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Abstract

BACKGROUND: Stegobium paniceum (Coleoptera, Anobiidae) is an important pest of stored products causing severe damage to
dried Chinese medicinal plant materials (CMPMs). Plant volatiles play an important role in host-searching of insects. The olfac-
tory responses of S. paniceum to the most abundant volatile components of some drugstore attractant CMPMs such as Panax
notoginseng, Angelica sinensis, Gastrodia elata and Peucedanum praeruptorum, namely falcarinol, 3-n-butylphthalide, p-cresol
and ⊎-pinene, respectively, were studied by electroantennography (EAG) and behavioural bioassays in six- and four-arm
olfactometers.

RESULTS: EAG recordings showed that male and female antennae are able to perceive the test compounds in a wide range of
concentrations and in a dose-dependent manner. Moreover, for each dose of different compounds tested, no significant differ-
ences were found between the meanmale and female EAG responses. In six-arm olfactometer bioassays, S. paniceum exhibited
positive responses to falcarinol, 3-n-butylphthalide, p-cresol and ⊎-pinene at doses of 1, 10, 100, 500 and 1000 ∼g. The most
attractive dose was 500 ∼g for falcarinol, 100 ∼g for 3-n-butylphthalide, 500 ∼g for p-cresol and 1000 ∼g for ⊎-pinene. Olfac-
tory preferences of S. paniceum, based on comparison of these four compounds at their optimally attractive concentrations
in a four-arm olfactometer, were 3-n-butylphthalide > p-cresol > falcarinol > ⊎-pinene.

CONCLUSION: The results indicated that the four volatiles of CMPMs are perceived by the peripheral olfactory system of
S. paniceum adults and are able to individually elicit a positive chemotaxis in S. paniceum adults confirming the role of chemical
cues in host-plant detection and selection of this pest. Further field studies are needed to evaluate the potential of the attrac-
tive compounds identified in this study, particularly 3-n-butylphthalide, to be applied as a novel monitoring and control tool
against this storage-beetle pest.
© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
The drugstore beetle, Stegobium paniceum L. (Coleoptera, Anobii-
dae), is a worldwide pest of stored products. This cosmopolitan
insect consumes a wide range of dried plant products, including
biological specimens in museum collections.1–3 Stegobium. pani-
ceum adults typically gnaw their way into food storage containers
causing direct damage, and then proceed to lay eggs in the stored
products. The hatched larvae then infest these stored materials,
with the dead beetles and other wastes remaining inside, causing
further spoilage and economic loss.1,2

Currently, fumigants (e.g. phosphine) are considered to provide
the most effective means of protecting and disinfesting stored
food and other products.4,5 However, the repeated and intensive
use of various fumigants has resulted in serious problems, includ-
ing residues with hazard for human health, pest resistance, pest
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resurgence and lethal effects on nontarget organisms.6 Therefore,
the development of effective alternativemethods to control pests
of stored products is needed. Integrated pest management (IPM)
is considered a more sustainable and environmentally friendly
control strategy for combatting these pests.3,5,7

Behavioural manipulation based on the responses of insects to
special environmental factors is now an important method of pest
control. Thus, certain repellents and attractants, whose functional
components are derived from specific plants, are applied to
manipulate the behaviour of insects to protect stored products
from pest infestation.8–11 In our previous study, S. paniceum adults
showed significant preferences for volatiles released from several
Chinese medicinal plant materials (CMPMs).12 However, specific
volatile components of CMPMs that attracted S. paniceum were
not identified.
Medicinal plants are widely grown in China andmake a substan-

