
ar
X

iv
:1

80
6.

01
02

1v
1 

 [
m

at
h.

L
O

] 
 4

 J
un

 2
01

8

THE TORSIONFREE PART OF THE ZIEGLER SPECTRUM OF ORDERS

OVER DEDEKIND DOMAINS

LORNA GREGORY, SONIA L’INNOCENTE, AND CARLO TOFFALORI

Abstract. We study the R-torsionfree part of the Ziegler spectrum of an order Λ over a

Dedekind domain R. We underline and comment on the role of lattices over Λ. We describe

the torsionfree part of the spectrum when Λ is of finite lattice representation type.

1. Introduction

In his posthumous paper [13] Gena Puninski made substantial progress in the description of

the Cohen-Macaulay part of the Ziegler spectrum over Cohen-Macaulay rings.

Gena also raised a similar question for torsionfree modules over orders. In fact this topic

has been investigated in just few cases. The most advanced (see [14]) deals with the integral

group ring ZG, where G is Klein’s four group; note that ZG is of infinite lattice representation

type. On the other hand a general theoretical analysis over group rings RG, where R is a

Dedekind domain of characteristic 0 and G is a finite group, had been previously developed in

[10]. Motivations came from the interest in the model theory of abelian-by-finite groups. Recall

that a group H is said to be abelian-by-finite if and only if H admits an abelian normal subgroup

N of finite index. Let G denote the quotient group H/N . So N inherits a natural structure of

module over the group ring ZG and most model theory of H as a group is given by that of N

as a module (see [9]).

In this note we plan to extend the approach of [10] to orders over Dedekind domains. Thus

let us first introduce this setting. We start with a Dedekind domain R that is not a field. Let Q

be the field of fractions of R. Now let A be a finite dimensional Q-algebra. We will sometimes

assume A semisimple, and even separable (i.e. A remains semisimple when extending scalars).

An R-order in A is a subring Λ of A such that the centre of Λ contains R, Λ is finitely generated

as an R-module and Q · Λ = A. For instance the group ring RG, with G a finite group, is an

R-order in the group algebra A = QG.

We are interested in (say right) modules over such an order Λ, in particular in R-torsionfree

Λ-modules. Recall that a Λ-module M is R-torsionfree if for all 0 6= m ∈ M and 0 6= r ∈ R

we have mr 6= 0. Finitely generated R-torsionfree Λ-modules are known as Λ-lattices. Over a

Dedekind domain R, Λ-lattices can be equivalently introduced as Λ-modules finitely generated
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and projective over R, or also as direct summands (still over R) of Rn for some positive integer

n.

Observe that, if M is any Λ-module, then TorM := {m ∈M | mr = 0 for some r ∈ R\{0}}

is a Λ-submodule of M and the quotient module M/TorM is R-torsionfree.

Let us fix some further notation. For Λ an order over a Dedekind domain R,

• TfΛ is the category of all R-torsionfree (right) Λ-modules,

• LattΛ is the category of (right) Λ-lattices.

Moreover LΛ is the first order language of Λ-modules, and in this language T tf
Λ is the first

order theory of R-torsionfree Λ-modules, so of TfΛ.

Note that TfΛ is the smallest definable subcategory of the category of all Λ-modules containing

LattΛ.

For every positive integer n, ppnΛ denotes the lattice of pp-formulas with n free variables of LΛ

(warning: here the word lattice has a different meaning, that of an ordered structure, see below).

In detail, ppnΛ is the quotient set of these pp-formulas with respect to the logical equivalence

relation (in the theory of Λ-modules). The lattice structure is given by the partial order relation

determined by logical implication (modulo the same theory). Then meet corresponds to the

conjunction of pp-formulas, and join to their sum +. If one identifies pp-formulas in n variables

equivalent in the first order theory of some given Λ-module M , then one forms another lattice

ppnΛ(M) – a quotient lattice of ppnΛ. The same can be done starting from a class of Λ-modules

instead of a single M . For instance, one builds in this way ppnΛ(TfΛ).

We will denote the binary relation in these lattices by≤ (with the usual meaning for <). When

necessary, a subscript will specify to which lattice we refer. For instance, we write ≤pp1
Λ
(M) when

dealing with pp-formulas in 1 free variable with respect to the first order theory of a module

M . Likewise [ , ] will denote a closed interval in a lattice, with possible use of subscripts to

say which lattice we deal with, as before. Similar conventions will regard open or half closed

intervals.

The m-dimension of these lattices L = ppnΛ,pp
n
Λ(TfΛ), . . . is defined as follows, see [11] and

[12] for details. Construct a sequence of lattices Lα (with α an ordinal) collapsing at each

successor step intervals of finite length. For instance, in the basic step two pp-formulas ϕ and

ψ are identified if and only if the closed interval [ϕ ∧ ψ,ϕ + ψ] is of finite length. Then the

m-dimension of L, m-dimL, is defined as the smallest ordinal α such that Lα is the one-point

lattice, if such an ordinal exists, and ∞ (or undefined) otherwise.

Let us come back to illustrate the aim of the paper. As said, we consider R-torsionfree modules

over an order Λ over a Dedekind domain R. Let ZgΛ denote the whole (right) Ziegler spectrum

of Λ, that is, the topological space of (isomorphism classes of) indecomposable pure injective Λ-

modules. A basis of open sets of the topology is given by (ϕ/ψ) = {N ∈ ZgΛ : ϕ∧ψ <pp1
Λ
(N) ϕ}

where ϕ and ψ range over pp1Λ. We are interested in the subset of ZgΛ formed by R-torsionfree

indecomposable pure injective Λ-modules. Notice that this is a closed set, as the complement of
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the union of (xr = 0/x = 0) where r ranges over the non zero elements of R. Let ZgtfΛ denote

it. Observe that since ZgΛ is compact and ZgtfΛ is a closed subset of ZgΛ, Zg
tf
Λ is also compact.

One may wonder what is the role of Λ-lattices in this framework, for instance if indecomposable

Λ-lattices are pure injective, so points of ZgtfΛ . We cannot expect that in general, but we will see

in the next section that the answer is positive at least over complete discrete valuation domains.

Apart from this, we will also discuss the relevance of lattices in the R-torsionfree part of the

spectrum, just as [10] did over group rings.

Here is a more detailed plan of this paper. In § 2 we prove some first results on lattices,

and above all that, when R is a complete discrete valuation domain and A is separable, they

are isolated points of ZgtfΛ , dense in the whole space ZgtfΛ . In § 3 we provide a description

of the torsionfree part of the Ziegler spectrum of an order Λ over a Dedekind domain R in

a semisimple Q-algebra, extending that over group rings in [10]. We also investigate the m-

dimension of pp1Λ(TfΛ) in that section. Applications of the (classical) Maranda theorem to our

setting will be treated in § 4. The final section 5 considers orders of finite lattice representation

type and provides a complete description of their Ziegler spectrum, confirming a conjecture

of Gena Puninski. As an application, it is shown that the theory of integral group rings ZG

torsionfree over Z (with G a cyclic group of order p or p2 for some prime p) is decidable, which

positively answers questions in [9].

We assume some familiarity with model theory of modules, as treated in [11], [12] and [19].

Finally let us call again the reader’s attention to the fact that, as this introduction already

witnesses, the word lattice denotes in this paper two different concepts: lattice as a module,

and as a partially ordered set. Indeed the same is true of order, that can be meant in the usual

sense but also as a ring. We hope this coincidence will not cause any misunderstanding and the

meaning of any occurrence of lattice or order will always be clear.

2. The role of lattices

We mainly devote this section to some first results on lattices. We keep R, Λ, and so on, in

agreement with the introduction.

SinceR is hereditary and noetherian, Λ-lattices are closed under submodules. On the contrary,

quotients of lattices need not be lattices, but the category of Λ-lattices does have pseudo-kernels.

Fact 2.1. Every lattice M over an R-order Λ decomposes as a finite direct sum of indecompos-

able lattices.

Proof. Let M = L⊕N . As tensor products preserve direct sums, QM decomposes as QL⊕QN .

Thus if both L and N are non zero then dimQL, dimQN < dimQM . �

This decomposition may not be unique. In other words the category of lattices over an order

may not be Krull-Schmidt (see [4, p. 768]. But this is true over complete discrete valuation

domains (see [4, (30.6), p. 620]).
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Proposition 2.2. Let R be a complete discrete valuation domain and Λ be an R-order. Then

every Λ-lattice L is pure injective and the set of indecomposable Λ-lattices is dense in ZgtfΛ .

