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Abstract
Predicting the output of quantum circuits is a hard computational task that plays a pivotal role in
the development of universal quantum computers. Here we investigate the supervised learning of
output expectation values of random quantum circuits. Deep convolutional neural networks
(CNNs) are trained to predict single-qubit and two-qubit expectation values using databases of
classically simulated circuits. These circuits are built using either a universal gate set or a
continuous set of rotations plus an entangling gate, and they are represented via properly designed
encodings of these gates. The prediction accuracy for previously unseen circuits is analyzed, also
making comparisons with small-scale quantum computers available from the free IBM Quantum
program. The CNNs often outperform these quantum devices, depending on the circuit depth, on
the network depth, and on the training set size. Notably, our CNNs are designed to be scalable.
This allows us exploiting transfer learning and performing extrapolations to circuits larger than
those included in the training set. These CNNs also demonstrate remarkable resilience against
noise, namely, they remain accurate even when trained on (simulated) expectation values averaged
over very few measurements.

1. Introduction

Universal quantum computers promise to solve some relevant computational problems which are intractable
for classical computers [1, 2]. In fact, the claim of quantum speed-up is justified only when the targeted
computational task cannot be completed by any classical algorithm in a comparable computation time [3].
On the other hand, precisely the lack of efficient classical simulation methods hinders the further
engineering of quantum devices with more and more qubits, as their development has to proceed without
benchmark data. In this context, machine-learning techniques represent an attractive alternative to direct
classical simulations, since they might feature a lower computational cost. In fact, supervised machine
learning from classically simulated datasets has already emerged as a promising and computationally feasible
strategy to predict the ground-state properties of complex quantum systems, including, e.g. small
molecules [4, 5], solid-state systems [6, 7], atomic gases [8, 9], and protein-ligand complexes [10, 11].
Moreover, it has recently been proven that data-based algorithms can solve otherwise classically intractable
computational tasks [12], including predicting ground-state properties of quantum systems, and rigorous
guarantees on the accuracy and on the scaling of the required training set size have been demonstrated [13].
Still, producing training sets for supervised learning via classical computers quickly becomes unfeasible as
the system size increases. In the context of ground-state simulations, this problem has been addressed via
scalable neural networks [14, 15]. These allow performing transfer learning from small to large systems
[9, 16], and even to extrapolate to sizes larger than those included in the training set. So, it is natural to
wonder whether neural networks might also be trained to emulate quantum circuits, and whether they might
extrapolate to large qubit numbers where exact simulation methods become problematic.
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The above considerations led us to investigate the supervised learning of gate-based quantum computers.
Our goal is to demonstrate that deep convolutional neural networks (CNNs) can be trained to predict
relevant output properties of quantum circuits, both from exact classical simulations of expectation values,
as well as from noisy (simulated) measurements. Remarkably, we show that the CNNs trained on random
circuits are able to emulate a broad category of quantum circuits, including, e.g. the Bernstein–Vazirani (BV)
algorithm. Furthermore, thanks to a properly designed scalable structure, they provide accurate
extrapolations for circuits larger than those included in the training set. Our findings also support the
long-term perspective of using quantum computers to produce training data for supervised learning, possibly
allowing them to emulate classically intractable algorithms. Clearly, if distributed to many users, such trained
networks would allow these users to benefit from the quantum device even without having direct access to it.

In detail, in this article we consider large ensembles on quantum circuits built with gates randomly
selected (mostly) from a discrete approximate universal set. It is worth mentioning that the sampling from
random circuits is the computational task considered in the recent demonstrations of quantum
supremacy [17, 18]. A second gate set, including continuous rotations plus an entangling layer, is addressed
in the appendix. The target of the supervised learning is a partial description of the circuit output, namely,
single-qubit and two-qubit expectation values. As we demonstrate, this limited information is still sufficient
to emulate the category of quantum circuits with only one or two possible output bit strings. Interestingly,
this category includes relevant circuits such as the BV algorithm [19]. An appropriate one-hot encoding of
the constituent gates is designed to unequivocally describe the discrete circuits (for the continuous set, see
the appendix). Their output is classically computed using the Qiskit library [20], considering, for the
training data, numbers of qubits up to N≃ 10 and circuit depths (number of gates per qubit) up to P≃ 10.
Significantly larger circuits are also considered in the testing processes performed via extrapolation
procedures. Deep CNNs are trained to map the circuit descriptors to the output expectation values. The
CNNs are tested on previously unseen circuits, and we analyze how the predictions accuracy varies as a
function of the circuit size, of the network depth, and of the training-set size. We also compare the accuracy
of the trained CNNs against the one of various small quantum computers available via IBM Quantum
Experience [21]. Generally, the CNNs outperform the freely available noisy intermediate-scale quantum
(NISQ) processors, unless the circuit’s depth is increased at fixed CNN parameters. Notably, our CNNs are
designed to be scalable. This allows us investigating transfer-learning and extrapolation protocols.
Specifically, we show that the learning of large circuits can be accelerated via a pretraining performed on
smaller circuits. Furthermore, we employ CNNs trained on small circuits to predict the output of circuits
with more qubits, up to twice as much (or even more for continuous circuits). Interestingly, CNNs also learn
(from random circuits) to emulate the BV algorithm, even when the number of qubits is increased by several
orders of magnitude. Finally, we consider the training on noisy expectation values, obtained as averages over
a variable number of (simulated) measurements. We find that the CNNs are able to filter this noise,
providing remarkably accurate estimates of the exact expectation values even when very few measurements
are considered in the training data. This validates the idea of using data produced by NISQ computers to
train deep neural networks.

The rest of the article is organized as follows: in section 2 we describe the random circuits built using the
discrete approximate universal sets, the appropriate one-hot encoding we design for supervised learning, the
CNNs we adopt, and the target expectation values. Furthermore, we discuss the class of random circuits that
can be emulated from the target values we address. The predictions of the trained CNNs are analyzed in
section 3. In the same section these predictions are also compared with those obtained with small quantum
computers available from IBM Quantum Experience. Then, transfer learning and extrapolation protocols are
analyzed; notably, in the same section we also discuss the training on noisy expectation values. Section 4
reports our conclusions and an outlook on future perspectives. In the appendix, the extrapolation technique
is tested on circuits with continuous outputs, built using single-qubit random rotations plus an entangling
gate.