tial contribution to the economy. S. paniceum is themain pest spe-
cies responsible for major losses of stored CMPMs in many
provinces of China.1 Because most of these CMPMs are stored
before use in human health protection and disease treatments,
it is important to devise methods for the management of
S. paniceum without risk of contamination of the products. There-
fore, there is a keen interest in the development of botanical pes-
ticide alternatives to chemical insecticides for S. paniceum control.
Indeed, there is a long history of using botanical insecticides to
protect stored products from insect pests.10,13,14 However, volatile
compounds or other plant products also could be developed as
attractants or repellents for pest management. In our previous
study, volatile blends from various CMPMs, including Panax noto-
ginseng (Burkill) F.H.Chen (Apiales: Araliaceae), Angelica sinensis
(Oliv.) Diels (Apiales: Apiaceae), Gastrodia elata Blume (Aspara-
gales: Orchidaceae) and Peucedanum praeruptorum Dunn
(Apiales: Apiaceae), were strongly attractive to S. paniceum,
with the most abundant components of these four CMPMs
being falcarinol, 3-n-butylphthalide, p-cresol and ⊎-pinene,
respectively.12

In the present study, the olfactory responses of S. paniceum to
these compounds were investigated by electroactennographic
(EAG) tests to assess the sensitivity of male and female
S. paniceum antennae to the test compounds and by six- and
four-arm olfactometer bioassays to evaluate the insects' beha-
vioural response to different concentrations of the same com-
pounds. Such information will help to further elucidate the roles
of chemical signals in host selection by S. paniceum and provide
a basis for further field studies aiming at developing semiochem-
ical-based strategies for the safe and effective control of this bee-
tle pest.

2 METHODS AND MATERIALS
2.1 Insect rearing
Stegobium paniceum have been reared in the laboratory of the
Department of Biology and Engineering of Environment, Guiyang
University since 2017 and maintained on jujube (Ziziphus jujuba
Mill.); a laboratory colony from the same population was estab-
lished at the Department of Agriculture, Food, Natural Resources
and Engineering, University of Foggia. The beetles were reared
at 28 ± 1 °C, 60 ± 5% relative humidity, and 8 h:16 h, light:dark
photoperiod (photophase 09:00 h and 17:00 h), as reported by
Li et al.1 Secondary infestation by moisture-sensitive mites was
prevented using the method of Steiner et al.15

2.2 Odour stimuli
Falcarinol was purchased from GlpBio (Montclair, NJ, USA), p-cre-
sol and ⊎-pinene were purchased from Dr. Ehrenstorfer GmbH
(Augsburg, Germany), and 3-n-butylphthalide was purchased
from Toronto Research Chemicals (North York, Canada). For each
compound, mineral oil (Sigma-Aldrich, Milan, Italy) solutions to
be used as test stimuli for EAG (0.001, 0.01, 0.1, 1, 10 μg μL−1)
and olfactometer (0.1, 1, 10, 50 and 100 μg μL−1) bioassays were
prepared. Solutions were stored at −20°C until needed.

2.3 Electroantennography (EAG)
The antennal sensitivity of S. paniceum males and females to
increasing concentrations of the four test compounds was evalu-
ated by EAG using the technique described in our previous stud-
ies.16,17 The head of a one-week-old specimenwas excised using a
scalpel and seated between two glass capillary (Micro-glass,
Naples, Italy) electrodes filled with Kaissling saline solution18 and
mounted in stainless steel electrode holders (Syntech Laborato-
ries, Hilversum, the Netherlands). The recording electrode (diame-
ter ∼ 100 μm) was put in contact with the dorsal surface of the
last antennal segment while the neutral electrode was inserted
into the base of the head. AgCl-coated silver wires were used to
maintain the electrical continuity between the antennal prepara-
tion and an AC/DC UN-6 amplifier in DC mode (Syntech Laborato-
ries). The amplifier was connected to a PC equipped with the EAG
2.0 program (Syntech Laboratories).
For each test compound, 10 μL of different mineral oil solutions