Proof. Since R is a discrete valuation domain and L is finitely generated and torsionfree over R,

as an R-module, L is isomorphic to Rn. Since R is complete, it is linearly compact as a module

over itself, see [12, Sect. 4.2.2.] for the definition of linear compactness. Since the class of

linearly compact modules is closed under extensions [12, 4.2.10], Rn is linearly compact. Since

all pp-definable subgroups of L as a Λ-module are R-submodules, L is algebraically compact

over Λ.

IfM is an R-torsionfree Λ-module, then it is a direct limit of its finitely generated submodules,

which are lattices. Then M is in the closure of these lattices.

�

When QΛ is separable and R is complete, the category of lattices has almost split sequences

(see [16], [17], [1]). We will use this to show that every indecomposable Λ-lattice is isolated.

The following result may have its own interest and indeed will be used also later.

Let ϕ ∈ ppnΛ and (M,m), m ∈ Mn, a free realisation of ϕ [12, 1.2.2 p. 23]. Look at the

pp-type of m+TorM in M/TorM and take a pp-formula ϕ ∈ ppnΛ generating this pp-type.

Lemma 2.3. The map ϕ 7→ ϕ defines a +-semi-lattice homomorphism from ppnΛ to ppnΛ such

that ϕ ≤ ϕ for every ϕ.

Moreover, if N is an R-torsionfree Λ-module then ϕ(N) = ϕ(N).

The partially ordered set {ϕ | ϕ ∈ ppnΛ} is isomorphic to ppnΛ(TfΛ) and hence is a lattice.

Proof. Let (M,m) be a free realisation of ϕ ∈ ppnΛ. Since there is a homomorphism from M to

M/TorM sending m to m+TorM , ϕ ≤ ϕ.

Suppose that ψ ≤ ϕ in ppnΛ. Let (N,n) be a free realisation of ψ. Since ψ ≤ ϕ there

is a homomorphism f : M → N with f(m) = n. Let f : M/TorM → N/TorN be the

homomorphism induced by f . Then f(m+TorM) = n+TorN . Thus ψ ≤ ϕ. This also shows

that the map sending ϕ to ϕ is well-defined.

We now just have to observe that for all ϕ,ψ ∈ ppnΛ, ϕ+ ψ = ϕ+ ψ. This is true because if

(M,m), (N,n) are free realisations of ϕ, ψ respectively, then, see [12, 1.2.27], (M ⊕N,m+ n)

is a free realisation of ϕ+ ψ and Tor(M ⊕N) = TorM ⊕ TorN .

Now suppose that ϕ ∈ ppnΛ is freely realised by (M,m) and N is an R-torsionfree Λ-module.

Suppose n ∈ ϕ(N). There exists f : M → N such that f(m) = n. Since N is R-torsionfree,

TorM ⊆ ker f . Thus the homomorphism f : M/TorM → N induced by f satisfies f(m +

TorM) = n. Hence n ∈ ϕ(N).

�

We now provide a detailed proof that the indecomposable Λ-lattices are isolated in ZgtfΛ , when

R is complete and QΛ is separable, following that of the analogous result for Artin algebras.
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Lemma 2.4. Let R be a complete discrete valuation domain with field of fractions Q, Λ be an

R-order in a finite dimensional separable Q-algebra A. Then all indecomposable Λ-lattices are

isolated in ZgtfΛ .

Proof. As said, the category of Λ-lattices has left almost split morphisms (see [1, 2.1], for in-

stance). That is, for all indecomposable lattices N there exists a homomorphism of lattices

f : N → E such that f is a non split monomorphism and for any Λ-homomorphism of lattices

h : N → X which is a non split monomorphism, there exists λ ∈ Hom(E,X) such that fλ = h.

Pick n ∈ N a generating tuple for N . Let ϕ generate the pp-type of n and ψ generate the

pp-type of f(n). We first show that N ∈ (ϕ/ψ). By definition n ∈ ϕ(N). Suppose, for a

contradiction, that n ∈ ψ(N). Then there exists g : E → N sending f(n) to n. Since n is a

generating tuple for N , gf = IdN . But this contradicts our assumption that f is not split. Thus

N ∈ (ϕ/ψ).

Now we take any σ ∈ ppnΛ(TfΛ) and we claim that, if σ < ϕ then σ ≤ ψ. Since we are

working modulo the theory of R-torsionfree Λ-modules, we may replace σ by σ (see Lemma

2.3). Let M ∈ LattΛ and m ∈M be such that (M,m) is a free realisation of σ. Thus there is a

homomorphism h : N →M such that h(n) = m. So either h is a split monomorphism or there

exists λ ∈ Hom(E,X) such that fλ = h. If h is a split monomorphism then the pp-type of n is

equal to the pp-type of f(n) = m, so σ = ϕ. In the second case, σ ≤ ψ. Thus σ ≤TfΛ ψ.

Therefore ϕ/ψ is a TfΛ-minimal pair. Hence (ϕ/ψ) isolates N in ZgtfΛ . �

Next let us deal with the closed points of ZgtfΛ . We start by proving an auxiliary result.

Lemma 2.5. For all N ∈ TfΛ and ϕ ∈ pp1Λ, Qϕ(N) = ϕ(QN).

Proof. Let ϕ(x)
.
= ∃y (x, y)Tϕ = 0 where Tϕ is a matrix of a suitable size with entries in Λ.

Since N is a submodule of QN , ϕ(N) ⊆ ϕ(QN). All pp-definable subsets of QN are Q-vector

subspaces, so Qϕ(N) ⊆ ϕ(QN).

Now suppose that m ∈ ϕ(QN). There exists l = (l1, . . . , lk) in QN such that (m, l)Tϕ = 0.

Let c ∈ R be such that mc, l1c, . . . lkc ∈ N . Then (mc, lc)Tϕ = 0. So mc ∈ ϕ(N). Thus

m ∈ Qϕ(N). Therefore Qϕ(N) = ϕ(QN). �

When R is a complete noetherian valuation domain, we are now able to describe the closure

of a Λ-lattice.

Proposition 2.6. Let R be a complete discrete valuation domain and Λ an order over R. Let

π denote a generator of the maximal ideal of R. If N is an indecomposable Λ-lattice and M is

in the (Ziegler) closure of N but is not equal to N , then M is a direct summand of QN . In

particular M is a closed point and pp1Λ(M) is of finite length.

Proof. Let M be in the closure of N but not equal to N . Suppose that M ∈ (ϕ/ψ). We aim to

show that ϕ(QN) ) ψ(QN).
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Since M ∈ (ϕ/ψ) and M is in the closure of N , N ∈ (ϕ/ψ). If ϕ(N)/ψ(N) were finite length

as an R-module then the interval [ψ,ϕ]N ⊆ pp1Λ(N) would be finite length. Let ϕ =: ϕ0 ≥

ϕ1 ≥ . . . ≥ ϕn+1 := ψ be such that [ϕi+1, ϕi]N is simple. Then (ϕ/ψ) =
⋃n

i=0 (ϕi/ϕi+1). Since

[ϕi+1, ϕi]N is simple, by [19, 7.10], (ϕi/ϕi+1) isolates N in its closure and hence (ϕ/ψ) isolates

N in its closure. Therefore ϕ(N)/ψ(N) is infinite length as an R-module.

Since R is noetherian and N is finitely generated as an R-module, ϕ(N)/ψ(N) is finitely

generated as an R-module. Thus ϕ(N)/ψ(N) is isomorphic to Rn ⊕ T where T is a finitely

generated torsion R-module. Since ϕ(N)/ψ(N) is infinite length as an R-module, n ≥ 1. Thus

there exists m ∈ ϕ(N) such that mπl /∈ ψ(N) for all l ∈ N. By Lemma 2.5, m ∈ ϕ(QN) and

m /∈ ψ(QN).

Since N is a lattice, QN is finite dimensional. Let L1, . . . , Lm be the indecomposable sum-

mands of QN . If ϕ(QN) ) ψ(QN) then Li ∈ (ϕ/ψ) for some 1 ≤ i ≤ m. Thus if M ∈ (ϕ/ψ)

then Li ∈ (ϕ/ψ) for some 1 ≤ i ≤ m. So M is in the closure of {L1, . . . , Lm}. Since each Li is a

closed point, M is in the closure of {L1, . . . , Lm} if and only if M = Li for some 1 ≤ i ≤ m. �

Recall that the support of a Λ-module M , Supp(M), is the set of indecomposable pure

injective Λ-modules N such that for all pp-pairs ϕ/ψ, ϕ(M) = ψ(M) implies ϕ(N) = ψ(N). In

particular, if M ∈ ZgΛ then Supp(M) is the closure of M in ZgΛ.

Lemma 2.7. If N ∈ ZgtfΛ and S ∈ Supp(QN) then S is in the closure of N . In particular, if

N ∈ ZgtfΛ and S ∈ ZgA is a direct summand of QN , then S is in the closure of N .