2. Methods

2.1. Representation of random circuits
Our goal is to train deep CNNs to map univocal representations of random circuits to their output
expectation values. Specifically, we mostly consider circuits built with two single-qubit gates, namely, the
T-gate (T) and the Hadamard gate (H), together with one two-qubit gate, namely, the controlled-not gate
(CX). Notably, the set S = {T,H,CX} constitutes an approximately universal set [22, 23], meaning that any
unitary operator can be implemented using these three gates. It is worth noticing that the identity

I=

[
1 0
0 1

]
can be represented as I=H2. Below, an extended set explicitly including the gate I will be
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Figure 1. Visualization of the one-hot encoding that represents the quantum gates in the set S . The full circle and the empty
circle with plus sign represent the control and the target qubit of the CX gate, respectively.

discussed. We adopt the standard computational basis corresponding to the eigenstates of the Pauli matrix

Z=

[
1 0
0 −1

]
. In this basis, the three considered gates are represented by the following matrices:

T=

[
1 0
0 ei

π
4

]
H=

1√
2

[
1 1
1 −1

]
CX=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1)

In the following, we consider circuits with N qubits and P layers of gates. Therefore, the integer P
corresponds to the number of gates per qubit; this parameter will be referred to also as the circuit depth. In
every layer, each qubit is processed by a gate randomly selected from the set S . Notice that the two-qubit gate
CX acts on a control and on a target qubit. To simplify the circuit representation, we allow only one CX gate
at every layer. Circuits with more CX gates per layer can be emulated by deeper circuits satisfying the
constraint. This constraint allows us adopting a relatively simple univocal circuit representation. It is based
on the following one-hot encoding of the gate acting on each qubit: the T-gate corresponds to the vector
(1,0,0,0), the H-gate to (0,1,0,0), the control qubit of the CX-gate corresponds to (0,0,1,0), while the
target qubit corresponds to (0,0,0,1). This map is also represented in figure 1. Therefore, the feature vector
representing a random circuit is a four-channel two-dimensional binary matrix with dimensions N× P× 4.
Analogous gate-based descriptions of quantum circuits have been adopted in [24, 25]. Despite the constraint
on the number of CX gates per layer, the number Q of possible circuits rapidly grows with N and P. This
number can be computed as:

Q=
P∑

m=0

2N·P−2m

(
P

m

)
2m

(
N

2

)m

, (2)

wherem is the number of CX-gates in the circuit. The first term, namely, 2N·P−2m, represents the possible
combinations considering only the T-gates and the H-gates. The second term, namely,

(P
m

)
, corresponds to

the possible combinations of the CX-gates in P layers. The third term, namely, 2m, corresponds to the choice
of the control and of the target qubit for each CX gate. Finally, the term

(N
2

)m
corresponds to the available

pairs for each CX-gate. For example, for the smallest circuit size considered in this article, namely, N = 3 and
P= 5, one has Q= 3.2× 106 possible random circuits. For the largest size, namely, N = 20 and P= 6, one
has the astronomic number Q≃ 848. This means that it is virtually impossible to create a dataset exhausting
the whole ensemble of possible circuits. We instead resort to the generalization capability of deep CNNs.
These are expected to provide accurate predictions for previously unseen instances, even when trained on
(largely non-exhaustive) training sets including a number Ntrain≪ Q of training instances.

While the set S is, in principle, universal, the choice of operating on all qubits in every layer implies that
some unitary operators cannot be represented. Therefore, we also consider the extended set S∗ = S

∪
{I},

where the identity is explicitly included. For this set, a five channel one-hot encoding is needed. We use the
map represented in figure 2. Most of the results reported in this article are based on the set S , unless stated
otherwise. Notably, this set is flexible enough to represent the BV algorithm, which we use as a relevant test
bed. For a few representative test cases, we also consider the extended gate set S∗, finding very similar
performances. Furthermore, an additional gate set is addressed in the appendix, focusing on the
extrapolation technique. This set includes single-qubit rotations with continuous random angles, plus
CX-gates. It displays continuous outputs, as opposed to the approximate universal sets S and S∗, which lead
to discrete values of the outputs. Also, in this continuous set the number of entangling gates scales with N,
thus possibly representing a more stringent test for the extrapolation procedure.

3
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Figure 2. Visualization of the one-hot encoding that represents the quantum gates in the set S∗.

2.2. Target values
The output state of a quantum circuit can be written as

|ψ⟩= U|0⟩⊗N, (3)

where the tensor product |0⟩⊗N ≡ |0⟩1⊗ . . . |0⟩N is the input state and the unitary operator U represents the
sequence of quantum gates that constitute the circuit. Here and in the following, we indicate with |0⟩i and
|1⟩i the eigenvectors of the Pauli operator Zi acting on qubit i = 1, . . . ,N, such that Zi |0⟩i = |0⟩i and
Zi |1⟩i =−|1⟩i. With this notation, each state |x⟩ of the many-qubit computational basis corresponds to a bit
string x= x1 . . .xN, where xi = 0,1 for i = 1, . . . ,N. Our goal is to perform supervised learning of output
expectation values. First, we focus on the single-qubit expectation values

⟨Zi⟩ ≡ ⟨ψ|Zi|ψ⟩. (4)

These expectation values can be computed as

⟨Zi⟩= |⟨ψ|0⟩i |2− |⟨ψ|1⟩i |2 . (5)

It is convenient to perform the following rescaling:

zi = 1− ⟨Zi⟩+ 1

2
, (6)

so that zi ∈ [0,1], and zi = 0 corresponds to |0⟩i, while zi = 1 corresponds to |1⟩i. The rescaled variable zi is
the first target value we address for supervised learning. It is worth anticipating that we will consider both
CNNs designed to predict only one expectation value, say, z1, and CNNs that simultaneously predict all
single-qubit expectation values zi, for i = 1, . . . ,N. This is discussed with more details in section 2.4.

For illustrative purposes, we show in figure 3 the distribution of the target value z1 over an ensemble of
random circuits built with S . Four representative circuit sizes are considered. Clearly, here the possible
expectation values are discrete. In particular, one notices a relatively large probability of the output value
z1 = 1/2. Circuits with continuous outputs are considered in the appendix.

The second target values we consider are the two-qubit expectation values ⟨ZiZj⟩, where, in general,
i, j = 1,2, . . . ,N. Specifically, we focus on the case i= 1 and j= 2, and the target value is the rescaled variable:

z12 = 1− ⟨Z1Z2⟩+ 1

2
. (7)

Clearly, single-qubit and two-qubit Pauli-Z expectation values represent a limited description of the circuit
output. However, this information is sufficient to unambiguously identify the output of a significant category
of quantum circuits. This category is described in the following subsection, where we also discuss some
relevant examples belonging to the category.

