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Abstract
Advanced age is the largest risk factor for late- onset Alzheimer's disease (LOAD), a 
disease in which susceptibility correlates to almost all hallmarks of aging. Shared ge-
netic signatures between LOAD and longevity were frequently hypothesized, likely 
characterized by distinctive epistatic and pleiotropic interactions. Here, we applied 
a multidimensional reduction approach to detect gene– gene interactions affecting 
LOAD in a large dataset of genomic variants harbored by genes in the insulin/IGF1 
signaling, DNA repair, and oxidative stress pathways, previously investigated in human 
longevity. The dataset was generated from a collection of publicly available Genome 
Wide	Association	 Studies,	 comprising	 a	 total	 of	 2,469	 gene	 variants	 genotyped	 in	
20,766 subjects of Northwestern European ancestry (11,038 LOAD cases and 9,728 
controls). The stratified analysis according to APOE*4 status and sex corroborated 
evidence that pathways leading to longevity also contribute to LOAD. Among the sig-
nificantly interacting genes, PTPN1, TXNRD1, and IGF1R were already found enriched 
in gene– gene interactions affecting survival to old age. Furthermore, interacting vari-
ants associated with LOAD in a sex-  and APOE- specific way. Indeed, while in APOE*4 
female carriers we found several inter- pathway interactions, no significant epistasis 
was found in APOE*4 negative females; conversely, in males, significant intra-  and 
inter- pathways epistasis emerged according to APOE*4 status. These findings suggest 
that interactions of risk factors may drive different trajectories of cognitive aging. 
Beyond	 helping	 to	 disentangle	 the	 genetic	 architecture	 of	 LOAD,	 such	 knowledge	
may improve precision in predicting the risk of dementia and enable effective sex-  and 
APOE- stratified preventive and therapeutic interventions for LOAD.
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1  |  INTRODUC TION

Alzheimer's disease (AD) is the most prevalent disease among peo-
ple	over	85 years	of	 age	 in	western	 countries,	 posing	 a	 significant	
challenge to public health systems around the world. Most AD cases 
are sporadic or late onset (LOAD; >65 years	of	age),	with	biological	
measures	of	disease	being	detectable	as	early	as	20 years	before	the	
first	cognitive	symptoms	are	observed	(Jagust,	2018). Decades of re-
search have shed light on the neuropathological changes happening 
in	the	AD	brain,	and	its	complex	etiology	(Long	&	Holtzman,	2019), 
characterized by sex differences in several aspects of the disease, 
including its onset and progression, and the effects of APOE*4 gen-
otype, the strongest common genetic risk factor for LOAD (Nebel 
et al., 2018). A current challenge is to clarify the contribution of ge-
netic, epigenetic, and environmental factors in the multifactorial na-
ture of LOAD, which shows a heritability of 58%– 79%, with a large 
fraction attributable to the APOE locus. Genetic studies over the 
last few years, particularly coming from genome- wide association 
studies	 (GWAS)	 and	 large	 sequencing	 projects,	 have	 changed	 the	
perception of LOAD, highlighting its polygenic nature with multiple 
susceptibility genetic loci (Andrews et al., 2023). Also, functional 
genomic analyses pointed out that common LOAD risk variants op-
erate in complex networks of genetic and metabolic interactions, 
regulated by “hub” genes and “peripheral master regulators” (Gui 
et al., 2021). In the interactome network of the cell, each variant 
may show different effects (either in magnitude or in direction) on 
disease onset, in relation to alleles at other loci (Ridge et al., 2016). 
These epistatic effects may contribute substantially to the varia-
tion in disease susceptibility; that is, people carrying risk factors for 
LOAD but resilient to the disease, as well as people carrying the risk 
allele APOE*4 who live into their 90s without developing dementia.

While	 advances	 in	 technologies	 and	 increased	 availability	 of	
multi- omics data have expanded our knowledge about LOAD genetic 
architecture, many risk variants remain to be identified (Andrews 
et al., 2023). Such variants may be found in the underlying processes 
leading to LOAD, such as inflammation (Akiyama et al., 2000), apop-
tosis	 (Behl,	2000), stress response (Iatrou et al., 2021), and mito-
chondrial decay (Kwong et al., 2006). Interestingly, many of these 
mechanisms are common to human longevity, suggesting that the 
search of susceptibility factors could be enhanced by testing genes 
belonging to pathways influencing longevity and survival. As a 
proof- of- concept alongside APOE, which is the locus consistently 
associated with longevity across different populations (Abondio 
et al., 2019), several other LOAD- associated loci were found to af-
fect the human lifespan (Tesi et al., 2021). Moreover, several studies 
reported LOAD risk variants that are associated with both AD and 
longevity	(Bacalini	et	al.,	2022; Dato et al., 2021; Tesi et al., 2021), 

emphasizing the importance of studying the pleiotropic effects and 
epistatic interactions of genetic variants.