Proof. Suppose that ϕ ≥ ψ ∈ pp1Λ. By 2.5, if ϕ(N) = ψ(N) then ϕ(QN) = Qϕ(N) = Qψ(N) =

ψ(QN). By definition, if S ∈ Supp(QN) then ϕ(QN) = ψ(QN) implies ϕ(S) = ψ(S). Thus S

is in the closure of N . �

Corollary 2.8. If N ∈ ZgtfΛ is a closed point then N ∈ ZgA and N is a closed point in ZgA.

We include in this section some further useful remarks. For every R-moduleM , let SubR(M)

be the lattice of R-submodules of M .

Lemma 2.9. Let R be a Dedekind domain and M a torsionfree finitely generated module over

R. Then SubR(M) has m-dimension 1.

Proof. SinceM is torsionfree, R is a submodule ofM and hence SubR(M) is not of finite length.

Thus m-dim SubR(M) 6= 0.

Since M is finitely generated and torsionfree, M is a direct summand of Rn for some positive

integer n. It follows that, if m-dim SubR(R
n) ≤ 1 for all n ∈ N, then m-dim SubR(M) ≤ 1 and

hence m-dim SubRM = 1.

On the other hand, since Rn can be filtered as a finite chain of submodules with quotients

isomorphic to R, m-dim SubR(R
n) = m-dim SubR(R).

Let J be a non zero ideal of R. Then R/J is of finite length. Thus the interval [J,R] in

SubR(R) is of finite length. So m-dim SubR(R) = 1. �
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Corollary 2.10. Let R be a Dedekind domain, Λ an order over R and M a Λ-lattice. Then

pp1Λ(M) has m-dimension 1.

Proof. Since all pp-definable subgroups of M are R-submodules, pp1Λ(M) is a sublattice of

SubR(M). Thus m-dim pp1Λ(M) ≤ m-dimSubR(M) = 1. Since M is R-torsionfree and not

R-divisible, there exist c ∈ R\{0} and m ∈ M such that m /∈ Mc. Since M is R-torsionfree,

mcn /∈Mcn+1. Thus Mcn+1 (Mcn for all n ∈ N. Thus pp1Λ(M) is not of finite length, whence

its m-dimension cannot be 0. �

3. The torsionfree part of the Ziegler spectrum

In this section we extend the main results of [10], about the torsionfree part of the Ziegler

spectrum of a group ring RG, with R a Dedekind domain of characteristic 0 and G a finite

group, to arbitrary orders Λ over a Dedekind domain R in a semisimple Q-algebra A = QΛ. We

also investigate the m-dimension of pp1Λ(TfΛ) and the Cantor-Bendixson rank of ZgtfΛ in both

this framework and the more general setting where A is not assumed to be semisimple.

If P is a prime ideal of R then we write ΛP for the central localisation of Λ at P and Λ̂P for

its completion at P . Note that ΛP is an RP -order in A and Λ̂P is an R̂P -order.

We start in the general setting. The endomorphism ring of every indecomposable pure injec-

tive module N , End(N), is local. Let P (N) denote its maximal ideal. When N is R-torsionfree,

R embeds in a natural way into End(N). Moreover P (N) ∩ R is a prime ideal of R. Thus,

every indecomposable pure injective Λ-module is a module over ΛP for some prime and even

maximal ideal P of R. The homomorphism Λ → ΛP is an epimorphism and hence restriction of

scalars induces an embedding of ZgΛP
into ZgΛ whose image is a closed subset. This embedding

restricts to an embedding of ZgtfΛP
into ZgtfΛ and again the image is a closed subset. Identifying

ZgtfΛP
with the set of N ∈ ZgtfΛ such that P (N) ∩R ⊆ P , we may write

ZgtfΛ =
⋃

P

ZgtfΛP

where P ranges over maximal ideals of R. Since R has Krull dimension 1, if P,P ′ are distinct

maximal ideals of R then ZgtfΛP
∩ZgtfΛ

P ′
= ZgA.

This description of the space is not particularly useful for computing the Cantor-Bendixson

rank of ZgtfΛ because if T is a topological space, X is a closed subset of T and p ∈ X then the

Cantor-Bendixson rank of p as a point in X may strictly less than the Cantor-Bendixson rank

of p as a point in T . Thus we now work to give a more useful description.

Since R is noetherian, every (maximal) ideal P of R is finitely generated, whence there is a

pp-formula of LR defining in any R-module M just MP : if r = (r1, . . . , rl) is a generating tuple

of P , it suffices to take ∃y1 . . . ∃yl (x = y1r1 + . . . + ylrl). Let P | x denote this formula. For

instance, when R is a discrete valuation domain and π is a generator of its maximal ideal P ,

then the formula is π | x, that is, ∃y(x = yπ).

7



If N ∈ ZgtfΛ
P ′

and P 6= P ′ then NP = N since some element of P is not in P ′, that is, some

element of P acts invertibly on N .

Now suppose that N ∈ ZgtfΛP
and N /∈ (x = x/P |x). Let (r1, . . . , rl) still denote a tuple of

generators of P . Since RP is a valuation domain, there exists 1 ≤ j ≤ l such that ri ∈ rjRP

for all 1 ≤ i ≤ l. Put r = rj and for all i write ri = r ci/ai with ci, ai ∈ R and ai /∈ P . Then

rci = riai for all i. Set a =
∏

1≤h≤l ah. Then a ∈ R \ P . Multiply the i-th equation above

by
∏

h 6=i ah and get for every i a new equation rbi = ria for a suitable bi ∈ R. It follows that

NP = Nr. Hence the fact that NP = N implies that r acts invertibly on N . So P (N)∩R ( P .

Therefore P (N) ∩R, as a prime ideal of R, coincides with 0. So N is R-divisible i.e. N ∈ ZgA.

Thus we have shown that

ZgtfΛ =
⋃

P

((x = x/P | x) ∩ ZgtfΛ ) ∪ ZgA

where P ranges over maximal ideals of R.

As promised, we now generalise the main results [10] to orders in semisimple algebras. A

large part of the proof is the same as over group rings, but adaptions are sometimes necessary.

Theorem 3.1. Let R be a Dedekind domain with field of fractions Q, and Λ an R-order in a

semisimple Q-algebra A. If N ∈ ZgtfΛ , then either

• N is a simple A-module, or

• there is some maximal ideal P of R such that N ∈ Zgtf
Λ̂P

and N is RP -reduced.

Moreover, if N ∈ Zgtf
Λ̂P

is RP -reduced then N ∈ ZgtfΛ .

Here N being RP -reduced means that ∩∞
i=0NP

i = 0. Recall that Λ̂P is an order over R̂P in

Â = Q̂⊗Q A where Q̂ denotes the field of fractions of R̂P .

Proof. We follow the proof of [10, Theorem 2.1, pp. 1127-1130]. For simplicity we divide our

argument in several steps. Let N be an indecomposable pure injective R-module.

Step 1. For some maximal ideal P of R, N is a module over ΛP .

This step has already been covered in the discussion preceding this theorem. Let π denote a

generator of the maximal ideal PRP of RP .

Step 2. Any ΛP -module divisible and torsionfree over RP is injective over ΛP .

The proof is the same as [10, Claim 2, p. 1128].

Step 3. N , as an RP -torsionfree module over ΛP , decomposes over ΛP as N ′ ⊕N ′′ where N ′′

is RP -divisible (hence an A-module) and N ′ is RP -reduced, i.e. ∩
∞
i=1N

′P i = ∩∞
i=1N

′πi = 0.

To prove this claim, first we put

N ′′ := {m ∈ N | πn|m for all n ∈ N}.

Take n ∈ N, m,m′ ∈ N ′′ and r ∈ Λ. Since m,m′ ∈ N ′′ there exists a, a′ ∈ N such that

m = aπn and m′ = a′πn. Thus mr+m′ = aπnr+a′πn = (ar+a′)πn because π is central. Thus
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N ′′ is a submodule of N . Since N ′′ is RP -divisible by definition, it is injective by Step 2 and

thus a direct summand of N .

Let N ′ be a complement of N ′′ in N . If m ∈ ∩∞
i=1N

′πi then πn|m for all n ∈ N and thus

m ∈ N ′′. So m = 0.

This concludes Step 3.

As N is indecomposable, either

(a) N is an A-module, or

(b) N is RP -reduced.

In the former case N must be a simple A-module. So let us turn to (b). We assume from now

on that N is RP -reduced.

Step 4. Every RP -reduced pure injective ΛP -module M can be equipped with a Λ̂P -module

structure, and M remains pure injective over Λ̂P .

