into the following algebraic
formulation

x1(t+ 1) = Fx2(t)x6(t).
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From the parameters in Table 1.1, we conclude that for player 1, no matter which strategy
his opponent chooses, he will choose defection at next time. Identify C ∼ δ1

2 , D ∼ δ2
2 . Then

x1(t+ 1) = δ2
2 , ∀x2(t), x6(t) ∈ {C,D}.

Since there are four profiles for players 2 and 6, that is, both players 2 and 6 choose C,
player 2 chooses C and player 6 chooses D, player 2 chooses D and player 6 chooses C,
both players 2 and 6 choose D. Hence, the matrix F has four columns, where each column
corresponds to the possible choice of player 1 at next time with four different profiles. For
example, when players 2 and 6 choose C, we have x2(t)x6(t) = δ1

2 n δ1
2 = δ1

4 . Thus,

x1(t+ 1) = Fx2(t)x6(t) = Fδ1
4 = Col1(F ) = δ2

2 ,

from which we obtain the first column of structure matrix F . Similarly, we can compute
the other columns of F :

Col2(F ) = Fδ1
2 n δ2

2 = Fδ2
4 = δ2

2 ,

Col3(F ) = Fδ2
2 n δ1

2 = Fδ3
4 = δ2

2 ,

Col4(F ) = Fδ2
2 n δ2

2 = Fδ4
4 = δ2

2 .

Therefore, F = δ2[2 2 2 2].
From Lemma 1.1.2,

x1(t+ 1) = Fx2(t)x6(t)

= FD2,2
r x1(t)x2(t)x6(t)

= FD2,2
r D22,23

f x(t)

:= F1x(t), (1.13)

where x(t) = n6
i=1xi(t) and F1 = δ2[2 2 · · · 2] ∈ L2×26 .

Similarly, we can obtain the algebraic expression of fi

xi(t+ 1) = Fix(t), i ∈ [2 : 6], (1.14)

where Fi = δ2[2 2 · · · 2] ∈ L2×26 .
Multiplying the left and right of (1.13) and (1.14) by STP, we have

x(t+ 1) = Lx(t),

where L = F1 ∗F2 ∗ · · · ∗F6 = δ26 [26 26 · · · 26] ∈ L26×26 . The matrix L is called the profile
transition matrix of the game. Based on this matrix, we can calculate the final evolutionary
dynamics of the game from any initial profile.
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1.4 Antecedence solution technique

Definition 1.4.1. [48] Let X1, X2, · · · , Xn, U1, U2, · · · , Um be Boolean variables. Given a
set of Boolean equations

Fi(X1, X2, · · · , Xn, U1, U2, · · · , Um) = Ci, i ∈ [1 : s], (1.15)

where Ci ∈ D is a constant. A set of Boolean functions

Uj = Gj(X1, X2, · · · , Xn), j ∈ [1 : m], (1.16)

is called an antecedence solution of (1.15), if (1.16) implies (1.15).

Let xi, uj and cl be the vector form of Xi, Uj and Cl, respectively. Based on Lemma
1.2.1, the Boolean functions (1.15) and (1.16) can be expressed as follows:

MFux = c, (1.17)

u = Gx, (1.18)

where x = nn
i=1xi ∈ ∆2n , u = nm

j=1uj ∈ ∆2m , c = ns
l=1cl ∈ ∆2s , MF ∈ L2s×2n+m and

G ∈ L2m×2n .
The matrix T ∈ B2m×2n given by

[T ]i,j =

1, if MF δ
i
2mδ

j
2n = c,

0, otherwise,
(1.19)

is called the truth matrix of (1.17).
The following lemma shows under which conditions the antecedence solution condition

holds.

Lemma 1.4.1. [48] The equation u = Gx is an antecedence solution of MFux = c, if and
only if G ≤ T , where T is given by (1.19).

Replacing the single state c ∈ ∆2s in (1.17) by a set Ω ⊂ ∆2s and choosing x from set
W , concept of the generalized antecedence solution can be introduced.

Definition 1.4.2. [48] Let W ⊂ ∆2n be a restricted set. Then (1.18) is called a W -
antecedence solution of (1.17), if when x ∈ W and u = Gx then MFux ∈ Ω holds.

Similarly, the truth matrix TΩ|W ∈ B2m×2n of (1.17) with respect to Ω and restricted
on W can be constructed as follows:

[TΩ|W ]i,j =

1, if MF δ
i
2mδ

j
2n ∈ Ω, ∀δj2n ∈ W,

0, otherwise.
(1.20)

The below lemma shows under which conditions the generalized antecedence solution
condition holds.
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Lemma 1.4.2. [48] The equation u = Gx is a W -antecedence solution of MFux ∈ Ω, if
and only if G|W ≤ TΩ|W , where TΩ|W is given by (1.20) and x ∈ W .

In the following, an example is given to show how to verify the antecedence solution
and the generalized antecedence solution.

Example 1.4.1. Consider

F1(X1, X2, U) = (X1 ∨ U)→ X2 = 1,
F2(X1, X2, U) = X1 ∧ U = 0.

(1.21)

Let x1, x2 and u be the vector form of X1, X2 and U respectively, and identify 1 ∼ δ1
2

and 0 ∼ δ2
2 . Based on Lemma 1.2.1, the algebraic formulation of (1.21) can be easily

calculated as follows

Mfux = δ2
4 , (1.22)

where x = x1 n x2 and

Mf = δ4[1 3 2 4 2 4 2 2].

The truth matrix of (1.21) is given by

T =
[

0 0 1 0
1 0 1 1

]
. (1.23)

Note that since there is no G ∈ L2×4 such that G ≤ T , thus, (1.21) has no antecedence
solution.

Let W = {δ1
4 , δ

3
4 , δ

4
4}, replacing state δ2

4 in (1.22) by Ω = {δ2
4 , δ

4
4}, the truth matrix is

given by

TΩ|W =
[

0 0 1 1
1 0 1 1

]
. (1.24)

Hence, from Lemma 1.4.2, there exists a W -antecedence solution of MFux ∈ Ω and all the
solutions can be obtained as

u = δ2[2 1 1 1]x,

u = δ2[2 1 1 2]x,

u = δ2[2 1 2 1]x,

u = δ2[2 1 2 2]x.

u = δ2[2 2 1 1]x,

u = δ2[2 2 1 2]x,

u = δ2[2 2 2 1]x,

u = δ2[2 2 2 2]x.
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Chapter 2

Stability Analysis and
Event-triggered Control of
Delayed k-Valued Logical
Networks

2.1 Introduction

A KVLN is a discrete-time nonlinear networked system, where all the state, input and
output variables take value from a finite set [6]. It has captured wide attention of numerous
scholars from different areas, including gene regulation [2, 49, 123], combinational logic
circuit design [90], NEG [18], finite automata [126], information security [89] and so on.
Using STP method, one can easily convert the dynamics of KVLNs into an equivalent
algebraic form. Up to now, many significant results of KVLN have been obtained via STP
method, ranging among controllability [60], output tracking [64], optimal control [143], and
other problems [80, 63, 21].

As we all know, time delay is very common in real-world system, such as transporta-
tion systems, chemical processes and communication systems. For example, time delay is
associated with the slow process of transcription, translation, and translocation or the fi-
nite switching speed of amplifiers in GRNs [146, 85]. As a source of instability, time delay
phenomenon is unavoidable in various cases and may result in some poor performance.
Moreover, the presence of time delay causes difficulties and challenges in the stability anal-
ysis and control design. Therefore, it is interesting and significant to investigate KVLN
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with time delays. The existing works mainly concentrate on delayed BNs with very few
results on the stability and stabilization of DKVLNs.

Event-triggered control is an effective control strategy and has been broadly used to
study logical control networks since it was first introduced into the investigation of dis-
turbance decoupling problem of BNs [55]. This control scheme consists of two elements:
a feedback controller that determines the control input, and a triggering mechanism that
decides when the controller need to be updated again [40]. The main advantage of event-
triggered control is that the control execution times and the computation costs can be
greatly reduced. Thus, the event-triggered state feedback control is utilized to study the
stabilization of DKVLNs.

This chapter investigates the stability and event-triggered control design problems of
DKVLNs via the truth matrices technique. The main contributions are:

• Necessary and sufficient conditions for the stability of DKVLNs are established.

• Necessary and sufficient conditions for the stabilization of DKVLCNs under the event-
triggered control are given.

• A design procedure to compute all the event-triggered state feedback controllers is
presented.

2.2 Problem formulation

The dynamics of KVLNs with state delay can be described as follows:

X1(t+ 1) = f1(X(t− τ + 1)),

X2(t+ 1) = f2(X(t− τ + 1)),
...

Xn(t+ 1) = fn(X(t− τ + 1)),

(2.1)

where τ ∈ Z+ denotes the time delay, fi : Dnk → Dk, i ∈ [1 : n] are k-valued logical
functions and X(t) = (X1(t), X2(t), · · · , Xn(t)) ∈ Dnk are states at time t.

Let xi be the vector form of logical variable Xi, i ∈ [1 : n]. Then, based on Lemma
1.2.1, system (2.1) can be converted into

x(t+ 1) = Lx(t− τ + 1), (2.2)

where L ∈ Lkn×kn and x(t) = nn
i=1xi(t) ∈ ∆kn .
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Similarly, a DKVLCN with n nodes, m control inputs is described as follows:

X1(t+ 1) = g1(X(t− τ + 1), U(t− τ + 1)),

X2(t+ 1) = g2(X(t− τ + 1), U(t− τ + 1)),
...

Xn(t+ 1) = gn(X(t− τ + 1), U(t− τ + 1)),

(2.3)

where gi : Dm+n
k → Dk, i ∈ [1 : n] are k-valued logical functions and U(t) = (U1(t), U2(t), · · · ,

Um(t)) ∈ Dmk are control inputs at time t.
Let uj be the vector form of Uj , again, following Lemma 1.2.1, system (2.3) can be

expressed as

x(t+ 1) = L̃u(t− τ + 1)x(t− τ + 1), (2.4)

where L̃ ∈ Lkn×km+n and u(t) = nm
j=1uj(t) ∈ ∆km .

The event-triggered control mechanism is an intermittent control scheme based on a
triggering event set Γ ⊆ ∆kn . When the current state does not belong to the set Γ, no
control is activated and the dynamics of the system will evolve desirably in the form (2.2).
Otherwise, the control input is operated and the system will maintain in the form (2.4).
Therefore, the overall dynamics of DKVLCNs under the event-triggered control can be
expressed as

x(t+ 1) =

Lx(t− τ + 1), x(t− τ + 1) ∈ ∆kn\Γ,

L̃u(t− τ + 1)x(t− τ + 1), x(t− τ + 1) ∈ Γ.
(2.5)

Equivalently, the algebraic form of DKVLCNs with event-triggered control can be re-
formulated as

x(t+ 1) = [L̃ L]u(t− τ + 1)x(t− τ + 1) := Lu(t− τ + 1)x(t− τ + 1), (2.6)

where L ∈ Lkn×kn(km+1), and the event-triggered control u(t−τ+1) ∈ ∆km+1 is constructed
from u(t− τ + 1) as follows:

u(t− τ + 1) =

δ
km+1
km+1 , x(t− τ + 1) ∈ ∆kn\Γ,

[u(t− τ + 1)T 0]T , x(t− τ + 1) ∈ Γ,
(2.7)

where δkm+1
km+1 denotes no control action.

In the next sections, the dynamics of DKVLNs (2.2) will be analyzed and all the event-
triggered state feedback controls

u(t) = Hx(t), (2.8)

where H ∈ L(km+1)×kn , are designed, such that DKVLCNs (2.5) are globally stabilizable.
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2.3 Stability analysis of DKVLNs

Definition 2.3.1. DKVLN (2.2) is said to be globally stable to a given state x∗ ∈ ∆kn , if
for any initial states x(−τ + 1), x(−τ + 2), · · · , x(0) ∈ ∆kn , there exists an integer T ∗ ≥ 0,
such that x(t) = x∗, ∀t ≥ T ∗.

Note that if DKVLN (2.2) is globally stable to x∗ = δαkn ∈ ∆kn , then x∗ is a fixed point
of the system. However, the reverse does not hold. In the following, we discuss how to
determine whether system (2.2) is globally stable to x∗ = δαkn .

For any ρ ∈ Z+ and any initial state x(t0) ∈ {x(−τ + 1), x(−τ + 2), · · · , x(0)}, the
dynamics of system (2.2) can be expressed as

x(t0 + τ) = Lx(t0),

x(t0 + 2τ) = Lx(t0 + τ)

= L2x(t0),
...

x(t0 + ρτ) = Lx(t0 + (ρ− 1)τ)

= L2x(t0 + (ρ− 2)τ)
...

= Lρx(t0).

Now, we are ready to present the following necessary and sufficient conditions for the global
stability of DKVLNs (2.2).

Theorem 2.3.1. Consider system (2.2) with initial states x(−τ + 1), x(−τ + 2), · · · , x(0),
and the given objective state x∗ = δαkn . Then system (2.2) is globally stable to x∗ = δαkn , if
and only if there exists an integer T ∗ ∈ [1 : kn − 1], such that

Col(LT ∗) = {δαkn}. (2.9)

Remark 2.3.1. The equation (2.9) is easy to be verified via Matlab. However, when the
dimension of the structural matrix L is large, the iteration process will take a lot of time
according to Theorem 2.3.1. Next, we try to find another way to detect the global stability
of system (2.2).

First, let R0 = {δαkn} and construct the truth matrix TR0 ∈ Bkn×kn :

[TR0 ]i,j =

1, if i = α, [L]α,j = 1,

0, otherwise.
(2.10)
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Compute R1 = {δjkn | Colj(TR0) /= 0kn}. Then, for t ∈ Z+, construct a series of truth
matrices TRt ∈ Bkn×kn as follows

[TRt ]i,j =

1, if Li,j = 1,∀δikn ∈ Rt,

0, otherwise,
(2.11)

and compute Rt+1 = {δjkn | Colj(TRt) /= 0kn}. In fact, from the construction of TRt , t ∈ N,
we have the following three cases:
Case 1: if [TR0 ]α,α = 1, then TRt−1 ≤ TRt , for all t ≥ 1, or equivalently, Rt ⊆ Rt+1.
Case 2: if [TR0 ]α,α = 1 and [TR0 ]α,j = 0, ∀j /= α, then [TRt−1 ]α,α = 1 and [TRt−1 ]α,j = 0,
∀j /= α, for all t ≥ 1, or equivalently, Rt = R0.
Case 3: if TRλ−1 = TRλ , for some λ ≥ 1, then TRt−1 = TRλ−1 , ∀t ≥ λ, or equivalently,
Rt = Rλ.

The following criteria are proposed to detect the global stability of DKVLNs (2.2).

Theorem 2.3.2. Consider system (2.2) with initial states x(−τ + 1), x(−τ + 2), · · · , x(0),
and the given objective state x∗ = δαkn . Then system (2.2) is globally stable to x∗ = δαkn , if
and only if

(i) [TR0 ]α,α = 1,

(ii) there exists an integer t∗ ∈ [1 : kn − 1] such that Colj(TRt∗−1) /= 0kn , ∀j ∈ [1 : kn].

Proof. (Necessity) Suppose that system (2.2) is stable to x∗ = δαkn globally. Then δαkn is a
fixed point of system (2.2), that is, Lδαkn = δαkn , or equivalently, [L]α,α = 1. Hence, condition
(i) holds.

Since all the initial states x(−τ + 1), x(−τ + 2), · · · , x(0) ∈ ∆kn can reach δαkn , from
the computation of Rt, t ∈ N, there exists an integer t∗ such that Rt∗ = ∆kn , which is
equivalent to Colj(TRt∗−1) /= 0kn , ∀j ∈ [1 : kn].

Let t∗ be the smallest positive integer such that Colj(TRt∗−1) /= 0kn , ∀j ∈ [1 : kn]. Now,
we will prove t∗ ≤ kn − 1. It is enough to show that the number of nonzero columns of
TRt−1 is |Rt| ≥ t+ 1 for any t ∈ [1 : t∗].

We use induction to prove it. When t = 1, if the number of nonzero columns of TR0 is
|R1| < 2, then (TR0)α,α = 1 and (TR0)α,j = 0, ∀j /= α, and hence Rt∗ = {δαkn} by Case 2,
which is a contradiction.

Now assume that the number of nonzero columns of TRt−1 is |Rt| ≥ t + 1 for some
1 < t ≤ t∗. Since [TR0 ]α,α = 1, Case 1 shows that TRt−1 ≤ TRt . Then, |Rt+1| ≥ |Rt| ≥ t+ 1.
If |Rt+1| < t+2, then |Rt+1| = |Rt| = t+1. Thus, Rt = Rt+1, which implies TRt−1 = TRt by
Case 3. Hence, the number of nonzero columns of TRt∗ and TRt−1 is equal, which contradicts
the minimality of t∗. Therefore, kn = |Rt∗ | ≥ t∗ + 1, that is t∗ ≤ kn − 1.

(Sufficiency) The proof of sufficiency is obvious and we omit this part.
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2.4 Event-triggered control for stabilization of DKVL-
CNs

Definition 2.4.1. DKVLCN (2.6) is said to be globally stabilizable to a given state x∗ =
δαkn ∈ ∆kn , if for any initial states x(−τ +1), x(−τ +2), · · · , x(0) ∈ ∆kn , there exist a state
feedback event-triggered control u(t) = Hx(t) and an integer T ∗ ≥ 0, such that x(t) = δαkn ,
∀t ≥ T ∗.

Remark 2.4.1. If the given state x∗ ∈ ∆kn is reachable from some initial state, then there
exists a state feedback control, such that it can be reachable in at most (kn − 1) steps.

In the following, we will study how to design H ∈ L(km+1)×kn for the stabilization
problem of DKVLCNs.

First, split the matrix L into (km + 1) equal blocks:

L = [L1 L2 · · · Lkm+1], (2.12)

where Li ∈ Lkn×kn , i ∈ [1 : km + 1]. Then, Algorithm 1 can be utilized to design all the
state feedback event-triggered controls via the truth matrices method.

Algorithm 1 Constructing event-triggered state feedback stabilizers

Step 0: Let R0 = {δαkn} and construct the truth matrix TR0|R0 ∈ B(km+1)×kn :

[TR0|R0 ]i,j =

1, if j = α and [Li]α,α = 1,

0, otherwise.
(2.13)

Check whether Colα(TR0|R0) /= 0km+1. If Colα(TR0|R0) = 0km+1, δαkn is not a (control)
fixed point, and the construction problem of stabilizers is not solvable, stop the
algorithm. Otherwise, construct the truth matrix TR0|R0 ∈ B(km+1)×kn :

Colj(TR0|R0) =

δ
km+1
km+1 , if (TR0|R0)km+1,j = 1,

Colj(TR0|R0), otherwise,
(2.14)

and go to Step 1.
Step 1: Let W1 = ∆kn\R0 and construct the truth matrix TR0|W1 ∈ B(km+1)×kn :

[TR0|W1 ]i,j =

1, if (Li)α,j = 1, ∀δjkn ∈ W1,

0, otherwise.
(2.15)
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Compute R1 = {δjkn | Colj(TR0|W1) /= 0km+1}. Check whether R1 /= ∅. If R1 = ∅, the
construction problem of stabilizers is not solvable and stop the algorithm. Otherwise,
construct the truth matrix TR0|R1 ∈ B(km+1)×kn :

Colj(TR0|R1) =

δ
km+1
km+1 , if (TR0|W1)km+1,j = 1,

Colj(TR0|W1), otherwise.
(2.16)

If R0
⋃
R1 = ∆kn , set t∗ = 1 and go to Step 3; otherwise, go to Step 2.

Step 2: Let Wt = ∆k\[
⋃t−1
λ=0 Rλ], where t ≥ 2. Construct the truth matrix

TRt−1|Wt
∈ B(km+1)×kn :

[TRt−1|Wt
]i,j =

1, if Colj(Li) ∈ Rt−1,∀δjkn ∈ Wt,

0, otherwise.
(2.17)

Compute Rt = {δjkn | Colj(TRt−1|Wt
) /= 0km+1}. If Rt = ∅, the construction problem of

stabilizers is not solvable and stop the algorithm. Otherwise, construct the truth matrix
TRt−1|Rt ∈ B(km+1)×kn :

Colj(TRt−1|Rt) =

δ
km+1
km+1 , if (TRt−1|Wt

)km+1,j = 1,

Colj(TRt−1|Wt
), otherwise.

(2.18)

If
t⋃

λ=0
Rλ = ∆kn , (2.19)

the stabilization problem is solvable. Denote the minimum number such that (2.19) holds
as t∗ and go to Step 3; otherwise, set t = t+ 1. If t > kn − 1, the construction problem of
stabilizers is not solvable and stop the algorithm. Otherwise, go to Step 2.
Step 3: The event-triggered state feedback stabilizers H ∈ L(km+1)×kn can be
constructed as follows: H|R0

≤ TR0|R0 ,

H|Rt ≤ TRt−1|Rt , t ∈ [1 : t∗].
(2.20)

Theorem 2.4.1. DKVLCN (2.6) is globally stabilizable to x∗ = δαkn , if and only if Algo-
rithm 1 reaches Step 3.

Proof. (Sufficiency) Assume Algorithm 1 reaches Step 3, then we prove that DKVLCN (2.6)
is globally stabilizable to δαkn under the state feedback event-triggered control u(t) = Hx(t),
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where the state feedback gain matrix H ∈ L(km+1)×kn is given by (2.20). From Step 0, when
δαkn is a fixed point of system (2.6), there exists a control Hδαkn = δk

m+1
km+1 , such that

Lδk
m+1
km+1δ

α
kn = Lδαkn

= δαkn

When δαkn is a control fixed point of system (2.6), there exists at least a control Hδαkn =
δhαkm+1, where hα ∈ [1 : km], such that

Lδhαkm+1δ
α
kn = L̃δhαkmδ

α
kn

= δαkn

From Step 1, for any x(t0) = δj1kn ∈ R1, x(t0) ∈ {x(−τ + 1), x(−τ + 2), · · · , x(0)}, there
exists at least a control Hδj1kn = δh1

km+1, such that

x(t0 + τ) = Lu(t0)x(t0)

= Lδh1
km+1δ

j1
kn

= δαkn

If h1 = km + 1, then x(t0 + τ) = Lδj1kn = δαkn , that is, δ
j1
kn can naturally evolve to δαkn in one

step. If h1 ∈ [1 : km], then x(t0 + τ) = L̃δh1
kmδ

j1
kn = δαkn , that is, δ

j1
kn can be driven to δαkn in

one step. No matter in which case, x(t0 + ρτ) = δαkn , ∀ρ ∈ Z+.
Similarly, for any x(t0) = δjtkn ∈ Rt, t ∈ [2 : t∗], x(t0) ∈ {x(−τ+1), x(−τ+2), · · · , x(0)},

there exists at least a control Hδjtkn = δhtkm+1, such that

x(t0 + τ) = Lu(t0)x(t0)

= Lδhtkm+1δ
jt
kn

∈ Rt−1

If ht = km + 1, then x(t0 + τ) = Lδjtkn ∈ Rt−1, that is, δjtkn can naturally evolve to Rt−1

in one step. If ht ∈ [1 : km], then x(t0 + τ) = L̃δhtkmδ
jt
kn ∈ Rt−1, that is, δjtkn can be driven

to Rt−1 in one step. No matter in which case, there exists a positive integer ρ̂, such that
x(t0 + ρτ) = δαkn , ∀ρ ≥ ρ̂ and ρ ∈ Z+.

If (2.19) holds when t = t∗, then any initial state x(t0) ∈ {x(−τ+1), x(−τ+2), · · · , x(0)}
can reach δαkn in t∗ steps. Therefore, DKVLCN (2.6) is globally stabilizable to x∗ = δαkn .

(Necessity) We prove it by contradiction. Suppose that DKVLCN (2.6) is globally sta-
bilizable to x∗ = δαkn , but the Algorithm 1 never reach Step 3. That implies that equation
(2.19) does not hold until t = kn − 1. Assume Rkn−1 /= ∅ and

kn−1⋃
λ=0

Rλ /= ∆kn .
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Therefore, there exists a state x ∈ ∆kn\[
⋃kn−1
λ=0 Rλ] that cannot reach [

⋃kn−1
λ=0 Rλ] in (kn−1)

steps. Hence, state x can not reach δαkn , which contradicts the condition that delayed system
(2.6) is stabilizable to δαkn .

Corollary 2.4.2. System (2.6) is globally stabilizable to x∗ = δαkn under the state feedback
event-triggered controller u(t) = Hx(t), if and only if there exists an integer t∗ ∈ [1 : kn−1],
such that

Coli(T ) /= 0km+1, ∀i ∈ [1 : kn],

where T = TR0|R0 +
∑t∗

λ=1 TRλ−1|Rλ . Moreover, all the event-triggered state feedback gain
matrices H ∈ L(km+1)×kn under which system (2.6) is globally stabilizable to x∗ can be
characterized as

H ≤ T ,

and the triggering event set is given by Γ = ∆kn\{δjkn |Colj(H) = δk
m+1
km+1}.

2.5 An illustrative example

In this section, we provide an illustrative example to demonstrate the applicability of the
results obtained in this chapter.

Example 2.5.1. Consider the following delayed Kleene-Dienes type three-valued logical
control networks under event-triggered control:X1(t+ 1) = X1(t− 1) ∧3 X2(t− 1),

X2(t+ 1) = X1(t− 1)→3 X2(t− 1),
(2.21)

X1(t+ 1) = U(t− 1)→3 (X1(t− 1) ∧3 X2(t− 1)),

X2(t+ 1) = U(t− 1) ∧3 (X1(t− 1)→3 X2(t− 1)).
(2.22)

When the control input is triggered for certain states, system (2.22) works; otherwise, the
evolution follows (2.21).

