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Abstract: The nervous and immune systems go hand in hand in causing inflammation and pain.
However, the two are not mutually exclusive. While some diseases cause inflammation, others are
caused by it. Macrophages play an important role in modulating inflammation to trigger neuropathic
pain. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has a well-known ability
to bind with the cluster of differentiation 44 (CD44) receptor on classically activated M1 macrophages.
Resolving inflammation by varying the molecular weight of HA is a debated concept. HA-based drug
delivery nanosystems such as nanohydrogels and nanoemulsions, targeting macrophages can be
used to relieve pain and inflammation by loading antinociceptive drugs and enhancing the effect of
anti-inflammatory drugs. This review will discuss the ongoing research on HA-based drug delivery
nanosystems regarding their antinociceptive and anti-inflammatory effects.
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1. Introduction

In response to environmental factors and noxious stimuli, the body uses pain as a
defence mechanism. Pain is a proactive beneficial immune response in the acute phase,
but neuropathic pain becomes problematic in the chronic phase. The nociceptive sensory
neurons (nociceptors) activate the neuropathic pain signal, but the immune system also
plays a significant role in defining the active bidirectional crosstalk between pain and
inflammation [1]. Nociceptors can control innate and adaptive immune functions by
releasing neuropeptides and neurotransmitters [2–5]. In response, neuronal plasticity and
chronic pain can be controlled by mediators (lipids, cytokines, and growth factors) released
by the immune cells [6–8]. The signals and messages sent by the nervous system are
propagated in milliseconds. This is theorised to be partly why nociceptors are ideally
positioned to be first responders to pathogens and tissue injury. Nociceptors release
neuropeptides in adverse situations that activate the macrophages of the immune system
to control neuropathic pain and inflammation. Increasing evidence from studies shows that
macrophages can induce and resolve pain via macrophage–nociceptor interactions [9–11].

Inflammation is a complicated process. It was previously known to be a response to
infection; however, in recent years, inflammation was found to cause multiple diseases:
atherosclerosis [12], depression [13], Alzheimer’s [14], obesity [15], etc. [16,17]. The eleva-
tion of inflammatory markers (C-reactive protein) or release of pro-inflammatory cytokines
can be detected to confirm its presence [18]. Even a minimal increase in the expression of
these markers increases the risk of inflammation, which is abnormal without an externally
harmful stimulus. An unhealthy lifestyle can be a cause of abnormal inflammation [19–21].

However, inflammation, in some cases, can be due to easily defined causes such
as gastritis [22], arthritis [23], neurodegenerative diseases [24] and sepsis [25], where
inflammation is called a necessary evil. This is likely a part of the first line of defence, but it
is also necessary to keep it in check before chronic derelict harm is caused to the host [26].
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Derived from monocytes (M0), macrophages can polarise, becoming either pro-
inflammatory or classically activated (M1), or anti-inflammatory or alternatively activated
(M2) [27]. M1 macrophages activate pro-inflammatory cytokines and chemokines, which
initiate and modulate the inflammatory immune response [28].

M1 macrophages have a flat, round cell shape, whereas M2 macrophages are elongated.
The macrophage phenotype varies depending on the environmental stimulus as McWhorter
et al. proved in a study in which they tested if the elongation of cells could manipulate
the macrophage phenotype [27]. M0 exposed to elongated channels expressed arginase-1
(Arg-1), a marker for M2, and those exposed to wider channels expressed inducible nitric
oxide synthase (iNOS), a marker for M1. The modulation of cytokines due to factors
such as viruses [29], infections [30] and fibrosis [31] can also manipulate macrophage
phenotype. Extensive studies are being conducted to imitate body functions and cytokine
expressions to obtain a better understanding of the complicated mechanism of action of
macrophage polarisation.

Recent technology and brainstorming have led to several nanosystem designs that
can directly target M1 for its antinociceptive activities. Ligand-specific nanosystems can
directly target individual macrophage receptors to manipulate cytokine release, modulate
phenotype expression and protect the cargo from clearance by the reticuloendothelial
system (RES) [32,33].