Thus, searching for epistatic interactions between variants in ge-
nomic regions selected for their association with longevity may help 
to unravel some of the missing genetic variance of LOAD. To test 
this hypothesis, we leveraged a large collection of publicly available 
LOAD	GWAS	 data	 and	 conducted	 gene–	gene	 interaction	 analysis	
to find meaningful associations. Genomic regions were prioritized 
based on previous work by Dato and coworkers (Dato et al., 2018), 
who analyzed the joint effect on longevity of SNPs belonging to 
three candidate pathways, the insulin/insulin- like growth factor 
signaling (IIS), DNA repair, and stress response, respectively. These 
pathways were chosen as they regulate fundamental biological pro-
cesses consistently recognized among the most relevant hallmarks 
of aging from model organisms to humans (Kuningas et al., 2008) and 
confirmed to have an important role in human longevity in large co-
hort studies (Deelen et al., 2019).

The analyzed dataset comprised genotypes for a total of 2469 
gene variants from 20,766 subjects (11,038 LOAD cases and 9728 
controls), belonging to several LOAD cohorts of Northwestern 
European ancestry. As we stated above growing evidence indicates 
sex- specific patterns of disease manifestation and sex- dependent 
effects of APOE on LOAD risk. Yet, beyond APOE*4, other genetic 
risk factors have been found that display sex- specific effects on 
LOAD, and the interplay between sex and the APOE allele has been 
also explored (Fan et al., 2020). In addition, sex- specific DNA meth-
ylation changes in LOAD pathology have been observed (Zhang 
et al., 2021). On the other hand, also the sex differences in genetic 
associations with longevity are remarkable (Zeng et al., 2018).	Based	
on this evidence, we reasoned that stratifying genetic association 
analysis by sex and APOE status may facilitate the identification of 
sex- specific genetic risk loci and ultimately contribute to the under-
standing of disease heterogeneity between men and women.

2  |  MATERIAL S AND METHODS

2.1  |  Demographics & study datasets

Fifteen	 late-	Onset	 Alzheimer's	 Disease	 (LOAD)	 GWAS	 datasets	
were obtained from publicly available data repositories (Table 1). 
Genotyping was performed using various high- density single- 
nucleotide variant microarrays across cohorts. Participants or their 
caregivers provided written informed consent in the original stud-
ies. The current study protocol was granted an exemption by the 
Stanford University institutional review board because the analyses 
were carried out on deidentified, off- the- shelf data.

K E Y W O R D S
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2.2  |  Genotyping data: Harmonization 
& imputation

The entire dataset includes 35,110 participants. Adopted SNP- array 
Quality Control (QC) procedures were like the ones previously re-
ported (Napolioni et al., 2021). Subjects with autosomal missingness 
>5% and/or X- chromosome missingness >5% (compared to other 
subjects	 in	the	same	dataset),	age	below	60 years,	age	information	
missing, or phenotype inconsistency [missing phenotype, diagnosis 
of mild cognitive impairment, or a neurodegenerative phenotype 
other than LOAD] were excluded from the analysis.

Individual ancestry was determined using SNPweights v.2.1 
(Chen et al., 2013) by using reference populations from the 1000 
Genomes Consortium (1000 Genomes Project Consortium, 2015). 
By	 applying	 an	 ancestry	 percentage	 cut-	off	> = 80%,	 the	 samples	
were stratified into five super populations, South- Asians (SAS), East- 
Asians (EAS), Americans (AMR), Africans (AFR), and Europeans (EUR). 
Since most of the samples belonged to the European population, we 
also determined their ancestry percentage in the discovery sample 
according to three genetically distinct European sub- ancestries, 
Northwestern,	Southeastern,	and	Ashkenazi	Jewish,	using	reference	
populations available from SNPweights v.2.1. European subjects 
were stratified into the above- mentioned ancestries when their an-
cestry percentage was > = 50%	for	any	of	the	three	sub-	ancestries.	
Subjects with genetic ancestry estimates discordant from self- 
reported ancestry, as well as for subjects showing sex- inconsistency, 
were excluded from the analyses.

After	keeping	only	 the	EUR	subjects,	each	GWAS	dataset	was	
QCed	 to	 remove	 the	 SNPs	 with	 a	 call	 rate	 ≤95%;	 Minor	 Allele	
Frequency	 (MAF)	 ≤1%;	 SNPs	with	MAF	deviating	more	 than	 10%	
from the MAF reported in 1000 Genomes for the EUR population; 
SNPs with differential missingness between cases and controls 
(p < 0.05);	SNPs	deviating	from	Hardy–	Weinberg	Equilibrium	(HWE)	
in controls (p < 5 × 10−5); tri- allelic SNPs; and SNPs where the alleles 
are mismatched compared to the 1000 Genomes reference se-
quence. A/T and C/G SNPs were removed prior to imputation.