giving the 0.01, 0.1, 1, 10 and 100 μg doses, was adsorbed onto a
filter paper (Whatman No. 1) strip (2 cm2) inserted in a Pasteur
pipette (15 cm long) which was used as an odour cartridge. Using
a disposable syringe, vapour stimuli (3 cm3) were puffed for 1 s
(0.35 m s−1) into a charcoal-filtered and humidified air flow
(500 mL min−1) passing over the antenna through a stainless-
steel delivery tube [1 cm inner diameter (i.d.)] whose outlet was
positioned ∼1 cm from the antenna. Control (10 μL mineral oil)
and standard (5 μL of 10 μg μL−1 (Z)-3-hexenol mineral oil solu-
tion; Sigma-Aldrich) stimuli also were applied at the beginning
of the experiment and after each group of four test stimuli. The
intervals between stimuli were 1 min. Each dose of the four com-
pounds was tested on five different antennae from different
males and females.
The maximum amplitude of negative polarity deflection (–mV)

elicited by a stimulus was used to measure the EAG responses.17

To compensate for solvent and/or mechanosensory artifacts, the
absolute amplitude (mV) of the EAG response to each test stimu-
lus was subtracted by the mean EAG response to the two nearest
solvent controls.18 Moreover, to compensate for the decrease in
the antennal responsiveness during the experiment, the resulting
EAG amplitude was corrected according to the reduction of the
EAG response to the standard stimulus.19 Dose–response curves
were calculated based on the corrected EAG values.

2.4 Six-arm olfactometer bioassays
The behavioural responses of adult S. paniceum to falcarinol, 3-n-
butylphthalide, p-cresol and ⊎-pinene solutions were evaluated in
a six-arm olfactometer according to the method reported by Cao
et al.20 Each armwas connected to a 25-mL glass vessel via Teflon®
tubing, and each glass vessel contained a test or control stimulus
(10 μL). Aliquots (10 μL) of each of the five concentrations (0.1, 1,
10, 50 and 100 μg μL−1) of each compound and mineral oil (used
as control), adsorbed onto a filter paper disk (1.0 cm diameter),
were used as stimuli.
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In order to drive the odour source towards the insects, the air-
flow was set at 200 mL min−1. Stegobium paniceum unsexed
adults, 2–3 days postemergence and starved for 4 h, were intro-
duced into the olfactometer in groups of 180 individuals, using
a brush. After 30 min, S. paniceum that entered the arms of the
olfactometer were counted and considered as either having
made a choice for a particular odour source, or were considered
as ‘nonresponders’. Bioassays were replicated six times and car-
ried out between 09:00 h and 17:00 h, at room temperature (RT;
25 ± 1 °C). After each replication, the olfactometer was cleaned,
dried and the arms were rotated (60°).12

2.5 Four-arm olfactometer bioassays
In the six-arm olfactometer bioassays, falcarinol, 3-n-
butylphthalide, p-cresol and ⊎-pinene showed the highest
attractiveness to S. paniceum at concentrations of 50, 10, 50
and 100 μg μL−1, respectively. Therefore, the attractant power
of the four compounds at their optimal concentrations were
compared in a four-arm olfactometer, using the method of Liu
et al.21 The olfactometer consisted of a central glass chamber
(15 cm i.d., 6 cm length) with four arms (1.5 cm i.d., 10 cm
length), each connected to a glass tube (1.5 cm i.d., 20 cm
length). Each arm was connected via Teflon® tubing to a 25-
mL glass vessel that contained the test or control stimulus
(10 μL), and the airflow was set at 200 mL min−1. Beetles were
introduced into the central part of the olfactometer chamber
in groups of 120 individuals. ‘Responders’ and ‘nonresponders’
were determined using the criteria described for the six-arm
olfactometer bioassays. Bioassays were replicated six times
and were carried out between 09:00 a.m. and 5:00 p.m, at RT
(25 ± 1 °C). After each replication, the olfactometer was
cleaned, dried and the arms were rotated (90°). The odour treat-
ments were set as follows:

(1) mineral oil, falcarinol, 3-n-butylphthalide and p-cresol;
(2) mineral oil, falcarinol, 3-n-butylphthalide and ⊎-pinene;
(3) mineral oil, falcarinol, p-cresol and ⊎-pinene;
(4) mineral oil, 3-n-butylphthalide, p-cresol and ⊎-pinene.