Cluster of differentiation 44 (CD44) is a glycoprotein receptor that is heavily expressed
on the surface of macrophages and tumour cells. It is also a well-known receptor for
hyaluronic acid (HA) [34,35], which is a large natural polysaccharide. Hence, the use
of HA has been widely studied in cancer research. The chemical composition of HA is
repeating units of D-glucuronic acid and N–acetyl-d-glucosamine [33]. A hydrogen bond
is formed between the C6-hydroxy group of HA with an N-terminus of CD44 to stabilize
the binding [36].

CD44 receptor is present in all immune cells but its binding with HA is dependent on
the homeostatic conditions of the body [37]. HA is heavily present in the extracellular matrix
(ECM) during homeostatic conditions due to its ability to retain water [38,39]. Under these
conditions, alveolar macrophages (displaying a distinct hybrid M1/M2 phenotype [40])
are the only immune cells to bind to HA [37]. However, under inflammatory conditions,
reactive oxygen species and nitrogen species break down HA into smaller fragments [41]
that undergo phagocytosis by macrophages via CD44-mediated uptake. Lee-Sayer et al.,
theorised that the binding of HA with CD44 during inflammation assists in keeping the
macrophages at the site of inflammation and further aids in their function [37]. Therefore,
there is minimal HA-CD44 binding under homeostatic conditions.

M1 macrophages have the highest surface presence of the CD44 receptor of all pheno-
types [42]. Since chronically inflamed tissue shows a consistent presence of M1, studies
were performed to design drug delivery systems that target the CD44 receptors of these M1
to polarise their phenotype to M2 [43].

‘Nanoparticles’ is an umbrella term for nanohydrogels, self-assembling nanosystems,
nanoemulsions, nanocomposites, etc. Nanoparticles of HA can be altered in many ways,
including structurally and chemically, for drug-loading purposes, surface modifications,
transdermal delivery or nanoparticle uptake at the target site. Particle size affects the
mode of cellular uptake and the efficiency with which they can pass through the body
without being cleared by the RES, lungs, liver or spleen. If the particle size is small
(10–20 nm), particles are less likely to be taken up by macrophages, which is a problem
when targeting macrophages, for example, during therapy for pain and inflammation.
The clearance rate for large particles (>1 µm) is also high, since they tend to aggregate.
Therefore, it is suggested that the particle size for drug delivery should be between 20 nm
and 1 µm [44–46].

In this review, we focus on the exploitation of HA-based drug delivery nanosystems
for optimal CD44 targeting to suppress acute and chronic inflammation and, subsequently,
neuropathic pain.
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2. HA and Inflammation: Influence of Molecular Weight

Different molecular weights (MW) of HA are present in all biological tissues and
fluids [47] (Figure 1). Indigenously, high-molecular-weight (HMW) HA is found, which is
then degraded into smaller fragments of low molecular weight (LMW) depending on the
environmental factors [48,49]. This degradation of HA is essential for a number of bodily
functions, for instance, as a lubricant in the synovial fluid [48,50].
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The manipulation of MW of HA in drug delivery systems can lead to analgesic, anti-
inflammatory and immunostimulatory results [48–51]. Although there is a lack of detailed
research on the specificity of the antinociceptive effects of HA of different MW, it is widely
accepted that HMW HA inhibits the activation of lipopolysaccharide (LPS) by directly
binding to the toll-like receptor-4 (TLR-4) under inflammatory conditions [52].

To maintain proper functioning, there needs to be a balance between the quantity of
HA being produced and degraded in the body [48]. The MW of HA is controlled through
the body by shifting between its cellular uptake and degradation under homeostatic
conditions. The enzymes hyaluronidases control the degradation of HA [53,54]. Two types
of hyaluronidases (HYAL), HYAL1 and HYAL2, are involved in the active degradation
of HA. While HYAL1 targets LMW HA, HYAL2 is known for breaking down HMW HA
chains to 20 kDa [53].