To see this, one proceeds exactly as in [10, pp. 1128-1129]. Suppose r ∈ Λ̂P and m ∈M . For

each i ∈ N, let ri ∈ ΛP satisfy πi|r−ri. For each i ∈ N, look at the equation x−mri = yiπ
i. When

i ranges over N, this set of equations is finitely solvable and so, sinceM is pure injective, solvable

inM . Let n, n′ ∈M be such that πi|n−mri and π
i|n′−mri for all i. Then n−n

′ ∈ ∩∞
i=1Mπi = 0.

Define mr to be the unique element n ∈ M such that πi|n − mri for all i. Note that this

definition of mr does not depend on the particular choice of ri above. If r, s ∈ Λ̂P then mr is

the unique element m1 in M such that πi|m1−mri and ms is the unique element m2 in M such

that πi|m2 −msi. Thus π
i|m1 +m2 −m(ri + si) for all i ∈ N. Hence m1 +m2 = m(r + s).

That M is pure injective as a Λ̂P -module is a consequence of [10, Lemma p. 1129].

Conversely, independently of the assumption that N is RP reduced, every pure injective Λ̂P -

module N remains pure injective after restricting it over ΛP . This is simply because ΛP is a

subring of its P -adic completion. For the same reason any decomposable module over Λ̂P is

decomposable over ΛP . On the other hand the following holds.

Step 5. If N is an RP -reduced indecomposable pure injective Λ̂P -module, then N is indecom-

posable as a Λ-module.

This is explained in [10, Remark 1, p. 1130].

�

The above theorem has shown that, when A is semisimple, RP -reduced R-torsionfree inde-

composable pure injective modules are the same over ΛP and over Λ̂P . Moreover, the set of

RP -reduced R-torsionfree indecomposable pure injective modules are exactly those modules in

the open set (x = x/P | x). For this reason we will sometimes write Zgtf+red

Λ̂P

for this open set.

Note that any module N ∈ ZgtfΛ that can be regarded as a ΛP -module but does not belong

to (x = x/P | x), that is, satisfies N = PN , is an A-module. Furthermore any two different sets

(x = x/P | x) ∩ ZgtfΛ are disjoint from each other. Thus Theorem 3.1 asserts that ZgtfΛ is the

disjoint union of ZgA and of the various Zgtf+red

Λ̂P

where P ranges over maximal ideals of R.
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Now let us deal with the topology. Notice that for every maximal ideal P of R the embedding

of Λ into Λ̂P induces an inclusion of the RP -reduced part of (x = x/P | x) ∩ ZgtfΛ = Zgtf+red

Λ̂P

into ZgtfΛ . By the same argument given in [10, Theorem 2.2] over group rings, this inclusion is

homeomorphic:

Theorem 3.2. Suppose that A = QΛ and Â = Q̂Λ (where Q̂ is the field of fractions of R̂P )

are semisimple. For every maximal ideal P of R, (x = x/P | x)∩ ZgtfΛ = Zgtf+red

Λ̂P

has the same

topology whether viewed as a subspace of Zgtf
Λ̂P

or of ZgtfΛ .

Here we give a different proof of a slightly stronger claim.

First of all, observe that every pp-formula α of LΛP
, α

.
= ∃y(xS = yT ), with S, T matrices of

suitable sizes with entries in ΛP = RPΛ, can be translated into a pp-formula α′ of LΛ equivalent

to α in all R-torsionfree ΛP -modules. To build α′, calculate the product r of all multiplicative

inverses of scalars of R occurring in the entries of S and T . Then r ∈ R \ P , in particular

r 6= 0. Now multiply the previous scalars by r and get α′ as required, as ∃y(xrS = yrT ). In

fact the entries of rS and rT are in Λ. The torsionfree condition guarantees the equivalence to

α. That is, for every R-torsionfree ΛP -module M and m,n in M , r(mS − nT ) = 0 if and only

if mS − nT = 0.

Thus we have to compare ΛP and Λ̂P . We may now assume that R is a discrete valuation

domain and π is a generator of its maximal ideal P ; Q is still the field of fraction of R, A a finite

dimensional Q-algebra, Λ an order over R in A, Λ̂ its π-adic completion. We also assume both

A and Â semisimple, which is true, in particular when A is separable. Under these conditions

we prove the following.

Proposition 3.3. Suppose that R is a discrete valuation domain whose maximal ideal is gen-

erated by π and that both A and Â are semisimple. The closed intervals [π | x, x = x]TfΛ and

[π | x, x = x]Tf
Λ̂
are isomorphic as lattices. Moreover the Ziegler open sets (x = x/π | x) in ZgtfΛ

and (x = x/π | x) in Zgtf
Λ̂

are homeomorphic.

Proof. For 1 ≤ j ≤ n and 1 ≤ k ≤ l, let sj, rjk ∈ Λ̂, and let ϕ be the pp-formula

∃ y1∃y2 . . . ∃yl

n∧

j=1

(xsj +
l∑

k=1

ykrjk = 0).

Further suppose that π|x ≤ ϕ.

For i ∈ N, let sij, r
i
jk ∈ Λ be such that πi | sij − sj and π

i | rijk − rjk. For each i ∈ N, let ϕi be

the pp-formula

∃ y1∃y2 . . . ∃yl

n∧

j=1

πi|(xsij +
l∑

k=1

ykr
i
jk).

Clearly, ϕ ≤ ϕi and ϕi ≥ ϕi+1 for each i ∈ N.

We now show that for all indecomposable pure injective Λ̂-modules N ,
⋂

i∈N ϕi(N) = ϕ(N).
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Since Â is semisimple, every indecomposable pure injective R̂-torsionfree Λ̂-moduleN is either

RP -reduced or R̂-divisible. In the latter case, since ϕi ≥ ϕ ≥ π|x, ϕi(N) = ϕ(N) = N . Hence

assume that N is reduced. Suppose that m ∈ ϕi(N) for all i ∈ N. Then the infinite system of

linear equations

msij +
l∑

k=1

ykr
i
jk = zijπ

i

where i ∈ N, 1 ≤ j ≤ n and 1 ≤ k ≤ l, is finitely solvable. Consequently, since N is pure

injective, it is solvable say with yk = ak ∈ N . So for each 1 ≤ j ≤ n, msj +
∑l

k=1 akr
i
jk ∈ Nπi

for all i ∈ N. Thus, since N is reduced, msj +
∑l

k=1 akr
i
jk = 0. Thus m ∈ ϕ(N).

We now show that there exists an i ∈ N such that ϕi = ϕ. Suppose that ϕ < ϕi for all

i ∈ N with respect to the theory of R̂-torsionfree Λ̂-modules. Let F be the filter generated by

{ϕi | i ∈ N} and I be the ideal generated by ϕ. Since F ∩ I is empty, by [11, 4.33], we can

construct an irreducible pp-type p such that ϕi ∈ p for all i ∈ N and ϕ /∈ p. Now, N(p), the pure

injective hull of p, has an elementm such thatm ∈ ϕi(N(p)) for all i ∈ N butm /∈ ϕ(N(p)). This

contradicts the fact that ϕ(N) =
⋂

i∈N ϕi(N) for all indecomposable pure injective R̂-torsionfree

Λ̂-modules N . Thus ϕi = ϕ for some i ∈ N.

Restriction of scalars gives a lattice homomorphism from pp1Λ(TfΛ) to pp1
Λ̂
(TfΛ̂). We have

shown that the restriction of this map to [π | x, x = x]TfR(Λ) has image [π | x, x = x]Tf
Λ̂
. Suppose

that ϕ > ψ ≥ π|x in pp1Λ(TfΛ). There exists an indecomposable pure injective Λ-module N

such that ϕ(N) ) ψ(N). Since Nπ 6= N , this implies that N is RP -reduced and hence N can

be equipped with the structure of a Λ̂-module. Hence ϕ > ψ as pp-formulas in pp1
Λ̂
(TfΛ̂). Thus

we have shown that [π | x, x = x]TfΛ and [π | x, x = x]Tf
Λ̂
are isomorphic as lattices.

Since both A and Â are semisimple, the open sets (x = x/π|x) ⊆ ZgtfΛ and (x = x/π|x) ⊆ Zgtf
Λ̂

contain exactly the reduced indecomposable pure injective modules. Thus restriction of scalars

gives a bijection from (x = x/π | x) ⊆ Zgtf
Λ̂

to (x = x/π | x) ⊆ ZgtfΛ . Since the sets of the form

(ϕ/ψ) for π | x ≤ ψ < ϕ in pp1Λ(TfΛ) (respectively π | x ≤ ψ < ϕ in pp1
Λ̂
(Tf

Λ̂
)) give a basis for

(x = x/π | x) ⊆ ZgtfΛ (respectively (x = x/π | x) ⊆ Zgtf
Λ̂
), this bijection is a homeomorphism.