All the datasets were phased and imputed using the TopMed 
Imputation Server (Das et al., 2016). After imputation, variants with 
a r2	 info	 score	 ≤0.75	 were	 excluded.	 For	 the	 statistical	 analyses,	
inter-	dataset	duplicates	(IBD	>0.95) were removed from the dataset 
having	the	lowest	SNP	coverage,	while,	in	case	of	relatedness	(IBD	
>0.0625) the affected or older subjects were kept, independently of 
SNP coverage.

For association testing analyses, we selected only the 
Northwestern European subjects since they represented most of the 
EUR	population	(approx.	80%)	available	across	the	collected	GWAS.	
Analyses were performed using PLINK 2.0 (Chang et al., 2015).

2.3  |  Selection of candidate genomic regions

Genomic regions harboring the genes selected for longevity in pre-
vious work (Dato et al., 2018) were queried. Genetic variants from 

the candidate regions were extracted from the full dataset (approx. 
12 million	 variants),	 considering	 their	 hg19	 genomic	 coordinates	
(+/−	 10	 kilobases	 from	 the	 gene	 boundaries),	 and	 further	 filtered	
by applying a MAF cut- off of 0.05 and genotyping rate of 0.95. The 
final list of variants was generated by Linkage disequilibrium prun-
ing (r2 > 0.75)	 to	 reduce	 the	 computational	 burden	 of	 the	 analysis	
through the removal of highly correlated variants. Finally, the final 
dataset comprised a total of 2,469 variants (2,360 SNPs and 109 Ins/
dels), as reported in Table S1.

2.4  |  Statistical analyses

For all the analyses, the whole sample was split based on sex and the 
presence/absence of APOE*4, defining four groups: female APOE*4 
carriers, male APOE*4 carriers, female APOE*4 non- carriers, and 
male APOE*4 non- carriers.

After the QC phase, a logistic regression analysis, with an additive 
model of association, was performed using PLINK 2.0 on the filtered 
dataset composed of 20,766 subjects (11,038 LOAD cases and 9,728 
controls) and 2,469 variants, to estimate single- marker effects on 
the predisposition to LOAD. Age, three principal components from 
the ancestry analysis, APOE*2 dosage, and study site were used as 
covariates in the regression models. Results from the univariate anal-
ysis	 of	 the	 four	 study	 groups	were	meta-	analyzed	 using	GWAMA	
(Mägi	&	Morris,	2010). To determine the statistical significance of 
all	the	univariate	analysis	results,	a	Bonferroni's	multiple	testing	cor-
rection was applied [(0.05/2469 variants*4 study groups)], yielding a 
p-	value	threshold	of	5 × 10−6. A nominal p-	value < 0.05	was	used	as	
a filter for the main effect estimation and for selecting the variants 
to include in the gene– gene interaction analysis carried out using 
Multifactor dimensionality reduction (MDR) (Ritchie et al., 2001).

p- value distribution enrichment analysis was performed using 
Pearson's chi- square on two- way contingency tables testing the ob-
served number of variants passing the nominal level of statistical sig-
nificance (p < 0.05)	versus	the	expected	one,	deeming	as	statistically	
significant	 a	 Bonferroni's	 multiple	 testing	 correction	 of	 p < 0.013	
(0.05/4 study groups) for individual study group or p < 0.05	for	the	
meta- analysis.

To plot single and common variants between groups of samples, 
Venn diagrams were created with VennDiagram R Package version 1.7.1 
(https://cran.r- proje ct.org/web/packa ges/VennD iagra m/index.html).

Gene- based association test was performed by Versatile Gene- 
based Association Study- 2 version 2 (VEGAS2, https://vegas2.qimrb 
ergho fer.edu.au/)	 (Mishra	 &	 Macgregor,	 2015) particularly useful 
for	 analyzing	GWAS	 summary	 statistics.	Based	on	 the	 association	
p- values of the individual variants, VEGAS2 sums the effects of all 
the variants within a gene and generates a gene- based test statistic 
by doing simulations of the multivariate normal distribution.

The epistatic interaction of up to four bi- allelic variants was 
tested using MDR (Ritchie et al., 2001). This methodology estimates 
high- order interactions among variants, with respect to a given 
phenotype also when their individual effect is small to moderate, 
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allowing the discovery of multi- loci genotype combinations associ-
ated with high or low disease risk. An entropy- based clustering al-
gorithm sets a contingency table for k gene variants and calculates 
case– control ratios for each of the possible multi- loci genotypes; a 
genotype combination is considered high- level if it is more present 
in cases compared to controls. For each factor, the MDR interac-
tion model describes percentage of entropy (information gain or IG) 
and plots a network of two- way interactions, with positive values 
of entropy indicating synergistic or non- additive interaction while 
negative entropy values indicate redundancy between the markers 
or lack of any synergistic interaction between them. In the network, 
red and orange connections indicate non- linear interactions, green 
and brown connections indicate independence or additivity, and 
blue connections indicate redundancy. For all 2- order, 3- order, or 
4- order combinations, the best model is considered the one found 
more consistent in different replicates (expressed as CV, consis-
tency values and accuracy, i.e., training balanced accuracy level). 
To calculate significance, permutation testing was applied, dividing 
the data set into 10 portions, and using nine portions as a training 
data set, and the remaining as a testing data set. Ten thousand per-
mutations were performed, to determine a cutoff threshold for an 
alpha = 0.05	significance	level.	For	each	order	of	interaction	tested,	
an odds ratio (OR) is outputted, referring to the best combination 
of variants (best model), while determining the multi- locus high- 
risk combinations.