2.3. Emulable quantum algorithms
For certain quantum algorithms, only a small subset of the 2N output bit strings have non-zero measurement
probability. In fact, some relevant circuits have only one possible outcome (in the absence of noise and
errors). These are discussed below. First, we consider the more generic category for which only two output
bit strings, which we indicate as a and b, have non-zero measurement probabilities p(a) = |⟨a|ψ ⟩|2 and

4
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Figure 3. Normalized histograms of the rescaled single-qubit expectation values z1 = 1− ⟨Z1⟩+1
2

over ensembles of random
circuits. Different number of qubits N and circuit depths P are considered in the four panels: N= 3 and P= 5 (a); N= 3 and
P= 20 (b); N= 5 and P= 10 (c); N= 20 and P= 6 (d). The ensembles in (a)–(c), and the one in (d) include 5000 and 2000
circuits, respectively.

p(b) = |⟨b|ψ ⟩|2. With this notation, one has p(a)+ p(b) = 1. For this category of circuits, the expectation
values ⟨Zi⟩ and ⟨ZiZj⟩ provide all the information required to unambiguously identify the bit strings a and b.
This statement is proven here by providing an explicit algorithm. It is assumed that p(x) = 0 for x ̸= a,b and
that the expectation values mentioned above are known. It is worth emphasizing that, in fact, if p(a) ̸= p(b),
knowledge of the single-qubit expectation values suffices. Indeed, the values ⟨ZiZj⟩ are only used when
p(a) = p(b)—see case iv) below—and such case is easily identified since one must have ⟨Zi⟩= 0 for at least
one qubit i.

Proof. The qubit are analyzed in the order i = 1, . . . ,N. Four possible cases have to be separately treated:

(i) If ⟨Zi⟩= 1, the corresponding bits are set to ai = bi = 0.
(ii) If ⟨Zi⟩=−1, one sets ai = bi = 1.
(iii) If ⟨Zi⟩ ∈ (−1,1) and either i= 1 or i> 1 with aj = bj for j = 1, . . . , i− 1 we arbitrarily set, without loss

of generality, ai = 1 and bi = 0. Notice that we can also infer the two probabilities: p(a) = 1−⟨Zi⟩
2 and

p(b) = 1+⟨Zi⟩
2 .

(iv) Otherwise, when p(a) ̸= p(b) (this is known from case iii)), two expectation values are possible. One is
⟨Zi⟩= ⟨Zj⟩, where the integer j ∈ [1, i− 1] is the first index such that ⟨Zi⟩ ∈ (−1,1) (at least one exists);
in this case one sets ai = aj and bi = bj. If, instead, ⟨Zi⟩ ̸= ⟨Zj⟩, one sets ai = 1− aj and bi = 1− bj. When
p(a) = p(b) = 1/2, onemust have ⟨Zi⟩= 0, andwe also know that an integer j ∈ [1, i− 1] such that ⟨Zj⟩=
0 exists. In this situation, ⟨ZiZj⟩=±1. If ⟨ZiZj⟩= 1, one sets ai = aj and bi = bj. If, instead, ⟨ZiZj⟩=−1,
one sets ai = 1− aj and bi = 1− bj.

As discussed in the previous paragraph, the single-qubit expectation values ⟨Zi⟩, eventually combined
with ⟨ZiZj⟩, are sufficient to identify the output bit strings when only two of them have non-zero probability.
Clearly, the values ⟨Zi⟩ are sufficient when only one bit string is possible. Interestingly, some paradigmatic
quantum algorithm belong to this group. A relevant example is the Deutsch–Jozsa algorithm [26]. This
allows assessing whether a Boolean function f : {0,1}(N−1)→{0,1} is either constant or balanced. The
algorithm involves measuring the first N − 1 qubits. If the outcome corresponds to the bit string 00 . . .0, the
function is constant, otherwise the function is balanced. Predicting N − 1 single-qubit expectation values
allows reaching the same result. Practically, if ⟨Zi⟩= 1 for i = 1,2, . . . ,N− 1, the only possible bit string is

5
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the bit string 00 . . .0, corresponding to a constant function. Otherwise, the function is balanced. Also in the
BV algorithm [19] there is only one possible outcome. This algorithm is designed to identify an unknown bit
string w ∈ {0,1}N−1, assuming we are given an oracle that implements the Boolean function
f : {0,1}N−1→{0,1} defined as f(x) = x⊚w, where the symbol⊚ represents the dot product modulo 2.
Notably, the BV algorithm provides the answer with one function query, outperforming classical computers
which require N − 1 queries. Single-qubit expectation values allow identifying w: ⟨Zi⟩= 1 corresponds to
wi = 0, while ⟨Zi⟩=−1 corresponds to wi = 1. The Grover algorithm with two searched items [27] and the
quantum counting algorithm [28] have two output bit strings with much higher probabilities than the other
strings. Therefore one could use the predictions for ⟨Zi⟩ and ⟨ZiZj⟩ to emulate also these latter algorithms.

2.4. CNNs and training protocol
The CNNs considered in this article have the overall architecture described in figure 4. Relevant variations
occur mostly in the last layer. Therein, the number of neurons corresponds to the desired number of outputs
No. Specifically, we consider CNNs designed to predict only one expectation value at a time (No = 1), as well
as N expectation values simultaneously (No = N). Clearly, in the first case, the last layer includes only one
neuron. In the second case, it includes N neurons. The overall network structure we adopt is standard in
fields such as, e.g. image classification or object detection. The first part includes Nc multi-channel
convolutional layers, which create filtered maps of their input. The maps are created by scanning the input
using (typically small) filters, featuring a fixed number of parameters. It is worth pointing out that the size of
a convolutional layer’s output scales with the corresponding input, even though the number of parameters in
the filter is fixed. In turn, this means that the same filters could be applied to different input sizes. As in
standard CNNs, the output of the convolutional part of the network is connected to a few dense layers (four
in our case) with all-to-all interlayer connectivity. These dense layers constitute the venue where high-level
operations on the effective features extracted by the convolutional layers occur. In standard CNNs, the
connection between the last convolutional layer and the first dense layer is commonly performed through
so-called flatten layers. This choice forces to scale the width (i.e. the number of neurons and of the
corresponding parameters) of the first dense layer with the size of the network’s input. Therefore, the whole
network would be applicable only to one circuit size. Instead, we perform the connection using a global
pooling layer. This extracts the maximum values of each (whole) map in the last convolutional layer. Thus,
the output size of the convolutional part gets fixed: it corresponds to the number of filters in the last
convolutional layer. This feature was adopted in [15] for the supervised learning of ground-state energies of
quantum systems. It allowed implementing scalable CNNs, i.e. networks that can be trained on
heterogeneous datasets including different system sizes and that can predict properties for sizes larger than
those included in the training set. Scalable networks for physical and chemical systems have been
implemented also in [9, 14, 16, 29, 30], using different strategies. Here, we exploit the global pooling layer to
allow a single CNN addressing different circuit sizes. Notice, however, that full scalability is obtained only
when the CNN predicts only one expectation value (with a single neuron in the output layer) at a time. More
expectation values corresponding to different qubits can, in fact, be predicted even by the single output
network. However, these predictions have to be performed in a sequential manner, by feeding the network
with an appropriate swapping of the features. Specifically, when the goal is to predict, say, zj, for any
j ∈ [2,N], one can employ a CNN trained to predict z1, swapping the rows 1 and j of the network’s input. If,
instead, the goal is to simultaneously predict the expectation values corresponding to all qubits, obviously
the number of neurons in the last layer has to be adapted to the targeted qubit number. In this case, full
scalability is lost, since more parameters have to be trained if the qubit number increases.