�

Proposition 3.4. Let A be semisimple. Then ZgtfΛ has Cantor-Bendixson rank if and only if

ZgA and each Zgtf+red

Λ̂P

, with P a maximal ideal of R, have Cantor-Bendixson rank.

The proof is similar to that at the end of the next Lemma 3.5. So we ask the reader to wait

for that lemma, and a few lines, to see its details.

Next let us deal with the m-dimension of pp1Λ(Tf). Recall the connection between m-dimension

and Cantor-Bendixson rank [12, Corollary 5.3.60], at least under the isolation condition. The

latter requires that for every closed subset C of ZgΛ (indeed, in our case, of ZgtfΛ ) and every

isolated point N of C, there is a pp-pair ϕ/ψ which is minimal such that (ϕ/ψ) ∩ C = {N} (see

[12, 5.3.2]).

We first prove a general statement which we were not able to find elsewhere in the literature.
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Lemma 3.5. Let S be an arbitrary ring, X a closed subset of ZgS and {ϕi/ψi | i ∈ I} a set of

pp-pairs. Then pp1S(X) has m-dimension if and only if [ψi, ϕi]X has m-dimension for all i ∈ I

and pp1S(X\
⋃

i∈I (ϕi/ψi)) has m-dimension.

Proof. If pp1S(X) has m-dimension then pp1S(X\
⋃

i∈I (ϕi/ψi)) has m-dimension since it is a

quotient of pp1S(X) and for all i ∈ I, [ψi, ϕi]X has m-dimension because [ψi, ϕi]X is a sublattice

of ppnS(X) for some n ∈ N.

Now suppose that [ψi, ϕi]X has m-dimension for all i ∈ I and pp1S(X\
⋃

i∈I (ϕi/ψi)) has m-

dimension. We first show that for all N ∈ X, N has an N -minimal pair, i.e. pp1S(N) has a

simple interval.

Firstly, suppose that N /∈ (ϕi/ψi) for all i ∈ I. Then cl(N) ⊆ X\
⋃

i∈I (ϕi/ψi) where cl

denotes closure. Thus pp1S(cl(N)) = pp1S(N) has m-dimension and hence N has an N -minimal

pair.

Now suppose that N ∈ (ϕi/ψi) for some i ∈ I. Since [ψi, ϕi]X has m-dimension, so does

[ψi, ϕi]N . Thus [ψi, ϕi]N contains a simple interval. So N has an N -minimal pair.

Therefore, by [12, 5.3.16], the isolation condition holds for X. So, by [12, 5.3.60], X has

Cantor-Bendixson rank if and only if pp1S(X) has m-dimension. We now show that all points in

X have Cantor-Bendixson rank.

Let α > m-dim[ψi, ϕi]X for all i ∈ I. Then, by [12, 5.3.59], ϕi(M) = ψi(M) for all M ∈

X(α). Therefore X\
⋃

i∈I (ϕi/ψi) ⊇ X(α). Since pp1S(X\
⋃

i∈I (ϕi/ψi)) has m-dimension, so does

pp1S(X
(α)). So X(α) has Cantor-Bendixson rank and hence, X also has Cantor-Bendixson rank.

�

Corollary 3.6. The lattice pp1Λ(TfΛ) has m-dimension if and only if, for all maximal ideals P

of R, [P | x, x = x]TfΛ has m-dimension and pp1QΛ has m-dimension.

Proof. Note that ZgtfΛ \
⋃

P (x = x/P | x) just consists of the R-divisible modules i.e. of modules

over Q⊗ Λ. �

The following is an easy consequence of the beginning of the proof of 3.5.

Remark 3.7. m-dim pp1Λ(TfΛ) ≥ m-dim [P | x, x = x]TfΛ for every maximal ideal P of R, and

m-dim pp1Λ(TfΛ) ≥ m-dim pp1A.

Specialising to the case where A = QΛ is semisimple we get the following.

Lemma 3.8. Suppose that A = QΛ is semisimple and [P | x, x = x]TfΛ has m-dimension for

every maximal ideal P of R. Let α be the least ordinal such that α > m-dim[P |x, x = x]TfΛ for

all maximal ideals P of R. Then m-dimpp1Λ(TfΛ) = α.

Proof. Since A is semisimple, pp1A has m-dimension zero. So by 3.6, pp1Λ(TfΛ) has m-dimension.

Thus the m-dimension of pp1Λ(TfΛ) is equal to the Cantor-Bendixson rank of ZgtfΛ .

Note that X(α) ∩ (x = x/P |x) = ∅ for all maximal ideals P of R. Thus ZgQΛ ⊇ X(α). Since

A is semisimple, all points in ZgA are isolated. Thus X(α+1) = ∅. Thus we just need to show

12



that X(α) 6= ∅. We deal with the cases where α is a successor ordinal and α is a limit ordinal

separately.

Suppose α = β + 1. There exists a maximal ideal P of R such that β = m-dim[P |x, x = x].

Thus X(β) ∩ (x = x/P |x) 6= ∅. Take N ∈ X(β) ∩ (x = x/P |x) and let L be an indecomposable

direct summand of QN . By Lemma 2.7, L is in the closure of N . Thus L ∈ X(α).

Now suppose α is a limit ordinal. For all β < α, there exists a maximal ideal P of R such

that (x = x/P |x) ∩ X(β) is non-empty. Thus X(β) 6= ∅ for all β < α. Since ZgtfΛ is compact,

X(α) =
⋂

β<αX
(β) is non-empty. �

Corollary 3.9. Suppose that A = QΛ is semisimple and pp1ΛP
(TfΛP

) has m-dimension for every

maximal ideal P of R. Then the m-dimension of pp1Λ(TfΛ) is equal to the supremum of the m-

dimensions of pp1ΛP
(TfΛP

) where P ranges over maximal ideals of R. Moreover, if A = QΛ

is separable, the m-dimension of pp1Λ(TfΛ) is equal to the supremum of the m-dimensions of

pp1
Λ̂P

(Tf
Λ̂P

) where P ranges over maximal ideals of R.

We will come back to m-dimension and Cantor-Bendixson rank after dealing with orders of

finite lattice representation type. We will show, in 5.1, that if Λ has finite lattice representation

type then the m-dimension of pp1Λ(Tf) is 1. This will allow us, in 5.2, to improve the above

corollary when QΛ is separable.

4. Applications of Maranda’s Theorem

Let us open a short parenthesis on Maranda’s Theorem [4, § 30A]. Following [4, 30.12], we

assume throughout this section that R is a discrete valuation domain, π is a generator of its

maximal ideal P , Q is the field of fractions of R, A is a finite dimensional separable Q-algebra

and Λ is an R-order in A.

We will deal with the quotient ring Λ/πkΛ, often abbreviated as Λk, for every positive integer

k. Similarly, for every Λ-module M , Mk will denote the quotient module M/πkM . We will

write x for tuples of variables and likewise, as in the previous sections, m for tuples of elements

in a module.

There is a non negative integer, and hence a minimal non negative integer k0 such that

πk0 Ext1(L,N) = 0 for all Λ-lattices L and N (see [4, p. 624]). For instance, when Λ = RG

for some finite group G, then k0 is the largest integer such that |G| ∈ πk0R. Note that, since Λ

is noetherian, Ext1(L,−) is a finitely presented functor from Λ-modules to abelian groups (see

[12, 10.2.35]). Hence πk0 Ext1(L,−) is also a finitely presented functor. As TfΛ is the smallest

definable subcategory of Λ-modules containing all Λ-lattices, it follows that πk0 Ext1(L,N) = 0

for every Λ-lattice L and N ∈ TfΛ.

Maranda’s Theorem [4, Theorem 30.14] says that, under the previous assumptions, if k is any

integer > k0, then any two Λ-lattices M , N are isomorphic over Λ if and only if Mk and Nk are

isomorphic over Λk. Moreover, even decomposability lifts from Mk to M [4, Theorem 30.19].
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A generalization of these results to pure injective Λ-modules is given in a parallel paper [5],

where the following is shown.

Theorem 4.1. Let N , N ′ be R-reduced R-torsionfree pure injective Λ-modules. If Nk ≃ N ′
k for

some integer k > k0, then N ≃ N ′. Moreover, if N is indecomposable over Λ, then the same is

true of Nk over Λk for every k > k0.

On the other hand, let us also mention, again from [5]:

Theorem 4.2. There exists a module N over Ẑ2C(2)2 such that N is torsionfree and reduced

over Z2, Nk is pure injective for all positive integer k but N is not pure-injective.

We propose here some applications of the classical Maranda Theorem to our framework. If

f : M → N is a morphism of Λ-modules, then we will write f for the induced homomorphism

from Mk to Nk (k a positive integer). The following lemma is implicit in the proof of Maranda

Theorem in [4].