The algebraic formulations of system (2.21) and (2.22) are given, respectively by:

x(t+ 1) = Lx(t− 1), (2.23)

x(t+ 1) = L̃u(t− 1)x(t− 1), (2.24)

where x(t) = x1(t) n x2(t) ∈ ∆9, u(t) ∈ ∆3, and

L = δ9[1 5 9 4 5 8 7 7 7],
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L̃ = δ9[1 5 9 4 5 8 7 7 7 2 5 6 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3].

The dynamics under the event-triggered control can be re-expressed as

x(t+ 1) = Lu(t− 1)x(t− 1), (2.25)

where L = [L̃ L] ∈ L9×36 and u(t) ∈ ∆4. Now, we can design all the event-triggered state
feedback controls such that (2.25) is globally stabilizable to the state x∗ = δ7

9 .
First, according to Algorithm 1, let R0 = {δ7

9}. The truth matrix TR0|R0 ∈ B4×9 is
given by

TR0|R0 =


0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

 . (2.26)

From (2.26), x∗ = δ7
9 is a fixed point and the truth matrix TR0|R0 ∈ B4×9 is given by

TR0|R0 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

 . (2.27)

Then, denote W1 = ∆9\R0 and the truth matrix TR0|W1 ∈ B4×9 is given by

TR0|W1 =


0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1

 . (2.28)

From (2.28),
R1 = {δ8

9 , δ
9
9}.

Next, construct the truth matrix TR0|R1 ∈ B4×9

TR0|R1 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1

 . (2.29)

Then, compute W2 = ∆9\(R0
⋃
R1) and construct the truth matrix TR1|W2 ∈ B4×9

TR1|W2 =


0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0

 . (2.30)
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From (2.30),
R2 = {δ3

9 , δ
6
9}.

Next, construct the truth matrix TR1|R2 ∈ B4×9

TR1|R2 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0

 . (2.31)

Furthermore, computeW3 = ∆9\(R0
⋃
R1
⋃
R2) and construct the truth matrix TR2|W3 ∈

B4×9

TR2|W3 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0

 . (2.32)

From (2.32),
R3 = {δ1

9 , δ
2
9 , δ

4
9 , δ

5
9}.

Now, construct the truth matrix TR2|R3 = TR2|W3 .
Based on the above discussion, we have

T = TR0|R0 +
3∑

λ=1
TRλ−1|Rλ

=


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0
0 0 1 0 0 1 1 1 1

 .

It is obvious that for t∗ = 3 we have that all the columns of matrix T are nonzero. Therefore,
system (2.25) is globally stabilizable to δ7

9 under the event-triggered control u(t) = Hx(t),
where the state feedback gain matrix H ∈ L4×9 is given by

H = δ4[3 3 4 3 3 4 4 4 4].

Besides, the triggering event set Γ = {δ1
9 , δ

2
9 , δ

4
9 , δ

5
9}.

2.6 Conclusions

In this chapter, the stability and event-triggered control design of DKVLNs have been
investigated. We derived the necessary and sufficient conditions to detect the stability of
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KVLNs with time delays. Furthermore, we presented necessary and sufficient conditions for
the stabilization of DKVLNs, and designed all the event-triggered state feedback controllers
which can stabilize the DKVLNs to a desired state. Finally, an example was given to
illustrate the effectiveness of the results obtained in this chapter.
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Chapter 3

Robust Control Invariance and
Robust Set Stabilization of
Mix-Valued Logical Control
Networks

3.1 Introduction

Compared with BN and KVLN, MVLN is a more general and representative finite-valued
logical network. In an MVLN, each state takes value from a finite set of different size, and
in order to manipulate MVLN, control inputs are introduced. In addition, the MVLCNs
have been widely used to characterize the control problems of practical networks [7, 143,
46].

It is well known that the performance of practical MVLCNs may be influenced by
internal or external ubiquitous disturbances. This is true, for example, in GRNs the dis-
turbances may be the gene mutation, the duplication or deletion of fragments phenomenon
in genetic recombination, and external environmental stimuli etc. These disturbance in-
puts often make the system unstable [109], as in case of cancer, which can be regarded as
the failure of organism in resisting uncertainties including gene mutation. Therefore, it is
meaningful to design a suitable control scheme such that the system with disturbance is
robustly stabilized to a singleton state or a state set. Some fundamental and important
results on robust stabilization or robust set stabilization problems [67, 127, 71, 81, 56] are
available in the scientific literatures. For the robust control invariance, the existing works
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only concentrate on the criteria to determine whether or not a given set is a RCIS and
provide algorithms to design all possible state feedback gain matrices to keep the robust
control invariance of the given set. Moreover, for the robust set stabilization, the only exist-
ing results concern how to make the system stabilize to a pre-assumed RCIS. Besides, the
existing models for the robust control invariance and the robust set stabilization problems
are limited to BCNs or KVLNs, and these two problems for MVLCNs are not studied in
the necessary detail.

This chapter investigates the robust control invariance and the robust set stabilization
problems of MVLCNs. Moreover, a state feedback control is designed if the robust set
stabilization problem is solvable. The main contributions of this chapter are:

• An algorithm is proposed to compute the LRCIS of any given set.

• Necessary and sufficient conditions for the robust set stabilization of MVLCNs are
derived, and a constructive procedure is presented to design all the time-optimal state
feedback controls.

• It is shown that the obtained results can be used to effectively deal with robust partial
stabilization problem of MVLCNs.

Consider the following MVLCNs with disturbance inputs:


X1(t+ 1) = f1(X(t);U(t); Ξ(t)),

X2(t+ 1) = f2(X(t);U(t); Ξ(t)),
...

Xn(t+ 1) = fn(X(t);U(t); Ξ(t)),

(3.1)

where X(t) = (X1(t), X2(t), · · · , Xn(t)) are the states, U(t) = (U1(t), U2(t), · · · , Um(t)) are
the control inputs, Ξ(t) = (Ξ1(t),Ξ2(t), · · · ,Ξq(t)) are the disturbance inputs; Xl(t) ∈ Dkl ,
l ∈ [1 : n], Uj(t) ∈ Dvj , j ∈ [1 : m] and Ξi(t) ∈ Dwi , i ∈ [1 : q].

Let xl, uj , and ξi be the vector form of Xl, Uj and Ξi respectively. Then in the light of
the matrix expression, system (3.1) can be expressed in the following algebraic form:

x(t+ 1) = Lξ(t)u(t)x(t), (3.2)

where L ∈ Lk×kνω, x(t) = nn
l=1xl(t) ∈ ∆k, u(t) = nm

j=1uj(t) ∈ ∆ν , ξ(t) = nq
i=1ξi(t) ∈ ∆ω,

k =
∏n
l=1 kl, ν =

∏m
j=1 νj and ω =

∏q
i=1 ωi.
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Now, consider a state feedback control in the form of

U1(t) = h1(X1(t), X2(t), · · · , Xn(t)),

U2(t) = h2(X1(t), X2(t), · · · , Xn(t)),
...

Um(t) = hm(X1(t), X2(t), · · · , Xn(t)),

(3.3)

whose algebraic form is

u(t) = Hx(t), (3.4)

where H ∈ Lν×k is called the state feedback gain matrix, such that system (3.2) is robustly
stabilizable to the target set.

Remark 3.1.1. There is a standard procedure to transfer any finite-valued logical function
into its algebraic formulation. One can refer to [14] for more details.

3.2 Computation of RCIS

In this section, a novel algorithm to compute the LRCIS of a given set is proposed. More-
over, all the possible state feedback controllers under which the obtained set is the LRCIS
are determined.

From the definition of RCIS of BCNs [71], the following definitions follow.

Definition 3.2.1. (RCIS) A nonempty set S ⊆ ∆k is called a RCIS of MVLCNs (3.2),
if for any x(t) ∈ S, there exists at least a control u(t) ∈ ∆ν , such that x(t + 1) ∈ S,
∀ξ(t) ∈ ∆ω.

Definition 3.2.2. (LRCIS) The subset Ic(S) is called the LRCIS of S, if it is a RCIS of
S, and each RCIS of S is a subset of Ic(S).

In the following, for a given nonempty set S ⊆ ∆k, we will discuss how to compute its
LRCIS.

First, we need to consider the algebraic expression (3.2) of MVLCNs. Let us split
L ∈ Lk×kνω into ω equal blocks as

L = [L1 L2 · · · Lω], (3.5)

where Li ∈ Lk×kν , i ∈ [1 : ω]. Additionally, split each Li into ν equal blocks

Li = [L1
i L

2
i · · · Lνi ], (3.6)
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where Lji ∈ Lk×k, j ∈ [1 : ν].
A truth matrix TS|S ∈ Bν×k is given by

[TS|S ]j,l =

1, if Lji δlk ∈ S, ∀i ∈ [1 : ω], ∀δlk ∈ S,

0, otherwise.
(3.7)

Let S1 = {δlk | Coll(TS|S) /= 0ν}. It is obvious that S1 ⊆ S. If S1 = ∅, then Ic(S) = ∅.
Otherwise, for any δlk ∈ S1, there must exist at least a control δjν , such that S is one step
robustly reachable from δlk. If S1 = S, then S is a RCIS and Ic(S) = S. It is obvious that
also the reverse holds.

Otherwise, if S1 $ S, then a truth matrix TS1|S1 ∈ Bν×k can be constructed as follows:

[TS1|S1 ]j,l =

1, if Lji δlk ∈ S1, ∀i ∈ [1 : ω], ∀δlk ∈ S1,

0, otherwise.
(3.8)

Compute now S2 = {δlk | Coll(TS1|S1) /= 0ν}. It is obvious that S2 ⊆ S1. If S2 = ∅, then
Ic(S) = ∅. Otherwise, for any δlk ∈ S2, there must exist at least a control δjν , such that S1

is one step robustly reachable from δlk. If S2 = S1, then for any x(t) = δlk ∈ S1, there exists
a control u(t) = δjν , such that

x(t+ 1) = Lδiωδ
j
νδ
l
k = Lji δ

l
k ∈ S1,∀i ∈ [1 : ω].

That implies that S1 is a RCIS contained in S. Thus, S1 ⊆ Ic(S). On the other hand, for
any δ l̃k ∈ (S \S1), we can not find a control such that S is one step robustly reachable from
δ l̃k, i.e. δ l̃k /∈ Ic(S), ∀δ l̃k ∈ (S \ S1). That is, Ic(S)

⋂
(S \ S1) = ∅. Furthermore,

Ic(S) ⊆ S1
⋃

(S \ S1).

Thus, Ic(S) ⊆ S1 and therefore, Ic(S) = S1.
Otherwise, the above procedure can be executed. Since S is a set with finite number of

states, there must exist an integer t ∈ [1 : |S|], such that St = St−1 and St′ /= ∅, ∀t′ ≤ t,
where S0 = S. Therefore Ic(S) = St−1, if St′ = ∅, then Ic(S) = ∅.

Remark 3.2.1. From the computation of set S1, the necessary and sufficient conditions
to detect whether or not a given set S is a RCIS can be immediately derived.

Based on the above discussion, we propose the following algorithm to compute the
LRCIS of S.

Algorithm 2 Computation of the LRCIS
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Step 0: Set S0 = S.
Step 1: For t ≥ 1, construct the truth matrix TSt−1|St−1 ∈ Bν×k:

[TSt−1|St−1 ]j,l =

1, if Lji δlk ∈ St−1, ∀i ∈ [1 : ω], ∀δlk ∈ St−1,

0, otherwise.
(3.9)

Compute St = {δlk | Coll(TSt−1|St−1) /= 0ν}. If St = ∅, then Ic(S) = ∅ and stop the
algorithm. Otherwise, check whether

St = St−1. (3.10)

If (3.10) holds, denote the minimum number such that (3.10) holds as t̂, and go to Step 2.
Otherwise, let t = t+ 1. If t > |S|, then Ic(S) = ∅, stop the algorithm, otherwise, go to
Step 1.
Step 2: The LRCIS contained in S is obtained as follows

Ic(S) = S
t̂−1. (3.11)

Remark 3.2.2. Compared with the robust control invariance proposed in [71], Algorithm
2 does not only provide the method to compute the LRCIS of MVLCNs (3.2), but also
determine all the possible state feedback controllers.

The proof of the following corollary is obvious.

Corollary 3.2.1. The nonempty LRCIS of system (3.2) is S
t̂−1, if and only if the nonzero

columns of truth matrices TŜ
t−1
|Ŝ
t−1

and TŜ
t−2
|Ŝ
t−2

are identical. Moreover, all possible state
feedback gain matrices H ∈ Lν×k under which S

t̂−1 is the LRCIS can be characterized as
H|S

t̂−1
≤ TŜ

t−1
|Ŝ
t−1
,

H|(∆k\S
t̂−1

) ≤ 1ν×k |(∆k\S
t̂−1

)
.

(3.12)

3.3 Robust set stabilization of MVLCNs

In this section, necessary and sufficient conditions for the robust set stabilization of MVL-
CNs based on RCIS are established, and an algorithm to design all the time-optimal state
feedback controls via antecedence solution technique is presented.

From the definition of robust set stabilization of BCNs [81], the following definition
follows.
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Definition 3.3.1. (Robust set stabilization) The MVLCN (3.2) is said to be robustly
stabilizable to the nonempty set S ⊆ ∆k, if for any initial state x(0) ∈ ∆k, there exist a
state feedback control u(t) = Hx(t) and an integer τ ≥ 0, such that x(t) ∈ S, ∀t ≥ τ and
{ξ(t) : t ∈ N} ⊆ ∆ω.

Lemma 3.3.1. The MVLCN (3.2) is robustly stabilizable to S, if and only if it is robustly
stabilizable to Ic(S).

The proof of Lemma 3.3.1 is trivial.

Remark 3.3.1. If the set Ic(S) is robustly reachable from some initial state, then there
exists a state feedback control, such that it can be robustly reachable in at most (k−|Ic(S)|)
steps.

In the following, we will study how to design H ∈ Lν×k for the robust set stabilization
problem of MVLCNs based on the algebraic forms (3.2) and (3.4).

First, for a given set S ⊆ ∆k, we compute its LRCIS applying Algorithm 2. When
Ic(S) /= ∅, then Algorithm 3 can be used to design all the time-optimal state feedback
controls via antecedence solution technique.

Algorithm 3 Constructing time-optimal state feedback stabilizers

Step 1: Let W 0 = Ic(S), W1 = ∆k\W 0 and construct the truth matrix TW 0|W1
∈ Bν×k:

[TW 0|W1
]j,l =

1, if Lji δlk ∈ W 0, ∀i ∈ [1 : ω],∀δlk ∈ W1,

0, otherwise.
(3.13)

Compute R1(Ic(S)) = {δlk | Coll(TW 0|W1
) /= 0ν}. Check whether R1(Ic(S)) /= ∅. If

R1(Ic(S)) = ∅, the construction problem of robust set stabilizers is not solvable and we
can stop the algorithm. If Ic(S)

⋃
R1(Ic(S)) = ∆k, set t∗ = 1 and go to Step 3; otherwise,

go to Step 2.
Step 2: Compute W t−1 =

⋃t−1
λ=0 Rλ(Ic(S)) and Wt = ∆k\W t−1, where

R0(Ic(S)) = Ic(S), t ≥ 2. Construct the truth matrix TW t−1|Wt
∈ Bν×k:

[TW t−1|Wt
]j,l =

1, if Lji δlk ∈ W t−1, ∀i ∈ [1 : ω], ∀δlk ∈ Wt,

0, otherwise.
(3.14)

Compute Rt(Ic(S)) = {δlk | Coll(TW t−1|Wt
) /= 0ν}. If Rt(Ic(S)) = ∅, the construction

problem of robust set stabilizers is not solvable and we can stop the algorithm. If
t⋃

λ=0
Rλ(Ic(S)) = ∆k, (3.15)
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the robust set stabilization problem is solvable. Denote the minimum number such that
(3.15) holds as t∗ and go to Step 3; otherwise, set t = t+ 1. If t > k − |Ic(S)|, the
construction problem of robust set stabilizers is not solvable and we can stop the
algorithm. Otherwise, go to Step 2.
Step 3: The time-optimal state feedback stabilizers H ∈ Lν×k can be constructed as
follows: H|Ic(S) ≤ TIc(S)|Ic(S),

H|Rt(Ic(S)) ≤ TW t−1|Rt(Ic(S)), t ∈ [1 : t∗],
(3.16)

where the truth matrix TIc(S)|Ic(S) is obtained from Algorithm 2 and

Coll(TW t−1|Rt(Ic(S))) =

Coll(TW t−1|Wt
), if δlk ∈ Rt(Ic(S)),

0km , otherwise.

Algorithm 3 is depicted in Figure 3.1, where Rλ(Ic(S)) /= ∅, λ ∈ [1 : t∗], and

Figure 3.1: Representation of Algorithm 3

Ri(Ic(S))
⋂
Rj(Ic(S)) = ∅, ∀i, j ∈ [0 : t∗], i /= j,

which implies that t∗ is the shortest time for all initial states to reach Ic(S) under the
disturbances.

Theorem 3.3.2. The MVLCN (3.2) can be robustly stabilized to Ic(S) by a state feedback
control u(t) = Hx(t), if and only if

t∗⋃
λ=0

Rλ(Ic(S)) = ∆k, (3.17)

where t∗ and Rλ(Ic(S)), λ ∈ [0 : t∗] are obtained from Algorithm 3.
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Proof. (Sufficiency) Assume condition (3.17) holds, then for any δl1k ∈ R1(Ic(S)), there
exists at least a control Hδl1k = δj1ν such that R0(Ic(S)) is one step robustly reachable from
δl1k ∈ R1(Ic(S)). Then, for any δl2k ∈ R2(Ic(S)), there exists at least a control Hδl2k = δj2ν

such that R0(Ic(S))
⋃
R1(Ic(S)) is one step robustly reachable from this state. It implies

that state δl2k can reach R1(Ic(S)) in one step under arbitrary disturbance, or δl2k can reach
R1(Ic(S)) in one step under any disturbance in set Γ1 and δl2k can reach R0(Ic(S)) in one
step under all the disturbances in Γ2, where Γ1

⋃
Γ2 = ∆ω is a partition of disturbance

inputs. No matter in which case, Ic(S) is robustly reachable from R2(Ic(S)) after two steps.
Similarly, for any δltk ∈ Rt(Ic(S)), t ∈ [3 : t∗], there exists at least a control Hδltk = δjtν

such that
⋃t−1
λ=0 Rλ(Ic(S)) is one step robustly reachable from δltk ∈ Rt(Ic(S)). Since there

exists a positive integer t∗ such that
⋃t∗
λ=0 Rλ(Ic(S)) = ∆k holds, then all the states can be

robustly steered to Ic(S), and therefore, the system (3.2) is robustly stabilizable to Ic(S).
(Necessity) Suppose now that the MVLCN (3.2) is robustly stabilizable to Ic(S), and

assume by contradiction that the equation
⋃t
λ=0 Rλ(Ic(S)) = ∆k does not hold until t =

k − |Ic(S)|. Assume Rk−|Ic(S)|(Ic(S)) /= ∅ and

k−|Ic(S)|⋃
λ=0

Rλ(Ic(S)) /= ∆k.

Then, there exists a state x̂ ∈ ∆k\[
⋃k−|Ic(S)|
λ=0 Rλ(Ic(S))], such that no control can drive it

to [
⋃k−|Ic(S)|
λ=0 Rλ(Ic(S))] under the influence of disturbances. Hence, state x̂ can not reach

Ic(S) under any disturbance, which contradicts the condition that the system (3.2) is
robustly stabilizable to Ic(S).

Based on the above discussion, the following corollary is obvious.

Corollary 3.3.3. System (3.2) is robustly stabilizable to S ⊆ ∆k under the state feedback
controller u(t) = Hx(t), if and only if

(i) Ic(S) /= ∅,

(ii) there exists an integer t∗ ∈ [1 : k − |Ic(S)|], such that

Coli(T̂ ) /= 0ν ,∀i ∈ [1 : k],

where T̂ = TIc(S)|Ic(S) +
∑t∗

λ=1 TWλ−1|Rλ(Ic(S)).

Moreover, if (i) and (ii) hold, then for all the time-optimal state feedback gain matrices
H ∈ Lν×k under which the system (3.2) is robustly stabilizable to S can be characterized
as H ≤ T̂ .
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Remark 3.3.2. The results obtained in this chapter can be utilized to investigate the
computation of RCIS, robust set stabilization problem of BCNs or KVLCNs. Moreover,
these results can be used to study robust partial stabilization problem of generic logical
system.

3.4 An illustrative example

In this section, we provide an illustrative example to show how to use the proposed method
to investigate the robust partial stabilization problem of MVLCNs.

Example 3.4.1. Consider the following MVLCN:

X1(t+ 1) = [((X1(t) ∧2 X2(t)) ∨2 Ξ(t))→2 U(t)]

↔2 [X1(t) ∧2 ¬2(X2(t)↔3 X3(t))],

X2(t+ 1) = [(X1(t)↔2 (X2(t)↔3 X3(t))) ∨2 Ξ(t)]→2 U(t),

X3(t+ 1) = {[(X1(t)↔2 (X2(t)↔3 X3(t))) ∨2 Ξ(t)]→2 U(t)}

↔3 {[(X2(t)→3 Ξ(t)) ∨3 U(t)]→3 [X1(t)↔2 (X2(t)↔3 X3(t))]},

(3.18)

where X1, X2 ∈ D, X3 ∈ D3 are the states, U ∈ D3 is the control input, and Ξ ∈ D is the
disturbance input. For more details about the definitions and notations of logical operators
for mix-valued logical variables (refer to [14]).

In the following, we aim to design the time-optimal state feedback controllers such that
the states of the first two nodes of system (3.18) are globally convergent to x2

e under any
disturbance ξ ∈ ∆, where x2

e = xe1 n xe2 = δ3
4 .

Let M = {δ3
4 n δl3| l ∈ [1 : 3]} = {δ7

12, δ
8
12, δ

9
12}. In this case, the robust partial stabi-

lization problem of MVLCNs (3.18) can be transformed into the robust set stabilization
problem.

Using the matrix expression of mix-valued logical function, system (3.18) can be con-
verted to

x(t+ 1) = Lξ(t)u(t)x(t), (3.19)

where x(t) = n3
l=1xl(t) ∈ ∆12, u(t) ∈ ∆3, ξ(t) ∈ ∆2, and

L = δ12[7 8 3 3 2 7 9 8 7 7 8 9 7 8 3 3 2 7 9 8 7 7 8 9

4 5 12 12 11 4 6 5 4 4 5 6 7 8 3 3 2 7 9 8 7 7 8 9

7 8 3 3 2 7 9 8 7 7 8 9 4 5 9 3 2 10 9 8 10 10 11 9].
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First, split L into 2 blocks as L = [L1 L2] and split each Li, i ∈ [1 : 2] into 3 equal
blocks as

L1
1 = δ12[7 8 3 3 2 7 9 8 7 7 8 9], L1

2 = δ12[7 8 3 3 2 7 9 8 7 7 8 9],

L2
1 = δ12[7 8 3 3 2 7 9 8 7 7 8 9], L2

2 = δ12[7 8 3 3 2 7 9 8 7 7 8 9],

L3
1 = δ12[4 5 12 12 11 4 6 5 4 4 5 6], L3

2 = δ12[4 5 9 3 2 10 9 8 10 10 11 9].

Then, according to Algorithm 2, let M0 = M. The truth matrix TM0|M0 ∈ B3×12 is
given by

TM0|M0 =


0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 . (3.20)

From (3.20),
M1 = {δ7

12, δ
8
12, δ

9
12} =M0.

It is obvious that M is a RCIS. Then, according to Algorithm 3, let W 0 = M, W1 =
∆12\W 0 and construct the truth matrix TW 0|W1

∈ B3×12

TW 0|W1
=


1 1 0 0 0 1 0 0 0 1 1 1
1 1 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0

 . (3.21)

From (3.21),
R1(M) = {δ1

12, δ
2
12, δ

6
12, δ

10
12 , δ

11
12 , δ

12
12}.

Then, compute W 1 = R0(M)
⋃
R1(M) and W2 = ∆12\W 1, where R0(M) = M.

Construct the truth matrix TW 1|W2
∈ B3×12

TW 1|W2
=


0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0

 . (3.22)

From (3.22),
R2(M) = {δ3

12, δ
5
12}.

Furthermore, computeW 2 = R0(M)
⋃
R1(M)

⋃
R2(M),W3 = ∆12\W 2 and construct

the truth matrix TW 2|W3
∈ B3×12

TW 2|W3
=


0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

 . (3.23)
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From (3.23),
R3(M) = {δ4

12}.

It is obvious that
⋃3
λ=0 Rλ(M) = ∆12. Then the robust stabilizers of setM is given by

H|M0
≤ TM0|M0 ,

H|R1(M) ≤ TW 0|R1(M),

H|R2(M) ≤ TW 1|R2(M),

H|R3(M) ≤ TW 2|R3(M),

(3.24)

where TW 0|R1(M) = TW 0|W1
, TW 1|R2(M) = TW 1|W2

and TW 2|R3(M) = TW 2|W3
.

From (3.24), it follows that the possible choices of matrix H ∈ L3×12 are

Coll(H) ∈ {δ1
3 , δ

2
3}, l ∈ [1 : 12] \ {3, 4, 5}, (3.25)

Col3(H) = δ3
3 ,

Col5(H) ∈ {δ1
3 , δ

2
3 , δ

3
3},

Col4(H) ∈ {δ1
3 , δ

2
3 , δ

3
3}.