2.6 Statistical analysis
In order to verify antennal activation, the corrected mean EAG
response of males and females to the last dilution of each test
compound was compared to a ‘0’ value using one-sample Stu-
dent's t-test and regarded as ‘activated’ if significant at P = 0.05.
Saturation level was taken as the lowest dilution at which the
mean response was equal to or less than the previous one.22

The mean EAG responses of males and females to each stimulus
were compared using Student's t-test for independent samples
at P = 0.05. Male and female EAG responses to each test stimulus
were not significantly different; therefore, they were pooled and
analyzed together. For each of the 0.1, 1, 10 and 100 μg doses
of the four compounds the mean EAG responses of adult
S. paniceum were submitted to ANOVA followed by Tukey's hon-
estly significant difference (HSD) test (P = 0.05) for separation of
means. Data were log10x-transformed to satisfy the assumption
of normality (Shapiro–Wilk test) and assessed for homogeneity
of variances (Levene's test) before ANOVA.
Because there was no difference in response to odour stimuli

between S. paniceum males and females,12 the male and female
responses in different behavioural bioassays were pooled and
analyzed together. The numbers of insects found in the different
arms of the six-arm and four-arm olfactometers were subjected

to Friedman two-way ANOVA by ranks and, in the case of signifi-
cance (P < 0.05), the Wilcoxon signed ranks test was used to
determine differences among means. All statistical analyses were
performed using SPSS 18.0 for Windows (SPSS Inc., Chicago,
IL, USA).

3 RESULTS
3.1 EAG
The EAG responses of S. paniceum males and females to increas-
ing doses of falcarinol, 3-n-butylphthalide, ⊎-pinene and p-cresol
are reported in Fig. 1. All compounds elicited measurable EAG
responses starting from the 0.1-μg dose (P < 0.05 in all one-sam-
ple Student's t-test). In the dose range tested, typical sigmoid-
shaped dose–responses were elicited by test compounds in both
males and females. The mean EAG response to the highest dose
was higher than that to the previous dose for all compounds indi-
cating that no saturation of olfactory receptors occurred at the
lowest dose. For each dose of the four compounds no significant
differences were found between the mean EAG responses of
males and females (falcarinol: t = 0.447–1.965, df = 8, P = 0.086–
0.667; 3-n-butylphthalide: t = 1.095–1.843; df = 8, P = 0.103–
0.305; ⊎-pinene: t = 0.485–1.818; df = 8, P = 0.107–0.640; p-cresol:
t = 0.615–1.175; df = 8, P = 0.274–0.556).
ANOVA revealed significant differences among the mean

pooled male and female EAG responses to the four compounds
at the 0.1 (F = 89.598, df = 3, P < 0.001), 1 (F = 34.870, df = 3,
P < 0.001), 10 (F = 34.216, df = 3, P < 0.001) and 100 μg
(F= 28.813, df= 3, P < 0.001) doses. At 0.1, 1 and 10 μg, the mean
EAG responses elicited by 3-n-butylphthalide were significantly
higher than those induced by falcarinol, p-cresol and ⊎-pinene
(P < 0.05, Tukey's HSD test) (Fig. 2). At 100 μg, the EAG responses
to 3-n-butylphthalide and falcarinol were statistically similar and
significantly higher than those to p-cresol and ⊎-pinene
(P < 0.05, Tukey's HSD test).

Figure 1. Mean (± SE) EAG dose–response curves of male and female
S. paniceum antennae to ascending doses of falcarinol, 3-n-butylphthalide,
p-cresol and ⊎-pinene. For each dose, mean male and female EAG
responses were not significant different (Student's t-test for independent
samples, P = 0.05).
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3.2 Six-arm olfactometer bioassays
In these bioassays, mineral oil controls were significantly
less attractive than all doses tested of falcarinol (Friedman
test: χ2 = 29.498, df = 5, P < 0.001; Wilcoxon tests: P = 0.027–
0.028), 3-n-butylphthalide (Friedman test: χ2 = 29.238, df = 5,
P < 0.001; Wilcoxon tests: P = 0.026–0.027), p-cresol (Friedman
test: χ2 = 29.238, df = 5, P < 0.001; Wilcoxon tests: P = 0.027–
0.028) and ⊎-pinene (Friedman test: χ2 = 29.048, df = 5,
P < 0.001; Wilcoxon tests: P = 0.026–0.028) (Fig. 3).
There also were significant differences in attractiveness among