Lemma 4.3. Let L be a Λ-lattice and N an R-torsionfree Λ-module. If k > k0 then for all

g ∈ HomΛk
(Lk, Nk) there exists f ∈ HomΛ(L,N) such that for all m ∈ L, πk−k0 +Λπk | (f(m)+

πkM)− g(m+ πkM).

Definition 4.4. Assume k > k0. Let ϕ be a pp-formula of LΛ in l free variables x = (x1, . . . , xl).

Suppose that (M,m) is a free realisation of ϕ, where M is R-torsionfree, so a Λ-lattice, and

that ϕ ≥
∧l

i=1 π
k−k0 | xi. Then let ϕk be the generator of the pp-type of m+ πkM ∈Mk.

Thus ϕk is a pp-formula of LΛk
with l free variables.

Note that ϕk is well defined. In fact, let (M,m) and (N,n) be free realisations of ϕ, with both

M and N Λ-lattices. Then there exist Λ-module morphisms f : M → N and g : N → M such

that f(m) = n and g(n) = m. The homomorphisms f :Mk → Nk and g : Nk →Mk induced by

f and g respectively are such that f(m+ πkM) = n+ πkN and g(n+πkN) = m+πkM . Thus

the pp-type of n+πkN in Nk is equal to the pp-type of m+πkM in Mk, which guarantees that

the above pp-formula ϕk is well defined, as said.

Lemma 4.5. Let k > k0. Suppose that ϕ ∈ pplΛ is freely realised in a Λ-lattice and ϕ ≥
∧l

i=1 π
k−k0 |xi. Then, for all R-torsionfree Λ-modules N and l-tuples n ∈ N ,

n ∈ ϕ(N) if and only if n+ πkN ∈ ϕk(Nk).

Proof. LetM be a Λ-lattice and suppose that ϕ is freely realised by m ∈M . Then, by definition,

ϕk is freely realised by m+ πkM in Mk.

Let N be an R-torsionfree Λ-module. If n ∈ ϕ(N) then there exist a morphism f : M → N

sending m to n. Consequently f :Mk → Nk sends m+πkM to n+πkN . Therefore n+πkN ∈

ϕk(Nk).

Now suppose that n+ πkN ∈ ϕk(Nk). Then there exists a morphism f : Mk → Nk sending

m + πkM to n + πkN . By 4.3, there exists g ∈ HomΛ(M,N) such that g(mi) − ni ∈ πk−k0N
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for all i = 1, . . . , l. Thus n satisfies the pp-formula
∧l

i=1 π
k−k0 | xi +ϕ(x). Since k− k0 ≥ 1 and

ϕ ≥
∧l

i=1 π
k−k0 | xi, n ∈ ϕ(N). �

Given ϕ ∈ ppnΛk
, we define ϕ∗ ∈ ppnΛ such that for all N ∈ Mod -Λ, m ∈ ϕ∗(N) if and only if

m+ πkN ∈ ϕ(Nk). Suppose ϕ
.
= ∃y (xy)T = 0 where T is an appropriately sized matrix with

entries from Λk. Further suppose that Tij := tij+Λπk where tij ∈ Λ. Let T ∗ be the matrix with

entries tij and let ϕ∗ := ∃y πk|(xy)T ∗. A quick computation shows that for all N ∈ Mod -Λ,

m ∈ ϕ∗(N) if and only if m + Nπk ∈ ϕ(Nk) as required. Using this property of ϕ∗, one can

check that for all N ∈ Mod -Λ, the map which sends ϕ(Nk) ∈ ppnΛk
(Nk) to ϕ

∗(N) ∈ ppnΛ(N) is

a lattice homomorphism. Note that (πk−k0 + Λπk|x)∗ is equivalent to πk−k0 |x.

The next proposition applies to arbitrary R-torsionfree Λ-modules. In its statement we write

πk−k0 |x to mean the pp-n-formula
∧n

i=1 π
k−k0 |xi. Recall that, for every pp-formula ϕ(x) ∈ ppnΛ,

ϕ(x) is the pp-formula associated to ϕ(x) defined just before Lemma 2.3.

Proposition 4.6. Let k > k0. The map from the closed interval [πk−k0 |x,x = x] of ppnΛ to the

interval [πk−k0 |x,x = x] of ppnΛk
which sends any ϕ ∈ [πk−k0 |x,x = x] to ϕk ∈ [πk−k0 |x,x = x]

induces a lattice isomorphism from [πk−k0 |x,x = x]N to [πk−k0 + πkΛ|x,x = x]Nk
for all N ∈

TfΛ.

In particular, this lattice isomorphism is inverse to the lattice homomorphism which sends

ψ(Nk) ∈ [πk−k0 + πkΛ|x,x = x]Nk
to ψ∗(N) ∈ [πk−k0 |x,x = x]N for all N ∈ TfΛ.

Proof. First note that πk−k0 |x is freely realised by the n-tuple from Λ with all entries πk−k0 .

Thus πk−k0 |x ≤ ϕ implies πk−k0 |x ≤ ϕ. So ϕk is defined. Suppose πk−k0 |x ≤ ϕ. Then

(πk−k0 , . . . , πk−k0) ∈ ϕ(Λ) = ϕ(Λ). So (πk−k0 + Λπk, . . . , πk−k0 + Λπk) ∈ ϕk(Λk). Hence

πk−k0 + Λπk|x ≤ ϕk.

Recall that (πk−k0 + Λπk|x)∗ is equivalent to πk−k0 |x. So ψ(Nk) 7→ ψ∗(N) defines a lattice

homomorphism from [πk−k0 + πkΛ|x,x = x]Nk
to [πk−k0 |x,x = x]N for all N ∈ TfΛ.

Since, when it exists, the set-wise inverse of a lattice homomorphism is a lattice isomorphism,

it is therefore enough to show that for all N ∈ TfΛ, ϕ ∈ [πk−k0 |x,x = x] and ψ ∈ [πk−k0 +

πkΛ|x,x = x], (ϕk)
∗(N) = ϕ(N) and (ψ∗)k(Nk) = ψ(Nk). But this follows from Lemma 4.5

and the property of ϕ∗ described just before this proposition. �

5. Finite lattice representation type

In this final section we recover our largest setting and we deal with a Dedekind domain R

which is not a field, with its field of fractions Q and with an R-order Λ in a finite dimensional

Q-algebra A.

Recall that Λ is said to be of finite lattice representation type if it has only finitely many non

isomorphic indecomposable lattices. Our aim is to obtain a complete description of ZgtfΛ when

Λ is of finite lattice representation type.

But let us first concern ourselves with the m-dimension of pp1Λ(TfΛ) under the finite lattice

representation type hypothesis.
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Proposition 5.1. Let Λ be an order over a Dedekind domain R. If Λ is finite lattice represen-

tation type then m-dim pp1Λ(TfΛ) = 1.

Proof. Let L1, . . . , Ln be a complete list of indecomposable Λ-lattices up to isomorphism. By

Fact 2.1 and Proposition 2.2, the canonical surjection from pp1Λ(TfΛ) to pp1Λ(⊕
n
i=1Li) is an

isomorphism. Since ⊕n
i=1Li is a Λ-lattice, by Corollary 2.10, pp1Λ(⊕

n
i=1Li) has m-dimension 1.

�

Here is a first consequence of this proposition. Let S(Λ) be the set of maximal ideals P of R

such that ΛP is not maximal. If QΛ is separable then S(Λ) is finite, see [4, p. 642]. Moreover,

see [15, 11.5], ΛP is maximal if and only if Λ̂P is maximal. By [15, 18.1], if Λ̂P is maximal then

Λ̂P is hereditary. So, by [15, 10.6], all Λ̂P -lattices are projective. Finally, since that category

of Λ̂P -lattices is Krull-Schmidt, there are only finitely many indecomposable projective lattices

and hence Λ̂P is finite lattice representation type.

Corollary 5.2. Suppose that QΛ is separable and S(P ) non-empty. The m-dimension of

pp1Λ(TfΛ) is equal to maxP∈S(Λ) pp
1
Λ̂P

(Tf
Λ̂P

).

Proof. By 5.1, if P /∈ S(Λ) then pp1
Λ̂P

(Tf
Λ̂P

) has m-dimension 1. For any maximal ideal P of

R, the m-dimension of pp1
Λ̂P

(Tf
Λ̂P

) is greater than or equal to 1. �

Note that, if S(P ) is empty, then the m-dimension is 1.