Multifactor dimensionality reduction analyses were imple-
mented in the open- source MDR software package version 3.0.2 
(https://sourc eforge.net/proje cts/mdr/).

2.5  |  Functional annotation

Functional annotation of risk variants was performed by using multiple 
bioinformatic tools and databases, including the HaploReg database 
(https://pubs.broad insti tute.org/mamma ls/haplo reg/haplo reg.php), 
the GTEX portal (https://gtexp ortal.org/home/),	RegulomeDB	data-
base (https://beta.regul omedb.org/regul ome- searc h/) version 2.1, 
SNP Nexus (https://www.snp- nexus.org/v4/),	and	MetaBrain	(https://
www.metab rain.nl/cis- eqtls.html). LDlink's LDproxy tool (https://
analy sisto ols.nci.nih.gov/LDlin k/)	 (Machiela	 &	 Chanock,	 2015) and 
European population data was used for SNP LD analysis.

3  |  RESULTS

3.1  |  Single- variant and gene- based analysis

The flowchart in Figure 1 details the study design. After quality con-
trol and filtering, we performed logistic regression analysis on the 
sample divided in four sub- groups according to sex-  and APOE*4 

F I G U R E  1 Flowchart	describing	the	steps	of	the	analysis	after	quality	control	and	filtering.
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status, and meta- analyzing them thereafter. In Table S2 we reported 
the variants associated with the disease risk at a nominal p- value, 
along with their chromosomal location, the assigned gene and the 
main functional pathway associated with each coded protein. A 
graphical representation of all the obtained p- values is presented as 
a Manhattan plot (Figure S1). These associations, however, did not 
stand upon correction for multiple comparisons (p < 5 x 10−6) either 
when considering the single study group or when meta- analyzed 
across the four study groups. Nonetheless, we observed a statis-
tically significant 45% enrichment (p = 0.002)	 in	 the	distribution	of	
nominally significant variants (p < 0.05)	when	the	four	study	groups	
were meta- analyzed (Table 2), even though no statistically signifi-
cant enrichment was found when analyzing individually the four 
study groups. Interestingly, we also detected a statistically signifi-
cant enrichment from the meta- analysis Cochran's heterogeneity 
statistic's p- values (p = 0.020,	Table 2), supporting the existence of 
APOE*4 and sex- specific effects.

Within	the	four	study	groups,	the	nominally	associated	variants	
belong to 126 different genes, of which 20 are in the IIS, 31 in DNA 
repair, and 23 in stress response pathways, whereas the remaining 

46 are related to other pathways, such as immunity and membrane 
trafficking (see Table S2). These last genes emerged probably be-
cause of a high gene density and/or overlapping genes in some of 
the	genomic	regions	considered,	which	extend	10 kb	upstream	and	
downstream of the candidate gene boundaries.

More specifically, the variants significantly associated in the 
sub- groups were: 148 in APOE*4+ females, 157 in APOE*4+ males, 
115 in APOE*4− females, and 136 in APOE*4− males. The top- 
variants (p < 0.001)	were:	rs17810889-	C8orf49 and rs5742665- IGF1 
in APOE*4+ females, rs56190996- IGF1R and rs8113762- IRGQ in 
APOE*4+ males, rs28362737- AQP1 and rs35519594- XDH in APOE*4− 
females, rs3729587- XPC and rs142270994- CTD-3094 K11.1 in 
APOE*4− males. The Venn diagram for the gene variants listed in 
Table S2 shows the number of variants in each sub- group and those 
shared (Figure 2). As it is shown in Table 3, 12 variants were asso-
ciated with LOAD risk in females, independently from APOE*4 sta-
tus, five of which showed an opposite direction of effect in the two 
sub- groups (Table 3a). In males, eight variants were associated with 
LOAD independently from APOE*4 status, five of them showing 
a divergent effect in the two sub- groups (Table 3b). On the other 

Group N of variants with p < 0.05 OR Enrichment p

APOE*4+ females 148 (6.0%) 1.216 0.118

APOE*4+ males 157 (6.4%) 1.295 0.036

APOE*4− females 115 (4.7%) 0.932 0.597

APOE*4− males 136 (5.5%) 1.112 0.406

Meta- analysis

Meta- analysis p- value 174 (7.1%) 1.446 0.002

Cochran's heterogeneity 
statistic's p- value

161 (6.5%) 1.331 0.020

Note:	We	deemed	as	statistically	significant	a	Bonferroni's	multiple	testing	correction	of	p < 0.013	
(0.05/4 study groups) for individual study group or p < 0.05	for	the	meta-	analysis.	p- values 
reported in bold are statistically significant.
Abbreviations: OR, odds ratio; p, p- value.