There is a long-running debate in the research regarding the pro/anti-inflammatory
properties of HAs of different molecular weights. Studies, including that of Isa et al., have
suggested that HMW HA is shown to have anti-inflammatory properties by inhibiting
the production of interleukin-1β, one of the more prominent inflammatory cytokines,
and that LMW HA is a promoter of inflammation [55–60]. Baeva et al. provided the
explanation that the breakdown of longer chains of HMW HA by HYAL2 produces HAs
with fewer disaccharides of LMW HA that accumulate at inflamed sites to activate the
nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB) pathway [58]
(Figure 2). However, results from the HA hydrogel osteoarthritis (OA) therapy study by
Agas et al. showed that LMW HA (37,900 Da) promotes anti-inflammatory properties. The
LMW HA hydrogel significantly lowered the expressions of pro-inflammatory cytokines,
tumour necrosis factor-alpha (TNF-α) and interleukin (IL)-1 [59]. Chernos et al. performed
anti-inflammatory studies on human cell lines with butyrylated derivatives of LMW HA to
provide optimal visco-supplements for OA therapy [56]. Chistyakov et al. also noted that
long-term exposure to LMW HA can suppress the inflammation induced by the TNF-α
pathway [61]. Inflammation is a complex mechanism that involves two major human
systems, the nervous system and the immune system. Ongoing research is attempting to
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unravel the mysteries that surround the molecular weights of HA and their effect on pain
and inflammation; however, there is no sure way to say which molecular weight causes,
and which resolves, inflammation at present.
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3. HA-Based Nanosystems

HA-based nanosystems can be categorised in a number of ways, such as nanohy-
drogels, nanoparticles and self-assembling nanosystems (Figure 3). A variety of delivery
system designs have been considered for this review that display the vast potential of using
HA to counter inflammation, which is notoriously at the root of many chronic diseases.
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3.1. Drug Delivery Systems

Drug delivery systems describe how the drugs are carried into and throughout the
body. The following studies use HA to load drugs that are further tested in vitro and/or
in vivo.

Nanohydrogels are three-dimensional (3D)-polymeric networks of nanoscale dimen-
sions, with a crosslinked structure that gives them potential flexibility and versatile be-
haviour [62,63]. They have the dual advantage of hydrogels, allowing for the high encap-
sulation efficiency of hydrophilic compounds, and of nanostructures, allowing for high
cellular internalisation [64]. Environmental stimuli such as temperature and pH can be
used to develop site-specific nanoparticles which makes them an optimal choice for novel
theranostic applications [65–67].

Quagliariello et al. synthesized a quercetin-loaded HA nanogel for its anti-inflammatory
effect in breast tumour cells [68]. The 200 kDa HA that was used provided protection to the
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drug from oxidative and enzymatic degradation in the tumour environment. A solvent–
non-solvent method was used for synthesis, with glutaraldehyde as a crosslinker. The
drug-loaded nanogel showed a size of 211 nm. Free HA was noted as having insignificant
cytotoxicity; however, the crosslinker in the nanogel showed a 10–20% cytotoxic effect. The
expressions of anti-inflammatory cytokines (IL-8, IL-6 and IL-19) decreased by up to 55%
with nanogel when compared to the control. A 30–40% increase in anti-oxidative effect
was observed when quercetin was co-loaded with everolimus. The group concluded that
HA-nanohydrogels provide an excellent template for studying tumour microenvironments,
opening perspectives for further studies.

Barbarisi et al. tested the effect of co-loading quercetin and temozolomide in HA-
nanogel as a therapy with an anti-inflammatory effect in glioblastoma tumour cells [69].
The solvent–non solvent method was used to make nanogel with 200 kDa HA and a
glutaraldehyde crosslinker. The drug-loaded nanogel had a size of 197 nm and a ζ-potential
of −31.3 mV. Just like in their previous study [68], the group noted cytotoxic effects from
the crosslinker in the nanogel in this research. HA-induced, receptor-mediated endocytosis
was noted with 30% nanogel internalization after 2 h. HA on the surface was used for this
nanosystem to avoid opsonization by the RES and provide a longer drug retention time.