Based on the above discussion, the states of the first two nodes of the system (3.18)
keep x2

e = δ3
4 forever regardless the disturbance inputs under the state feedback control

u(t) = Hx(t), where a state feedback gain matrix is given by

H = δ3[2 2 3 2 3 1 2 2 1 1 2 2].

3.5 Conclusions

In this chapter, we have investigated the robust control invariance and robust set stabi-
lization problems of MVLCNs with disturbance inputs. An algorithm has been proposed
to determine the LRCIS for MVLCNs of any given set. Moreover, necessary and sufficient
conditions to detect the solvability of robust set stabilization problem of MVLCNs have
been derived. Using an antecedence solution technique, a constructive algorithm has been
established to design all the time-optimal stabilizers. Finally, an illustrative example has
been presented to show the applications of the results obtained in this chapter to robust
partial stabilization problem of MVLCNs.
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Chapter 4

Robust Set Stability and Set
Stabilization of Probabilistic
Boolean Control Networks

4.1 Introduction

Recently, set stability and set stabilization have been one of the hot topics in deterministic
model [36, 137, 59] and probabilistic model of GRNs using STP method [37, 147, 61]. Set
stability of BN implies that all the initial states can reach the only invariant set while
set stabilization of BCN means that all the initial states can be steered to the desired
control invariant set by control inputs. Several kinds of concepts of set stability and set
stabilization of PBCN were provided in [37, 147, 75, 142, 99]. It is obvious that if the target
set becomes a single-point set, then the corresponding problems are converted to the usual
stability and stabilization problems [74, 75, 73], respectively.

In a real GRN external disturbances are ubiquitous and may lead the network dynamics
to some unexpected behaviours [109]. Therefore, it is important to study set stability and
set stabilization of PBCN with disturbances. There are some works concerning robust
control invariance and robust set stabilization of BCN [67, 127, 71, 81]. Nevertheless, due
to the effect of disturbance inputs and stochastic nature of PBCN, the results in BCN
are not easily generalized to PBCN. In [83], the robust control invariance of PBCN was
investigated via event-triggered control. To the best of author’ knowledge, there are no
results available on robust set stability and robust set stabilization of PBCN at present.

This chapter investigates the robust set stability of PBN and the robust set stabilization
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of PBCN. Using the STP method, PBNs and PBCNs with disturbances can be converted
into the disturbed stochastic discrete time systems with algebraic forms, based on which
the classical control theory and methods can be used to analyze and control logical systems.
The novelties are the following:

• The LRIS and LRCIS with probability 1 are calculated for the first time.

• The criteria to determine the finite-time robust set stability and robust set stabi-
lization with probability 1 are firstly derived. The results obtained can be utilized to
study several unsolved disturbed PBCN problems, including finite-time robust output
tracking, robust synchronization and robust partial stabilization with probability 1.

• A design procedure is proposed to calculate all the time-optimal robust feedback
stabilizers via antecedence solution technique. Compared with the traditional design
method, the controls can be obtained directly from the nonzero columns of the truth
matrices, and the computation involved can be easily executed by Matlab.

A disturbed PBN is a randomly switched Boolean network with disturbances

X(t+ 1) = fσ(t)(X(t); Ξ(t)), (4.1)

where X(t) = (X1(t), X2(t), · · · , Xn(t)) ∈ Dn and Ξ(t) = (Ξ1(t),Ξ2(t), · · · ,Ξq(t)) ∈ Dq

are the states and disturbance inputs, respectively. Moreover, σ(t) ∈ [1 : N ] is a stochastic
switching signal and N denotes the number of possible sub-systems. Finally, fν : Dn+q −→
Dn, ν ∈ [1 : N ] is an n-dimensional logical function.

Based on the matrix expression, we identify 1 ∼ δ1
2 , 0 ∼ δ2

2 and ν ∼ δνN , where ν ∈ [1 :
N ]. Then, in the vector form, the disturbed PBN (4.1) becomes

x(t+ 1) = Lσ(t)ξ(t)x(t) = [L1 L2 · · · LN ]σ(t)ξ(t)x(t), (4.2)

where Lν ∈ L2n×2n+q is the structural matrix of fν , ν ∈ [1 : N ], x(t) = nn
i=1xi(t) ∈ ∆2n ,

ξ(t) = nq
j=1ξj(t) ∈ ∆2q and σ(t) ∈ ∆N . Here, we assume that σ(t) is an independent

identically distributed process with probability distribution

P{σ(t) = δjN} = P{subnetwork j is selected} = pσj , (4.3)

where 0 ≤ pσj ≤ 1, j ∈ [1 : N ] and
∑N
j=1 pσj = 1. Denote the probability distribution vector

of σ(t) as Pσ = [pσ1 pσ2 · · ·pσN ]T . Then the transition probability matrix of disturbed PBN
(4.1) is expressed as follows:

P = L n Pσ := [P1 P2 · · · P2q ], (4.4)
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where [Pk]i,j = P{x(t + 1) = δi2n |x(t) = δj2n , ξ(t) = δk2q}, k ∈ [1 : 2q] and 0 ≤ [Pk]i,j ≤ 1,∑2n
i=1[Pk]i,j = 1, i, j ∈ [1 : 2n].
The dynamics of a disturbed PBCN with stochastic switching signals can be denoted

by

X(t+ 1) = fσ(t)(X(t); Ξ(t);U(t)), (4.5)

where U(t) = (U1(t), U2(t), · · · , Um(t)) ∈ Dm are control inputs. Similarly, the disturbed
PBCN (4.5) can be converted into the following algebraic formulation

x(t+ 1) = Lσ(t)ξ(t)u(t)x(t), (4.6)

where L ∈ L2n×N2n+m+q and u(t) = nm
l=1ul(t) ∈ ∆2m . Furthermore, the control-dependent

transition probability matrix of disturbed PBCN (4.6) is expressed as P = L n Pσ. Split
now the matrix P into 2q+m equal blocks:

P = [P1
1 P2

1 · · · P2m
1 P1

2 P2
2 · · · P2m

2 · · · P1
2q P2

2q · · · P2m
2q ], (4.7)

where [Pl
k]i,j = P{x(t+ 1) = δi2n |x(t) = δj2n , ξ(t) = δk2q , u(t) = δl2m}, k ∈ [1 : 2q], l ∈ [1 : 2m]

and 0 ≤ [Pl
k]i,j ≤ 1,

∑2n
i=1[Pl

k]i,j = 1, i, j ∈ [1 : 2n].
For PBCN (4.6), we consider the state feedback controllers in the form

u(t) = Hx(t), (4.8)

whereH ∈ L2m×2n is called the state feedback gain matrix to achieve our control objectives.

4.2 RIS with probability 1 of PBNs

Definition 4.2.1. (RIS) A nonempty set S ⊆ ∆2n is called a RIS with probability 1 of
PBN (4.2), if for any x(t) ∈ S and ξ(t) ∈ ∆2q , it follows that P{x(t+1) ∈ S|x(t) ∈ S} = 1.

Definition 4.2.2. (LRIS) The subset I(S) is called the LRIS with probability 1 of PBN
(4.2) contained in S, if it is a RIS with probability 1, and each RIS with probability 1 in S
is a subset of I(S).

Definition 4.2.3. (RCIS) A nonempty set S ⊆ ∆2n is called a RCIS with probability 1 of
PBCN (4.6), if for any x(t) ∈ S and ξ(t) ∈ ∆2q , there exists at least a control u(t) ∈ ∆2m ,
such that P{x(t+ 1) ∈ S|x(t) ∈ S} = 1.

Definition 4.2.4. (LRCIS) The subset Ic(S) is called the LRCIS with probability 1 of
PBCN (4.6) contained in S, if it is a RCIS with probability 1, and each RCIS with proba-
bility 1 in S is a subset of Ic(S).
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In the following, for a given nonempty set S ⊆ ∆2n , we discuss how to compute its
LRIS with probability 1. Here, we only investigate the RIS and RCIS with probability 1,
for the convenience of discussion, the statement “with probability 1” is omitted without
confusion.

First, a truth matrix TS|S ∈ B2q×2n is constructed, where

[TS|S ]k,j =

1, if
∑
δi2n∈S

[Pk]i,j = 1, ∀δj2n ∈ S,

0, otherwise.
(4.9)

Compute S1 = {δj2n | Colj(TS|S) = 12q}. It is obvious that S1 ⊆ S. If S1 = ∅, then
I(S) = ∅. Otherwise, for any δj2n ∈ S1, S is one step robustly reachable from δj2n with
probability 1. If S1 = S, then S is a RIS and I(S) = S. Conversely, if I(S) = S, then
S1 = S.

Otherwise, if S1 $ S, then a truth matrix TS1|S1 ∈ B2q×2n can be constructed as follows:

[TS1|S1 ]k,j =

1, if
∑
δi2n∈S1 [Pk]i,j = 1, ∀δj2n ∈ S1,

0, otherwise.
(4.10)

Compute now S2 = {δj2n | Colj(TS1|S1) = 12q}. It is obvious that S2 ⊆ S1. If S2 = ∅, then
I(S) = ∅. Otherwise, for any δj2n ∈ S2, S1 is one step robustly reachable from δj2n with
probability 1. If S2 = S1, then for any x(t) = δj2n ∈ S1, we have Colj(TS1|S1) = 12q , or
equivalently, [TS1|S1 ]k,j = 1, ∀k ∈ [1 : 2q]. That implies that

1 =
∑

δi2n∈S1

[Pk]i,j

=
∑

δi2n∈S1

P{x(t+ 1) = δi2n | x(t) = δj2n ∈ S1, ξ(t) = δk2q}

= P{x(t+ 1) ∈ S1 | x(t) = δj2n ∈ S1, ξ(t) = δk2q}, ∀k ∈ [1 : 2q].

Thus S1 is a RIS of system (4.2) contained in S. Hence, S1 ⊆ I(S). On the other hand, for
any δj̃2n ∈ (S \ S1), S is not one step robustly reachable from δj̃2n with probability 1, i.e.,
δj̃2n /∈ I(S), ∀δj̃2n ∈ (S \ S1). That is, I(S)

⋂
(S \ S1) = ∅. Furthermore,

I(S) ⊆ S1
⋃

(S \ S1).

Thus, I(S) ⊆ S1, and therefore, I(S) = S1.
Since S is a set with a finite number of states, there must exist an integer ρ ∈ [1 : |S|],

such that Sρ = Sρ−1, where S0 = S and thus I(S) = Sρ−1. If Sρ = ∅, then I(S) = ∅.
Based on the above discussion, we propose the following algorithm to compute the LRIS

with probability 1 of PBN (4.2) contained in S.
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Algorithm 4 Computation of the LRIS

Step 0: Set S0 = S.
Step 1: For t ≥ 1, construct the truth matrix TSt−1|St−1 ∈ B2q×2n :

[TSt−1|St−1 ]k,j =

1, if
∑
δi2n∈St−1 [Pk]i,j = 1, ∀δj2n ∈ St−1,

0, otherwise.
(4.11)

Compute St = {δj2n | Colj(TSt−1|St−1) = 12q}. If St = ∅, then I(S) = ∅, and stop.
Otherwise, check whether

St = St−1. (4.12)

If (4.12) holds, denote the minimum number such that (4.12) holds as t̂, and go to Step 2.
Otherwise, let t = t+ 1 and go to Step 1.
Step 2: The LRIS of system (4.2) contained in S is given by

I(S) = S
t̂−1. (4.13)

In fact, from Step 1 of Algorithm 4, we immediately have the following proposition to
determine whether a given set S is a RIS.

Proposition 4.2.1. Given nonempty set S ⊆ ∆2n , the following conditions are equivalent:

(i) S is a RIS of system (4.2).

(ii) S = {δj2n | Colj(TS|S) = 12q}.

(iii)
∑
δi2n∈S

∑2q
k=1[Pk]i,j = 2q, ∀δj2n ∈ S.

Proof. (i) =⇒ (ii) Suppose that S is a RIS with probability 1 of PBN (4.2). Then for any
x(t) = δj2n ∈ S and ξ(t) = δk2q ∈ ∆2q , it holds that

1 = P{x(t+ 1) ∈ S|x(t) ∈ S}

=
∑
δi2n∈S

P{x(t+ 1) = δi2n | x(t) = δj2n ∈ S}

=
∑
δi2n∈S

[Pk]i,j , ∀k ∈ [1 : 2q].

It implies that [TS|S ]k,j = 1, ∀k ∈ [1 : 2q] or equivalently, Colj(TS|S) = 12q . Hence, (ii)
holds.
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(ii) =⇒ (iii) Since S = {δj2n | Colj(TS|S) = 12q}, then for any δj2n ∈ S, we have
Colj(TS|S) = 12q , that is [TS|S ]k,j = 1, ∀k ∈ [1 : 2q]. Hence,

∑
δi2n∈S

[Pk]i,j = 1, ∀k ∈ [1 : 2q].
Thus,

2q∑
k=1

∑
δi2n∈S

[Pk]i,j =
∑
δi2n∈S

2q∑
k=1

[Pk]i,j = 2q, ∀δj2n ∈ S.

(iii) =⇒ (i) From the above equation and 0 ≤
∑
δi2n∈S

[Pk]i,j ≤ 1, we have that∑
δi2n∈S

[Pk]i,j = 1,∀k ∈ [1 : 2q].

Then, for any x(t) = δj2n ∈ S and ξ(t) = δk2q ∈ ∆2q , we have
∑
δi2n∈S

[Pk]i,j =
∑
δi2n∈S

P{x(t+
1) = δi2n | x(t) = δj2n} = 1. Thus, S is a RIS of system (4.2).

Similarly, the following algorithm computes the LRCIS of PBCN (4.6) contained in any
nonempty set S ⊆ ∆2n .

Algorithm 5 Computation of the LRCIS

Step 0: Set S0 = S.
Step 1: For t ≥ 1, construct the truth matrices TSt−1|St−1 ∈ B2m×2n , where

[TSt−1|St−1 ]l,j =

1, if
∑
δi2n∈St−1

∑2q
k=1[Pl

k]i,j = 2q, ∀δj2n ∈ St−1,

0, otherwise.
(4.14)

Compute St = {δj2n | Colj(TSt−1|St−1) /= 02m}. If St = ∅, then Ic(S) = ∅, stop the
algorithm. Otherwise, check whether

St = St−1. (4.15)

If (4.15) holds, denote the minimum number such that (4.15) holds as t̂, and go to Step 2.
Otherwise, set t = t+ 1 and go to Step 1.
Step 2: The LRCIS of system (4.6) contained in S is given by

Ic(S) = S
t̂−1. (4.16)

Remark 4.2.1. Since S is a finite set, Algorithm 5 will terminate within | S | steps.
Moreover, from Algorithm 5, all the state feedback gain matrices H ∈ L2m×2n to keep the
robust control invariance of PBCN (4.6) can be determined as

H|S
t̂−1
≤ TŜ

t−1
|Ŝ
t−1
,

H|(∆2n\S
t̂−1

) ≤ 12m×2n |(∆2n\S
t̂−1

)
.
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4.3 Finite-time robust set stability with probability 1
of PBNs

Definition 4.3.1. (Robust set stability) The PBN (4.2) is said to be finite-time robustly
stable to the nonempty set S ⊆ ∆2n with probability 1, if for any initial state x(0) ∈ ∆2n ,
there exists an integer τ ≥ 0, such that P{x(t) ∈ S | x(0) = x0} = 1, ∀t ≥ τ and
{ξ(t) : t ∈ N} ⊆ ∆2q .

Lemma 4.3.1. The PBN (4.2) is finite-time robustly stable to S with probability 1, if and
only if it is finite-time robustly stable to I(S) with probability 1.

Remark 4.3.1. Without causing confusion, the robust set stability mentioned below is the
finite-time robust set stability with probability 1.

In the following, we consider how to determine whether system (4.2) is robustly stable
to S ⊆ ∆2n . Firstly, compute the LRIS with probability 1 according to Algorithm 4 and
assume I(S) /= ∅.

Then, let W1 = ∆2n\I(S) and construct the truth matrix TI(S)|W1 ∈ B2q×2n :

[TI(S)|W1 ]k,j =

1, if
∑
δi2n∈I(S)[Pk]i,j = 1, ∀δj2n ∈ W1,

0, otherwise.
(4.17)

Compute R1(I(S)) = {δj2n | Colj(TI(S)|W1) = 12q} and denote Wt = ∆2n\W t−1, where
W t−1 =

⋃t−1
λ=0 Rλ(I(S)), R0(I(S)) = I(S), t ≥ 2 and t ∈ Z+. Then, construct the truth

matrices TW t−1|Wt
∈ B2q×2n as follows:

[TW t−1|Wt
]k,j =

1, if
∑
δi2n∈W t−1

[Pk]i,j = 1, ∀δj2n ∈ Wt,

0, otherwise,
(4.18)

and compute Rt(I(S)) = {δj2n | Colj(TW t−1|Wt
) = 12q}. For t ∈ Z+, it is obvious that

Rt(I(S)) ⊆ Wt. Let W 0 = I(S) and construct the truth matrix TW t−1|Rt(I(S)) ∈ B2q×2n :

Colj(TW t−1|Rt(I(S))) =

Colj(TW t−1|Wt
), if δj2n ∈ Rt(I(S)),

02q , otherwise.
(4.19)

From the computation of the robust reachable sets Rt(I(S)), t ∈ Z+, we know that
there exists at least a state in each Rt(I(S)) and Ri(I(S))

⋂
Rj(I(S)) = ∅, ∀i, j ∈ N, i /= j.

If there exists an integer t̂ such that R
t̂
(I(S)) = ∅, then Rt(I(S)) = ∅, ∀t ≥ t̂. Hence, there

are at most (2n − |I(S)|) nonempty sets. For any initial state x(0) = δi2n , i ∈ [1 : 2n], if
I(S) is robustly reachable from δi2n with probability 1, then there must exist an integer λ,
such that δi2n ∈ Rλ(I(S)) and λ ≤ 2n − |I(S)|.
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Remark 4.3.2. If the set I(S) is robustly reachable with probability 1 from some initial
state, then it can be robustly reachable with probability 1 within (2n − |I(S)|) steps.

The evolutionary dynamics of system (4.2) can be depicted in Figure 4.1, where t∗ ∈
[1 : 2n − |I(S)|].

Figure 4.1: Illustration graph of evolutionary dynamics of PBN (4.2)

Based on a series of truth matrices TW t−1|Rt(I(S)), t ∈ Z+ constructed in (4.19), the
following criteria are provided to detect the robust set stability of PBNs.

Theorem 4.3.2. System (4.2) is robustly stable to S ⊆ ∆2n , if and only if

(i) I(S) /= ∅,

(ii) there exists an integer t∗ ∈ [1 : 2n − |I(S)|] such that

T̂ = 12q×2n ,

where T̂ = TI(S)|I(S) +
∑t∗

λ=1 TWλ−1|Rλ(I(S)).

Proof. (Necessity) Suppose that system (4.2) is robustly stable to S ⊆ ∆2n , then system
(4.2) is robustly stable to I(S), which implies that I(S) /= ∅.

Since system (4.2) is robustly stable to I(S), then there exists an integer t∗ ∈ [1 :
2n − |I(S)|] such that

⋃t∗
λ=0 Rλ(I(S)) = ∆2n and Ri(I(S))

⋂
Rj(I(S)) = ∅, ∀i, j ∈ [0 : t∗],

i /= j. Moreover, from Algorithm 4, we have

Colj(TI(S)|I(S)) =

12q , if δj2n ∈ I(S),

02q , otherwise.
(4.20)

From the construction of the truth matrices TWλ−1|Wλ
∈ B2q×2n and (4.19), we immediately

have

Colj(TWλ−1|Rλ(I(S))) =

12q , if δj2n ∈ Rλ(I(S)),

02q , otherwise,
(4.21)

53



4 – Robust Set Stability and Set Stabilization of Probabilistic Boolean Control Networks

where λ ∈ [1 : t∗]. Based on the above discussion, we obtain

T̂ = TI(S)|I(S) +
t∗∑
λ=1

TWλ−1|Rλ(I(S))

= 12q×2n .

(Sufficiency) Assume that I(S) /= ∅ and suppose that there exists an integer t∗ ∈ [1 :
2n − |I(S)|] such that T̂ = 12q×2n . Let Λ0 = {j | δj2n ∈ I(S)}, Λλ = {j | δj2n ∈ Rλ(I(S))},
λ ∈ [1 : t∗]. For any j ∈ [1 : 2n], we have

12q = Colj(T̂ )

= Colj(TI(S)|I(S)) +
t∗∑
λ=1

Colj(TWλ−1|Rλ(I(S)))

= Colj(TI(S)|I(S)) + Colj(TW 0|R1(I(S)))+

Colj(TW 1|R2(I(S))) + · · ·+ Colj(TW t∗−1|Rt∗ (I(S))).

Since I(S) /= ∅, from (4.20), it follows that ∀j ∈ Λ0,Colj(TI(S)|I(S)) = 12q ,

Colj(TWλ−1|Rλ(I(S))) = 02q , ∀λ ∈ [1 : t∗].
(4.22)

Moreover, Rλ(I(S)) /= ∅, λ ∈ [1 : t∗]. In fact, if not then T̂ < 12q×2n , which is a contradic-
tion to condition (ii). Thus, from (4.21), we obtain ∀j ∈ Λλ0 , λ0 ∈ [1 : t∗],

Colj(TI(S)|I(S)) = 02q ,

Colj(TWλ0−1|Rλ0 (I(S))) = 12q ,

Colj(TWλ−1|Rλ(I(S))) = 02q , ∀λ /= λ0, λ ∈ [1 : t∗].

(4.23)

According to (4.22) and (4.23), we have
∑t∗

λ=0 | Λλ |= 2n and Λi
⋂

Λj = ∅, ∀i, j ∈ [0 : t∗],
i /= j, that is,

⋃t∗
λ=0 Rλ(I(S)) = ∆2n and Ri(I(S))

⋂
Rj(I(S)) = ∅, ∀i, j ∈ [0 : t∗], i /= j.

From the computation of Rλ(I(S)), λ ∈ [1 : t∗] and taking into account that I(S) is a RIS
with probability 1 of system (4.2), then system (4.2) is robustly stable to I(S), which is
equivalent to system (4.2) is robustly stable to S.

4.4 Finite-time robust set stabilization with probabil-
ity 1 of PBCNs

Definition 4.4.1. (Robust set stabilization) The PBCN (4.6) is said to be robustly sta-
bilizable to the nonempty set S ⊆ ∆2n , if for any initial state x(0) ∈ ∆2n , there is a state

54



4 – Robust Set Stability and Set Stabilization of Probabilistic Boolean Control Networks

feedback control u(t) = Hx(t) and an integer τ ≥ 0, such that P{x(t) ∈ S | x(0) = x0} = 1,
∀t ≥ τ and {ξ(t) : t ∈ N} ⊆ ∆2q .

Lemma 4.4.1. The PBCN (4.6) is robustly stabilizable to S, if and only if it is robustly
stabilizable to Ic(S).

In the following, we will study how to design H ∈ L2m×2n for the robust set stabilization
problem of PBCN.

For a given set S ⊆ ∆2n , compute its LRCIS according to Algorithm 5. Assume that
Ic(S) /= ∅, then the following procedure is proposed to design all the time-optimal state
feedback controls via antecedence solution technique.

Algorithm 6 Constructing the time-optimal state feedback stabilizers

Step 1: Let W 0 = Ic(S), W1 = ∆2n\W 0 and construct the truth matrix
TW 0|W1

∈ B2m×2n :

[TW 0|W1
]l,j =

1, if
∑
δi2n∈W 0

∑2q
k=1[Pl

k]i,j = 2q, ∀δj2n ∈ W1,

0, otherwise.
(4.24)

Compute R1(Ic(S)) = {δj2n | Colj(TW 0|W1
) /= 02m}. Check whether R1(Ic(S)) /= ∅, if

R1(Ic(S)) = ∅, stop the algorithm. If Ic(S)
⋃
R1(Ic(S)) = ∆2n , set t∗ = 1 and go to Step

3; otherwise, repeat Step 2.
Step 2: For t ≥ 2, compute W t−1 =

⋃t−1
λ=0 Rλ(Ic(S)) and Wt = ∆2n\W t−1, where

R0(Ic(S)) = Ic(S). Construct the truth matrix TW t−1|Wt
∈ B2m×2n :

[TW t−1|Wt
]l,j =

1, if
∑
δi2n∈W t−1

∑2q
k=1[Pl

k]i,j = 2q, ∀δj2n ∈ Wt,

0, otherwise.
(4.25)

Compute Rt(Ic(S)) = {δj2n | Colj(TW t−1|Wt
) /= 02m}. If Rt(Ic(S)) = ∅, stop the algorithm.

If
t⋃

λ=0
Rλ(Ic(S)) = ∆2n , (4.26)

denote the minimum number such that (4.26) holds as t∗ and go to Step 3; otherwise, let
t = t+ 1 and go to Step 2.
Step 3: The time-optimal state feedback stabilizers H ∈ L2m×2n can be constructed as
follows: H|Ic(S) ≤ TIc(S)|Ic(S),

H|Rt(Ic(S)) ≤ TW t−1|Rt(Ic(S)), t ∈ [1 : t∗],
(4.27)
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where the truth matrix TIc(S)|Ic(S) is obtained from Algorithm 5 and

Colj(TW t−1|Rt(Ic(S))) =

Colj(TW t−1|Wt
), if δj2n ∈ Rt(Ic(S)),

02m , otherwise.