TA B L E  2 p- value distribution 
enrichment analysis performed across the 
four study groups and the meta- analysis 
results.

F I G U R E  2 VENN	diagram	built	on	
Table S1 data, showing the number of 
variants associated with LOAD in each 
sub- group of samples and in common 
between different groups.
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hand, APOE*4 carriers, independent of sex, share eight markers, five 
of which show an opposite effect in the two sexes (Table 3c), while 
APOE*4− share four markers, two of which show an opposite effect 
in the two sexes (Table 3d).

For testing the enrichment of associated variants in the same 
gene, we then performed a gene- based analysis using VEGAS2. 
Table S3 reports the top- genes (p < 0.01)	and	the	top-	variant	associ-
ated with the disease risk in the four sub- groups of samples. The sche-
matic representation of Table S3 data is reported in Figure 3. The INSR 

gene is the only one common to all the sub- groups, although through 
different variants. FDFT1 and MSH3 were the top- genes in females, 
while IGF1R, IGF2R, PAPPA, GCLC, and XPC genes were the top- genes 
in males, independent of APOE*4 status. These genes, thus, appear to 
be associated with LOAD in a sex- specific way. Conversely, APOE*4+ 
subjects, independent of by sex, share markers in IGF1R, GCLC, and 
IPMK genes; APOE*4− subjects, by contrast show an enrichment of 
significant markers in IGF2R, AKT1, GSR, MSH3, and XDH genes, sug-
gesting them as influenced by APOE status in LOAD susceptibility.

TA B L E  3 Gene	variants	nominally	associated	with	LOAD,	shared	between:	(A)	APOE*4+ females and APOE*4−	females;	(B)	APOE*4+ males 
and APOE*4− males; (C) APOE*4+ females and APOE*4+ males; (D) APOE*4− females and APOE*4− males.

Variant Chr. Position Gene SYMBOL EA OR p OR p

A APOE*4+ females APOE*4− females

rs13183641 5 95,147,287 RHOBTB3 T 0.873 0.003 0.909 0.010

rs4561 5 95,152,313 RHOBTB3 G 0.886 0.008 0.910 0.011

rs2348974 5 95,143,394 RHOBTB3 C 1.119 0.015 1.093 0.014

rs6556881 5 95,134,419 RHOBTB3 G 0.908 0.038 0.925 0.034

rs34886287 5 80,077,309 MSH3 C 1.110 0.029 1.105 0.007

rs2645429 8 11,660,051 FDFT1 A 1.111 0.048 0.902 0.016

rs2645433 8 11,657,921 RP11-297 N6.4 C 0.902 0.027 1.081 0.035

rs112267867 9 118,905,353 PAPPA A 1.260 0.037 1.179 0.044

rs6583817 10 94,247,247 IDE T 0.836 0.006 0.859 0.005

rs4752254 10 120,910,136 SFXN4 C 0.895 0.042 1.094 0.036

rs2860173 19 7,129,086 INSR A 1.230 0.016 0.870 0.039

rs12979722 19 7,118,878 INSR C 1.169 0.042 0.846 0.006

B APOE*4+ males APOE*4− males

rs78686161 1 242,065,356 EXO1 A 1.450 0.005 1.303 0.006

rs670548 6 53,366,989 GCLC C 0.859 0.009 1.123 0.015

rs7740677 6 46,649,231 SLC25A27 C 1.167 0.030 1.154 0.013

rs17069665 6 108,941,468 FOXO3 G 0.832 0.033 1.169 0.031

rs2684794 15 99,484,953 IGF1R C 0.848 0.038 1.135 0.049

rs7245548 19 45,981,840 ERCC1 T 1.126 0.036 0.912 0.049

rs4803825 19 45,986,483 RTN2 G 0.889 0.042 1.128 0.012

rs4328554 19 7,249,830 INSR T 1.129 0.046 1.130 0.014

C APOE*4+ females APOE*4+ males

rs17882672 6 53,408,883 GCLC T 0.858 0.018 1.236 0.018

rs7092649 10 60,005,202 IPMK A 0.878 0.017 0.866 0.037

rs17636964 10 59,953,046 IPMK C 1.139 0.025 1.167 0.029

rs1625716 10 59,960,083 IPMK G 0.826 0.038 0.784 0.033

rs7138318 12 104,736,394 TXNRD1 C 0.861 0.002 1.146 0.024

rs7979495 12 104,625,779 TXNRD1 G 0.810 0.018 1.247 0.047

rs141516621 19 7,280,152 INSR A 1.232 0.003 0.844 0.043

rs7258382 19 7,262,569 INSR C 1.141 0.048 0.841 0.027

D APOE*4− females APOE*4− males

rs2010704 2 31,622,465 XDH A 1.098 0.011 1.106 0.030

rs147249797 2 31,601,541 XDH T 1.092 0.034 1.123 0.029

s10759223 9 110,065,158 RAD23B C 1.078 0.038 0.909 0.041

rs2494741 14 105,249,322 AKT1 T 1.157 0.032 0.754 0.002

Abbreviations: EA, effect allele; OR, Odds Ratio; p, p- value.
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3.2  |  Analysis of epistatic interactions