The training of the CNN is performed by minimizing the loss function. For the discrete circuits, we
adopt the binary cross-entropy:

L=− 1

Ntrain

Ntrain∑
k=1

No∑
i=1

[
y(k)i log(ŷ(k)i ) + (1− y(k)i ) log(1− ŷ(k)i )

]
, (8)

where Ntrain is the number of instances in the training set, No is the number of outputs (corresponding to the

number of nodes in the last dense layer), and ŷ(k)i is the network prediction corresponding to the

ground-truth target value y(k)i . As discussed above, we consider the cases No = N andNo = 1. In the first case,
the N target values correspond to all rescaled single-qubit expectation values: yi = zi, for i = 1, . . . ,N. In the
latter case, we consider only one (rescaled) single-qubit expectation value, namely, y1 = z1, or one (rescaled)
two-qubit expectation value, namely, y1 = z12. The optimization method we adopt is a successful variant of
the stochastic gradient-descent algorithm, named Adam [31]. No benefit is found by introducing a
regularization term in the loss function. Instead, batch normalization layers are included after every layer,
before the application of the activation function. The chosen mini-batch size is in the range Nb ∈ [128,512],
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Figure 4. Representation of the CNN for the illustrative case of N= 3 qubits and circuit depth P= 5. Boxes report the input and
the output shapes of each layer. This example includes Nc = 10 convolutional layers (Conv2D). Their input and output shapes
have dimensions: (B, L1, L2, F), where B= None is the mini-batch size (not specified), L1 = N and L2 = P denote the size of the
two-dimensional feature maps, while F is the number of filters. For the dense layers (Dense), we only have the mini-batch size and
the number of nodes. The figure omits the batch normalization layers, included in every layer before the application of the
activation function. The latter corresponds to theMish function [32], except for the last node where it corresponds to the sigmoid
function. It is worth highlighting the global maximum pooling layer (GlobalMaxPooling2D) connecting the last convolutional
layer to the first dense layer.

depending on the training set size. The CNNs are trained on large ensembles of random quantum circuits.
These are implemented and simulated using the Qiskit library. These simulations provide numerically exact
predictions for the considered expectation values. We also consider noisy estimates of the expectation values
obtained from finite samples of simulated measurements. These estimates are employed in section 3.3 to
inspect the impact of errors in the training set on the prediction accuracy. After training, the CNNs are tested
on previously unseen random circuits. It is also worth mentioning that we remove possible circuit replicas,
both in the training and in the test sets. In fact, only for the smallest circuits we consider, corresponding to
N = 3 and P= 5, one can find within Ntrain ≃ 106 training circuits a non-negligible number of identical
replicas.

3. Results

3.1. Single-qubit expectation values
The CNNs described in section 2.4 are trained to map the circuit descriptors (see section 2.1) to various
outputs. We first focus on a CNN designed to simultaneously predict the rescaled single-qubit expectation
values zi, with i = 1, . . . ,N. Here, the discrete gate sets are considered. Figure 5 displays the scatter plots of
predicted versus ground-truth expectation values, for four representative circuit sizes. The tests are
performed on random circuits distinct from those included in the training set. One notices a close
correspondence in all four examples. In figure 6, we analyze how the prediction accuracy varies with the
circuit depth P. Three datasets correspond to random circuits generated with the gates from the discrete set
S , but with different qubit numbers N. For the fourth dataset the gates are sampled from the extended set S∗
(see section 2.1). To quantify the accuracy, we consider the coefficient of determination:

R2 = 1−
∑Ntest

k=1

∑No

i=1 (y
(k)
i − ŷ(k)i )2∑Ntest

k=1

∑No

i=1 (y
(k)
i − ȳ)2

(9)
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Figure 5. Rescaled single-qubit expectation values ŷ predicted by the CNN versus the ground-truth results y≡ zi, with
i = 1, . . . ,N. The latter results are simulated via Qiskit. Different number of qubits N and circuit depths P are considered in the
four panels: N= 3 and P= 5 (a); N= 3 and P= 7 (b); N= 5 and P= 5 (c); N= 5 and P= 7 (d). These test sets include 100
random circuits. The color scale (blue to yellow) represents the absolute discrepancy |̂y− y|. The (red) line represents the bisector
ŷ= y.

Figure 6. Coefficient of determination R2 for rescaled single-qubit expectation values zi as a function of the circuits depth P.
Three datasets correspond to random circuits built with gates from the set S , but having different qubit numbers N (see legend).
For the fourth dataset, the extended gate set S∗ is used. For P= 5 the neural network is trained from scratch on Ntrain ≃ 106

instances, while for P> 5 the training starts with the optimized weights and biases for P− 1.

where ŷ(k)i is the prediction associated to the ground-truth target value y(k)i , ȳ is the average of the target
values, Ntest is the number of random circuits in the test set, and No is the number of outputs. In this case, we
have No = N outputs. It is worth stressing that R2 quantifies the accuracy in relation to the intrinsic variance
of the test data. Indeed, it accounts for the (mean squared) deviations from the ground-truth values,
compared to the typical fluctuations from the mean. This metric is therefore suitable for fair comparisons
among different circuits sizes, which might display a more or less pronounced tendency of the output values
to cluster at or close a mean value. For small P one observes remarkably high scores R2 ≃ 1, corresponding to
essentially exact predictions. However, the accuracy significantly decreases for deeper circuits. It is worth
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Figure 7. Normalized prediction error 1−R2 for (rescaled) single-qubit expectation values zi as a function of the training set size
Ntrain. Three datasets correspond to random circuits built with gates from the set S , but having different qubit numbers N and
circuit depths P (see legend). For the fourth dataset, the extended gate set S∗ is used. The adopted CNN is described in figure 4.

pointing out that, in this analysis, the depth of the CNN is not varied, and the training set size is also fixed at
Ntrain ≃ 106.

The prediction accuracy can be improved by enlarging the training set, or by increasing the depth of the
CNN. The first approach is analyzed in figure 7, for three representative circuit sizes. One notices the typical
power-law suppression (see, e.g. [4, 33]) of the prediction error 1−R2 ∝ N−α

train, where α> 0 is a
non-universal exponent. The second approach is analyzed in figure 8. We find that the R2 score systematically
increases with the number of convolutional layers Nc. It is worth pointing out that the deepest CNNs
adopted in this article include around 2× 106 parameters. This number does not represent a noteworthy
computational burden for modern high-performance computers, in particular if equipped with
state-of-the-art graphic processing units. In fact, significantly deeper neural networks are routinely trained in
the field of computer vision. Relevant examples are VGG-16, VGG-19 [34] and ConvNeXt [35]. Instead,
creating copious training sets for circuits with N > 10 qubits becomes computationally expensive. In fact,
simulating circuits with N≫ 10 qubits is virtually impossible, unless the analysis is restricted to specific
circuits types for which tailored algorithms exist. Relevant examples are slightly entangling circuits and those
dominated by Clifford gates; these two circuit types can be efficiently simulated via tensor-network methods
and near-Clifford algorithms [36], respectively. Two strategies to circumvent the computational-cost
problem are discussed in the section 3.2. With the second, predictions for large qubit numbers can be
provided, without additional computational burdens in the training process, even in the regime where exact
circuit simulations via general-purpose algorithms become impractical.