Remark 4.4.1. If the set Ic(S) is robustly reachable with probability 1 from some initial
state, then there exists a state feedback control, such that it can be robustly reachable with
probability 1 within (2n − |Ic(S)|) steps. Thus, if the robust set stabilization problem of
PBCN is solvable, Algorithm 6 will terminate within (2n − |Ic(S)|) steps.

Theorem 4.4.2. The PBCN (4.6) is robustly stabilizable to Ic(S) under the state feedback
control u(t) = Hx(t), if and only if there exists an integer t∗ ∈ [1 : 2n − |Ic(S)|], such that

t∗⋃
λ=0

Rλ(Ic(S)) = ∆2n , (4.28)

where H ∈ L2m×2n and Rλ(Ic(S)), λ ∈ [0 : t∗] are obtained from Algorithm 6.

Proof. (Sufficiency) Assume that there exists an integer t∗ ∈ [1 : 2n − |Ic(S)|], such that⋃t∗
λ=0 Rλ(Ic(S)) = ∆2n . First, for any δj12n ∈ R1(Ic(S)), there exists at least a control

Hδj12n = δl12m such that ∑
δi2n∈W 0

2q∑
k=1

[Pl1
k ]i,j1 = 2q.

Since 0 ≤
∑
δi2n∈W 0

[Pl1
k ]i,j1 ≤ 1, then

1 =
∑

δi2n∈W 0

[Pl1
k ]i,j1

=
∑

δi2n∈W 0

P{x(1) = δi2n | x(0) = δj12n , ξ(0) = δk2q , u(0) = δl12m}

= P{x(1) ∈ W 0 | x(0) = δj12n , ξ(0) = δk2q , u(0) = δl12m}, ∀k ∈ [1 : 2q].

That implies that δj12n ∈ R1(Ic(S)) can reach Ic(S) in one step with probability 1 under
any disturbance ξ ∈ ∆2q . Moreover, for any δj22n ∈ R2(Ic(S)), there exists at least a control
Hδj22n = δl22m such that ∑

δi2n∈W 1

2q∑
k=1

[Pl2
k ]i,j2 = 2q.

Then, δj22n ∈ R2(Ic(S)) can reach Ic(S)
⋃
R1(Ic(S)) in one step with probability 1 under

any disturbance ξ ∈ ∆2q . Let ∆2q = Γ1
⋃

Γ2
⋃

Γ3 be a partition of disturbance inputs
set, where Γi

⋂
Γj = ∅, ∀i, j ∈ [1 : 3], i /= j. The reachability of δj22n ∈ R2(Ic(S)) to

Ic(S)
⋃
R1(Ic(S)) implies the following cases:
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(1) for any δk2q ∈ Γ1, δj22n can reach R1(Ic(S)) in one step with probability 1;

(2) for any δk̃2q ∈ Γ2, δj22n can reach Ic(S) in one step with probability 1;

(3) for any δk̂2q ∈ Γ3, δj22n can reach R1(Ic(S)) in one step with probability p
k̂
(the probabil-

ity is related to the disturbance) and δj22n can reach Ic(S) in one step with probability
1− p

k̂
.

Note that Γ2 /= ∆2q , otherwise, δj22n can reach Ic(S) in one step with probability 1 under
any disturbance ξ ∈ ∆2q , it means that δj22n ∈ R1(Ic(S)), which is a contradiction to
R1(Ic(S))

⋂
R2(Ic(S)) = ∅. No matter in which case, Ic(S) is robustly reachable from

R2(Ic(S)) with probability 1 after two steps.
Similarly, for any δjt2n ∈ Rt(Ic(S)), t ∈ [3 : t∗], there exists at least a control Hδjt2n = δlt2m

such that
⋃t−1
λ=0 Rλ(Ic(S)) is robustly reachable from Rt(Ic(S)) with probability 1. If (4.26)

holds, then all states can be robustly steered to Ic(S) with probability 1. Therefore, PBCN
(4.6) is robustly stabilizable to Ic(S).

(Necessity) We prove it by contradiction. Suppose PBCN (4.6) be robustly stabiliz-
able to Ic(S), but the equation (4.26) does not hold until t = 2n − |Ic(S)|. Assume
R2n−|Ic(S)|(Ic(S)) /= ∅ and

2n−|Ic(S)|⋃
λ=0

Rλ(Ic(S)) /= ∆2n .

It implies that there exists a state x̂ ∈ ∆2n\[
⋃2n−|Ic(S)|
λ=0 Rλ(Ic(S))] such that no control

can drive it to [
⋃2n−|Ic(S)|
λ=0 Rλ(Ic(S))] with probability 1 under the influence of disturbances

in (2n − |Ic(S)|) steps. Hence, state x̂ can not reach Ic(S) with probability 1 under any
disturbance ξ ∈ ∆2q , which contradicts the condition that the system (4.6) is robustly
stabilizable to Ic(S).

Based on the above discussion, the following corollary is obvious.

Corollary 4.4.3. The system (4.6) is robustly stabilizable to S ⊆ ∆2n under the state
feedback controller u(t) = Hx(t), if and only if

(i) Ic(S) /= ∅,

(ii) there exists an integer t∗ ∈ [1 : 2n − |Ic(S)|], such that

Coli(T̂ ) /= 02m , ∀i ∈ [1 : 2n],

where T̂ = TIc(S)|Ic(S) +
∑t∗

λ=1 TWλ−1|Rλ(Ic(S)).

Moreover, if (i) and (ii) hold, then all the time-optimal state feedback gain matrices H ∈
L2m×2n under which system (4.6) is robustly stabilizable to S can be characterized as H ≤
T̂ .
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4.5 Illustrative examples

In this section, we presents two examples to demonstrate the applicability of the results
obtained in this chapter.

Example 4.5.1. Consider a disturbed PBN of the form (4.2), with n = 3, q = 1, and
suppose that

L1 = δ8[1 3 1 3 5 1 5 1 1 1 1 1 5 5 5 5], pσ1 = 0.9, (4.29)

L2 = δ8[1 3 3 1 5 5 6 2 3 1 3 3 5 5 5 5], pσ2 = 0.1.

Then, the transition probability matrix of the disturbed PBN (4.29) is given by

P = pσ1 ∗ L1 + pσ2 ∗ L2

=



1 0 0.9 0.1 0 0.9 0 0.9 0.9 1 0.9 0.9 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
0 1 0.1 0.9 0 0 0 0 0.1 0 0.1 0.1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0.1 0.9 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


,

= [P1 P2].

Let verify now whether PBN (4.29) can be robustly stable to S = {δ1
8 , δ

3
8 , δ

5
8}.

First, according to Algorithm 4, denote S0 = S. The truth matrix TS0|S0 ∈ B2×8 is
given by

TS0|S0 =
[

1 0 1 0 1 0 0 0
1 0 1 0 1 0 0 0

]
. (4.30)

From (4.30),
S1 = {δ1

8 , δ
3
8 , δ

5
8} = S0.

It is obvious that S is a RIS with probability 1 of system (4.29). Let now W 0 = S,
W1 = ∆8\W 0 and construct the truth matrix TW 0|W1

∈ B2×8

TW 0|W1
=
[

0 1 0 1 0 1 0 0
0 1 0 1 0 1 1 1

]
. (4.31)

From (4.31), it follows that
R1(S) = {δ2

8 , δ
4
8 , δ

6
8}.
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Construct now the truth matrix TW 0|R1(S) ∈ B2×8

TW 0|R1(S) =
[

0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 0

]
. (4.32)

Then, compute W 1 = R0(S)
⋃
R1(S) and W2 = ∆8\W 1, where R0(S) = S. Construct

the truth matrix TW 1|W2
∈ B2×8

TW 1|W2
=
[

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

]
. (4.33)

From (4.33), it follows that

R2(S) = {δ7
8 , δ

8
8}.

Moreover, construct the truth matrix TW 1|R2(S) = TW 1|W2
.

Based on the above discussion, we have

T̂ = TS|S + TW 0|R1(S) + TW 1|R2(S)

=
[

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

]
.

It is obvious that for t∗ = 2 we have T̂ = 12×8. Therefore, system (4.29) is robustly stable
to S.

Example 4.5.2. Consider the reduced disturbed PBCN model of Escherichia coli intro-
duced in [59], which consists of the following two subnetworks:

f1 = (X2(t) ∨X3(t), U(t) ∧X1(t), U(t) ∨ (Ξ(t) ∧X1(t))), pσ1 = 0.9, (4.34)

f2 = (X2(t) ∨X3(t), U(t) ∧X1(t), X3(t)), pσ2 = 0.1,

where the states X1, X2 and X3 denote the lac mRNA, the lactose in high concentrations,
and the lactose in medium concentrations, respectively; the control input U denotes the
extracellular glucose and the disturbance input Ξ denotes the virus invading the Escherichia
coli network.

Under the framework of algebraic formulation, we obtain

L1 = δ8[1 1 1 5 3 3 3 7 3 3 3 7 4 4 4 8 1 1 1 5 3 3 3 7 4 4 4 8 4 4 4 8], pσ1 = 0.9,

L2 = δ8[1 2 1 6 3 4 3 8 3 4 3 8 3 4 3 8 1 2 1 6 3 4 3 8 3 4 3 8 3 4 3 8], pσ2 = 0.1.
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Then, the control-dependent transition probability matrix of the disturbed PBCN (4.34)
is given by

P = pσ1 ∗ L1 + pσ2 ∗ L2

=



1 0.9 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0.9 1 0 1 0.9 1 0 0.1 0 0.1 0
0 0 0 0 0 0.1 0 0 0 0.1 0 0 0.9 1 0.9 0
0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9 0 0 0 0.9 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0 1
1 0.9 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0.9 1 0 0.1 0 0.1 0 0.1 0 0.1 0
0 0 0 0 0 0.1 0 0 0.9 1 0.9 0 0.9 1 0.9 0
0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0 0 1 0 0 0 1


= [P1

1 P2
1 P1

2 P2
2].

Consider now the problem of designing all the time-optimal state feedback controllers
such that system (4.34) is robustly stabilizable to the state set S = {δ1

8 , δ
3
8 , δ

8
8}.

First, according to Algorithm 5, let S0 = S. The truth matrix TS0|S0 ∈ B2×8 is given
by

TS0|S0 =
[

1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1

]
. (4.35)

From (4.35),
S1 = {δ1

8 , δ
3
8 , δ

8
8} = S0.

It is obvious that S is a RCIS with probability 1 of system (4.34). Then, according to
Algorithm 6, let W 0 = S, W1 = ∆8\W 0 and construct the truth matrix TW 0|W1

∈ B2×8

TW 0|W1
=
[

0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

]
. (4.36)

From (4.36),
R1(S) = {δ5

8 , δ
7
8}.
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Then, compute W 1 = R0(S)
⋃
R1(S) and W2 = ∆8\W 1, where R0(S) = S. Construct

the truth matrix TW 1|W2
∈ B2×8

TW 1|W2
=
[

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

]
. (4.37)

From (4.37),
R2(S) = {δ4

8}.

Then, compute W 2 = R0(S)
⋃
R1(S)

⋃
R2(S) and W3 = ∆8\W 2. Construct the truth

matrix TW 2|W3
∈ B2×8

TW 2|W3
=
[

0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0

]
. (4.38)

From (4.38),
R3(S) = {δ2

8 , δ
6
8}.

Based on the above discussion, we have TW 0|R1(S) = TW 0|W1
, TW 1|R2(S) = TW 1|W2

and
TW 2|R3(S) = TW 2|W3

. Thus,

T̂ = TS|S +
3∑

λ=1
TWλ−1|Rλ(S)

=
[

1 0 1 1 0 1 1 1
0 1 0 0 1 1 0 1

]
.

It is obvious that for t∗ = 3 we have that all the columns of matrix T̂ are nonzero. Therefore,
system (4.34) is robustly stabilizable to S = {δ1

8 , δ
3
8 , δ

8
8} under the state feedback control

u(t) = Hx(t). Moreover, there are 4 choices of time-optimal state feedback gain matrices
H ∈ L2×8:

H = δ2[1 2 1 1 2 1 1 1],

H = δ2[1 2 1 1 2 1 1 2],

H = δ2[1 2 1 1 2 2 1 1],

H = δ2[1 2 1 1 2 2 1 2].

4.6 Conclusions

In this chapter, the finite-time robust set stability with probability 1 of PBNs and finite-
time robust set stabilization with probability 1 of PBCNs, have been investigated respec-
tively. On one hand, we proposed an algorithm to compute the LRIS with probability 1

61



4 – Robust Set Stability and Set Stabilization of Probabilistic Boolean Control Networks

contained in a given state set and presented necessary and sufficient conditions to deter-
mine the finite-time robust set stability with probability 1 of PBNs. On the other hand,
we have constructed an algorithm to compute the LRCIS with probability 1 contained in a
given state set. Based on this RCIS, we derived some necessary and sufficient conditions to
detect whether the PBCNs are finite-time robustly stabilized to the given set with proba-
bility 1. Furthermore, we have shown that all the time-optimal controllers can be obtained
via antecedence solution technique. Illustrative examples have also been given to show the
effectiveness of the main results of this chapter.
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Chapter 5

Stabilization and Set
Stabilization of Periodic
Switched Boolean Control
Networks

5.1 Introduction

It is well known that stabilizability analysis plays one of the most basic and important roles
in control theory. A typical example is therapeutic interventions, that is, driving the GRN
to a healthy state, and maintain this state forever [74]. In other cases, it is necessary to
study whether the system can be globally stabilized to a given state set instead of a single
point, which is known as set stabilization. However, until now, there have been few results
on stabilization or set stabilization of SBCNs. For instance, under arbitrary switching
signal, Yerudkar et al. investigated the design of switching-signal-dependent state feedback
and output feedback controllers for the stabilization of SBCNs [130]. Li et al. presented
necessary and sufficient conditions for set stabilization of SBCNs under arbitrary switching
signal for the case of switching-signal-dependent controller or switching-signal-independent
controller [59], and pointed that “the condition of switching-signal-dependent controller is
less conservative than the one of the switching-signal-independent controller.” To the best
of our knowledge, the problem of stabilization or set stabilization analysis for SBCNs under
periodic switching signal has not been addressed before.

This chapter investigates the stabilization and set stabilization problems of SBCNs with
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periodic switching signal, and both open loop stabilizers and state feedback stabilizers are
designed if the problems are solvable. The main contributions of this chapter are:

• Necessary and sufficient conditions for the global stabilization and global set stabi-
lization are derived.

• A constructive procedure is proposed to design open loop controller for the stabiliza-
tion problem.

• Algorithms based on antecedence solution technique are established to design switching-
signal-dependent state feedback controllers for the stabilization and set stabilization
problems.

5.2 Problem formulation

The dynamics of periodic SBCNs with n nodes, m control inputs and a periodic switching
signal with ω values can be described as follows:

X1(t+ 1) = f
σ(t)
1 (X(t);U(t)),

X2(t+ 1) = f
σ(t)
2 (X(t);U(t)),

...

Xn(t+ 1) = f
σ(t)
n (X(t);U(t)),

(5.1)

where X(t) = (X1(t), X2(t), · · · , Xn(t)) ∈ Dn and U(t) = (U1(t), U2(t), · · · , Um(t)) ∈ Dm

are the state and control, respectively. Here, Xi ∈ D, i ∈ [1 : n], Uj ∈ D, j ∈ [1 : m] are
logical variables, and fσ(t)

i : Dn+m −→ D, i ∈ [1 : n] is a logical function. Moreover, the
periodic switching law with period ω has the following form:

σ(t) =



1, t mod ω = 0,

2, t mod ω = 1,
...

ω, t mod ω = ω − 1.

(5.2)

Remark 5.2.1. A periodic switching signal with ω values may have ω! different expres-
sions, that is, all the possible permutations of {1, 2, · · · , ω}. Here we just consider one of
the possible periodic switching forms, and all the results obtained in this chapter can be
generalized to any other periodic switching expressions.
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Let xi and uj be the vector form of Xi and Uj respectively. Based on Lemma 1.2.1,
for any logical function fσ(t)

i , i ∈ [1 : n], there exists a unique structural matrix Mσ(t)
i ∈

L2×2n+m such that system (5.1) can be converted into

xi(t+ 1) = M
σ(t)
i u(t)x(t), i ∈ [1 : n], (5.3)

where u(t) = nm
j=1u

j(t) ∈ ∆2m and x(t) = nn
i=1xi(t) ∈ ∆2n . Then, multiplying all the

equations yields

x(t+ 1) = Lσ(t)u(t)x(t), (5.4)

where Lσ(t) = M
σ(t)
1 ∗Mσ(t)

2 ∗· · ·∗Mσ(t)
n ∈ L2n×2n+m . Furthermore, let L = [L1 L2 · · · Lω] ∈

L2n×ω·2n+m and i ∼ δiω, i ∈ [1 : ω], then when σ(t) = δiω, we have Lσ(t) = Li. Thus, the
algebraic formulation of system (5.1) is given by

x(t+ 1) = Lσ(t)u(t)x(t). (5.5)

In this chapter, two kinds of controls are considered:

(i) Open-loop controller: the control is a free Boolean sequence, that is, the control is a
designed sequence U(0), U(1), · · · .

(ii) Switching-signal-dependent state feedback controller: the controls are expressed by
state variables satisfying certain logical rule under periodic switching signal, such as

U1,σ(t)(t) = h1,σ(t)(X1(t), X2(t), · · · , Xn(t)),

U2,σ(t)(t) = h2,σ(t)(X1(t), X2(t), · · · , Xn(t)),
...

Um,σ(t)(t) = hm,σ(t)(X1(t), X2(t), · · · , Xn(t)),

(5.6)

whose algebraic form can be expressed as

uσ(t)(t) = Hσ(t)x(t), (5.7)

where Hσ(t) ∈ L2m×2n is the switching-signal-dependent state feedback gain matrix.

Definition 5.2.1. (Stabilization) The SBCN (5.1) is said to be globally stabilizable (or
feedback stabilizable) to a given state x∗ ∈ ∆2n under periodic switching law (5.2), if for
any initial state x(0) ∈ ∆2n , there exists a control sequence u(0), u(1), · · · (or a feedback
control law uσ(t)(t) = Hσ(t)x(t)) and an integer T ≥ 0, such that x(t) = x∗, for every
t ≥ T.
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Definition 5.2.2. (Set stabilization) The SBCN (5.1) is said to be stabilizable (or feedback
stabilizable) to the nonempty set Γ ⊆ ∆2n under periodic switched law (5.2), if for any
initial state x(0) ∈ ∆2n , there exists a control sequence u(0), u(1), · · · (or a feedback control
law uσ(t)(t) = Hσ(t)x(t)) and an integer T ≥ 0, such that x(t) ∈ Γ holds, for every t ≥ T.

Definition 5.2.3. (Common control fixed point) A state x∗ = δγ2n ∈ ∆2n is said to be
the common control fixed point of (5.5), if for any sub-system x(t+ 1) = Lνu(t)x(t), there
exists a control uν ∈ ∆2m (the control is related to the subsystem), such that Lνuνx∗ = x∗.

Furthermore, define

C∗1 = {δk1
2m |L1δ

k1
2mδ

γ
2n = δγ2n , k1 ∈ [1 : 2m]},

C∗2 = {δk2
2m |L2δ

k2
2mδ

γ
2n = δγ2n , k2 ∈ [1 : 2m]},

...

C∗ω = {δkω2m |Lωδ
kω
2mδ

γ
2n = δγ2n , kω ∈ [1 : 2m]}.

Lemma 5.2.1. The state x∗ = δγ2n is a common control fixed point if and only if C∗ν /= ∅,
for any ν ∈ [1 : ω]. In particular, the state x∗ = δγ2n is a common control fixed point under
common control if and only if

⋂ω
ν=1 C∗ν /= ∅.

It is obvious that if x∗ = δγ2n is a common control fixed point, then for any sub-system,
there exists at least a control uν such that Lνuνx∗ = x∗, ∀ν ∈ [1 : ω]. Thus, uν ∈ C∗ν .
Conversely, if C∗ν /= ∅, ∀ν ∈ [1 : ω], then x∗ = δγ2n is a control fixed point of each sub-
system.

Definition 5.2.4. (Common control invariant set) A nonempty set Γ ⊆ ∆2n is said to be
the common control invariant set of (5.5), if for any sub-system x(t+ 1) = Lνu(t)x(t) and
any x(t) = δj2n ∈ Γ, there exists at least a control u(ν,j) ∈ ∆2m (the control is related to the
subsystem and the state in Γ), such that Lνu(ν,j)δ

j
2n ∈ Γ.

Let now
CΓ

1,j = {δk(1,j)
2m |L1δ

k(1,j)
2m δj2n ∈ Γ, if δj2n ∈ Γ},

CΓ
2,j = {δk(2,j)

2m |L2δ
k(2,j)
2m δj2n ∈ Γ, if δj2n ∈ Γ},

...

CΓ
ω,j = {δk(ω,j)

2m |Lωδ
k(ω,j)
2m δj2n ∈ Γ, if δj2n ∈ Γ}.

The following lemma is proposed to detect whether a given set is a common control
invariant set of system (5.5).

Lemma 5.2.2. The nonempty set Γ ⊆ ∆2n is a common control invariant set if and only
if CΓ

ν,j /= ∅, for any ν ∈ [1 : ω], for all δj2n ∈ Γ. Particularly, the nonempty set Γ ⊆ ∆2n is a
common control invariant set under common control if and only if

⋂ω
ν=1 CΓ

ν,j /= ∅, ∀δ
j
2n ∈ Γ.
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5.3 Controller design for stabilization of periodic
SBCNs

In this section, we study whether the SBCNs with periodic switching signal can be sta-
bilized by open loop controller and state feedback controller respectively, and present the
constructive procedures of open loop controller as well as the design algorithms of switching-
signal-dependent state feedback controller via antecedence solution technique.

Theorem 5.3.1. Consider SBCNs (5.5) with periodic switching signal. The system is
globally stabilizable to a common control fixed point x∗ = δγ2n under a free-type control
sequence if and only if there exist an integer T ∗ = pω+ q+ 1 and α ∈ [1 : 2T ∗m], such that

Blkα(L̃) = δ2n [γ γ · · · γ︸ ︷︷ ︸
2n

], (5.8)

where p ≥ 0, q ∈ [0 : ω−1] and L̃ = [Lq+1(I2m⊗Lq)(I22m⊗Lq−1) · · · (I2qm⊗L1)(I2(q+1)m⊗Lω)
(I2(q+2)m⊗Lω−1) · · · (I2(ω+q)m⊗L1)(I2(ω+q+1)m⊗Lω)(I2(ω+q+2)m⊗Lω−1) · · · (I2(2ω+q)m⊗L1) · · ·
(I2((p−1)ω+q+1)m⊗Lω)(I2((p−1)ω+q+2)m⊗Lω−1) · · · (I2(pω+q)m⊗L1)] ∈ L2n×2n+T∗m . In addition, if
(5.8) holds, then the free-type control sequence which makes the system globally stabilized
is given by

u(t) =



ũ(t), 0 ≤ t ≤ T ∗ − 1,

δk1
2m ∈ C∗1 , t ≥ T ∗ and t mod ω = 0,

δk2
2m ∈ C∗2 , t ≥ T ∗ and t mod ω = 1,
...

δkω2m ∈ C∗ω, t ≥ T ∗ and t mod ω = ω − 1,

(5.9)

where ũ(T ∗ − 1)ũ(T ∗ − 2) · · · ũ(0) = δα2T∗m .

Proof. For any t ∈ Z+, the dynamics of system (5.5) can be expressed as

x(1) = Lσ(0)u(0)x(0)

= Lδ1
ωu(0)x(0)

= L1u(0)x(0),

x(2) = Lσ(1)u(1)x(1)

= Lδ2
ωu(1)L1u(0)x(0)

= L2(I2m ⊗ L1)u(1)u(0)x(0),
...
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x(ω − 1) = Lσ(ω − 2)u(ω − 2)x(ω − 2)

= Lσ(ω − 2)u(ω − 2)Lσ(ω − 3)u(ω − 3) · · ·Lσ(1)u(1)Lσ(0)u(0)x(0)

= Lδω−1
ω u(ω − 2)Lω−2(I2m ⊗ Lω−3)(I22m ⊗ Lω−4) · · · (I2(ω−3)m ⊗ L1)u(ω − 3) · · ·

u(0)x(0)

= Lω−1(I2m ⊗ Lω−2)u(ω − 2)(I2m ⊗ Lω−3)(I22m ⊗ Lω−4) · · · (I2(ω−3)m ⊗ L1)

u(ω − 3) · · ·u(0)x(0)

· · ·

= Lω−1(I2m ⊗ Lω−2)(I22m ⊗ Lω−3) · · · (I2(ω−2)m ⊗ L1)u(ω − 2)u(ω − 3) · · ·

u(0)x(0),

x(ω) = Lσ(ω − 1)u(ω − 1)x(ω − 1)

= Lδωωu(ω − 1)Lω−1(I2m ⊗ Lω−2)(I22m ⊗ Lω−3) · · · (I2(ω−2)m ⊗ L1)u(ω − 2)

u(ω − 3) · · ·u(0)x(0)

= Lω(I2m ⊗ Lω−1)u(ω − 1)(I2m ⊗ Lω−2)(I22m ⊗ Lω−3) · · · (I2(ω−2)m ⊗ L1)

u(ω − 3) · · ·u(0)x(0)

· · ·

= Lω(I2m ⊗ Lω−1)(I22m ⊗ Lω−2) · · · (I2(ω−1)m ⊗ L1)u(ω − 1)u(ω − 2) · · ·u(0)

x(0),
...

x(t) = Lσ(t− 1)u(t− 1)x(t− 1)

= Lq+1(I2m ⊗ Lq)(I22m ⊗ Lq−1) · · · (I2qm ⊗ L1)(I2(q+1)m ⊗ Lω)(I2(q+2)m ⊗ Lω−1) · · ·

(I2(ω+q)m ⊗ L1)(I2(ω+q+1)m ⊗ Lω)(I2(ω+q+2)m ⊗ Lω−1) · · · (I2(2ω+q)m ⊗ L1) · · ·

(I2((p−1)ω+q+1)m ⊗ Lω)(I2((p−1)ω+q+2)m ⊗ Lω−1) · · · (I2(pω+q)m ⊗ L1)u(t− 1) · · ·u(0)

x(0)

:= L̃u(t− 1)u(t− 2) · · ·u(0)x(0),

where t = pω+q+1, p ≥ 0, q ∈ [0 : ω−1] and L̃ = [Lq+1(I2m⊗Lq)(I22m⊗Lq−1) · · · (I2qm⊗
L1)(I2(q+1)m ⊗Lω)(I2(q+2)m ⊗Lω−1) · · · (I2(ω+q)m ⊗L1)(I2(ω+q+1)m ⊗Lω)(I2(ω+q+2)m ⊗Lω−1) · · ·
(I2(2ω+q)m⊗L1) · · · (I2((p−1)ω+q+1)m⊗Lω)(I2((p−1)ω+q+2)m⊗Lω−1) · · · (I2(pω+q)m⊗L1)] ∈ L2n×2n+tm .