The following is a further consequence of Proposition 5.1: if Λ is of finite lattice representation

type, then ZgtfΛ has the isolation property and so its Cantor-Bendixson rank is equal to m-dim

pp1Λ(TfΛ), namely it is 1 (see [12, Proposition 5.3.17]). Let us confirm this conclusion in a

different way, also providing the topological description of ZgtfΛ we promised before. For this

we focus on completions of localizations of Λ at maximal ideals of R, so at complete discrete

valuation domains. First an easy fact - a sort of converse of the main result we are going to

prove.

Proposition 5.3. Let R be a complete discrete valuation domain and Λ an order over R. If

ZgtfΛ has Cantor-Bendixson rank 1 then Λ is finite lattice representation type.

Proof. Let π generate the maximal ideal of R. If N ∈ (x = x/π | x) then N is not π-divisible

and hence by Corollary 2.8 is not closed. Therefore (x = x/π | x) contains only isolated points.

Since (x = x/π | x) is compact, it must be finite. Since all indecomposable Λ-lattices are pure

injective and not π-divisible, Λ is of finite lattice representation type. �

Next we provide the description of ZgtfΛ when Λ is an order over a complete discrete valuation

domain.

Proposition 5.4. Suppose that R is a complete discrete valuation domain with field of frac-

tions Q, Λ is an order over R, A = QΛ is a semisimple Q-algebra and Λ is of finite lattice

representation type. Then the set ZgtfΛ consists exactly of
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• finitely many indecomposable lattices over Λ,

• finitely many simple A-modules.

The indecomposable modules over A are closed points. If N is an indecomposable lattice then a

simple A-module M is in the closure of N if and only if M is a direct summand of QN .

Proof. By Proposition 2.2, the set of indecomposable Λ-lattices is dense in ZgtfΛ . Thus if

N1, . . . , Nn are the indecomposable lattices over Λ, then ZgtfΛ coincides with the closure of

{N1, . . . Nn} and hence of the union of the closures of the Ni with i = 1, . . . , n.

In Proposition 2.6 we showed that any point in the closure of N an indecomposable lattice

which is not equal to N is a closed point. By Corollary 2.8, any closed point is an A-module.

Thus we have shown that ZgtfΛ has exactly the points stated in the proposition.

The description of the topology follows from Lemmas 2.7 and 2.4. �

Corollary 5.5. Assume R and Λ as before, hence in particular Λ of finite lattice representation

type. Let p be a non finitely generated indecomposable pp-type in the theory T tf
Λ of R-torsionfree

Λ-modules. Then p contains all divisibility formulas πk | x for k a positive integer.

Proof. Any element of a simple A-module realizes all these formulas. �

Note that Herzog and Puninskaya verified a similar result for torsionfree modules over 1-

dimensional commutative noetherian local complete domains, see [6, Theorem 6.6].

Now let us come back to a Dedekind domain R and to an R-order Λ in a separable Q-algebra

A. The following hold:

• ([4, Exercise 4.7 p. 99] there are only finitely many maximal ideals P of R such that Λ̂P

is not a maximal order;

• ([4, Proposition 33.1] if Λ̂P is maximal, then it is of finite lattice representation type,

and hence the topology of Zgtf
Λ̂P

is that described in Proposition 5.1.

Recall that this topology is the same both in Zgtf
Λ̂P

and ZgtfΛP
, when restricted to its R-reduced

part (Theorem 3.2).

By the proof of [4, Theorem 33.2], if Λ is of finite lattice representation type then each non

maximal ΛP is.

On this basis it is easy to deduce:

Theorem 5.6. Let R be a Dedekind domain and Λ an R-order in a separable Q-algebra A.

Assume Λ of finite lattice representation type. Then the Cantor-Bendixson rank of ZgtfΛ is 1,

and

• the isolated points are the indecomposable Λ̂P -lattices, where P ranges over maximal

ideals of R,

• the points of Cantor-Bendixson rank 1 are the simple A-modules.
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Let us give some examples illustrating the previous results. The first, over a complete discrete

valuation domain R, was proposed by Gena Puninski. Indeed it is one of the last suggestions

he left to us. So we like to mention it as a tribute to his memory.

Example 5.7. Let R be as just said, π be a generator of its maximal ideal. Let Λ =
(

R R
π2R R

)
(see

[4, p. 779]. Also, let e1, e2 denote for simplicity the idempotents ( 1 0
0 0 ) and ( 0 0

0 1 ), respectively. It

is well known that Λ has finite lattice representation type. In fact Λ is Gorenstein, i.e. projective

modules P1 = e1Λ =
(
R R
0 0

)
(so basically (R,R)) and P2 = e2Λ =

(
0 0

π2R R

)
(hence (π2, R)) are

injective (in the category of lattices). The only remaining indecomposable lattice is P = (πR,R)

(note that
(
πR R
0 0

)
and

(
0 0
πR R

)
are isomorphic as Λ-modules).

Hence a description of ZgtfΛ follows from Proposition 5.4. Anyway let us follow Gena’s ap-

proach for the reasons we said.

First of all, note that, being Gorenstein, Λ admits a unique overorder Λ′ =
(

R R
πR R

)
which is

hereditary; and P is defined over Λ′, i.e. Λ′ is the ring of definable scalars of P . Furthermore

the following is the AR-quiver of Λ

P1
π

##❍
❍❍

❍

P

⊂ ;;✈✈✈✈

π ##❍
❍❍

❍ P

P2

⊂

;;✈✈✈✈

where π denotes the multiplication by π. From that we can see irreducible morphisms in the

category of lattices and the unique almost split sequence:

0 → P
(i,π)
−−−→ P1 ⊕ P2

( π
−i )

−−−→ P → 0 ,

where i denotes inclusion. In detail the two intermediate morphisms act as follows:

• for all a, b ∈ R, (i, π) maps (πa, b) to ((πa, b), (π2a, πb)),

• for all a′, b′, c′, d′ ∈ R, ( π
−i ) sends ((a

′, b′), (π2c′, d′)) to (πa′ − π2c′, πb′ − d′).

Let N be an indecomposable R-torsionfree pure injective Λ-module. First suppose that there

exists 0 6= n ∈ Ne1. Hence look at pointed indecomposable lattices (M,m) such that m ∈Me1.

Up to equivalence (of types realized by m) here is a complete list of them:

• (P1, (π
k, 0)), k ≥ 0,

• (P2, (π
l, 0)), l ≥ 2,

• (P, (πm, 0)), m ≥ 1.

Furthermore the following is the pattern of the module (P1, 0), i.e., the poset of morphisms

from P1 to indecomposable lattices (see [13] for a definition). Here we use an “exponential”

notation: for instance (P1, k) abbreviates (P1, (π
k, 0)).
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(P1,0)
π
%%❑

❑❑
❑

(P,1)

⊃yysss
s π

%%❑
❑❑

❑

(P1,1)
π
%%❑

❑❑
❑

(P2,2)

⊃yysss
s

(P,2)
⊃
yysss
s π

%%❑
❑❑

❑

(P1,2)
π
%%❑

❑❑
❑

(P2,3)

⊃yysss
s

(P,3)
.
.
.

We easily derive that there is a unique (critical over zero) indecomposable non finitely gen-

erated type p in the interval [x = 0, e1 | x] in pp1Λ(TfΛ). Furthermore p is realized by

(1, 0) ∈ (Q,Q) = S, the simple module over A = M2(Q). Thus in this case N ∼= Pi, P or

N ∼= S.

It remains to consider the case when there exists 0 6= n ∈ Ne2. Again look at indecomposable

pointed lattices (M,m) where m ∈ Me2. They form the following pattern, where (P1, k) now

abbreviates (P1, (0, π
k)), and so on.

(P2,0)
⊃
yysss
s

(P,0)
⊃
yysss
s π

%%❑
❑❑

❑

(P1,0)
π
%%❑

❑❑
❑

(P2,1)

⊃yysss
s

(P,1)
⊃
yysss
s π

%%❑
❑❑

❑

(P1,1)
π
%%❑

❑❑
❑

(P2,2)

⊃yysss
s

(P,2)
.
.
.

Then there is a unique indecomposable non finitely generated type q in the interval [x = 0, e2 |

x] which is realized as (0, 1) ∈ (Q,Q) = S. Again we conclude that N ∼= Pi, P or N ∼= S.

This completes the description of the R-torsionfree part of the Ziegler spectrum of our ring.

Example 5.8. The second example concerns an integral group ring ZC(p) with p a prime.