3.2. Transfer learning and extrapolation
We exploit the scalability of the CNNs featuring the global pooling layer to implement two strategies, namely,
transfer learning and extrapolation. The first strategy is rather common in fields such as, e.g. computer
vision [37]. It involves performing an extensive training of a deep CNN on a large generic database. Then,
the pre-trained network is used as starting point in a second training performed on a more specific, typically
smaller, database. At this stage the CNN learns to solve the targeted task. This approach has already been
adopted for the supervised learning of ground-state properties of quantum systems [9, 14–16, 38]. Here, we
use it to accelerate the learning of deep quantum circuits, exploiting a pre-training performed on
computationally cheaper circuits with fewer gates per qubit. Specifically, we compare the learning speed of a
CNN trained from scratch on circuits of depth P= 8, with the one of a CNN pre-trained on circuits of depth
P= 7. The results are analyzed in figure 9. We find that the pre-trained CNN needs a significantly smaller
training set to reach high R2 scores.

The extrapolation strategy aims at predicting properties of circuits including more qubits than those
included in the training set. As discussed in section 2.4, to allow flexibility in the number of qubits N, we
adopt the CNN with one output neuron. This, in combination with the global pooling layer, provides the
network full scalability, allowing the same network parameters to be applied to different circuit sizes. The
results are analyzed in figure 10. Remarkably, we find that a CNN trained on (computationally affordable)
circuits with Ñ= 10 qubits accurately predicts the (single qubit) expectation values of significantly larger
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Figure 8. Coefficient of determination R2 for rescaled single-qubit expectation values zi as a function of the number of
convolutional layers Nc . The qubit number is N= 3 and the circuit depth is P= 7. The training set includes Ntrain ≃ 106 random
circuits. The employed CNN is similar to the one depicted in figure 4, but with two fully-connected layers including 100 and 50
neurons. The Nc convolutional layers include F= 32 filters. The batch normalization layers and the output layer act as described
in figure 4.

Figure 9. Coefficient of determination R2 for the rescaled single-qubit expectation values z1 as a function of the training set size
Ntrain. The size of the test circuits is: N= 3 and P= 8. (Blue) squares correspond to training from scratch on the same circuit size.
The (violet) circles correspond to transfer learning from P= 7 to P= 8 (same qubit number). The pretraining on P= 7 is
performed with Ntrain ∼ 106 circuits. The CNN is as described in figure 4.

circuits, i.e. featuring N = 20 qubits. Instead, when the training is performed on smaller circuits (Ñ≃ 5), the
R2 score rapidly drops as the test-circuit size increases. This suggests that a minimum training circuit-size is
needed to allow the CNN learning how to perform accurate extrapolations. It is worth stressing that the
trained CNN can easily estimate the circuit output for qubit numbers larger than those considered here, but
we do not have any benchmark data to quantify the prediction accuracy. Still, the almost constant accuracy
shown in figure 10 suggests that such predictions would be reliable also for much larger qubit numbers. An
almost constant extrapolation accuracy (up to N = 24) is obtained also for circuits with continuous output;
see the appendix.

3.3. Real quantum computers and noisy simulators
Supervised learning with scalable CNNs is being discussed as a potentially useful benchmark for quantum
computers. Therefore, it is interesting to compare the predictions provided by trained CNNs with those of
actual physical devices. For this purpose, we execute random circuits on five devices freely available through
IBM Quantum Experience [21]. In figure 11, the prediction accuracy of a CNN trained on Ntrain ≃ 87
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Figure 10. Coefficient of determination R2 for rescaled single-qubit expectation values z1 as a function of the number of qubits N
in the test circuits. Both training and test circuits have depth P= 6. Different datasets correspond to different number of qubits Ñ
in the training circuits (see legend). The employed CNN is as shown in figure 4 except for the last layer, which has only one
neuron.

Figure 11. Coefficient of determination R2 for single-qubit expectation values measured on five IBM quantum computers and
predicted by a trained CNN. The circuit size is: N= 5 and P= 10. The five quantum computers, namely, QC-0≡ ibmq_lima,
QC-1≡ ibmq_bogota, QC-2≡ ibmq_belem, QC-3≡ ibmq_quito, and QC-4≡ ibmq_manila, are ordered for increasing R2

score. For each quantum circuit, the expectation values are estimated using Nmeasure = 2048 measurements. The training set size is
Ntrain ≃ 87. The CNN is as described in figure 4.

classically simulated circuits is compared with the corresponding scores reached by the IBM devices. The
quantum circuits include N = 5 qubits and P= 10 gates per qubit. In this case, the neural network
outperforms the chosen physical quantum devices. Another comparison between CNNs and quantum
computers is shown in figure 12. Here, only three IBM devices are considered, and the accuracy scores R2 are
plotted as a function of the circuit depth P, for a fixed number of qubits N = 3. Notably, for P> 9, two out of
the three quantum computers outperform the CNN. Notice that the latter is trained on a (fixed) training set
with Ntrain ≃ 106 instances. In fact, it is quite feasible to improve the CNN’s accuracy, even for larger qubit
numbers. As a term of comparison, we consider in figure 12 also a CNN trained on Ntrain ≃ 107 circuits with
N = 10 qubits, and used to extrapolate predictions for N = 11. One observes that this CNN outperforms all
of the considered physical devices. We recall that, in figure 10 (see also figure 18 below), accurate
extrapolations to even more challenging qubit numbers N = 20 are demonstrated. These findings indicate
that scalable CNNs trained via supervised learning on classically simulated quantum circuits represent a
potentially useful benchmark for the development of quantum devices.