(Necessity) Assume that the dynamics of system (5.5) are globally stabilizable to x∗ =
δγ2n . Then, for any initial state x(0) ∈ ∆2n , the iterative sequence will converge to δγ2n . Then
there must exist an integer T ∗ = pω+q+1, and a sequence of control u(0), u(1), · · · , u(T ∗−
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1), where u(T ∗ − 1)u(T ∗ − 2) · · ·u(0) = δα2T∗m , such that

x(T ∗) = L̃u(T ∗ − 1)u(T ∗ − 2) · · ·u(0)x(0)

= Blkα(L̃)δi2n
= δγ2n , ∀i ∈ [1 : 2n],

which implies that (5.8) is satisfied. Moreover, for t ≥ T ∗, it holds that

x(t+ 1) = x∗.

Thus, x∗ = Lσ(t)u(t)x∗ for all t ≥ T ∗, then (5.9) must hold.
(Sufficiency) Suppose that (5.8) is satisfied. We prove that the system (5.5) is globally

convergent to x∗ under the free-type control sequence (5.9). From (5.8), one can obtain
that for any x(0) ∈ ∆2n ,

x(T ∗) = Blkα(L̃)x(0) = δ2n [γ γ · · · γ]x(0) = δγ2n .

Since x∗ = δγ2n is a common control fixed point of system (5.5), hence the system (5.5)
globally converges to x∗ = δγ2n .

In the following, we provide an illustrative example to show how to design an open loop
controller such that the SBCNs with periodic switching signal can globally stabilize to a
common control fixed point.

Example 5.3.1. Consider the following reduced Boolean model for the lactose operon in
the bacterium Escherichia coli, which is presented in [116].

X1(t+ 1) = ¬U1(t) ∧ (X2(t) ∨X3(t)),

X2(t+ 1) = ¬U1(t) ∧ U2(t) ∧X1(t),

X3(t+ 1) = ¬U1(t) ∧ (U2(t) ∨ (U3(t) ∧X1(t))),

(5.10)

where X1, X2 and X3 are states which denote the lac mRNA, the lactose in high concentra-
tions, and the lactose in medium concentrations, respectively; U1, U2 and U3 are controls
which represent the extracellular glucose, the high extracellular lactose, and the medium
extracellular lactose, respectively.

Fix U1(t) ≡ 0 and let V1(t) = U2(t), V2(t) = U3(t); then system (5.10) can be converted
to 

X1(t+ 1) = X2(t) ∨X3(t),

X2(t+ 1) = V1(t) ∧X1(t),

X3(t+ 1) = V1(t) ∨ (V2(t) ∧X1(t)).

(5.11)
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Assuming that the state X3 in system (5.11) does not update its value, then system (5.11)
can be expressed as 

X1(t+ 1) = X2(t) ∨X3(t),

X2(t+ 1) = V1(t) ∧X1(t),

X3(t+ 1) = X3(t).

(5.12)

If system (5.11) and (5.12) are sub-systems of a SBCN, then the SBCN can be epressed
as: 

X1(t+ 1) = f
σ(t)
1 (X1(t), X2(t), X3(t), V1(t), V2(t)),

X2(t+ 1) = f
σ(t)
2 (X1(t), X2(t), X3(t), V1(t), V2(t)),

X3(t+ 1) = f
σ(t)
3 (X1(t), X2(t), X3(t), V1(t), V2(t)),

(5.13)

where f1
1 = f2

1 = X2(t)∨X3(t), f1
2 = f2

2 = V1(t)∧X1(t), f1
3 = V1(t)∨ (V2(t)∧X1(t)), and

f2
3 = X3(t). Assume the periodic switching law has the following form:

σ(t) =

1, t mod 2 = 0,

2, t mod 2 = 1.
(5.14)

Denoting x(t) = n3
i=1xi(t) ∈ ∆8, v(t) = n2

j=1vj(t) ∈ ∆4 and identifying the switching
signal 1 ∼ δ1

2 , 2 ∼ δ2
2 , the algebraic form of system (5.13) can be expressed as:

x(t+ 1) = Lσ(t)v(t)x(t),

where L = [L1 L2], and

L1 = δ8[1 1 1 5 3 3 3 7 1 1 1 5 3 3 3 7 3 3 3 7 4 4 4 8 3 3 3 7 4 4 4 8],

L2 = δ8[1 2 1 6 3 4 3 8 1 2 1 6 3 4 3 8 3 4 3 8 3 4 3 8 3 4 3 8 3 4 3 8].

Assume that the equilibrium x∗ = δ3
8 , which represents the lactose operon being on. We

are now ready to design a free-type control sequence to stabilize system (5.13) to x∗ = δ3
8 .

First, we have

C∗1 = {δk1
4 |L1δ

k1
4 δ

3
8 = δ3

8 ,1 ≤ k1 ≤ 4} = {δ3
4 , δ

4
4},

C∗2 = {δk2
4 |L2δ

k2
4 δ

3
8 = δ3

8 ,1 ≤ k2 ≤ 4} = {δ3
4 , δ

4
4}.

A straightforward calculation shows that T ∗ = 2, α = 9, and

Blk9(L̃) = δ8[3 3 3 3 3 3 3 3],
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where L̃ = L2(I22 ⊗ L1) ∈ L23×27 . Since δ3
4 × δ1

4 = δ9
16, from (5.9), one can design the

free-type control sequence as follows

u(t) =



δ1
4 , t = 0,

δ3
4 , t = 1,

δk1
4 ∈ C∗1 , t ≥ 2 and t mod 2 = 0,

δk2
4 ∈ C∗2 , t ≥ 2 and t mod 2 = 1.

(5.15)

In the following, necessary and sufficient conditions to determine whether the SBCNs
with periodic switching signal can be stabilized under switching-signal-dependent state
feedback controllers are investigated. Moreover, the constructive algorithm of state feedback
controllers is presented.

Remark 5.3.1. If the state x∗ = δγ2n is reachable from some initial state, then there exists
a control sequence such that it can be reachable within ω · (2n − 1) steps.

The switching-signal-dependent logical matrices Hσ(t) ∈ L2m×2n which can stabilize the
system (5.5) to x∗ = δγ2n can be constructed as follows.

Algorithm 7 Constructing switching-signal-dependent state feedback stabilizers

Step 1: Let R0(x∗) = {δγ2n}, and construct the truth matrices T νR0(x∗) ∈ B2m×2n ,
ν ∈ [1 : ω] as:

[T νR0(x∗)]i,j =

1, if Lνδi2mδ
j
2n = δγ2n ,

0, otherwise.
(5.16)

Compute Rν1(x∗) = {δj2n | Colj(T νR0(x∗)) /= 02m}, ν ∈ [1 : ω] and check whether
x∗ ∈

⋂ω
ν=1 R

ν
1(x∗). If x∗ /∈

⋂ω
ν=1 R

ν
1(x∗), then x∗ is not a common control fixed point, and

the construction problem of stabilizer is not solvable, stop the algorithm. If
R1

1(x∗) = ∆2n , denote T ∗ = 1 and go to Step 5. Otherwise, go to Step 2.
Step 2: Construct the truth matrix T 1

R2
1(x∗) ∈ B2m×2n :

[T 1
R2

1(x∗)]i,j =

1, if L1δ
i
2mδ

j
2n ∈ R2

1(x∗),∀δj2n ∈ ∆2n\R1
1(x∗),

0, otherwise.
(5.17)

Compute R1
2(x∗) = {δj2n | Colj(T 1

R2
1(x∗)) /= 02m}. If R1

2(x∗) /= ∅ and
R1

1(x∗)
⋃
R1

2(x∗) = ∆2n , denote T ∗ = 2 and go to Step 5. Otherwise, go to Step 3.
Step 3: For t ∈ [3 : ω], construct the truth matrix T t−1

Rt1(x∗) ∈ B2m×2n :

[T t−1
Rt1(x∗)]i,j =

1, if Lt−1δ
i
2mδ

j
2n ∈ Rt1(x∗),

0, otherwise.
(5.18)
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Compute Rt−1
2 (x∗) = {δj2n | Colj(T t−1

Rt1(x∗)) /= 02m} and construct the truth matrix
T t−2
Rt−1

2 (x∗) ∈ B2m×2n :

[T t−2
Rt−1

2 (x∗)]i,j =

1, if Lt−2δ
i
2mδ

j
2n ∈ Rt−1

2 (x∗),

0, otherwise.
(5.19)

Compute Rt−2
3 (x∗) = {δj2n | Colj(T t−2

Rt−1
2 (x∗)) /= 02m}. Repeat this procedure, constructing

truth matrices T t−3
Rt−2

3 (x∗), T
t−4
Rt−3

4 (x∗),· · · , T
2
R3
t−2(x∗) respectively, and compute Rt−3

4 (x∗),
Rt−4

5 (x∗), · · · , R2
t−1(x∗).

Then, construct the truth matrix T 1
R2
t−1(x∗) ∈ B2m×2n :

[T 1
R2
t−1(x∗)]i,j =

1, if L1δ
i
2mδ

j
2n ∈ R2

t−1(x∗),∀δj2n ∈ ∆2n\(
⋃t−1
k=1 R

1
k(x∗)),

0, otherwise.
(5.20)

Compute R1
t (x∗) = {δj2n | Colj(T 1

R2
t−1(x∗)) /= 02m}. If R1

t (x∗) /= ∅ and

t⋃
k=1

R1
k(x∗) = ∆2n , (5.21)

the stabilization problem is solvable, denote the minimum number such that (5.21) holds
as T ∗ and go to Step 5. Otherwise, set t = t+ 1. If t > ω, go to Step 4. Otherwise, go to
Step 3.
Step 4: For t ≥ ω + 1, construct the truth matrix TωR1

t−ω(x∗) ∈ B2m×2n :

[TωR1
t−ω(x∗)]i,j =

1, if Lωδi2mδ
j
2n ∈ R1

t−ω(x∗),

0, otherwise.
(5.22)

Compute Rωt−ω+1(x∗) = {δj2n | Colj(TωR1
t−ω(x∗)) /= 02m} and construct the truth matrix

Tω−1
Rωt−ω+1(x∗) ∈ B2m×2n :

[Tω−1
Rωt−ω+1(x∗)]i,j =

1, if Lω−1δ
i
2mδ

j
2n ∈ Rωt−ω+1(x∗),

0, otherwise.
(5.23)

Compute Rω−1
t−ω+2(x∗) = {δj2n | Colj(Tω−1

Rωt−ω+1(x∗)) /= 02m}. Repeat this procedure,
constructing truth matrices Tω−2

Rω−1
t−ω+2(x∗), T

ω−3
Rω−2
t−ω+3(x∗),· · · , T

2
R3
t−2(x∗) respectively, and

compute Rω−2
t−ω+3(x∗), Rω−3

t−ω+4(x∗), · · · , R2
t−1(x∗).

Then, construct the truth matrix T 1
R2
t−1(x∗) ∈ B2m×2n :

[T 1
R2
t−1(x∗)]i,j =

1, if L1δ
i
2mδ

j
2n ∈ R2

t−1(x∗),∀δj2n ∈ ∆2n\(
⋃t−1
k=1 R

1
k(x∗)),

0, otherwise.
(5.24)
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Compute R1
t (x∗) = {δj2n | Colj(T 1

R2
t−1(x∗)) /= 02m}. If R1

t (x∗) /= ∅ and

t⋃
k=ω+1

R1
k(x∗)

⋃
Λ = ∆2n , (5.25)

where Λ =
⋃ω
k=1 R

1
k(x∗) /= ∆2n . The stabilization problem is solvable, denote the

minimum number such that (5.25) holds as T ∗ and go to Step 5. Otherwise, set t = t+ 1.
If t > ω · (2n − 1), the construction problem of stabilizer is not solvable, stop the
algorithm. Otherwise, go to Step 4.
Step 5:
Case 1: If T ∗ ≤ ω, construct the switching-signal-dependent logical matrices
Hσ(t) ∈ L2m×2n as follows:

Hl|
Rl1(x∗)

≤ T l
R0(x∗)|Rl1(x∗), l ∈ [1 : T ∗], (5.26)

where

Colj(T lR0(x∗)|Rl1(x∗)) =

Colj(T lR0(x∗)), if δj2n ∈ Rl1(x∗),

02m , otherwise,

and l ∈ [1 : T ∗]. Moreover,
Hϑ|

Rϑsϑ
(x∗)
≤ T ϑ

Rϑ+1
sϑ−1(x∗)|Rϑsϑ (x∗),

ϑ ∈ [1 : ω], sϑ ∈ [2 : T ∗ − (ϑ− 1)],
(5.27)

where

Colj(T ϑRϑ+1
sϑ−1(x∗)|Rϑsϑ (x∗)) =


Colj(T ϑRϑ+1

sϑ−1(x∗)), if δj2n ∈ Rϑsϑ(x∗),

02m , otherwise,

and ϑ ∈ [1 : ω], sϑ ∈ [2 : T ∗ − (ϑ− 1)]. Besides,

Hs|R0(x∗) ≤ T sR0(x∗)|R0(x∗), s ∈ [T ∗ + 1 : ω], (5.28)

where T sR0(x∗)|R0(x∗) = T sR0(x∗) and s ∈ [T ∗ + 1 : ω].
Case 2: If T ∗ ≥ ω + 1, construct the switching signal-dependent logical matrices
Hσ(t) ∈ L2m×2n as follows:

Hl|
Rl1(x∗)

≤ T l
R0(x∗)|Rl1(x∗), l ∈ [1 : ω], (5.29)

where

Colj(T lR0(x∗)|Rl1(x∗)) =

Colj(T lR0(x∗)), if δj2n ∈ Rl1(x∗),

02m , otherwise,
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and l ∈ [1 : ω]. In addition,
Hϑ|

Rϑsϑ
(x∗)
≤ T ϑ

Rϑ+1
sϑ−1(x∗)|Rϑsϑ (x∗),

ϑ ∈ [1 : ω], sϑ = [2 : T ∗ − (ϑ− 1)],
(5.30)

where Rω+1
k (x∗) = R1

k(x∗), k ≥ 1. Moreover,

Colj(T ϑRϑ+1
sϑ−1(x∗)|Rϑsϑ (x∗)) =


Colj(T ϑRϑ+1

sϑ−1(x∗)), if δj2n ∈ Rϑsϑ(x∗),

02m , otherwise,

and ϑ ∈ [1 : ω], sϑ = [2 : T ∗ − (ϑ− 1)].

Remark 5.3.2. If (5.21) or (5.25) holds, each initial state can reach x∗. Furthermore,
from Algorithm 7, we have

⋂T ∗
k=1 R

1
k(x∗) = ∅, which ensures that T ∗ is the shortest time for

all initial states to reach x∗.

Figure 5.1 helps in explaining Algorithm 7.

Figure 5.1: Illustration graph of Algorithm 7

Theorem 5.3.2. Consider SBCNs (5.5) with periodic switching signal. The system is
globally stabilizable to x∗ = δγ2n if and only if Algorithm 7 reaches Step 5.

Proof. (Sufficiency) Assume Algorithm 7 reaches Step 5, then we prove that SBCNs (5.5)
are globally stabilizable to x∗ = δγ2n under the switching-signal-dependent state feedback
control uσ(t)(t) = Hσ(t)x(t), where the state feedback gain matrix Hσ(t) ∈ L2m×2n is given
by (5.26)-(5.28) or (5.29)-(5.30). From Step 1, suppose that x∗ ∈

⋂ω
ν=1 R

ν
1(x∗), then x∗ is a

common control fixed point of the ω sub-systems. If R1
1(x∗) = ∆2n , then for any x(0) ∈ ∆2n ,
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u1(t) = H1x(t) makes all initial states to reach x∗ in one step and uν(t) = Hνx(t), ν ∈ [1 : ω]
stabilizes the system at x∗.

Otherwise, if R1
1(x∗) /= ∆2n and R1

1(x∗)
⋃
R1

2(x∗) = ∆2n , then for any x(0) ∈ R1
1(x∗),

u1(t) = H1x(t) drives it to reach x∗ in one step and R1
2(x∗) to reach R2

1(x∗) in one step.
And u2(t) = H2x(t) drives R2

1(x∗) to reach x∗ in one step. Moreover, uν(t) = Hνx(t),
ν ∈ [1 : ω] stabilizes the system at x∗.

Continuing the above procedure, if there exists s0 ∈ [3 : ω], such that
⋃s0−1
k=1 R1

k(x∗) /=
∆2n and

⋃s0
k=1 R

1
k(x∗) = ∆2n , then for any x(0) ∈ R1

1(x∗), u1(t) = H1x(t) drives it to reach
x∗ in one step and R1

2(x∗) to reach R2
1(x∗) in one step, similarly, it can drive R1

s0(x∗) to
reach R2

s0−1(x∗) in one step. Moreover, u2(t) = H2x(t) drives R2
1(x∗) to reach x∗ in one

step; similarly, it can drive R2
s0−1(x∗) to reach R3

s0−2(x∗) in one step. Continuing the above
discussion, us0(t) = Hs0x(t) drives Rs0

1 (x∗) to reach x∗ in one step. Besides, uν(t) = Hνx(t),
ν ∈ [1 : ω] stabilizes the system at x∗.

For the more general case, if
⋃ω
k=1 R

1
k(x∗) /= ∆2n and there exists s ≥ ω + 1 such that⋃s−1

k=1 R
1
k(x∗) /= ∆2n and

⋃s
k=1 R

1
k(x∗) = ∆2n , then for any x(0) ∈ R1

1(x∗), u1(t) = H1x(t)
drives it to reach x∗ in one step and R1

2(x∗) to reach R2
1(x∗) in one step. Similarly, it can

drive R1
s(x∗) to reach R2

s−1(x∗) in one step. Moreover, u2(t) = H2x(t) drives R2
1(x∗) to

reach x∗ in one step and R2
ω−1(x∗) to reach R3

ω−2(x∗) in one step. Similarly, it can drive
R2
s−1(x∗) to reach R3

s−2(x∗) in one step. Repeating the above steps, uω(t) = Hωx(t) drives
Rω1 (x∗) to reach x∗ in one step, similarly, it can drive Rωs−ω+1(x∗) to reach R1

s−ω+2(x∗) in
one step. Without loss of generality, there exists uν(t) = Hνx(t), such that Rν1(x∗) can
reach x∗ in one step. Furthermore, the system will be globally stabilized to x∗ under the
switching-signal-dependent state feedback controllers uν(t) = Hνx(t), ν ∈ [1 : ω].

(Necessity) Suppose now that system (5.5) is globally stabilizable to x∗ = δγ2n , and
assume by contradiction that the Algorithm 7 does not reach to Step 5, that is x∗ /∈⋂ω
ν=1 R

ν
1(x∗), i.e., x∗ is not a common control fixed point; or the equation (5.25) does

not hold until s = ω · (2n − 1). It is obvious that the first case contradicts the condition
that the system (5.5) is globally stabilizable to x∗ = δγ2n . For the second case, assume
R1
ω·(2n−1)(x∗) /= ∅ and

ω·(2n−1)⋃
k=1

R1
k(x∗) /= ∆2n .

That implies that there exists a state x̂ ∈ ∆2n\(
⋃ω·(2n−1)
k=1 R1

k(x∗)) such that no switching-
signal-dependent state feedback control can drive it to x∗ = δγ2n , which also contradicts the
condition that the system (5.5) is globally stabilizable to x∗ = δγ2n .

Example 5.3.2. With reference to system (5.13) in Example 5.3.1, we aim to design
switching-signal-dependent state feedback controllers to stabilize system (5.13) to x∗ = δ3

8 .
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Based on the Algorithm 7, denote

R0(x∗) = {δ3
8}.

Then the truth matrix T 1
R0(x∗) ∈ B4×8 can be constructed:

T 1
R0(x∗) =


0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0

 . (5.31)

From (5.31),
R1

1(x∗) = {δ1
8 , δ

2
8 , δ

3
8 , δ

5
8 , δ

6
8 , δ

7
8}.

Next, the truth matrix T 2
R0(x∗) ∈ B4×8 can be constructed

T 2
R0(x∗) =


0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0

 . (5.32)

From (5.32),
R2

1(x∗) = {δ1
8 , δ

3
8 , δ

5
8 , δ

7
8}.

It is clear that x∗ ∈ R1
1(x∗)

⋂
R2

1(x∗). Then, construct truth matrix T 1
R2

1(x∗) ∈ B4×8 as

T 1
R2

1(x∗) =


0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

 . (5.33)

From (5.33),
R1

2(x∗) = {δ4
8 , δ

8
8}.

Since R1
1(x∗)

⋃
R1

2(x∗) = ∆8, we have that T ∗ = 2, and we can construct the switching-
signal-dependent state feedback gain matrices as

H1|
R1

1(x∗)
≤ T 1

R0(x∗)|R1
1(x∗),

H1|
R1

2(x∗)
≤ T 1

R2
1(x∗)|R1

2(x∗),
(5.34)

where T 1
R0(x∗)|R1

1(x∗) = T 1
R0(x∗) and T 1

R2
1(x∗)|R1

2(x∗) = T 1
R2

1(x∗). Moreover,

H2|
R2

1(x∗)
≤ T 2

R0(x∗)|R2
1(x∗), (5.35)
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where T 2
R0(x∗)|R2

1(x∗) = T 2
R0(x∗).

From (5.34), it follows that all the possible choices of matrix H1 ∈ L22×23 as follows

Colj(H1) ∈ {δ3
4 , δ

4
4}, j ∈ [1 : 3], (5.36)

Colj(H1) ∈ {δ1
4 , δ

2
4}, j ∈ [5 : 8],

Col4(H1) ∈ {δ1
4 , δ

2
4 , δ

3
4 , δ

4
4}.

Similarly, from (5.35), we have all the possible choices of matrix H2 ∈ L22×23 as follows

Colj(H2) ∈ {δ3
4 , δ

4
4}, j = 1, 3, (5.37)

Colj(H2) ∈ {δ1
4 , δ

2
4 , δ

3
4 , δ

4
4}, j = 5, 7.

Putting (5.36) and (5.37) together, the switching-signal-dependent logical matricesHσ(t)

are given by

Hσ(t) =

H1, t mod 2 = 0,

H2, t mod 2 = 1,
(5.38)

where Coli(H2), i = 2, 4, 6, 8 can be chosen arbitrarily.

5.4 Controller design for set stabilization of periodic
SBCNs

In this section, we study whether the SBCNs with periodic switching signal can be set
stabilized by switching-signal-dependent state feedback controller, and present the design
algorithm via antecedence solution technique.

It must be noted that if the set Γ is reachable from some initial state, then there exists
a control sequence such that it can be reachable within ω · (2n − r) steps, where r = |Γ|.

Similar to Algorithm 7, the switching-signal-dependent logical matrices Hσ(t) ∈ L2m×2n

which stabilize the system (5.5) to Γ can be constructed as follows.