different doses of each compound. Significantly more insects
entered the arms connected to the vessels that contained
500 μg falcarinol (Wilcoxon tests: P = 0.024–0.028), 100 μg (Wil-
coxon tests: P = 0.027) and 500 μg (Wilcoxon tests: P = 0.024–
0.027) of 3-n-butylphthalide, 500 μg (Wilcoxon tests: P = 0.026–
0.027) and 1000 μg (Wilcoxon tests: P = 0.027–0.028) of p-cresol,
and 500 μg (Wilcoxon tests: P = 0.024–0.027) and 1000 μg (Wil-
coxon tests: P = 0.027) of ⊎-pinene relative to the arms with the
other doses (Fig. 3).

3.3 Four-arm olfactometer bioassays
Based on the results of six-arm olfactometer bioassays, the most
attractive doses of falcarinol, 3-n-butylphthalide, p-cresol and
⊎-pinene were 500, 100, 500 and 1000 μg, respectively. Using
these doses, the compounds were compared in multiple-choice
tests carried out in four-arm olfactometer bioassays (Fig. 4). In all
experiments, mineral oil, the control, was the least attractive stim-
ulus chosen. The beetles significantly preferred 3-n-butylphtha-
lide to p-cresol and falcarinol (χ2 = 18.000, df = 3, P < 0.01), to
falcarinol and ⊎-pinene (χ2 = 18.000, df = 3, P < 0.01), and to p-
cresol and ⊎-pinene (χ2 = 18.000, df = 3, P < 0.01). Insects were
significantly more attracted to p-cresol than to falcarinol and
⊎-pinene (χ2 = 18.000, df = 3, P < 0.01) (Fig. 4).

4 DISCUSSION AND CONCLUSIONS
Phytophagous insects rely on semiochemicals to locate suitable
food materials, and mating and oviposition sites.23–25

Qualitatively and quantitatively different blends of volatiles from
different plant species allow insects to discriminate and locate
their preferred host plants.25,26 The stored-product pests,
Sitophilus oryzae (L.),27 S. zeamais Motschulsky,28,29 S. granarius
(L.) (Colepotera, Curculionidae),24 Oryzaephilus surinamensis (L.)
(Coleoptera, Silvanidae)30 and Callosobruchus maculatus (F.) (Cole-
optera, Bruchidae),31 have beenwidely reported to be attracted to
particular volatiles from some cereals and other stored products.
In our previous investigation, S. paniceum showed significant

olfactory preferences for the volatiles of four CMPMs (i.e.
P. notoginseng, A. sinensis, G. elata and P. praeruptorum). In the
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present study, falcarinol, 3-n-butylphthalide, p-cresol and
⊎-pinene, as the most abundant volatiles of the aforementioned
CMPMs, respectively, were shown to be perceived by the

peripheral olfactory systems of S. paniceum males and females
in a dose-dependent manner.
Once the electrophysiological activity of the four compounds