One can envision the use of data produced by physical quantum devices to train CNNs. This could allow
them learning how to emulate classically intractable quantum circuits. However, physical devices only allow
estimating output expectation values via finite number of measurements. In the era of NISQ computers [39],
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Figure 12. Coefficient of determination R2 for (rescaled) single-qubit expectation values as a function of the circuit depth P. The
five datasets correspond to three IBM quantum computers with N= 3 qubits, and to two CNNs, with N= 3 and with N= 11
qubits, respectively. The quantum computers are tested on 100 test circuits, estimating the three expectation values via
Nmeasure = 2048 measurements. The CNN for N= 3 is trained on Ntrain ≃ 106 random circuits with the same number of qubits,
and it simultaneously predicts the three (rescaled) single-qubit expectation values z1, z2, and z3. For N= 11, the CNN has one
output neuron. It is trained on Ntrain ≃ 107 circuits with Ñ= 10 qubits, and it extrapolates to N= 11 performing a single
prediction for z1. The training of both CNNs starts with the optimized weights and biases for P− 1, except for the smallest P,
where the training starts from scratch.

one should expect this number to be quite limited, leading to noisy estimates affected by significant statistical
fluctuations. Therefore, it is important to analyze the impact of this noise on the supervised training of
CNNs. For this, we consider as training target values the noisy estimates obtained by simulating via Qiskit
finite numbers of measurements Nmeasure. In the testing phase, the CNN’s predictions are compared against
exact expectation values. This comparison is shown in the scatter plot of figure 13, for the case of
Nmeasure = 32. One notices that, while the noisy estimates display large random fluctuations, the CNN’s
predictions accurately approximate the exact expectation value. This effect is quantitatively analyzed via the
R2 score in figure 14. Notably, the CNN reaches remarkably accuracies R2 ≳ 0.99 for numbers of
measurements as small as Nmeasure ∼ 32, despite the fact that the estimated expectation values are instead
significantly inaccurate, corresponding to R2 ≃ 0.9. An analogous resilience to noise in training data was first
observed in applications of CNNs to image classification tasks [40]. It was also demonstrated in the
supervised learning of ground-state energies of disordered atomic quantum gases [8]. It is quite relevant to
recover this property in the case of quantum computing, where noise represents a major obstacle to be
overcome. Chiefly, this resilience paves the way to the use of physical quantum devices for the production of
training datasets. Deep CNNs could be trained to solve classically intractable circuits, and then distributed to
practitioners more easily than a physical device. This would allowing these practitioners to exploit the benefit
of the quantum device even without having direct access to it.

3.4. Emulation of the BV algorithm
As discussed in section 2.3, the BV algorithm can be emulated by predicting the single-qubit expectation
values ⟨Zi⟩, with i = 1, . . . ,N− 1. This means that these expectation values allow one unequivocally
identifying the sought-for bit string w ∈ {0,1}N−1. Here we analyze how accurately our scalable CNNs
emulate this algorithm. Notably, we challenge the CNN in the extrapolation task, i.e. we use it to emulate BV
circuits with (many) more qubits than those included in the training set. Conventionally, the BV algorithm is
implemented using the following gates: I, Z, H, and CX. However, it can also be realized using only gates
from the set S . An example of this alternative implementation is visualized in figure 15. Notice that a
dangling T gate, acting on the Nth qubit in the last layer, needs to be inserted. However, this does not affect
the relevant output expectation values. The tests we perform are limited to sought-for bit strings w where all
bits except one, two, or three, have zero value; that is, only one, two, or three indices iα ∈ [1,N− 1] exist such
that wiα = 1, where α ∈ {1,2,3} spans the group of (up to three) non-zero bits. These indices are randomly
selected. Specifically, a CNN is trained on circuits with Ñ= 10 qubits and depth P= 7, 8,or 9, for one, two,
or three non-zero bits, respectively. It is then invoked to predict the single qubit expectation values of BV
circuits with larger N. To visualize the prediction accuracy, we show in figure 16 the expectation values zi, for
i ∈ [1,N], for a BV circuit with as many as N= 5× 105 qubits. Notice that also the Nth expectation value,
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Figure 13. Predictions of (rescaled) single-qubit expectation values versus ground-truth results y≡ zi (see equation (6)). The
CNN predictions ŷ (red circles) are compared against the noisy estimates z̃i (black squares) obtained by averaging Nmeasure = 32
(simulated) measurements. The circuits size is N= 3 and P= 7. The CNN is trained on the noisy estimates corresponding to
Ntrain ≃ 106 random circuits.

Figure 14. Coefficient of determination R2 as a function of the number of simulated measurements Nmeasure. In the main panel,
the R2 score of the noisy estimates z̃i with respect to the ground-truth (rescaled) single-qubit expectation values zi (black squares)
is compared with the corresponding score of the CNN predictions (red circles). The circuits size is N= 3 and P= 7. The inset
displays the CNN data on a narrower scale.

corresponding to the ancilla qubit, is shown. One notices that, beyond the Nth qubit, all but one, two, or
three expectation values are small, meaning that the CNN is able to identify the sought-for indices iα
corresponding to wiα = 1. It is remarkable that a CNN trained on random circuits learns to emulate a rather
peculiar algorithm such as the BV circuit, even for larger qubit numbers.

3.5. Two-qubit expectation values
The scalable CNN can also be trained to predict two-qubit expectation values. We consider only the first two
qubits, i.e. the CNN predicts the rescaled expectation value z12 defined in equation (7). Henceforth, only one
neuron is included in the output layer (see discussion in section 2.4). Again, it is worth pointing out that the
same CNN could predict also other two-qubit expectation values, corresponding to any pair (i, j). These
predictions are obtained by performing the double exchange of row indices (1,2)←→ (i, j) in the circuit
descriptor matrix. In figure 17, the prediction accuracy is analyzed as a function of the circuit depth P. One

13



Quantum Sci. Technol. 8 (2023) 025022 S Cantori et al

Figure 15. Representation of the Bernstein–Vazirani (BV) algorithm for a sought-for string w ∈ {0,1}3, corresponding to a
circuit with N= 4 qubits. Panel (a) displays the conventional implementation using the gates I, Z, H, and CX, for the bit string
w= 010. Panel (b) displays an alternative implementation using only gates from the set S . The dangling T-gate on the last qubit
is required for shape consistency, and it does not affect the relevant output probabilities.

Figure 16. Rescaled output expectation values zi (see equation (6)) as a function of the qubit index i = 1, . . . ,N, for a BV
algorithm with N= 5× 105 qubits. The CNN predictions (blue circles) are compared to the expected values (red squares). The
three panels correspond to sought-for bit strings w with one non-zero bit i1 = 132121 (panel (a)), with two non-zero bits
(i1, i2) = (341924,141725) (panel (b)), and with three non-zero bits (i1, i2, i3) = (64793,212973,485883) (panel (c)). The
CNNs are trained on Ntrain ≃ 106 (panel (a)) and Ntrain ≃ 107 (panels (b) and (c)) random circuits with N= 10 qubits.
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Figure 17. Coefficient of determination R2 for the rescaled two-qubit expectation value z12 (see equation (7)) as a function of the
circuit depth P. The three datasets correspond to different qubit numbers N. The training set size is Ntrain ≃ 106. For P= 5 the
CNN is trained from scratch, while for P> 5 the weights and biases are initialized at the optimized values for P− 1. This allows a
significant reduction in computation time.