With	the	aim	of	finding	gene–	gene	epistatic	interactions	between	2-		
or among 3-  and 4- markers associated with the disease risk, we used 
the MDR approach. Table 4 shows the gene– gene interactions for 
LOAD resulting from the analysis, while Figure 4 depicts the interac-
tion networks between variants in each sub- group.

In APOE*4+ females, two 2- order epistatic interactions 
(Figure 4a) were found significantly associated with LOAD, 
namely the combinations rs3757949- GATA4/rs7092522- IDE and 
rs62491484- NEIL2/rs35435718- PGPEP1L. These four variants were 
among the most significant associated with LOAD (p < 0.01)	 in	this	
sub-	group	for	the	single-	variant	analysis.	Both	epistatic	interactions	
were inter- pathway, combining markers of genes belonging, respec-
tively, to stress response (GATA4) and metabolism (IDE), and to DNA 
repair (NEIL2) and stress response (PGPEP1L). The same pathways 
also emerged from the 3-  and 4- order loci interactions (Table 4a), 
where two markers of the gene TXNRD1 (rs28672744 in the 3- 
order and rs35511346 in the 4- order interactions) and one of FDFT1 
(rs26861869) are included. As indicated by the interaction graph in 
Figure 4a, several variants show a redundant effect (blue lines) in the 
network. Among them, the rs5742665- IGF1 is the top- variant from 
the gene- based analysis in this sub- group (p < 0.001;	Table S2) and 
seems to be a LOAD specific marker of APOE*4+ females, not being 
associated with disease in the other sub- groups.

No significant epistatic interactions were observed in the group 
of APOE*4− females (Figure 4b). The variant rs28362737- AQP1 pres-
ent in the network is the most associated with LOAD in this group, 
but it seems to have a univariate effect.

In APOE*4+ males (Figure 4c), the most important gene– gene in-
teractions (red lines) were: rs4674302- AOX1/rs718630- PTPN1 and 
rs56190996- IGF1R/rs4325676- INSR. These interactions are driven 

by rs718630- PTPN1 and rs56190996- IGF1R variants, which are the 
most significantly associated with LOAD (p < 0.01)	 in	 the	 single-	
marker analysis, with the last representing the top- variant in IGF1R 
associated	with	LOAD	in	the	subgroup.	Both	interactions	are	intra-	
pathway epistasis between genes involved in metabolism. The 3- 
order interaction is again an intra- pathway epistasis, involving AOX1, 
GCLC, and KCL3 genes whose products act in metabolism.

In APOE*4−	males	 (Figure 4d), two gene– gene interactions re-
sulted from MDR analysis namely rs11573680- RAD32B/rs4983559- 
ZBTB42, relative to the DNA- repair pathway, and rs6214- IGF1/
rs1879612- IGF1R to metabolism. 3- order and 4- order interactions 
resume the collaboration of DNA repair and metabolism, in addition 
to stress response pathway, in the susceptibility to LOAD in this 
sub- group.

To determine whether the gene– gene interactions found were 
exclusive between the four sub- groups, we ran MDR using those 
selected interactions across all the groups. Notably, we observed 
that the rs62491484- NEIL2/rs35435718- PGPEP1L epistatic inter-
action found in APOE*4+ females occurred also in APOE*4− males 
(p = 0.028)	 (Table 4). However, the high- risk genotypic combina-
tions were not comparable (Figure S2). Similarly, the rs11573680- 
RAD32B/rs4983559- ZBTB42 interaction found in APOE*4− males 
occurred also in the APOE*4+ males (p = 0.038)	(Table 4), although 
with a different pattern of high- risk genotypic combinations 
(Figure S2).

3.3  |  Functional annotation analysis

Next, we performed functional annotation to ascertain biologi-
cal significance of the variants identified in the single variant and 
interaction analyses. To this end, several databases and tools 

F I G U R E  3 Schematic	representation	
of gene- based analysis, reporting the 
top- genes (p < 0.01)	associated	with	the	
disease in each different sub- group and 
those shared. Colors represent the three 
analyzed pathways.
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were	considered,	as	 reported	 in	 the	Materials	&	Methods	section.	
Table S4 reports the most relevant results of eQTL analysis of the 
associated variants and their proxies in high LD (r2 > =0.8) According 
to this analysis some of the risk variants act as cis- eQTL regulatory 
elements which modulate the expression of the corresponding gene 
or of nearby genes in specific brain regions. Moreover, evidence of a 
regulatory role (1f or 1b score in RegulomeDb and association with 
regulatory elements in SNPnexus) was found for other variants as-
sociated with the disease phenotype.