Algorithm 8 Constructing switching-signal-dependent state feedback set stabilizers

Step 1: Let R0(Γ) = Γ, and construct the truth matrices T νR0(Γ) ∈ B2m×2n , ν ∈ [1 : ω] as:

[T νR0(Γ)]i,j =

1, if Lνδi2mδ
j
2n ∈ Γ,

0, otherwise.
(5.39)

Compute Rν1(Γ) = {δj2n | Colj(T νR0(Γ)) /= 02m}, ν ∈ [1 : ω] and check whether
Γ ⊆

⋂ω
ν=1 R

ν
1(Γ). If Γ /⊆

⋂ω
ν=1 R

ν
1(Γ), Γ is not a common control invariant set, and the
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construction problem of stabilizer is not solvable, stop the algorithm. If R1
1(Γ) = ∆2n , set

T ∗ = 1 and go to Step 5. Otherwise, go to Step 2.
Step 2: Construct the truth matrix T 1

R2
1(Γ) ∈ B2m×2n :

[T 1
R2

1(Γ)]i,j =

1, if L1δ
i
2mδ

j
2n ∈ R2

1(Γ),∀δj2n ∈ ∆2n\R1
1(Γ),

0, otherwise.
(5.40)

Compute R1
2(Γ) = {δj2n | Colj(T 1

R2
1(Γ)) /= 02m}. If R1

2(Γ) /= ∅ and R1
1(Γ)

⋃
R1

2(Γ) = ∆2n , set
T ∗ = 2 and go to Step 5. Otherwise, go to Step 3.
Step 3: For t ∈ [3 : ω], construct the truth matrix T t−1

Rt1(Γ) ∈ B2m×2n :

[T t−1
Rt1(Γ)]i,j =

1, if Lt−1δ
i
2mδ

j
2n ∈ Rt1(Γ),

0, otherwise.
(5.41)

Compute Rt−1
2 (Γ) = {δj2n | Colj(T t−1

Rt1(Γ)) /= 02m} and construct the truth matrix
T t−2
Rt−1

2 (Γ) ∈ B2m×2n :

[T t−2
Rt−1

2 (Γ)]i,j =

1, if Lt−2δ
i
2mδ

j
2n ∈ Rt−1

2 (Γ),

0, otherwise.
(5.42)

Compute Rt−2
3 (Γ) = {δj2n | Colj(T t−2

Rt−1
2 (Γ)) /= 02m}. Repeat this procedure, constructing

truth matrices T t−3
Rt−2

3 (Γ), T
t−4
Rt−3

4 (Γ),· · · , T
2
R3
t−2(Γ) respectively, and compute Rt−3

4 (Γ), Rt−4
5 (Γ),

· · · , R2
t−1(Γ).

Then, construct the truth matrix T 1
R2
t−1(Γ) ∈ B2m×2n :

[T 1
R2
t−1(Γ)]i,j =

1, if L1δ
i
2mδ

j
2n ∈ R2

t−1(Γ),∀δj2n ∈ ∆2n\(
⋃t−1
k=1 R

1
k(Γ)),

0, otherwise.
(5.43)

Compute R1
t (Γ) = {δj2n | Colj(T 1

R2
t−1(Γ)) /= 02m}. If R1

t (Γ) /= ∅ and

t⋃
k=1

R1
k(Γ) = ∆2n , (5.44)

the set stabilization problem is solvable and denote the minimum number such that
(5.44) holds as T ∗, go to Step 5. Otherwise, set t = t+ 1. If t > ω, go to Step 4.
Otherwise, go to Step 3.
Step 4: For t ≥ ω + 1, construct the truth matrix TωR1

t−ω(Γ) ∈ B2m×2n :

[TωR1
t−ω(Γ)]i,j =

1, if Lωδi2mδ
j
2n ∈ R1

t−ω(Γ),

0, otherwise.
(5.45)
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Compute Rωt−ω+1(Γ) = {δj2n | Colj(TωR1
t−ω(Γ)) /= 02m} and construct the truth matrix

Tω−1
Rωt−ω+1(Γ) ∈ B2m×2n :

[Tω−1
Rωt−ω+1(Γ)]i,j =

1, if Lω−1δ
i
2mδ

j
2n ∈ Rωt−ω+1(Γ),

0, otherwise.
(5.46)

Compute Rω−1
t−ω+2(Γ) = {δj2n | Colj(Tω−1

Rωt−ω+1(Γ)) /= 02m}. Repeat this procedure,
constructing truth matrices Tω−2

Rω−1
t−ω+2(Γ), T

ω−3
Rω−2
t−ω+3(Γ),· · · , T

2
R3
t−2(Γ) respectively, and compute

Rω−2
t−ω+3(Γ), Rω−3

t−ω+4(Γ), · · · , R2
t−1(Γ).

Then, construct the truth matrix T 1
R2
t−1(Γ) ∈ B2m×2n :

[T 1
R2
t−1(Γ)]i,j =

1, if L1δ
i
2mδ

j
2n ∈ R2

t−1(Γ),∀δj2n ∈ ∆2n\(
⋃t−1
k=1 R

1
k(Γ)),

0, otherwise.
(5.47)

Compute R1
t (Γ) = {δj2n | Colj(T 1

R2
t−1(Γ)) /= 02m}. If R1

t (Γ) /= ∅ and

t⋃
k=ω+1

R1
k(Γ)

⋃
Λ = ∆2n , (5.48)

where Λ =
⋃ω
k=1 R

1
k(Γ) /= ∆2n . In this case, the set stabilization problem is solvable,

denote the minimum number such that (5.48) holds as T ∗, and go to step 5. Otherwise,
set t = t+ 1. If t > ω · (2n − r), the construction problem of set stabilizer is not solvable,
stop the algorithm. Otherwise, go to Step 4.
Step 5:
Case 1: If T ∗ ≤ ω, construct the switching-signal-dependent logical matrices
Hσ(t) ∈ L2m×2n as follows:

Hl|
Rl1(Γ)

≤ T l
R0(Γ)|Rl1(Γ), l ∈ [1 : T ∗], (5.49)

where

Colj(T lR0(Γ)|Rl1(Γ)) =

Colj(T lR0(Γ)), if δj2n ∈ Rl1(Γ),

02m , otherwise,

and l ∈ [1 : T ∗]. Moreover,
Hϑ|

Rϑsϑ
(Γ)
≤ T ϑ

Rϑ+1
sϑ−1(Γ)|Rϑsϑ (Γ),

ϑ ∈ [1 : ω], sϑ ∈ [2 : T ∗ − (ϑ− 1)],
(5.50)
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where

Colj(T ϑRϑ+1
sϑ−1(Γ)|Rϑsϑ (Γ)) =


Colj(T ϑRϑ+1

sϑ−1(Γ)), if δj2n ∈ Rϑsϑ(Γ),

02m , otherwise,

and ϑ ∈ [1 : ω], sϑ ∈ [2 : T ∗ − (ϑ− 1)]. Besides,

Hs|R0(Γ) ≤ T sR0(Γ)|R0(Γ), s ∈ [T ∗ + 1 : ω], (5.51)

where T sR0(Γ)|R0(Γ) = T sR0(Γ), s ∈ [T ∗ + 1 : ω].
Case 2: If T ∗ ≥ ω + 1, construct the switching-signal-dependent logical matrices
Hσ(t) ∈ L2m×2n as follows:

Hl|
Rl1(Γ)

≤ T l
R0(Γ)|Rl1(Γ), l ∈ [1 : ω], (5.52)

where

Colj(T lR0(Γ)|Rl1(Γ)) =

Colj(T lR0(Γ)), if δj2n ∈ Rl1(Γ),

02m , otherwise,

and l ∈ [1 : ω]. In addition,
Hϑ|

Rϑsϑ
(Γ)
≤ T ϑ

Rϑ+1
sϑ−1(Γ)|Rϑsϑ (Γ),

ϑ ∈ [1 : ω], sϑ ∈ [2 : T ∗ − (ϑ− 1)],
(5.53)

where Rω+1
k (Γ) = R1

k(Γ), k ≥ 1. Moreover,

Colj(T ϑRϑ+1
sϑ−1(Γ)|Rϑsϑ (Γ)) =


Colj(T ϑRϑ+1

sϑ−1(Γ)), if δj2n ∈ Rϑsϑ(Γ),

02m , otherwise,

and ϑ ∈ [1 : ω], sϑ ∈ [2 : T ∗ − (ϑ− 1)].

Similarly, here T ∗ is the shortest time for all initial states to reach Γ.

Corollary 5.4.1. Consider SBCNs (5.5) with periodic switching signal. Then the system
is globally stabilizable to a set Γ if and only if the Algorithm 8 reaches Step 5.

Example 5.4.1. Consider system (5.10) in Example 5.3.1. Let U1(t) ≡ 0 and we obtain
system (5.11). Fix U2(t) ≡ 1 and let V1(t) = U1(t), V2(t) = U3(t), then system (5.10) can
be converted to 

X1(t+ 1) = ¬V1(t) ∧ (X2(t) ∨X3(t)),

X2(t+ 1) = ¬V1(t) ∧X1(t),

X3(t+ 1) = ¬V1(t).

(5.54)
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Assume that system (5.11) and (5.54) are sub-systems of a SBCN with periodic switch-
ing law (5.14) and the algebraic formulation of SBCN can be expressed as

x(t+ 1) = Lσ(t)v(t)x(t),

where L = [L1 L2], and

L1 = δ8[1 1 1 5 3 3 3 7 1 1 1 5 3 3 3 7 3 3 3 7 4 4 4 8 3 3 3 7 4 4 4 8],

L2 = δ8[8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 1 1 5 3 3 3 7 1 1 1 5 3 3 3 7].

It is obvious that x∗ = δ3
8 is not a common control fixed point. Then, we aim to design

switching-signal-dependent state feedback controllers to stabilize the new SBCN to a set
Γ which contains x∗ = δ3

8 . In the following, we consider Γ = {δ1
8 , δ

3
8 , δ

8
8}.

Based on the Algorithm 8, we have

R0(Γ) = Γ = {δ1
8 , δ

3
8 , δ

8
8}.

Then the matrix T 1
R0(Γ) can be constructed

T 1
R0(Γ) =


1 1 1 0 1 1 1 0
1 1 1 0 1 1 1 0
1 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1

 . (5.55)

From (5.55),
R1

1(Γ) = {δ1
8 , δ

2
8 , δ

3
8 , δ

5
8 , δ

6
8 , δ

7
8 , δ

8
8}.

Next, the matrix T 2
R0(Γ) can be constructed as

T 2
R0(Γ) =


1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0
1 1 1 0 1 1 1 0

 . (5.56)

From (5.56),
R2

1(Γ) = {δ1
8 , δ

2
8 , δ

3
8 , δ

4
8 , δ

5
8 , δ

6
8 , δ

7
8 , δ

8
8}.

It is clear that
Γ ⊆ R1

1(Γ)
⋂
R2

1(Γ).

Then, construct T 1
R2

1(Γ) as

T 1
R2

1(Γ) =


0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

 . (5.57)
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From (5.57),
R1

2(Γ) = {δ4
8}.

Since R1
1(Γ)

⋃
R1

2(Γ) = ∆8, then T ∗ = 2, and we can construct the switching-signal-
dependent state feedback gain matrices as

H1|
R1

1(Γ)
≤ T 1

R0(Γ)|R1
1(Γ),

H1|
R1

2(Γ)
≤ T 1

R2
1(Γ)|R1

2(Γ),
(5.58)

where T 1
R0(Γ)|R1

1(Γ) = T 1
R0(Γ) and T 1

R2
1(Γ)|R1

2(Γ) = T 1
R2

1(Γ). Moreover,

H2|
R2

1(Γ)
≤ T 2

R0(Γ)|R2
1(Γ), (5.59)

where T 2
R0(Γ)|R2

1(Γ) = T 2
R0(Γ).

From (5.58), it follows that all the possible choices of matrix H1 ∈ L22×23 as follows:

Colj(H1) ∈ {δ1
4 , δ

2
4 , δ

3
4 , δ

4
4}, j ∈ [1 : 4], (5.60)

Colj(H1) ∈ {δ1
4 , δ

2
4}, j ∈ [5 : 7],

Col8(H1) = δ4
4 ∈ {δ3

4 , δ
4
4}.

Similarly, from (5.59), we have all the possible choices of matrix H2 ∈ L22×23 as follows:

Colj(H2) = δ1
4 ∈ {δ1

4 , δ
2
4 , δ

3
4 , δ

4
4}, (5.61)

j = 1, 2, 3, 5, 6, 7,

Colj(H2) = δ3
4 ∈ {δ1

4 , δ
2
4}, j = 4, 8.

Putting (5.60) and (5.61) together, the switching-signal-dependent logical matrices Hσ(t)

are given by

Hσ(t) =

H1, t mod 2 = 0,

H2, t mod 2 = 1,
(5.62)

which can stabilize the SBCN to Γ = {δ1
8 , δ

3
8 , δ

8
8}.

5.5 Conclusions

In this chapter, we have investigated the stabilization and set stabilization problems of
SBCNs under periodic switching signal. Necessary and sufficient conditions to detect the
solvability of stabilization and set stabilization problems of SBCNs under periodic switch-
ing signal have been derived. Moreover, a constructive procedure has been presented to
design open loop controller. Using an antecedence solution technique, the design algorithms
have been established to construct switching-signal-dependent state feedback controllers.
Illustrative examples have been presented to show the effectiveness of the obtained results.
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Chapter 6

Event-triggered Control Design
for Networked Evolutionary
Games with Time-Invariant
Delay in Strategies

6.1 Introduction

It is well known that the dynamics of NEGs may converge to several different equilibria
[155], which may lead to undesired benefits for players. Thus, it is necessary to develop con-
trol means in the investigation of NEGs. In the early stage of the study for controlled NEGs,
pseudo-players were always regarded as control to influence the evolutionary dynamics of
the game, whose strategies can be assigned freely [18, 32, 140, 29, 139]. However, in these
literature, the control inputs need to be executed at each time instant. It is no doubt that
this control paradigm is a waste of resources. In reaction to this problem, event-triggered
controls have been considered for the study of NEGs in [34]. Differently from normal
controls, in [34], the control only works for some certain strategy profiles, which can be
regarded as event-triggered conditions. The main advantage of event-triggered control is
that the costs for control can be reduced and the evolutionary dynamics can be remain at
the same time. Up to now, this kind of control has been applied to the investigation of set
stabilization [81], disturbance decoupling problem of BNs and MVLNs [55, 120].

It must be noted that the NEGs mentioned in the above are considered without time
delays in strategies. However, the time delays phenomenon is very common in real world,
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and logical networks with time delays have been studied [85, 146]. It is recognized that
the interactions between players can not take place instantaneously and their reactions can
not be immediate, which will unavoidable cause time delays in strategies. Furthermore,
time delays may result in some undesired performance of the games and make the analysis
of evolutionary dynamics much more complicated. Thus, the investigation of DNEGs is a
very significant topic. Wang et al have investigated the modeling and stability of a class of
finite evolutionary games with time delays in strategies [121], and a sufficient condition to
assure the stability of the delayed evolutionary potential games at a pure Nash equilibrium
was derived. To the best of our knowledge, the DNEGs have not been fully investigated.

This chapter first studies the dynamics and control problems of DNEGs, and an event-
triggered state feedback controller is designed to guarantee the global convergence of the
desired strategy profile. Note that the DNEGs can be regarded as a delayed logical dynamic
system. By using the STP method, the delayed logical dynamic system can be converted
into a conventional delayed discrete time system with algebraic form, which makes possible
to use the classical control theory and method to analyse evolutionary dynamics and design
controller for DNEGs. The main contributions of this chapter are:

• The dynamics of DNEGs are converted into algebraic forms.

• An event-triggered state feedback controller is constructed, and necessary and suf-
ficient conditions for the global convergence of the desired strategy profile of the
DNEGs are derived.

6.2 Dynamics analysis of DNEGs

Assume that all strategies have a time-invariant delay τ + 1 in the NEGs, that is, the
strategy of player i at time t+ 1 depends on the behaviors of all players at time t− τ . This
can be described as

xi(t+ 1) = fi(x1(t− τ), x2(t− τ), · · · , xn(t− τ)), i ∈ N, (6.1)

where τ ∈ Z+ and fi is determined by the strategy adjustment rule.
When the topology structure of the network is considered, then, for any player i ∈ N, his

strategy updating rule based on local information can be expressed with a set of mappings:

xi(t+ 1) = fi
(
{xj(t− τ)|j ∈ U(i)}

)
, t ≥ 0, i ∈ N, (6.2)

where xj(t − τ) denotes the strategy of player j at time t − τ , and U(i) is the set of
neighborhood nodes of player i.
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The payoff of each player can be calculated as follows:

pi(t) =
∑
j∈U(i)

pij(xi(t), xj(t)), i ∈ N,

where pij(xi(t), xj(t)) : S0 × S0 −→ R is the payoff of player i playing with his neighbor j
at time t when i takes strategy xi(t) and j takes strategy xj(t), and S0 is the strategy set.

Note that when the network graph and FNG are selected, the strategy profile dynamics
are uniquely determined by the strategy updating rule. In this chapter we consider an
MBRAR with minimum priority [23], which is described as:

BRi := arg maxxi∈S0pi
(
xi, xj(t) | j ∈ U(i)

)
. (6.3)

Here, each player forecasts that his opponents will repeat their present strategies, and the
strategy choice at next time is the best response against his neighbors’ strategies of the
present step. Moreover, if xi(t) ∈ BRi, then xi(t + 1) = xi(t). If the strategies with best
payoff are not unique, that is, |BRi| > 1, then player i chooses one corresponding to the
minimum priority: xi(t+ 1) = min{x|x ∈ BRi}.

For DNEGs, we use a Parallel MBRAR as strategy updating rule, that is, all the players
update their strategies simultaneously. Based on Lemma 1.2.1, we can obtain the algebraic
form of the evolutionary dynamics of each player as follows

xi(t+ 1) = Mix(t− τ), i ∈ [1 : n], (6.4)

where Mi ∈ Lk×kn and x(t− τ) = nn
i=1xi(t− τ).

Based on (6.4), the algebraic formulation of dynamics for the DNEGs can be expressed
as

x(t+ 1) = Lx(t− τ), (6.5)

where L = M1 ∗M2 ∗ · · · ∗Mn ∈ Lkn×kn .
Note that there is a standard procedure [32] to convert the evolutionary dynamics of

each player into its algebraic form (6.4). In fact, (6.5) is exactly the algebraic form of
a DKVLN. In other words, the dynamics of the DNEGs are equivalently expressed into
a DKVLN. In the following, the results of stability analysis and control of DKVLNs in
Chapter 2 can be applied to study DNEGs easily.

Remark 6.2.1. The evolutionary dynamics of system (6.5) are affected by the τ+1 initial
strategy profiles x(−τ), x(−τ+1), · · · , x(0). That is the main difference with NEGs without
delay.
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6.3 Control design of DNEGs

In this section, we consider necessary and sufficient conditions for the evolutionary dynam-
ics to globally converge to the only desired strategy profile. Moreover, the strategies of the
control players are presented.

In order to reduce the control task execution times and costs, and obtain the desired
evolutionary performance of the game, an event-triggered control is considered for DNEGs.
This kind of control can be regarded as an intermittent control, which only works for some
specific strategy profiles.

Without loss of generality, we assume that U = {1, 2, · · · ,m} is the set of players who
are affected by external intermittent controls and Γ is the set of special events in which
the control can be triggered.

Based on the above analysis, if x(t − τ) ∈ Γ, that is, the event-triggered condition
occurs, then the algebraic form of DNEGs under control can be formulated as

x(t+ 1) = Lu(t− τ)x(t− τ), (6.6)

for some L ∈ Lkn×kn+m , u(t− τ) = nm
j=1uj(t− τ) and x(t− τ) = nn

i=1xi(t− τ).
If x(t− τ) /∈ Γ, there is no control action and the game dynamics will evolve naturally.

In this situation the corresponding algebraic form is (6.5).
To obtain the general algebraic form of DNEGs under event-triggered control, we can

regard the no control action as a special control strategy u0, and let u0 ∼ δk
m+1
km+1 , the

control strategy δikm ∼ δikm+1, i ∈ [1 : km]. Thus, the algebraic form of DNEGs under
event-triggered control can be formulated as

x(t+ 1) = [L L]ũ(t− τ)x(t− τ), (6.7)

where ũ(t− τ) = u0(t− τ), if x(t− τ) ∈ ∆kn \ Γ. Otherwise, ũ(t− τ) = u(t− τ).
Assume x∗ = δθkn be the desired only strategy profile of DNEGs, such that

Lx∗ = x∗. (6.8)

The objective is to design an event-triggered state feedback controller in the following
algebraic form

ũ(t) = Hx(t), (6.9)

where H ∈ L(km+1)×kn , such that under the controller (6.9), the dynamics of DNEGs (6.7)
are global convergent to x∗ = δθkn .
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It is obviously that the designing problem of state feedback event-triggered controller
becomes the construction of feedback control matrix H ∈ L(km+1)×kn . Plugging (6.9) into
(6.7), we can obtain that

x(t) = [L L]ũ(t− τ − 1)x(t− τ − 1)
= [L L]Hx(t− τ − 1)x(t− τ − 1)
= [L L]HΨknx(t− τ − 1),

(6.10)

where [L L] ∈ Lkn×(km+1)kn and x(t− τ − 1) = nn
i=1xi(t− τ − 1) ∈ ∆kn .

Let y(t) = nt
l=t+τx(l) ∈ ∆k(τ+1)n . Then (6.10) is transformed into

y(t+ 1) = x(t+ τ + 1)x(t+ τ) · · · x(t+ 1)
= [L L]HΨknx(t)x(t+ τ) · · ·x(t+ 1)
= [L L]HΨknW[kτn,kn]y(t)
:= Φy(t),

(6.11)

where Φ = [L L]HΨknW[kτn,kn] ∈ Lk(τ+1)n×k(τ+1)n . Thus, we have

y(t) = Φt+τy(−τ). (6.12)

The following theorem states necessary and sufficient conditions to determine whether
the evolutionary dynamics of (6.7) can globally converge to the desired only strategy profile
under the event-triggered control.

Theorem 6.3.1. Consider DNEGs (6.7) under the state feedback event-triggered controller
(6.9) with initial strategy profiles x(−τ), x(−τ + 1), · · · , x(0) ∈ ∆kn . The evolutionary
dynamics of (6.7) converge to the strategy profile x∗ = δθkn globally, if and only if there
exist a logical matrix H ∈ L(km+1)×kn and an integer T ∈ [τ + 1 : (τ + 1)(kn− 1)] such that

Col(ΦT ) = {(δθkn)τ+1}, (6.13)

where Φ = [L L]HM r
knW[kτn,kn] ∈ Lk(τ+1)n×k(τ+1)n and (δθkn)τ+1 = δθkn n δθkn n · · ·n δθkn︸ ︷︷ ︸

τ+1

.

Proof. (Necessity) Assume that the evolutionary dynamics of (6.7) globally converge to
the strategy profile x∗ = δθkn under the controller (6.9). Then there exists an integer M ∈
[0 : (τ + 1)(kn − 2) + 1] such that

x(t) = δθkn ,∀t ≥M.

Thus, we have

y(M) = x(M + τ)x(M + τ − 1) · · · x(M) = (δθkn)τ+1.
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Since y(M) = ΦM+τy(−τ) holds for any initial strategy profiles y(−τ) = n−τi=0x(i), we
have

Col(ΦM+τ ) = {(δθkn)τ+1}.

Choosing T = M + τ, (6.13) is satisfied.
(Sufficiency) Suppose that (6.13) is satisfied. We will prove that the evolutionary dynam-

ics of (6.7) globally converge to the strategy profile x∗ = δθkn under controller ũ(t) = Hx(t).
Since y(t) = nt

i=t+τx(i) ∈ ∆k(τ+1)n , then

y(T − τ) = ΦT y(−τ) = (δθkn)τ+1.

For any initial strategy profiles x(−τ), x(−τ +1), · · · , x(0) ∈ ∆kn , and ∀t ≥ T −τ, we have

x(t) = Dkτn,kn
r x(t+ τ)x(t+ τ − 1) · · · x(t)

= Dkτn,kn
r y(t)

= Dkτn,kn
r Φt+τy(−τ)

= Dkτn,kn
r ΦTΦt+τ−T y(−τ)

= Dkτn,kn
r ΦT [Φt+τ−T n−τi=0 x(i)]

= Dkτn,kn
r (δθkn)τ+1

= δθkn .

Thus, the evolutionary dynamics will converge to the strategy profile x∗ = δθkn globally
under controller ũ(t) = Hx(t).

Similarly, we have the following corollary.

Corollary 6.3.2. The evolutionary dynamics of (6.7) globally converge to the desired
only final strategy profile x∗ = δθkn under controller (6.9) for any initial strategy profiles
x(−τ), x(−τ+1), · · · , x(0) ∈ ∆kn , if and only if there exist a logical matrix H ∈ L(km+1)×kn

and an integer α ∈ [1 : kn − 1] such that

Col(([L L]HM r
kn)α) = {δθkn}. (6.14)

From Theorem 6.3.1 or Corollary 6.3.2, the controller design problem for event-triggered
state feedback controller is equivalent to solve (6.13) or (6.14). Since the solution H ∈
L(km+1)×kn is very difficult to calculate directly, we next try to design the state feedback
event-triggered controller by calculating the reachable sets.

First, from (6.6), we can split the matrix L̂ = LW[kn,km] into kn blocks

L̂ = [Blk1(L̂) Blk2(L̂) · · · Blkkn(L̂)],

where Blki(L̂) ∈ Lkn×km , i ∈ [1 : kn].
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Then, we introduce two kinds of reachable sets as follows:

Er(δi0kn) = {δjkn | ∃r ∈ [1 : kn], such that Colj(Lr) = δi0kn},

Ê(δi0kn) = {δjkn | δ
i0
kn ∈ Col(Blkj(L̂)), j ∈ [1 : kn]}.

It is easy to recognize that Er(δi0kn) is the set of all the strategy profiles which can evolve
to δi0kn naturally in r steps, while Ê(δi0kn) denotes the set of all the strategy profiles which
can be steered to δi0kn by control in one step.

In particular, if S = {δi1kn , δ
i2
kn , · · · , δ

il
kn}, then we define

Er(S) =
l⋃

µ=1
Er(δiµkn),

Ê(S) =
l⋃

µ=1
Ê(δiµkn).

Next, for the desired strategy profile x∗ = δθkn , a sequence of set of vectors is defined as
follows.

(i) S0 = Er(δθkn),

(ii) Si = Ŝi ∪ S̃i, i ≥ 1, (6.15)

where Ŝi = Ê(Si−1)
⋂

[∆kn \
⋃i−1
µ=0 Sµ], S̃i = Er(Ŝi) \ Ŝi.