Figure 18. Coefficient of determination R2 for the rescaled two-qubit expectation value z12 as a function of the number of qubits
N of the test circuits. The three datasets correspond to different qubit numbers Ñ of the training circuits. The training set includes
Ntrain ≃ 106 random circuits. Both training and test circuits have depth P= 6.

observes remarkably high scores R2 ≃ 1 for small and intermediate circuits depths, and a moderate accuracy
degradation for deeper circuits. As already shown for single-qubit expectation values (see section 3.1), we
stress that also in this case the prediction accuracy can be further improved by increasing the training set size
or deepening the CNN (data not shown).

The scalable CNN is also tested in the extrapolation task, i.e. in predicting the two-qubit expectation
value for circuits larger than those included in the training set. The accuracy score R2 is plotted in figure 18.
The three datasets corresponds to different training qubit numbers Ñ= 5, 7, and 10, and the extrapolation is
extended up to N = 20. Notably, if the training qubit number is sufficiently large, the predictions remain
remarkably accurate for significantly larger circuits.

4. Conclusions

We explored the supervised learning of random quantum circuits. These were built using either discrete
universal sets of gates, or using continuous random rotations plus entangling gates (see the appendix). Deep
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CNNs have been trained to map properly designed encodings of the circuits’ quantum gates to the
corresponding single-qubit and two-qubit output expectation values. After training on sufficiently large
datasets of classically simulated circuits, the CNN provided remarkably accurate predictions, even superior
to those provided by small quantum computers available for free from the IBM quantum program. Notably,
we implemented scalable CNNs. This allowed them predicting the properties of circuit sizes larger than those
included in the training set, displaying consistent accuracy for all sizes for which we could produce testing
results. Notice that these CNNs can easily provide predictions for even larger circuits, but, with the
computational resources and algorithms currently available to us, it is not possible to obtain benchmark
values to test their accuracy. The considered expectation values represent an admittedly limited description
of the circuits’ output. However, we demonstrated that circuits with only one or two possible output bit
strings can be emulated using these targeted expectation values. Notably, the BV algorithm belongs to this
category, and we use it as a relevant benchmark for the CNN’s predictions. In fact, we verified that the
scalable CNN can emulate it even for qubit numbers much larger than those included in the training set. The
supervised learning turned out to be remarkably robust against random errors in the training set.
Specifically, the CNN provided accurate predictions for expectation values even when trained on noisy
averages performed over few simulated measurements. This finding supports the idea that CNNs could be
trained on data produced by NISQ computers [39]. This way, the CNN could be trained to replicate the
behavior of a quantum computer, perhaps tackling a classically intractable computational problem, and then
distributed to many users, allowing them to take advantage of the quantum device even without having
direct access to it. To produce the results reported in this article, several training and test datasets have been
produced, and various CNNs have been trained. To facilitate future comparative studies, but avoiding
cluttering the repository, we provide the datasets and the code used for one emblematic test, namely, the one
analyzed in figure 10, through [41].

Classical simulations of quantum algorithms play a pivotal role in the development of quantum
computing devices. On the one hand, they provide benchmark data for validation. On the other hand, they
represent an indispensable term of comparison to justify claims of quantum speed-up in the solution of
computational problems [3]. For adiabatic quantum computers, quantumMonte Carlo algorithms have
emerged as the standard benchmark [42–45]. This stems from their ability of simulating the tunneling
dynamics of quantum annealers based on sign-problem free Hamiltonians [46–50]. Simulating universal
gate-based quantum computers is more challenging. Direct simulation methods, such as those based on
tensor networks [51], are being continuously improved [52–56], but they anyway suffer from an
exponentially-scaling computational cost for strongly entangling circuits. Supervised machine-learning
algorithms were recently proven to be able of solving computational tasks that are intractable for algorithms
that did not learn from data [13]. In this article, we investigated their efficiency in simulating a limited
description of quantum circuits’ output. At the current stage, it is not clear whether scalable supervised
learning can emulate circuits that are otherwise absolutely intractable for any other classical algorithm. To
support such a strong statement, approximate and/or special purpose methods should be proven unfeasible
for the circuit types considered in this Article. Our findings raise various relevant questions related to the
computational complexity of supervised learning of quantum circuits. In particular, the required amount of
data, depending on the network structure, the training protocol, and the included gates, should be further
analyzed to disclose or rule out a possible exponential scaling of the computational cost. While some relevant
results have been reported here, an exhaustive analysis necessarily requires further investigations. Chiefly,
these investigation should address more complete descriptions of the circuit output, considering, e.g.
multi-qubit expectation values, and they should shed further light on what might make a quantum circuit
intractable for scalable supervised learning. It is worth mentioning that the combination of classical machine
learning and quantum computers has already been discussed in various contexts [25, 57–59]. For example, in
[60], generative neural networks trained via unsupervised learning were used to accelerate the convergence
of expectation-value estimation. One can envision the use of stochastic generative neural network to predict
a more complete description of the circuits’ outputs such as, e.g. the classical shadow [13, 61]. We leave this
endeavor to future investigations.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/simonecantori/Supervised-learning-of-quantum-circuits.git.
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Appendix. Circuits of random rotations plus two-qubit gates

The circuits described in section 2 are built using the universal sets S or S∗. Their single-qubit and two-qubit
output expectation values are discrete. Furthermore, the number of entangling (two-qubit) gates does not
scale with the qubit number N. To further support the results on prediction accuracy and on scalability
reported in section 3, it is worth considering also an alternative circuit design featuring complementary
properties. In this appendix, we consider circuits made of two layers including random rotations along the
y-axis of the Bloch sphere for each qubit, separated by one layer featuring CX gates, connecting every pair of
adjacent qubits. This circuit design is visualized in figure A1. The rotations are represented by the Ry gate,
defined by the matrix:

Ry(θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
. (A.1)

For each qubit i = 1, . . . ,N and rotation layer r= 1,2, a rotation angle θi,r ∈ [0,2π] is randomly sampled
from a continuous uniform distribution. With this design, the set of random angles θ1,1,θ2,1, . . . ,θN,1 plus
θ1,2,θ2,2, . . . ,θN,2 suffices to provide a univocal representation of each circuit. Henceforth, we use a two
channel encoding, whereby the corresponding values of sinθi,r and cosθi,r are stored in the first and in the
second channel, respectively. The resulting N× 2× 2 tensor constitutes the CNN input. The chosen target
value is y≡ ⟨Z1⟩. This can take continuous values in the range y ∈ [−1,1]. One might suspect that this
represents a more challenging target for supervised learning, as compared to the finite discrete values
mentioned above. It is also worth emphasizing that, with this design, the number of two-qubit gates scales
with N. In fact, this arrangement of CX gates, but combined with a H gate, is also used to create the
Greenberger–Horne–Zeilinger states [62], which feature maximal entanglement according to various
measures [63]. A similar design has also been adopted to tackle combinatorial optimization problems via the
variational quantum eigensolver [64]. The CNN we adopt here is similar to the one shown in figure 4, but
with the removal of one of the convolutional layers with F= 128 and one with F= 256, resulting in a total of
Nc = 8 convolutional layers. The four dense layers contain 512, 128, 64 and 1 neurons, respectively. The
activation function in the last layer is the identity function. The loss function optimized during training is
the mean squared error:

L=
1

Ntrain

Ntrain∑
k=1

(y(k)− ŷ(k))2. (A.2)

The prediction accuracy in the extrapolation task is analyzed in figure A2. We find that the CNN trained on
circuits including only Ñ= 10 qubits accurately extrapolates single-qubit expectation values of circuits with
up to N = 20 qubits. Figure A3 displays the scatter plots of predicted versus ground-truth expectation values
for even larger quantum circuits with N = 24 (beyond the N = 20 case), showing again remarkable accuracy.
Only 100 test circuits are considered for N = 24, since with the Qiskit library their simulations require in
total approximately 48 hours on a Intel(R) Xeon(R) Gold 6154 CPU. These findings corroborate the results
shown in figures 10 and 18. They indicate that scalable neural networks allow one to accurately predict
output expectation values of circuits significantly larger than those used for training.
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Figure A1. Representation of the continuous quantum circuits for the case N= 10. The rotation angles for the Ry gates are
sampled from a continuous uniform distribution.

Figure A2. Coefficient of determination R2 for the single-qubit expectation values ⟨Z1⟩ as a function of the number of qubits N in
the test circuits. Different datasets correspond to different number of qubits Ñ in the training circuits (see legend). Here, the
circuits are built with the continuous gate set.

Figure A3. Single-qubit expectation values ŷ predicted by the CNN versus the ground-truth results y≡ ⟨Z1⟩. The CNN is trained
on (continuous) quantum circuits with Ñ= 10 qubits and tested on circuits with different number of qubits N: N= 20 with 2000
samples (a); N= 24 with 100 samples (R2 ≃ 0.9997) (b). The color scale (blue to yellow) represents the absolute discrepancy
|̂y− y|. The (red) line represents the bisector ŷ= y.
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[42] Santoro G E, Martoňák R, Tosatti E and Car R 2002 Theory of quantum annealing of an Ising spin glass Science 295 2427–30
[43] Boixo S, Albash T, Spedalieri F M, Chancellor N and Lidar D A 2013 Experimental signature of programmable quantum annealing

Nat. Commun. 4 1–8
[44] Boixo S, Rønnow T F, Isakov S V, Wang Z, Wecker D, Lidar D A, Martinis J M and Troyer M 2014 Evidence for quantum annealing

with more than one hundred qubits Nat. Phys. 10 218–24
[45] Heim B, Rønnow T F, Isakov S V and Troyer M 2015 Quantum versus classical annealing of Ising spin glasses Science 348 215–7
[46] Isakov S V, Mazzola G, Smelyanskiy V N, Jiang Z, Boixo S, Neven H and Troyer M 2016 Understanding quantum tunneling

through quantumMonte Carlo simulations Phys. Rev. Lett. 117 180402
[47] Mazzola G, Smelyanskiy V N and Troyer M 2017 QuantumMonte Carlo tunneling from quantum chemistry to quantum

annealing Phys. Rev. B 96 134305
[48] Brady L T and van DamW 2016 QuantumMonte Carlo simulations of tunneling in quantum adiabatic optimization Phys. Rev. A

93 032304
[49] Inack E M, Giudici G, Parolini T, Santoro G and Pilati S 2018 Understanding quantum tunneling using diffusion Monte Carlo

simulations Phys. Rev. A 97 032307
[50] Parolini T, Inack E M, Giudici G and Pilati S 2019 Tunneling in projective quantumMonte Carlo simulations with guiding wave

functions Phys. Rev. B 100 214303
[51] Felser T, Notarnicola S and Montangero S 2021 Efficient tensor network ansatz for high-dimensional quantum many-body

problems Phys. Rev. Lett. 126 170603
[52] Jones T, Brown A, Bush I and Benjamin S C 2019 QuEST and high performance simulation of quantum computers Sci. Rep. 9 1–11
[53] Guerreschi G G, Hogaboam J, Baruffa F and Sawaya N P 2020 Intel quantum simulator: a cloud-ready high-performance simulator

of quantum circuits Quantum Sci. Technol. 5 034007
[54] Steiger D S, Häner T and Troyer M 2018 ProjectQ: an open source software framework for quantum computing Quantum 2 49
[55] Villalonga B, Lyakh D, Boixo S, Neven H, Humble T S, Biswas R, Rieffel E G, Ho A and Mandrà S 2020 Establishing the quantum
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[63] Enríquez M, Wintrowicz I and Życzkowski K 2016 Maximally entangled multipartite states: a brief survey J. Phys.: Conf. Ser.

698 012003
[64] Barkoutsos P K, Nannicini G, Robert A, Tavernelli I and Woerner S 2020 Improving variational quantum optimization using CVaR

Quantum 4 256

20

https://github.com/simonecantori/Supervised-learning-of-quantum-circuits
https://github.com/simonecantori/Supervised-learning-of-quantum-circuits
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/ncomms3067
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1103/PhysRevB.96.134305
https://doi.org/10.1103/PhysRevB.96.134305
https://doi.org/10.1103/PhysRevA.93.032304
https://doi.org/10.1103/PhysRevA.93.032304
https://doi.org/10.1103/PhysRevA.97.032307
https://doi.org/10.1103/PhysRevA.97.032307
https://doi.org/10.1103/PhysRevB.100.214303
https://doi.org/10.1103/PhysRevB.100.214303
https://doi.org/10.1103/PhysRevLett.126.170603
https://doi.org/10.1103/PhysRevLett.126.170603
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1103/PhysRevLett.128.030501
https://doi.org/10.1103/PhysRevLett.128.030501
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1088/1361-6455/aad62b
https://doi.org/10.1088/1361-6455/aad62b
https://doi.org/10.1103/PhysRevLett.123.230504
https://doi.org/10.1103/PhysRevLett.123.230504
https://doi.org/10.1103/PhysRevResearch.2.022060
https://doi.org/10.1103/PhysRevResearch.2.022060
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1038/s41567-020-0932-7
https://arxiv.org/abs/0712.0921
https://doi.org/10.1088/1742-6596/698/1/012003
https://doi.org/10.1088/1742-6596/698/1/012003
https://doi.org/10.22331/q-2020-04-20-256
https://doi.org/10.22331/q-2020-04-20-256

	Supervised learning of random quantum circuits via scalable neural networks
	1. Introduction
	2. Methods
	2.1. Representation of random circuits
	2.2. Target values
	2.3. Emulable quantum algorithms
	2.4. CNNs and training protocol

	3. Results
	3.1. Single-qubit expectation values
	3.2. Transfer learning and extrapolation
	3.3. Real quantum computers and noisy simulators
	3.4. Emulation of the BV algorithm
	3.5. Two-qubit expectation values

	4. Conclusions
	Appendix. Circuits of random rotations plus two-qubit gates
	References