Some variants reported a relevant number of proxies in LD (r2 ≥ 0.8),	
although none showed evidence of stronger regulatory potential than 
the lead variant. As reported in Table S4, the significant variants we 

identified were not previously implicated in LOAD, yet some of them 
have been reported to affect some age- related disorders.

4  |  DISCUSSION

The genetic architecture of LOAD has been widely studied in re-
cent years, and so far, 100 of risk genes and related rare and com-
mon genetic variants have been identified, but many remain to be 
uncovered (Andrews et al., 2023). As advanced age is the greatest 
risk factor for LOAD, shared genetic pathways between LOAD and 
longevity are expected, although their connections are still not fully 

F I G U R E  4 Interaction	graphs,	reporting	the	significant	markers	from	MDR	analysis,	in	the	group	of	APOE*4+ females (a), in APOE*4− 
females, in APOE*4+ males, and in APOE*4− males (d). For each variant we reported the value of information gain (IG) in per cent, while 
numbers in the connections indicate the entropy- based IG for the variant pairs. Red bar and orange bar indicate the high- level synergies 
on the phenotype, while the brown indicate a medium- level interaction, green and blue connections with negative IG values indicate 
redundancy or lack of synergistic interactions between the markers.
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understood (Tesi et al., 2021). Phenotypic heterogeneity (i.e., distinct 
groups of subjects present with different clinical syndromes) and/
or temporal heterogeneity (i.e., substantial inter- subject variance in 
age- at- onset and rate of decline) (Young et al., 2018) are common 
in LOAD. Another challenge is the small contribution of individual 
genetic variants in complex phenotypes. Moreover, several studies 
have emphasized that genetic interactions may be more important 
than single markers in neurodegenerative diseases and longevity 
(Gilbert-	Diamond	&	Moore,	2011), suggesting the existence of non- 
additive heritability to these traits.

In this study, we applied a gene– gene interaction approach to a 
set of genetic variants selected for being on or near genes involved 
in the IIS, the DNA repair, and the oxidative stress response path-
ways, previously linked to human longevity (Dato et al., 2018). To 
identify gene signatures for LOAD related to sex and/or to APOE 
genotype, we performed analyses stratified by APOE*4 status and 
sex. The validity of the choice of such study design was underscored 
by additional cross- validation analyses, which confirmed the pres-
ence of heterogeneity across the different sub- groups.

Overall, this study highlights two aspects of the genetic com-
plexity in LOAD. First, it supports the claim of shared genetic path-
ways between longevity and LOAD. Second, it suggests that sex 
and APOE genotype can drive different genetic risk factors. This 
evidence appeared clear in single variant analyses. In APOE*4+ fe-
males, the two top variants were rs17810889 upstream of C8orf49, 
and rs5742665 in an intron of IGF1 gene, one of the master genes 
in IIS metabolic pathway. In APOE*4− females, the top- variant 
was rs28362737, an intronic variant of AQP1, the gene encoding 
Aquaporin 1, a protein associated with amyloid- beta deposition in 
AD brains (Misawa et al., 2008). In APOE*4+males, the top- variants 
were rs56190996, in an intron of IGF1R (insulin- like growth factor 
receptor), and rs8113762 located at the 3’- UTR of IRGQ (immunity- 
related GTPase Q), while in APOE*4− subjects, the most significant 
variant was rs3729587 in the DNA repair gene XPC (Xeroderma pig-
mentosum, complementation group C). Many of these markers ap-
pear to be functionally relevant, being cis- eQTL or trans- eQTL, and 
specifically in brain regions, as reported in Table S4. However, we 
cannot exclude that one of their proxies in LD (r2 ≥ 0.8)	could	be	the	
actual causal variant, although none showed a potential regulatory 
effect higher than the associated variants.

It is also worth noting that some of the associated variants 
showed an opposite effect in the two sexes. This is line with several 
studies demonstrating that some variants, the so- called “sexually 
antagonistic variants”, have a beneficial effect in one sex but del-
eterious (or null) effects in the other, thus having a role in shaping 
differences between males and females in age- related disease out-
comes as well as in survival (Iannuzzi et al., 2023; Lagou et al., 2021).