We can easily see from (6.15), all the strategy profiles in S0 can naturally evolve to x∗ =
δθkn , in which the control scheme will not be triggered. When the given profile x(t−τ) /∈ S0,
it is complicated to detect whether the control scheme will be triggered or not. In fact, the
event-triggered scheme can be represented as Figure 6.1.

Figure 6.1: The illustration graph of event-triggered scheme

First, we can determine the profiles which will be steered to S0 by control in one step,
and denote the set of these profiles as Ŝ1, in which all the elements will trigger the control
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scheme. When x(t− τ) /∈ S0
⋃
Ŝ1, then we need to detect whether x(t− τ) can naturally

converge to Ŝ1 or not. If x(t−τ) can converge to Ŝ1 naturally, then x(t−τ) will not trigger
the control scheme to reach Ŝ1, and we denote the set of all these states as S̃1. After the
states in S̃1 evolving to Ŝ1, the states will be steered to S0 by control in one step. Moreover,
let S1 = Ŝ1

⋃
S̃1. If x(t − τ) can not converge to Ŝ1 naturally, then we need to find the

profiles which will be steered to S1 by control in one step, and denote the set of these
profiles as Ŝ2, in which all the elements will trigger the control scheme. Similarly, we can
continue the above procedure to obtain the triggered conditions.

From the above procedure we have that, ∀i, j ∈ {0, 1, 2, · · · }, i /= j, Si ∩ Sj = ∅. If
Sj0 = ∅, for some j0 ≥ 1, then Sj = ∅,∀j ≥ j0. Since there exist only finite strategy profiles,
then there exists a positive number T < kn, such that ST+1 = ∅ and

∑T
i=0 |Si| ≤ kn, the

constructing procedure for Si, i ≥ 0, will terminate in most kn steps.
Based on the above discussion, we have the following result.

Theorem 6.3.3. The evolutionary dynamics of (6.7) globally converge to the strategy
profile x∗ = δθkn under a state feedback event-triggered controller (6.9), if and only if there
exists an integer T ∈ [1 : kn − 1] such that

∑T
i=0 |Si| = kn.

Proof. (Necessity) Assume that the evolutionary dynamics of (6.7) globally converge to
the strategy profile x∗ = δθkn under a state feedback event-triggered controller (6.9). Then
all the strategy profiles converge to x∗ = δθkn , and there exists an integer T such that∑T
i=0 |Si| = kn. Let T be the smallest positive number such that

∑T
i=0 |Si| = kn, then we

will prove that T ≤ kn − 1.
It is enough to show that

∑α
i=0 |Si| ≥ α+1, for every α ∈ [1 : T ].We use induction on α.

If
∑1
i=0 |Si| < 2, then |S0|+|S1| = 1. Thus, Sj = ∅,∀j ≥ 1. That implies that

∑T
i=0 |Si| = 1,

which is a contradiction. Let now 1 < α ≤ T and assume by induction that
∑α−1
i=0 |Si| ≥ α.

Since
∑α−1
i=0 |Si| ≤

∑α
i=0 |Si|. Thus,

∑α
i=0 |Si| ≥

∑α−1
i=0 |Si| ≥ α. If

∑α
i=0 |Si| < α + 1,

then
∑α
i=0 |Si| =

∑α−1
i=0 |Si| = α. Hence, Sα = ∅, and

∑T
i=0 |Si| =

∑α−1
i=0 |Si| = kn. This

contradicts the minimality of T . Thus
∑α
i=0 |Si| ≥ α + 1.

From the above discussion, we have kn =
∑T
i=0 |Si| ≥ T + 1, and therefore, T ≤ kn− 1.

(Sufficiency) The proof of sufficiency is constructive. Assume that there exists an integer
T ∈ [1 : kn − 1] such that

∑T
i=0 |Si| = kn. Then

⋃T
i=0 Si = ∆kn . For an arbitrary given

initial strategy profile x(t0) = δjkn ∈ {x(−τ), x(−τ +1), · · · , x(0)} ⊆ ∆kn , either x(t0) ∈ S0

or x(t0) ∈
⋃T
i=1 Ŝi or x(t0) ∈

⋃T
i=1 S̃i.

Let the feedback control matrix be H = δkm+1[ν1 ν2 · · · νkn ], where each column of
matrix H can be designed as follows:

(i) If δjkn ∈ S0, j ∈ [1 : kn], then

νj = km + 1.
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(ii) If δjkn ∈
⋃T
i=1 Ŝi, j ∈ [1 : kn], then

νj ∈ P (νj),

where P (νj) = {νj |Colνj (Blkj(L̂)) ∈ Si−1}.
(iii) If δjkn ∈

⋃T
i=1 S̃i, j ∈ [1 : kn], then

νj = km + 1.

Case 1: x(t0) ∈ S0 = Er(δθkn). From the construction of H, there exists a positive integer
r0 ∈ [1 : kn], such that

x(t0 + r0(τ + 1)) = Lx(t0 + (r0 − 1)(τ + 1))
= Lr0δjkn

= δθkn .

Hence, from condition (6.8), we have x(t0 + k(τ + 1)) = δθkn ,∀k ≥ r0 and k ∈ N+.

Case 2: x(t0) ∈
⋃T
i=1 Ŝi. Without loss of generality, let x(t0) ∈ Ŝi0 , then

x(t0 + (τ + 1)) = Lu(t0)x(t0)
= LW[kn,km]x(t0)u(t0)
= Blkj(L̂)u(t0)
= Colνi(Blkj(L̂)) ∈ Si0−1.

If i0 = 1, then x(t0 + (τ + 1)) ∈ S0. From the construction of S0, there exists an integer
r1 ∈ [2 : kn], such that x(t0 + r1(τ + 1)) = δθkn . Hence, x(t0 + k(τ + 1)) = δθkn ,∀k ≥ r1 and
k ∈ Z+.

Otherwise, let i0 > 1. Since Si0−1 = Ŝi0−1
⋃
S̃i0−1, we get that if x(t0 + (τ + 1)) ∈ Ŝi0−1,

then x(t0 + 2(τ + 1)) ∈ Si0−2; otherwise, if x(t0 + (τ + 1)) ∈ S̃i0−1, then there exists a
positive integer r2, such that x(t0 + r2(τ + 1)) ∈ Ŝi0−1. Repeating this procedure, we can
find a time T̂ ≤ T, such that x(t0 + T̂ (τ + 1)) ∈ S0. Based on the analysis above, we know
that x(t0) will eventually converge to δθkn .

Case 3: x(t0) ∈
⋃T
i=1 S̃i. Without loss of generality, let x(t0) ∈ S̃i0 . Then x(t0) can

evolve to δθkn naturally in finite steps. Based on the above discussion, the dynamics will
converge to the strategy profile x∗ = δθkn and maintain the desired profile unchanged.

From the arbitrariness of initial strategy profiles x(t0) ∈ {x(−τ), x(−τ + 1), · · · , x(0)},
we obtain that x∗ = δθkn must be reachable from any initial strategy profiles x(−τ), x(−τ +
1), · · · , x(0) ∈ ∆kn . Moreover, x∗ = δθkn is the fixed point of (6.5). Therefore, the evolu-
tionary dynamics can converge to the desired only final strategy profile globally.

The following corollary immediately follows from Theorem 6.3.3.
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Corollary 6.3.4. If
⋃T
i=1 Ŝi = {δ̂i1kn , δ̂

i2
kn , · · · , δ̂

il
kn}, the total number of different state feed-

back event-triggered controller which can make the evolutionary dynamics converge to the
desired only final strategy profile globally is

∏l
j=1 |P (νj)|.

Remark 6.3.1. The proof of sufficiency in Theorem 6.3.3 provides a method for construct-
ing all the valid state feedback event-triggered controllers of the evolutionary dynamics of
DNEGs. The proposed algorithm is not sensitive to system parameters. Here, we concen-
trate our attention to the theory behind the method. In the future, we will apply these results
to the practical application of the method for given network.

Remark 6.3.2. In our model all players have the same time delay τ + 1. In this situation,
the time delay only affects the convergence time of the system. For the system with different
time delays, the time delays will affect both the stabilization and the convergence time. We
plan to investigate this kind of system in future works.

6.4 An illustrative example

In this section, we provide an illustrative example to show how to use the results proposed
in the previous sections to study the global convergence problem of DNEGs.

Example 6.4.1. Consider the following DNEG, which has the following items:

• N = {1, 2, 3, 4} is the player set; and each player has the same strategy set S = {1, 2}.
The network topological structure for the four players is shown in Figure 6.2.

Figure 6.2: The network graph of Example 6.4.1

• the payoff bi-matrix of the FNG is shown in Table 6.1.

• the strategy updating rule is the Parallel MBRAR.
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Table 6.1: Payoff bi-matrix of DNEG

P1 \ P2 1 2
1 (1, 2) (0, 0)
2 (0, 0) (2, 1)

Assume that the time-invariant delay is τ + 1 = 2. Then the algebraic form of the
evolutionary dynamics for each player can be obtained as follows.

x1(t+ 1) = f1(x4(t− 1), x1(t− 1), x2(t− 1)) = Mx4(t− 1)x1(t− 1)x2(t− 1),
x2(t+ 1) = f2(x1(t− 1), x2(t− 1), x3(t− 1)) = Mx1(t− 1)x2(t− 1)x3(t− 1),
x3(t+ 1) = f3(x2(t− 1), x3(t− 1), x4(t− 1)) = Mx2(t− 1)x3(t− 1)x4(t− 1),
x4(t+ 1) = f4(x3(t− 1), x4(t− 1), x1(t− 1)) = Mx3(t− 1)x4(t− 1)x1(t− 1),

where M = δ2[1 2 1 2 2 2 2 2].
Then, based on Lemma 1.1.2, the algebraic form above can be transformed into

xi(t+ 1) = Mix(t− 1), i ∈ [1 : 4],

where
M1 = MD23,2

f W[23,2],

M2 = MD23,2
f ,

M3 = MD2,23

r ,

M4 = MD23,2
f W[22,22].

Finally, the evolutionary dynamics of the whole network can be converted into the
following algebraic formulation:

x(t+ 1) = Lx(t− 1), (6.16)

where L = δ16[1 11 6 16 11 11 16 14 6 16 6 15 16 8 12 1].
It is obvious that there are a fixed point δ1

16 and two cycles {δ6
16, δ

11
16}, {δ12

16 , δ
15
16} with

length two. For more details about the fixed point and cycle of NEGs, please refer to [14].
Next, we study the evolutionary dynamics of the DNEGs that ensure globally conver-

gence to the desired only final strategy profile x∗ = δ1
16 under state feedback event-triggered

control. In the following, suppose that Player 1 is affected by an external player, and Player
1 imitates the strategy of controller unconditionally when the event is triggered, while the
other players will choose strategies based on the original updating rule.

Let the strategy of controller be 1 ∼ δ1
3 , 2 ∼ δ2

3 while the no control action is u0 ∼ δ3
3 .

The algebraic form of the game under event-triggered state feedback control is

x(t+ 1) = [L L]ũ(t− 1)x(t− 1), (6.17)
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where ũ(t− 1) ∈ ∆3, x(t− 1) = n4
i=1xi(t− 1) ∈ ∆24 , and

L = δ16[1 3 6 8 3 3 8 6 6 8 6 7 8 8 4 1

9 11 14 16 11 11 16 14 14 16 14 15 16 16 12 9].

Then, we aim to find out all the valid feedback control matrices.
First, we split the matrix L̂ = LW[24,2] into 24 blocks:

Blk1(L̂) = δ16[1 9], Blk2(L̂) = δ16[3 11], Blk3(L̂) = δ16[6 14], Blk4(L̂) = δ16[8 16],

Blk5(L̂) = δ16[3 11], Blk6(L̂) = δ16[3 11], Blk7(L̂) = δ16[8 16], Blk8(L̂) = δ16[6 14],

Blk9(L̂) = δ16[6 14], Blk10(L̂) = δ16[8 16], Blk11(L̂) = δ16[6 14], Blk12(L̂) = δ16[7 15],

Blk13(L̂) = δ16[8 16], Blk14(L̂) = δ16[8 16], Blk15(L̂) = δ16[4 12], Blk16(L̂) = δ16[1 9].

From the constructing procedure of Si, i ≥ 0, we have

S0 = Er(δ1
16) = {δ1

16, δ
4
16, δ

7
16, δ

10
16 , δ

13
16 , δ

16
16},

Ŝ1 = Ê(S0)
⋂

[∆24 \ S0] = {δ12
16 , δ

14
16 , δ

15
16}, S̃1 = Er(Ŝ1) \ Ŝ1 = {δ8

16},

Ŝ2 = Ê(S1)
⋂

[∆24 \ (S0 ∪ S1)] = {δ3
16, δ

9
16, δ

11
16}, S̃2 = Er(Ŝ2) \ Ŝ2 = {δ2

16, δ
5
16, δ

6
16}.

Thus, for T = 2,
∑2
i=0 |Si| = 24.

Based on the above analysis, we have Γ = Ŝ1 ∪ Ŝ2 = {δ3
16, δ

9
16, δ

11
16 , δ

12
16 , δ

14
16 , δ

15
16}, and

P (ν3) = {δ2
3}, P (ν9) = {δ2

3}, P (ν11) = {δ2
3}, P (ν12) = {δ1

3}, P (ν14) = {δ2
3}, P (ν15) = {δ1

3}.
Thus, the only feedback control matrix H ∈ L3×24 is given by

H = δ3[3 3 2 3 3 3 3 3 2 3 2 1 3 2 1 3].

We consider the algorithm proposed in [74] to design traditional state feedback con-
troller. Then, we can obtain a sequence of sets as follows

E
′

1(δ1
16) = {δ1

16, δ
16
16}, E

′

2(δ1
16) = {δ1

16, δ
4
16, δ

7
16, δ

10
16 , δ

13
16 , δ

14
16 , δ

16
16},

E
′

3(δ1
16) = {δ1

16, δ
3
16, δ

4
16, δ

7
16, δ

8
16, δ

9
16, δ

10
16 , δ

11
16 , δ

12
16 , δ

13
16 , δ

14
16 , δ

15
16 , δ

16
16}, E

′

4(δ1
16) = ∆16,

where E ′r(δ1
16), r ∈ [1 : 4] denotes the set consisting of all the initial strategy profiles which

can be steered to x∗ in r steps by a control sequence u(0), u(1), · · · , u(r − 1). Therefore,
the control need to be executed at least 4 times to achieve global convergence. Moreover,
after the system is stable, a constant control should be executed all the time to maintain
the stabilization of the system. In the method proposed here, the control only need to be
executed 2 times to achieve the same target, and a constant control is not necessary to
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maintain the performance of the system considering that x∗ is a fixed point and it will not
trigger the control any more. It is no doubt that the event-triggered state feedback control
can greatly save the control costs.

Finally, the matrix Φ is obtained as

Φ = δ256[1 161 209 241 · · · 256 256 64 16].

By calculation, there exists T = 8, such that

Col(Φ8) = {n2
i=1δ

1
24}.

Therefore, the evolutionary dynamics can converge to the desired strategy profile δ1
16 glob-

ally under state feedback event-triggered controller ũ(t) = Hx(t).

6.5 Conclusions

In this chapter, dynamics and control problems for a class of DNEGs have been investigated.
The dynamics of the DNEGs have been first converted into algebraic forms via the STP.
Using the algebraic forms, the dynamic behaviors of the DNEGs have been discussed.
Based on that, all valid state feedback event-triggered controllers are constructed to affect
the evolution of the game, and necessary and sufficient conditions are derived to assure the
global convergence of the desired only strategy profile of DNEGs. Moreover, the number
of all valid state feedback event-triggered controllers is obtained. An illustrative example
has been presented to show the effectiveness of the obtained results.
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Chapter 7

Algebraization and
Optimization of Networked
Evolutionary Boxed Pig Games
with Passive Reward and
Punishment

7.1 Introduction

The boxed pig game was firstly put forward by John Nash in [101]. As we all know, the free-
rider phenomenon of small pig is prevalent in the reality. For example, the retailers wait for
the bankers take the action called “the sedan chair” in stock market or the employees do not
create benefit but share the results in the enterprise. In reaction to this phenomenon, early
studies mainly focused on the areas such as economics and enterprise talent management,
etc, and scholars have analyzed the superiority of the mechanism of passive reward and
punishment in promoting the player’s cooperation behavior in theory [76, 96]. Due to the
lack of effective mathematical tools, it was hard to systematically analyze the influence of
passive reward and punishment on the final cooperation level of the whole network until
the emergence of STP.

Inspired by the successful applications of STP method in the analysis and control of
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logical dynamic systems [13, 14, 69, 65] and control and strategy optimization of evolu-
tionary games [32, 139, 29, 34], this chapter investigates the impact of the passive reward
and punishment on the evolutionary dynamics of networked evolutionary boxed pig games.
The main contributions of this chapter are:

• The model of the boxed pig game with the passive reward and punishment is inves-
tigated, and an algorithm to calculate the algebraic form of evolutionary dynamics is
constructed by using STP method.

• The impact of the reward and punishment parameters on the final cooperation level
of the boxed pig game is discussed.

7.2 Model description

In this section, the model of the boxed pig game with the mechanism of passive reward
and punishment is introduced.

First, the traditional boxed pig game [108] can be described as follows.
There are a small pig and a big pig in the pigsty. On one side of the pigsty there

is a food storage vessel, and on the other side there is a pedal to control the supply of
food. When the pedal is pressed, a certain amount of food will be turned into the vessel,
while a certain amount of food will be expended during the process of pressing the pedal.
Then the payoff bi-matrix for the traditional boxed pig game is shown in Table 7.1, where

Table 7.1: Payoff bi-matrix of traditional boxed pig game

P1 \ P2 C = 1 D = 2
C = 1 (a, b) (m, s)
D = 2 (e, f) (g, h)

e > a > m = s > b > 0 > f , and g = h = 0, P1 and P2 represent the big pig and the small
pig respectively, C means press the pedal and D means wait.

It is easy to know that the payoff matrices of big pig and small pig are:[
a m

e g

]
,

[
b s

f h

]
.

Through the payoff bi-matrix, it is enough to verify that (C,D) is a Nash equilibrium
of the game, i.e. big pig will press the pedal and small pig will wait. That is, small pig
will choose the strategy means “free-rider”, while big pig will travel between pedal and
vessel constantly. It is obvious that both small pig and big pig do not give full play to their
motivation during the gambling process, and it is contrary to the fairness of the game.
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Then, we consider optimizing the original model according to the following manner.
We assume that someone (such as feeder) who can be contacted by all players will apply

to cooperator and defector reward and punishment respectively: for a player taking part
in the game, if he chooses cooperation, the feeder will provide to him a certain amount
of food as a reward for his cooperative behavior; on the contrary, the feeder will decrease
the amount of food if the player chooses defection. Under the mechanism of reward and
punishment, the payoff bi-matrix is shown in Table 7.2, where α and β represent the amount

Table 7.2: Payoff bi-matrix under reward and punishment

P1 \ P2 C = 1 D = 2
C = 1 (a+ α, b+ α) (m+ α, s− β)
D = 2 (e− β, f + α) (g − β, h− β)

of reward and punishment applied by the feeder to cooperator and defector, respectively.
It is obvious that α ≥ 0, β ≥ 0. Thus, the payoff matrices of big pig and small pig can be
shown in the following form respectively:

A =
[
a+ α m+ α

e− β g − β

]
,

B =
[
b+ α s− β
f + α h− β

]
.

We know that if (i, j) ∈ E , then big pig and small pig play fundamental network game and
their payoffs can be calculated as follows, respectively:

ci(t) = V T
r (A)xi(t)xj(t), (7.1)

cj(t) = V T
r (B)xi(t)xj(t)

= V T
r (B)W[2]xj(t)xi(t), (7.2)

where ci(t) and cj(t) represent the payoffs of big pig and small pig at time t respectively;
xi(t) and xj(t) represent the strategies of big pig and small pig at time t respectively .

Remark 7.2.1. There must be some constraints on the reward α and punishment β, which
depends on particular models. In our model, after the reward, the quantity of total food
should be less than certain upper limitation, e.g., vessel capacity; and punish quantity should
be less than food available in the vessel.
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7.3 Algebraic formulation of evolutionary dynamic pro-
cess

In the following, we consider the algebraic formulation and optimization problem of net-
worked evolutionary boxed pig game with the mechanism of passive reward and punish-
ment.

A networked evolutionary boxed pig game with multi-players is denoted as ((N, E), G,Π),
where

• N = {1, 2, · · · , n} is the set of players, and each player may be small pig or big pig.
E is a directed cycle network graph with n nodes to depict the positional relationship
among players. For any (i, j) ∈ E , i represents the big pig and j represents the small
pig. Let its adjacency matrix be

E = (eij)n×n

=



0 e12 0 0 · · · 0 e1n

e21 0 e23 0 · · · 0 0
0 e32 0 e34 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 en−1,n

en1 0 0 0 · · · en,n−1 0


,

where eij ∈ {1, 0}, and eij = 1 if and only if (i, j) ∈ E . Obviously eij ∧ eji = 0.

• G is the fundamental network game, i.e., the boxed pig game with two players under
passive reward and punishment.

• Π is the local information based strategy updating rule.

First, the algebraic form of the evolutionary dynamics of the game is investigated.
Denoting the strategy of player i at time t by xi(t), his local information based strategy

updating rule can be expressed with a set of mappings as follows :

xi(t+ 1) = fi
(
{xj(t), cj(t)|j ∈ U(i)}

)
, t ≥ 0, i ∈ N, (7.3)

where U(i) represents the set of neighborhood players of i. Moreover, the average payoff
[18] of player i is

ci(t) = 1
|U(i)| − 1

∑
j∈U(i)\{i}

cij(t), i ∈ N,

where cij : S × S → R is the payoff of player i playing with his neighbor j, S = {1, 2} is
the set of strategies and 1, 2 represents cooperation and defection respectively.
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The strategy updating rule considered in this chapter is UISUR [18] with fixed priority:
the strategy of player i at time t+1, xi(t+1), is selected as the best strategy from strategies
of neighborhood players j ∈ U(i) at time t. Precisely, if

j? = arg maxj∈U(i)cj(x(t)), (7.4)

then

xi(t+ 1) = xj?(t). (7.5)

When the players with best payoff are not unique, i.e.,

arg maxj∈U(i)cj(x(t)) := {j?1 , j?2 , · · · , j?r}, (7.6)

then we may choose one corresponding to a priority as

j? = min
{
µ|µ ∈ arg maxj∈U(i)cj(x(t))

}
. (7.7)

To construct the algebraic form of the game, one can take the following two key steps:

(i) convert the average payoff function of each player i ∈ [1 : n] into an algebraic form;

(ii) construct the algebraic form for the evolutionary dynamic of each player i.

For step (i), since the network graph is a directed cycle with n nodes, we identify
x0 = xn, x−1 = xn−1. Using the vector form of logical variables, let 1 ∼ δ1

2 , 2 ∼ δ2
2 , then

S ∼ ∆
Thus, the algebraic form of average payoff for any player i ∈ [1 : n] is given below

ci(t) = ci(xi(t), xj(t) | j ∈ U(i))

= 1
|U(i)| − 1

∑
j∈U(i)\{i}

(
eijV

T
r (A)xi(t)xj(t) + ejiV

T
r (B)W[2]xi(t)xj(t)

)
= 1

2
[
(ei,i+1V

T
r (A)xi(t)xi+1(t) + ei+1,iV

T
r (B)W[2]xi(t)xi+1(t))

+(ei,i−1V
T
r (A)xi(t)xi−1(t) + ei−1,iV

T
r (B)W[2]xi(t)xi−1(t))

]
= 1

2
[
(ei,i+1V

T
r (A) + ei+1,iV

T
r (B)W[2])D22,2n−2

f W[2i−1,2n−i+1]

+(ei,i−1V
T
r (A) + ei−1,iV

T
r (B)W[2])W[2]D

2n−2,22

r W[2i,2n−i]

]
x(t)

:= Pix(t), (7.8)

where

Pi = 1
2
[
(ei,i+1V

T
r (A) + ei+1,iV

T
r (B)W[2])D22,2n−2

f W[2i−1,2n−i+1]
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+(ei,i−1V
T
r (A) + ei−1,iV

T
r (B)W[2])W[2]D

2n−2,22

r W[2i,2n−i]

]
∈ R1×2n

is the structural matrix of average payoff ci, Colk(Pi), k ∈ [1 : 2n] represents the benefit
of player i under the profile δk2n . xi(t) ∈ ∆ is the strategy of player i at time t, and
x(t) = nn

i=1xi(t) ∈ ∆2n .
Since the network graph is a cycle, then for player i ∈ [1 : n], according to the strategy

updating rule, to obtain the strategy of player i at time t, we need to compare average
payoffs of player i− 1, i+ 1, and i at time t.

First, if x(t) = δk2n , k ∈ [1 : 2n], then the strategy of the i−th player can be calculated
as follows:

xi(t) = D2,2n−1

f W[2i−1,2]x(t). (7.9)

Let now

Hk
i = [Pi−1δ

k
2n , Piδ

k
2n , Pi+1δ

k
2n ], (7.10)

F k
i = [D2,2n−1

f W[2i−2,2]δ
k
2n , D

2,2n−1

f W[2i−1,2]δ
k
2n , D

2,2n−1

f W[2i,2]δ
k
2n ]. (7.11)

Thus, the problem of identifying the one who has the maximal average payoff among players
i− 1, i+ 1 and i, can be converted into finding the column index lik, k ∈ [1 : 2n], such that

Colli
k
(Hk

i ) ≥ Colj(Hk
i ), j ∈ [1 : 3]. (7.12)

If lik is not unique, one can pick out the unique column index according to the priority:

εik = min
{
lik|Colli

k
(Hk

i ) ≥ Colj(Hk
i )
}
, (7.13)

where j = 1, 2, 3, then the strategy of player i at time t + 1, can be chosen as xi(t + 1) =
Colεi

k
(F k

i ).
Next, we identify Colk(Li) = Colεi

k
(F k

i ), k ∈ [1 : 2n], for each player i, and we can
obtain the evolutionary dynamic equation as the following algebraic form

xi(t+ 1) = Lix(t), (7.14)

where Li ∈ L2×2n and x(t) = nn
i=1xi(t) ∈ ∆2n .