This is of finite lattice representation type (see [4, 33A, in particular p. 690, and 34B]), whence

Theorem 5.6 applies. Here is an explicit description of the torsionfree part of the Ziegler spec-

trum. Let g denote a generator of C(p) and ζp a primitive p-th root of 1 in C, so a root of the

cyclotomic polynomial Φp(t) = tp−1 + tp−2 + . . . + t + 1 ∈ Z[t]. Incidentally, let Φ1(t) = t − 1,

whence tp−1 = Φ1(t) ·Φp(t). Also, let e1 =
1
p
Φp(g) and e2 = 1−e1 be the primitive idempotents

of the algebra QC(p). Thus the points of Zgtf
ZC(p) are the following.
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• First of all, three isolated lattices over Λ = Ẑp C(p), i.e., Λei, i = 1, 2, and Λ itself, in

other words Ẑp, Ẑp(ζp) and Ẑp C(p). In the first two cases g acts as the identity and the

multiplication by ζp, respectively. Moreover ẐpC(p) corresponds to the pullback of Ẑpp

and Ẑp(ζp) via the projections onto Z/pZ sending 1 and ζp into 1 + pZ (see [8]).

• Next, for every prime q 6= p, two more isolated points, Ẑq and Ẑq(ζp) respectively, as

now Ẑq C(p) is their direct sum.

• Finally, two more points of Cantor-Bendixson rank 1, Q and Q(ζp), as QC(p) is again

their direct sum.

The topology is also easy to describe.

• In fact Λe1 = Ẑp, Λe2 = Ẑp (ζp) and Λ = Ẑp C(p) are the only points in the basic

open set (x = x/p | x), and indeed can be isolated, and separated from each other, as

follows: Λ by (
∑

j<p g
j | x / p | x) where

∑
j<p g

j = pe1 (see [3, end of p. 57]) and

Λe1, Λe2 by (e1 | x / pe1 | x), (e2 | x / (1 − ζp)e2 | x) respectively (see [3, proof of

3.3(a)]). Note that, properly speaking, e1 and e2 are not in ZC(p). However, as we are

working in a Z-torsionfree framework we can use here the simple trick of multiplying

every involved scalar by p and expressing the previous open sets as (pe1 | x / p2e1 | x)

and (pe2 | x / p(1− ζp)e2 | x).

• For every prime q 6= p, Ẑq and Ẑq(ζp) are isolated from the other points by (x = x / q | x)

and indeed separated from each other, and hence isolated at all, by ((1+g+ . . .+gp−1) |

x / q | x) and ((1− g) | x / q | x), respectively.

• Q and Q(ζp), that is, QΛe1 and QΛe2, are the points of Cantor-Bendixson rank 1 and

at this level can be separated from each other, for instance, by (x(1− e1)p = 0 /x = 0)

and (x(1− e2)p = 0 /x = 0), respectively.

Example 5.9. Finally let us deal with the integral group ring ZC(p2) with p a prime. This is

again a Z-order of finite lattice representation type. A description of Zgtf
ZC(p2)

, both points and

topology, can be extracted from the classification of lattices over ẐpC(p2) given in [4, 34C p.

730] in terms of extension groups, or in [7] in terms of pullbacks, or also in [3, § 4]. We follow

this third approach. Let g still denote a generator of the group C(p2), e1, e2, e3 be the primitive

idempotents of the algebra QC(p2). Thus

e1 =
1

p2

∑

j<p2

gj =
1

p2
Φp(g)Φp(g

p),

e2 =
1

p2
(p − Φp(g))Φp(g

p), e3 =
1

p
(p − Φp(g

p))

where Φp(t
p) = Φp2(t) is the cyclotomic polynomial of order p2. Then the points of Zgtf

ZC(p2)

are the following.

• Let us start this time from simple QC(p2)-modules, that is, from points of Cantor-

Bendixson rank 1. They are Q, Q(ζp) and Q(ζp2) where ζp and ζp2 are primitive roots

of 1 of order p, p2 respectively.
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• When q is a prime different from p, Ẑq C(p2)-lattices admit a similar description.

• Hence let us focus on Λ = Ẑp C(p2). Indecomposable lattices are now 4p + 1. The

first four are Λ itself and the Λei, i = 1, 2, 3, that is, ẐpC(p2) and then Ẑp, Ẑp(ζp) and

Ẑp(ζp2). In the three last cases g acts as the multiplication by 1, ζp and ζp2 respectively.

The remaining 4p − 3 correspond via the representation equivalence described in [3,

§§ 3 and 4] to the indecomposable objects in the category of finite dimensional Z/pZ-

representations of the directed Dynkin diagram D2p. These can be viewed as tuples

(W, (W s
0h)0<s<p,h=1,2,W1,W2), where

(1) W is a vector space over Z/pZ,

(2) W0 =W 1
01, W1, W2 are subspaces of W such that the sum of any two of them gives

the whole W ,

(3) the W s
0h form an increasing chain of subspaces W0 = W 1

01 ⊆ W 1
02 ⊆ W 2

01 ⊆ W 2
02 ⊆

. . . ⊆W p−1
01 ⊆W p−1

02 =W .

Moreover Butler’s functor uniformly defines in a first order way every such representation

in the associated lattice via quotients of pp-subgroups. Then it suffices for our purposes

to list these indecomposable representations of D2p. In fact they recursively determine

the corresponding lattices as a sort of ID card. As said, they are 4p − 3. In all of them

the dimension of W is either 1 or 2. In the former case, i.e. in dimension 1, we meet

a) 3 points where W0 = W (and hence W s
0h = W for every h and s) and the pair

(W1,W2) is one among (W, 0), (0,W ) and (W,W ),

b) 2p − 3 points where W1 = W2 = W , W0 = 0 and the W s
0h are constantly 0 before

some s and h (h = 1 when s = 1) and then become equal to W .

In the 2-dimensional case, we find 2p − 3 additional points in which W0, W1, W2 are 1-

dimensional subspaces such thatW is the sum of any two of them (and so the intersection

of any two of them is 0), and the W s
0h equal W0 before some s and h (h = 1 when s = 1)

and then coincide with W .

Next let us see the topology, so how to separate isolated points from each other. The case of

primes q 6= p can be handled as for C(p), with slight complications. For instance the open sets

isolating Ẑq, Ẑq(ζp) and Ẑq(ζp2) are now ((1+g+. . .+gp−1) | x∧(1+gp+. . .+gp(p−1)) | x / q | x),

((1 − g) | x ∧ (1 + gp + . . . + gp(p−1)) | x / q | x), ((1 − g) | x ∧ (1 + g + . . . + gp−1) | x / q | x)

respectively. Also the analysis of simple QC(p2)-modules is similar to that of C(p).

Hence let us deal with q = p and with indecomposable lattices over Λ = Ẑp C(p2), those in

(x = x / p | x).

The way to isolate Λ and the Λei (i = 1, 2, 3) is the same as for C(p), by (
∑

j<p2 g
j | x / p | x),

(e1 | x / pe1 | x), (e2 | x / (1 − ζp)e2 | x), (e3 | x / (1 − ζp2)e3 | x) respectively.

The further 4p − 3 points are those in the open set (p2
∑

1≤i≤3 ei | x / p
2 | x) (see the con-

struction in [3, § 3]). To separate them from each other, we can look at the associated rep-

resentations of D2p as abelian structures in their own language, because these representations
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are uniformly pp-definable without parameters in the corresponding lattices. Let us write for

simplicity x ∈ W0, x ∈ W1 and so on to denote the formulas admitting this interpretation in

any given representation. Thus

a) the first 3 points are isolated by (x ∈W0∧x ∈W1 /x ∈W2), (x ∈W0∧x ∈W2 /x ∈W1)

and (x ∈W1 ∧ x ∈W2 ∧ x ∈W0 /x = 0),

b) the following 2p − 3 are isolated by (x ∈ W1 ∧ x ∈ W2 ∧ x ∈ W s+1
01 /x ∈ W s

02) or

(x ∈W1 ∧ x ∈W2 ∧ x ∈W s
02 /x ∈W s

01) for the right s.

Similarly, the last 2p − 3 are isolated by (x ∈ W s+1
01 /x ∈ W s

02 + (x ∈ W1 ∧ x ∈ W2)) or

(x ∈W s
02 /x ∈W s

01 + (x ∈W1 ∧ x ∈W2)) for the right s.

On this basis, one easily deduces the following:

Theorem 5.10. For every prime p, the first order theories of both Z-torsionfree ZC(p)-modules

and Z-torsionfree ZC(p2)-modules are decidable.

In fact, the descriptions of the torsionfree part of the Ziegler spectrum of ZC(p) and ZC(p2)

fit with the conditions of the decidability criterion in [19, Theorem 9.4]and [11, Theorem 17.12].

In fact both an effective list of indecomposable pure injective modules N (possibly through the

related representations of D2p) and, for every such module, an effective list of basic open sets

(ϕ/ψ) around N were already provided. Furthermore straightforward calculations recursively

determine ϕ(N)/ψ(N) from N , ϕ and ψ.

Notice that Theorem 5.10 positively solves expectations in the final lines of [9]. See also [18].
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