Results from gene- based analysis further highlighted genes as-
sociated with LOAD in a sex-  and APOE- specific manner. INSR, is the 
only one gene shared among the four sub- groups of patients, which 
encodes the insulin receptor, an important component of the insulin 
pathway. Through its binding with insulin, INSR controls the glucose 
metabolism in the brain helping to maintain neuronal functioning 

(de	la	Monte	&	Wands,	2005). Decline in glucose metabolism is in-
deed one of the earliest and most common anomalies observed in 
patients	with	LOAD	(Akhtar	&	Sah,	2020). A recent study by Leclerc 
et al. (2023) reported that, in association with β- amyloid pathology, 
defects in the activation of INSR at the blood– brain barrier strongly 
contribute to brain insulin resistance in LOAD. Genetic variants of 
this gene were found enriched in centenarians, thus indicating INSR 
a	key	mediator	of	human	longevity	(Barbieri	et	al.,	2003).

The evaluation of the joint effect of different markers through 
gene– gene interactions further added insights into the genetic ar-
chitecture of LOAD. Among the significantly interacting genes, 
PTPN1 (protein tyrosine phosphatase non- receptor type 1, IIS 
pathway), TXNRD1 (thioredoxin reductase 1; stress response), and 
IGF1R (insulin- like growth factor 1 receptor; IIS) were already found 
in combinations affecting survival to old age (Dato et al., 2018; 
Ukraintseva et al., 2021). PTPN1 and TXNRD1 were engaged in best 
risk combinations for longevity, respectively, with IGF1R and TP53 
(DNA repair), while IGF1R, interacted with TP53 and TGFBR2 (cell 
proliferation). In LOAD PTPN1 interacts with a partner from the 
stress response pathway, like AOX1. Notably, TXNRD1 is engaged in 
4- order risk combination for LOAD with genes from the IIS pathway, 
like IGF1, FDFT1 (farnesyl- diphosphate farnesyltransferase 1), and 
IDE (insulin degrading enzyme). Similarly, IGF1R is associated with 
the disease in a 4- order synergic combination with EXO1 (DNA re-
pair), XDH (stress response), and GATA4 (IIS), behind its ligand IGF1. 
Overall, these findings suggest that in LOAD as in longevity TXNRD1 
and even more IGF1R, may represent hubs interconnecting multiple 
signaling pathways. The different sub- processes may instead explain 
the sex-  and APOE- specific associations we found.

Taken together, these results suggest that longevity loci may also 
drive LOAD neuropathology through APOE-  and sex- related specific 
gene– gene interactions. The complex interplay among sex, APOE, 
and age may influence the severity and the temporal trajectory of 
LOAD progression, creating a risk profile for LOAD that could serve 
to identify high- risk individuals (Riedel et al., 2016). Mechanisms 
underlying the sex differences are unknown; the literature largely 
supports the claim that it may be due to the known differences in 
longevity between men and women (Hossin, 2021), while some pro-
pose that sex dimorphisms in stress responses can contribute to the 
increased prevalence of LOAD in women (Yan et al., 2018). Sex di-
vergence in biochemical responses to stress were reported along the 
hypothalamic– pituitary– adrenal axis and in the activation of the cor-
tical corticotrophin- releasing factor receptor 1 signaling pathway, 
leading to distinct female- biased increases in molecules associated 
with LOAD pathogenesis (Yan et al., 2018). In our analysis, effectors 
of stress response, such as TXNRD1 and GATA4, have been found 
in all the sub- groups of patients, suggesting that an impaired ability 
to induce a stress response represents an underlying risk factor for 
LOAD. Interestingly, in APOE*4+ females, potentially experiencing 
higher levels of hydroxyl radicals and reduced levels of mitochondrial 
antioxidants compared to non- APOE*4 carriers (Ihara et al., 2000), all 
significant epistatic interactions were among genes involved in oxi-
dative stress and those belonging to the other pathways.
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5  |  CONCLUSIONS

Collectively, the present results indicate that several loci repeat-
edly implicated in aging and longevity also contribute to late- onset 
Alzheimer's disease (LOAD) risk. Most of the top genes associated 
are assigned to pathways related to metabolism, highlighting their 
relevance both in the aging process and the pathological events 
leading to LOAD. Interestingly, this study bolsters the evidence of 
specific interactions among established risk factors for LOAD, that 
is APOE genotype and sex, and these genes. This suggests that dif-
ferent trajectories of cognitive aging may be the result of specific 
epistatic effects between genetic and non- genetic risk factors. 
Although our conclusions are based on the evidence of “statisti-
cal epistasis”, which magnitude and contribution to the variance 
of complex traits is a highly debated topic (Hivert et al., 2021), in 
accordance with other authors (Singhal et al., 2023) we think that 
the potential for “functional epistasis” to drive expressivity and ex-
plain clinical heterogeneity in complex diseases is mounting. In the 
complex scenario of LOAD, understanding the functional changes 
associated with different combinations of interacting entities (SNPs, 
genes, pathways, etc.) may help to disentangle the genetic archi-
tecture underlying disease development, and interindividual differ-
ences that underpin disease, finally leading to precision medicine 
approaches for early detection of individuals at higher risk for cogni-
tive decline or dementia.
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