Based on the above analysis, we have the following algorithm to construct the algebraic
form for the networked evolutionary boxed pig games with passive reward and punishment.

Algorithm 9 Constructing the algebraic formulation of the game:
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Step 1: Calculate the structural matrix, Pi, of the average payoff function for each
player i ∈ [1 : n],

Pi = 1
2
[
(ei,i+1V

T
r (A) + ei+1,iV

T
r (B)W[2])D22,2n−2

f W[2i−1,2n−i+1]

+(ei,i−1V
T
r (A) + ei−1,iV

T
r (B)W[2])W[2]D

2n−2,22

r W[2i,2n−i]

]
.

Step 2: Calculate matrices

Hk
i = [Pi−1δ

k
2n , Piδ

k
2n , Pi+1δ

k
2n ],

F k
i = [D2,2n−1

f W[2i−2,2]δ
k
2n , D

2,2n−1

f W[2i−1,2]δ
k
2n , D

2,2n−1

f W[2i,2]δ
k
2n ].

For all k ∈ [1 : 2n], find the column index εik, such that

εik = min
{
lik|Colli

k
(Hk

i ) ≥ Colj(Hk
i ), j ∈ [1 : 3]

}
,

and let Colk(Li) = Colεi
k
(F k

i ).
Step 3: Construct the algebraic form of the game under study as

x(t+ 1) = Lx(t), (7.15)

where Coli(L) = Coli(L1) n Coli(L2) n · · ·n Coli(Ln), i ∈ [1 : n], and L ∈ L2n×2n .

Based on Algorithm 9, the evolutionary dynamics of networked evolutionary boxed pig
game can be equivalently formulated as a BN. Thus, the discussion about dynamic analysis
and optimization of the game can be resorted to the results of analysis and control of BNs.
Then, according to the strategy updating rule, we have

Col1(L) = δ1
2n = δ1

2δ
1
2 · · · δ1

2 ,

Col2n(L) = δ2n
2n = δ2

2δ
2
2 · · · δ2

2 ,

i.e. δ1
2n and δ2n

2n are two fixed points of the system, which shows that full cooperation and
full defection are two stable profiles of the given networked evolutionary boxed pig game.

Remark 7.3.1. Among all players {1, 2, · · · , n}, if a player chooses cooperation as his
initial state, the full defection profile will not appear during the dynamic process.

Remark 7.3.2. It must be noted that we just considered a simple cycle network in this
chapter, and the construction of the algebraic form and the following main results can be
easily extended to other more general networks.
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7.4 Optimization of networked evolutionary boxed pig
games

In this section, we provide a necessary and sufficient condition to detect whether the final
dynamic behavior of boxed pig game with the mechanism of passive reward and punishment
can converge to full cooperation profile, and discuss how to adjust the values of reward and
punishment parameters α, β, such that all initial profiles except full defection can converge
to a full cooperation profile.

Theorem 7.4.1. Consider the passive reward and punishment networked evolutionary
boxed pig game with the algebraic form (7.15). The initial profile x(0) = δi2n converges
to full cooperation profile, if and only if there exists a time T ∈ [0 : 2n], such that

Coli(LT ) = δ1
2n , i ∈ [1 : 2n]. (7.16)

Proof. For any initial profile x(0) = δi2n , the dynamics of system (7.15) can be expressed
as

x(1) = Lx(0),

x(2) = Lx(1)

= L2x(0),

· · ·

x(t) = Lx(t− 1)

= · · ·

= Ltx(0)

= Ltδi2n

= Coli(Lt).

(Necessity) We prove it by contradiction. Assume for any time t, Coli(Lt) /= δ1
2n . Then

we have Coli(Lt) = Ltδi2n = Ltx(0) = x(t) /= δ1
2n . That contradicts the fact that x(0)

converges to full cooperation profile xe = δ1
2n . Hence (7.16) is satisfied.

(Sufficiency) If there exists a time T , such that Coli(LT ) = δ1
2n holds, then for any

∀t ≥ T , we have

x(t) = Ltx(0)

= Lt−TLTx(0)

= Lt−TColi(LT )

= Lt−T δ1
2n .
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Since δ1
2n is the fixed point of system (7.15), we know that δ1

2n = Lδ1
2n , and x(t) =

Lt−T δ1
2n = δ1

2n . Therefore, x(0) = δi2n converges to full cooperation profile.

Remark 7.4.1. Let

Γe =
{
δi2n |Coli(L2n) = δ1

2n
}
. (7.17)

Since there are 2n different profiles, for any initial profile x(0) = δi2n , i ∈ [1 : 2n], if the
initial profile x(0) = δi2n can not reach to xe = δ1

2n after time 2n, it will not reach to
full cooperation any more. Conversely, if it reaches to the profile xe = δ1

2n within time 2n,
it will maintain full cooperation xe = δ1

2n unchanged. Then, if Coli(L2n) = δ1
2n , we have

x(t) = Ltδi2n = Lt−2nL2nδi2n = Lt−2nδ1
2n = δ1

2n , for all t ≥ 2n, that is, the initial profile
x(0) = δi2n , i ∈ [1 : 2n], can converge to full cooperation. Then, x(0) converges to full
cooperation profile xe, if and only if x(0) ∈ Γe. We call Γe the convergence domain of the
game. If we denote the number of elements in convergence domain Γe as |Γe|, it is obvious
that |Γe| ≤ 2n − 1.

The optimization goal is to maximize the number of elements in Γe. In the following,
we discuss how to adjust the values of reward and punishment parameters α and β, such
that |Γe| = 2n − 1.

According to UISUR, to make |Γe| = 2n− 1, we just need to adjust the values of α and
β, such that the average payoff of defector is lower than the average payoff of cooperator.
Then it will follow that the defector will imitate the strategy of cooperator.

For any player i ∈ [1 : n], according to the strategy updating rule, first we need to
calculate the average payoff of player i and his neighbors i − 1 and i + 1. Those three
payoffs, are completely determined by U2(i). Thus, the average payoff of player i can be
calculated as follows :

ci(t) = 1
|U(i)| − 1

∑
j∈U(i)\{i}

(
eijV

T
r (A)xi(t)xj(t) + ejiV

T
r (B)W[2]xi(t)xj(t)

)
= 1

2
[
(ei,i+1V

T
r (A)xi(t)xi+1(t) + ei+1,iV

T
r (B)W[2]xi(t)xi+1(t))

+(ei,i−1V
T
r (A)xi(t)xi−1(t) + ei−1,iV

T
r (B)W[2]xi(t)xi−1(t))

]
= 1

2
[
(ei,i+1V

T
r (A) + ei+1,iV

T
r (B)W[2])D22,23

f W[22,22]

+(ei,i−1V
T
r (A) + ei−1,iV

T
r (B)W[2])W[2]D

22,23

f W[2,22]

]
ni+2
j=i−2 xj(t)

:= Mi ni+2
j=i−2 xj(t),

where

Mi = 1
2
[
(ei,i+1V

T
r (A) + ei+1,iV

T
r (B)W[2])D22,23

f W[22,22]
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+(ei,i−1V
T
r (A) + ei−1,iV

T
r (B)W[2])W[2]D

22,23

f W[2,22]

]
.

Similarly, we have

ci−1(t) := Mi−1 ni+2
j=i−2 xj(t),

ci+1(t) := Mi+1 ni+2
j=i−2 xj(t),

where

Mi−1 = 1
2
[
(ei−1,iV

T
r (A) + ei,i−1V

T
r (B)W[2])D22,23

f W[2,22]

+(ei−1,i−2V
T
r (A) + ei−2,i−1V

T
r (B)W[2])W[2]D

22,23

f

]
,

Mi+1 = 1
2
[
(ei+1,i+2V

T
r (A) + ei+2,i+1V

T
r (B)W[2])D23,22

r

+(ei+1,iV
T
r (A) + ei,i+1V

T
r (B)W[2])W[2]D

22,23

f W[22,22]

]
.

Obviously, Mj ∈ R1×25 , j = i − 1, i, i + 1 is the structural matrix of average payoff
cj , Colk(Mj), k ∈ [1 : 25] represents the benefit of player j under the profile δk25 . Thus,
comparing the average payoff of player i and his neighbors i− 1 and i+ 1 is converted into
comparing the corresponding columns of matrices Mi−1, Mi and Mi+1.

First, for sake of discussion, consider the profile (xi−2, xi−1, xi, xi+1, xi+2) = (1, 1, 1, 2, 1)
as an example.

Combined with the above analysis, we have

Col3(Mi−1) = 1
2[(ei−1,i−2 + ei−1,i)a+ (ei−2,i−1 + ei,i−1)b+ 2α],

Col3(Mi) = 1
2[ei,i+1m+ ei+1,if + ei,i−1a+ ei−1,ib+ 2α],

Col3(Mi+1) = 1
2[(ei+1,i+2 + ei+1,i)e+ (ei+2,i+1 + ei,i+1)s− 2β].

To make defector imitate the strategy of cooperator, we need that

min{Col3(Mi−1),Col3(Mi)} > max{Col3(Mi+1)},

i.e. min{1
2 [2b+ 2α], 1

2 [b+ f + 2α]} > 1
2 [2e− 2β]. Hence

α + β >
1
2[2e− b− f ]. (7.18)

Next, according to the strategy choices of players i−1, i and i+1, we divide the profiles
of players i− 2, i− 1, i, i+ 1, i+ 2 in vector form into 8 groups :

{δ1
25 , δ2

25 , δ17
25 , δ18

25}, {δ3
25 , δ4

25 , δ19
25 , δ20

25}, {δ5
25 , δ6

25 , δ21
25 , δ22

25}, {δ7
25 , δ8

25 , δ23
25 , δ24

25},
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{δ9
25 , δ10

25 , δ25
25 , δ26

25}, {δ11
25 , δ12

25 , δ27
25 , δ28

25}, {δ13
25 , δ14

25 , δ29
25 , δ30

25}, {δ15
25 , δ16

25 , δ31
25 , δ32

25},

and at the same time, the profiles of players i− 1, i and i+ 1 are respectively :

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2).

Similar to the above discussion, when xi−2xi−1xixi+1xi+2 = δj25 , j = 4, 19, 20, i.e. the
second group except the profile δ3

25 , we have the following inequalities:

α + β >
1
2[e− b− f ], (7.19)

α + β >
1
2[2e− b− f ], (7.20)

α + β >
1
2[e− b− f ]. (7.21)

In conclusion, when the strategy profile of players i− 1, i and i+ 1 is (1, 1, 2), to make
defector imitates the strategy of cooperator, according to inequalities (7.18)-(7.21), we have

α + β >
1
2[2e− b− f ]. (7.22)

Similar results can be obtained for the third to seventh group, and the following in-
equalities are obtained:

α + β > e− f, (7.23)

α + β >
1
2[e− 2f ], (7.24)

α + β >
1
2[2e− b− f ], (7.25)

α + β > e− f, (7.26)

α + β >
1
2[e− 2f ]. (7.27)

Particularly, when both players i−1, i and i+1 select full cooperation (or full defection),
i.e. for the first group (or the eighth group) strategy profiles, no matter what value of α
and β, we all have xi(t+ 1) = δ1

2 (or xi(t+ 1) = δ2
2).

Based on the above analysis, for all strategy profiles, to make defector imitate the
strategy of cooperator, according to inequalities (7.22)-(7.27), we need

α + β > e− f,

i.e. when α, β ∈ {α, β|α + β > e− f}, then we have |Γe| = 2n − 1.
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7.5 An illustrative example

In this section, we provide an illustrative example to show the impact of reward and
punishment parameters on the convergence domain of evolutionary boxed pig game with
the mechanism of passive reward and punishment.

Example 7.5.1. Consider a passive reward and punishment networked evolutionary boxed
pig game with the following items :

• denote by N = {1, 2, 3, 4, 5} the player set, and each player has the same strategy set
S = {1, 2}, where 1, 2 represent cooperation and defection respectively.

• the adjacency matrix is shown as follows :

E = (eij)5×5

=



0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0

 .

• the payoff bi-matrix is shown in Table 7.3, where e = 9, a = 5,m = s = 4, b = 1, f =
−1, g = h = 0, α and β represent the amount of reward and punishment applied by
the feeder to cooperator and defector, respectively, and α ≥ 0, β ≥ 0.

Table 7.3: Payoff bi-matrix of Example 7.5.1

P1 \ P2 C = 1 D = 2
C = 1 (a+ α, b+ α) (m+ α, s− β)
D = 2 (e− β, f + α) (g − β, h− β)

Combined with the above analysis, to achieve the optimization goal, the sum of resources
expended by reward and punishment should satisfy α+β > 10. For example we can choose
α = β = 6. Then, according to the payoff bi-matrix, we have

V T
r (A) = [11 10 3 − 6],

V T
r (B) = [7 − 2 5 − 6].

In the following, we convert the dynamics of the game into an algebraic form.
First, the algebraic forms of average payoffs for all players are given by:

c1(x(t)) = 1
2
[
V T
r (B)W[2]x1(t)x2(t) + V T

r (B)W[2]x1(t)x5(t)
]

= P1x(t),
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c2(x(t)) = 1
2
[
V T
r (B)W[2]x2(t)x3(t) + V T

r (A)x2(t)x1(t)
]

= P2x(t),

c3(x(t)) = 1
2
[
V T
r (B)W[2]x3(t)x4(t) + V T

r (A)x3(t)x2(t)
]

= P3x(t),

c4(x(t)) = 1
2
[
V T
r (B)W[2]x4(t)x5(t) + V T

r (A)x4(t)x3(t)
]

= P4x(t),

c5(x(t)) = 1
2
[
V T
r (A)x5(t)x1(t) + V T

r (A)x5(t)x4(t)
]

= P5x(t),

where Pi ∈ R1×25 is the structural matrix of ci(i ∈ [1 : 5]), according to Algorithm 9, the
structural matrix of average payoff for each player can be calculated as follows:

P1 = 1
2
[
V T
r (B)W[2]D

22,23

f + V T
r (B)W[2]W[2]D

23,22

r W[2,24]

]
= [7 6 7 6 7 6 7 6 6 5 6 5 6 5 6 5

−2 − 4 − 2 − 4 − 2 − 4 − 2 − 4 − 4 − 6 − 4 − 6 − 4 − 6 − 4 − 6],

P2 = 1
2
[
V T
r (B)W[2]D

22,23

f W[2,24] + V T
r (A)W[2]D

23,22

r W[22,23]

]
= [9 9 9 9 8 8 8 8 0.5 0.5 0.5 0.5 − 1.5 − 1.5 − 1.5 − 1.5

8.5 8.5 8.5 8.5 7.5 7.5 7.5 7.5 − 4 − 4 − 4 − 4 − 6 − 6 − 6 − 6],

P3 = 1
2
[
V T
r (B)W[2]D

22,23

f W[22,23] + V T
r (A)W[2]D

23,22

r W[23,22]

]
= [9 9 8 8 0.5 0.5 − 1.5 − 1.5 8.5 8.5 7.5 7.5 − 4 − 4 − 6 − 6

9 9 8 8 0.5 0.5 − 1.5 − 1.5 8.5 8.5 7.5 7.5 − 4 − 4 − 6 − 6],

P4 = 1
2
[
V T
r (B)W[2]D

22,23

f W[23,22] + V T
r (A)W[2]D

23,22

r W[24,2]

]
= [9 7 0.5 − 1.5 8.5 7.5 − 4 − 6 9 7 0.5 − 1.5 8.5 7.5 − 4 − 6

9 7 0.5 − 1.5 8.5 7.5 − 4 − 6 9 7 0.5 − 1.5 8.5 7.5 − 4 − 6],

P5 = 1
2
[
V T
r (A)D22,23

f W[24,2] + V T
r (A)W[2]D

23,22

r

]
= [11 3 10.5 − 1.5 11 3 10.5 − 1.5 11 3 10.5 − 1.5 11 3 10.5 − 1.5

10.5 − 1.5 10 − 6 10.5 − 1.5 10 − 6 10.5 − 1.5 10 − 6 10.5 − 1.5 10 − 6].

Calculate matrices Hk
i , F k

i , i ∈ [1 : 5], k ∈ [1 : 25], respectively. Identify the column
index εik. Then

L1 = δ2[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 2],

L2 = δ2[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2],

L3 = δ2[1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2],
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L4 = δ2[1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2],

L5 = δ2[1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2

1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2].

Therefore, the algebraic form of the game in this case is

x(t+ 1) = Lx(t), (7.28)

where

L = δ32[1 1 1 1 1 1 1 3 1 1 1 1 1 1 5 8

1 1 1 2 1 1 1 4 1 17 1 18 9 25 29 32]

A simple calculation shows that there exist time T = 3, such that

LT = δ32[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32],

and from Theorem 7.4.1, the convergence domain of the game is

Γe =
{
δi25 |Coli(L3) = δ1

25 , i ∈ [1 : 25]
}
.

Hence, the number of elements in Γe : |Γe| = 25 − 1, i.e. all initial profiles (except full
defection) are eventually stable to full cooperation profile.

7.6 Conclusions

In this chapter, we have investigated the model of networked evolutionary boxed pig game
based on the mechanism of passive reward and punishment. Using the matrix expression of
logic and STP, we have constructed the algebraic form of the evolutionary dynamics. Based
on the algebraic form, we have obtained necessary and sufficient conditions under which
the dynamic process of the game starting from any initial profile except full defection can
converge to full cooperation profile, and analyzed the impact of reward and punishment
parameters on the final cooperation level. The study of an illustrative example has shown
that our main results in this chapter are effective.
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Chapter 8

Conclusions and Future
Research

8.1 Conclusions

Using STP method, this thesis investigates the stability and control of several classes of log-
ical dynamic systems and the applications in game theory. Firstly, the stability of DKVLNs
has been analyzed and the event-triggered control has been designed such that all the initial
states can be globally stabilized to the target state. Secondly, the robust control invariance
and robust set stabilization of MVLCNs have been studied. Thirdly, the finite-time robust
set stability with probability 1 of PBNs and finite-time robust set stabilization with prob-
ability 1 of PBCNs have been investigated. Fourthly, the stabilization and set stabilization
of SBCNs with periodic switching signals have been addressed. Finally, the theoretical
results obtained were applied to investigate the optimization and global convergence of
NEGs, and a number of novel results have been obtained. The detailed research results can
be summarized as follows:

• The stability and event-triggered control of DKVLNs have been investigated. First,
the algebraic formulations for DKVLNs and DKVLCNs under event-triggered control
have been constructed respectively. Then, the criteria to detect the global stability
have been presented based on the iteration of the evolutionary process. Furthermore,
the antecedence solution technique has been introduced into the stability analysis and
the necessary and sufficient conditions have been presented for the global stability of
DKVLNs. Moreover, necessary and sufficient conditions for the global stabilization of
DKVLCNs have been given, and a constructive procedure has been proposed to design
the event-triggered state feedback control via the antecedence solution technique.
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• The robust control invariance and robust set stabilization of MVLCNs have been
studied. First, the dynamics of the disturbed MVLCNs have been converted into al-
gebraic expression. Then, an algorithm has been presented to compute the LRCIS
of any given set of MVLCNs, and all the possible state feedback controls have been
determined to keep the robust control invariance. Moreover, necessary and sufficient
conditions to detect the robust set stabilization of MVLCNs have been derived. Fur-
thermore, using the antecedence solution technique, a constructive procedure has been
provided to design all the time-optimal state feedback controls.

• The finite-time robust set stability with probability 1 of PBNs and finite-time ro-
bust set stabilization with probability 1 of PBCNs have been investigated. First, the
algebraic forms of PBNs and PBCNs with disturbances have been given. Then, algo-
rithms have been proposed to compute the LRIS with probability 1 and the LRCIS
with probability 1. Moreover, necessary and sufficient conditions have been derived
respectively to determine the finite-time robust set stability with probability 1 and
finite-time robust set stabilization with probability 1 of PBCNs. Furthermore, a con-
structive algorithm has been presented to design all the time-optimal controllers.

• The stabilization and set stabilization of SBCNs with periodic switching signal have
been studied. First, the algebraic formulation of periodic SBCNs has been constructed.
Then, necessary and sufficient conditions have been presented to determine the solv-
ability of the stabilization of periodic SBCNs, and the constructive procedures of
open loop controller as well as the design algorithms of switching-signal-dependent
state feedback controller via antecedence solution technique have been provided. Fur-
thermore, the criteria have been given to detect the solvability of set stabilization
of periodic SBCNs, and the design algorithm has been constructed to obtain the
switching-signal-dependent state feedback set stabilizers.

• The event-triggered control design of NEGs with time-invariant delay in strategies has
been investigated. First, using STP method, the evolutionary dynamics of NEGs with
time-invariant delay in strategies have been converted into a DKVLCN with algebraic
form. Then, necessary and sufficient conditions have been given to determine whether
the evolutionary dynamics can globally converge to the only desired strategy profile.
Moreover, all valid state feedback event-triggered controllers have been constructed
to assure the global convergence of the desired only strategy profile of DNEGs. Fur-
thermore, the number of all valid state feedback event-triggered controllers has been
obtained.

• The algebraization and optimization of networked evolutionary boxed pig games with
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passive reward and punishment have been studied. First, the evolutionary dynamic
process of this kind of games has been modeled as a BN, and an algorithm has been
presented to construct the algebraic formulation of the game. Then, necessary and
sufficient conditions have been presented to detect whether the final dynamic behavior
of boxed pig game with the mechanism of passive reward and punishment can converge
to full cooperation profile. Moreover, values of reward and punishment parameters
have been obtained assuring that all the initial profiles except full defection can
converge to full cooperation profile.

8.2 Future research

In this thesis, the stability analysis and control of several classes of logical dynamic systems
and the applications in game theory were systematically investigated, and some new re-
sults were obtained. However, many theoretical and practical problems need to be further
investigated in the future.

• The mathematical tool used in this thesis is STP. This method plays a very important
role in the analysis and control design of finite-valued systems, based on which, any
finite-valued system can be converted into the algebraic formulation. The dimension
of the state transition matrix of the system increases exponentially with the number
of network nodes, which is the greatest limitation of STP. Thus, how to effectively
reduce the computational complexity of STP will be a very meaningful research topic.

• The time-invariant delay is considered for KVLCNs and NEGs. This kind of time
delays may be too limited. In practice, the time-variant delays are more general. Thus,
the impact of time-variant delays on the evolutionary dynamics of KVLCNs and NEGs
is worthy of further study. Moreover, in order to reduce the control execution times,
the event-triggered control scheme is chosen for DKVLCNs and DNEGs, whether
there exists an adjustment method to further minimise the control times need to be
further discussed.

• The results obtained in logical dynamic system without disturbances have been suc-
cessfully applied to the analysis and control of NEGs. For the robust control theory
of logical dynamic system, there are few researches on its application to NEGs. The
investigation for NEGs with disturbances is meaningful. Some classical problems in
NEGs are worthy of further study, such as the robust optimization problem, the
robust stable degree analysis for profiles and the robust strategy consensus.
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An Appendix
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• Journal Papers

1. Jianjun Wang, Renato De Leone, Shihua Fu, Jianwei Xia. Input-output decoupling
for mix-valued logical control networks via the semi-tensor product method. Interna-
tional Journal of Control, 2021, 94(9), 2419-2427.

2. Jianjun Wang, Renato De Leone, Shihua Fu, Jianwei Xia, Lishan Qiao. Stabilisation
and set stabilisation of periodic switched Boolean control networks. International
Journal of Control, 2021, doi: 10.1080/00207179.2021.2009576.

3. Jianjun Wang, Renato De Leone, Shihua Fu, Jianwei Xia, Lishan Qiao. Event-
triggered control design for networked evolutionary games with time invariant delay
in strategies. International Journal of Systems Science, 2021, 52(3), 493-504.

4. Jianjun Wang, Wen Liu, Shihua Fu, Jianwei Xia. On robust set stability and set sta-
bilization of probabilistic Boolean control networks. Applied Mathematics and Com-
putation, 2022, 422, 126992.

5. Jianjun Wang, Jianli Zhao, Shihua Fu. Algebraization and optimization of net-
worked evolutionary boxed pig games with passive reward and punishment. Asian
Journal of Control, 2019, 21(5), 2415-2424.

6. Jianjun Wang, Shihua Fu, Renato De Leone, Jianwei Xia, Lishan Qiao. On robust
control invariance and robust set stabilization of mix-valued logical control networks.
International Journal of Robust and Nonlinear Control, minor revision.

• Conference Papers

7. JianjunWang, Renato De Leone, Shihua Fu, Jianwei Xia, Lishan Qiao. Input-output
decoupling of singular Boolean control networks. Proceedings of the 39th Chinese
Control Conference, Jul 27-29, 2020, Shengyang, China, 463-468.
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• National Natural Science Foundation of China, (Grant No.61976110), 2020.01.01-
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• Natural Science Foundation of Shandong Province, (Grant No.ZR2019BF023), 2019.07-
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