was ascertained, their biological activity was further investigated
in six- and four-arm olfactometer bioassays. All compounds were
significantly attractive to S. paniceum in a range of concentrations
(0.1–100 μg μL−1) andwhen the four compounds were compared
at their optimally attractive concentrations, the order of olfactory
preferences was 3-n-butylphthalide > p-cresol > falcarinol > ⊎-
pinene. Therefore, it seems that, amongst these volatiles, 3-n-
butylphthalide has the greatest potential for development as a
lure for S. paniceum. Although it is well-known that the beha-
vioural response elicited by a compound is not directly related
to its electrophysiological activity, it is worth noting that, in the
dose range tested, 3-n-buthylphthalide also was the strongest
antennal stimulant of S. paniceum adults. This compound has a
wide range of pharmacological effects and is widely used for the
treatment of ischaemic stroke because of its low toxicity and
safety.32 It also showed neuroprotection by reducing ⊎-amyloid-
induced toxicity in neuronal cells.33 Furthermore, it was shown
to possess larvicidal and adulticidal activity against Drosophila
melanogaster (Meig)34 and antifungal activity against Candida
albicans (CP Robin) Berkhout.35 In a previous study, of 33 plant
species tested, the Angelica sinensis essential oil (EO) showed
the best repellent activity against Aedes aegypti (L.), and 3-n-
buthylphthalide was identified as one of the main EO compo-
nents.36 However, to the best of our knowledge, there are no
reports investigating the behavioural response of any insect spe-
cies to this compound.
More than 40 years ago, a female-produced sex pheromone of

S. paniceum was identified,37,38 and has received commercial
interest for pest monitoring in herbarium collections.39–41 Com-
bined application of host plant volatiles and pheromones might
be more effective for monitoring and control of S. paniceum, as
shown for other pests.27,42–46

Interestingly, the order of olfactory preference of S. paniceum for
the odours of the abovementioned CMPMs previously was shown
to be P. notoginseng > A. sinensis > G. elata > P. praeruptorum,12

whereas the preference ranking for their main components at
the most attractive dose was 3-n-butylphthalide (A. sinensis) >
p-cresol (G. elata) > falcarinol (P. notoginseng) > ⊎-pinene
(P. praeruptorum). This discordance might result from differences
in the levels of the most abundant compounds among the vola-
tiles from the four CMPMs, under natural conditions. In addition,
although insects exhibited responses to individual compounds,
their behaviour also can be influenced by specific blends of vola-
tiles.47–49 Further research is needed to determine the beha-
vioural activity of additional individual volatiles of these four
CMPMs and their various blends to confirm the functional com-
pounds and/or mixtures, which mediate the behavioural
responses involved in the olfactory preferences of S. paniceum
to different CMPMs. In addition, additive or synergistic attractants
might be identified for the management of this pest beetle based
on these bioassays.
This study confirmed that semiochemical volatiles participate

directly in the interactions between S. paniceum and host CMPMs.
Two parasitic wasps, Lariophagus distinguendus Forster and
Theocolax elegans Westwood, which are natural enemies of
S. paniceum, are attracted to volatiles of stored cereal grains which
represent the preferred substrates of their hosts.16,22,50 Therefore
volatile compounds identified from CMPMs that could be attrac-
tive to both S. paniceum and S. paniceum parasitoids deserve
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Figure 4. Olfactory responses of S. paniceum to falcarinol, 3-n-butyl
phthalide, p-cresol and ⊎-pinene (at their most attractive concentrations)
in a four-arm olfactometer. The control wasmineral oil, and the tested con-
centrations for falcarinol, 3-n-butylphthalide, p-cresol and ⊎-pinene were
50, 10, 50 and 100 μg μL−1, respectively. Each box plot represents the
median and its range of dispersion (lower and upper quartiles and out-
liers). Above each box plot, different letters indicate significant differences
(Wilcoxon test, P < 0.05).
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further research. This information could provide a theoretical
framework for establishing a biocontrol system, based on CMPM
volatiles, in which parasitoids are used to control S. paniceum
infesting CMPMs.
Overall, this study demonstrated that semiochemical volatiles of

CMPMs are involved in host-plant selection by S. paniceum. It also
showed how individual compounds previously identified as the
main volatile components of different attractive CMPMs are able
to stimulate the peripheral olfactory systems and elicit a positive
chemotactic response in adult drugstore beetle. The most attrac-
tive 3-n-butylphthalide found in this study provides a basis for fur-
ther field-trapping experiments to develop semiochemically-
basedmonitoring tools and direct control options for S. paniceum.
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