While both of the above-mentioned studies [68,69] successfully synthesized anti-
inflammation-promoting nanogels, it should be noted that the glutaraldehyde used to
stabilize these nanogels was responsible for increasing their cytotoxicity. Further studies
need to be performed, which can either suggest a less toxic crosslinker or a formulation
method that does not require a crosslinker for stabilization.

Storozhylova et al. were looking for an efficient drug delivery system that showed a
longer retention rate for the treatment of inflammatory joint diseases [70]. The group synthe-
sised in situ forming, non-crosslinked HA-fibrin hydrogels, containing HA-nanocapsules
co-loaded with dexamethasone and galectin-3 inhibitor. The drug-loaded nanocapsules
showed the suppression of inflammation after intra-articular administration. However, the
study noted that further investigation was required to treat chronic synovial inflammation.

It is beneficial to develop a drug delivery system with positive results in terms of effi-
ciency, but it is even better to design a system with a hassle-free administration route. Even
though injectable nanohydrogels are considered non-invasive techniques, transdermal drug
deliveries take this definition one step further. As previously mentioned, transdermal drug
delivery (TDD) has classically more successfully been associated with the use of nanopar-
ticles. TDD is a painless method of delivering therapeutics onto intact skin [71,72]. The
nanosize [73], drug retention [74], and drug release rates [75] of polymeric nanohydrogels
are winning factors in their wide use as a targeted TDD method, and nanohydrogel size is
essential for successful skin penetration. Nanohydrogels can be manipulated into loading
drug-loaded nanocapsules that successfully penetrate the skin and intake water. This leads
to the swelling of the nanocapsules and subsequent drug release [76–78].

Wei et al. tested the anti-inflammatory effect of topically administered HA nanohydro-
gels with baicalin–nanocrystals (NC) [79]. An 800−100 kDa HA nanogel was used to assist
the skin permeability of poorly soluble baicalin. Four w/v concentrations of HA were used
to optimise the nanogel: 0.5%, 1%, 1.5% and 2%. The increase in HA concentration led to
an increase in the viscosity and elasticity of the nanogel; however, it also saw a decrease in
the drug release rate and skin permeation rate. The 1% w/v HA was chosen as the optimal
concentration, with a 20-fold increase in skin permeability as compared to the control. The
size of 1% w/v HA nanogel was 193 nm.

The biodegradability of HA allows for homogenous drug distribution in the gel
matrix [80,81]. Liu et al. used electrospinning to make an absorbable nanofibrous hydrogel
for wound healing under chronic diabetic conditions [82] (Figure 4). A 1400 kDa thioether
grafted HA, crosslinked with Fe3+ (FHHA-S/Fe) nanogel, was synthesized for the purpose
of wound healing by modulating the site of injury. Overall, the crosslinking increased the
stability of the nanofibres by two-fold. Complete absorption of the nanogel was observed
at 72 h. The thioether grafting increased IL-4 expression, leading to 33% and 18% faster
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wound healing as compared to the non-ether nanogel. A 24% decrease in the expression
of M1 macrophages was observed, along with a 22% increase in the expression of M2
macrophages after treatment with HMW HA nanogel.
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Figure 4. Schematic illustration of the absorbable thioether grafted hyaluronic acid nanofibrous
hydrogel for synergistic modulation of the inflammation microenvironment to accelerate chronic
diabetic wound healing. Illustration of the preparation procedure of FHHA-S/Fe, dressing of FHHA-
S/Fe on full-thickness wound model in diabetic C57BL/6 mouse, and the mechanism of FHHA-S/Fe
for enhanced chronic wound healing effect. Copyright Wiley-VCH Verlag GmbH. Reprinted with
permission from [82].

Just like previously mentioned studies [68,69], this research [82] also used a crosslinker
to stabilize their nanogel. However, Fe3+ showed no cytotoxic effects. It also provided
antibacterial properties to the nanosystem.

Pleguezuelos-Villa et al. synthesized mangiferin-loaded HA-based nanoemulsions
for their anti-inflammatory effect on skin lesions [83]. Two ranges of the MW of HA
were tested for the nanoemulsions, 40–50 kDa (LMW) and 1000–1200 kDa (HMW). The
LMW HA nanoemulsion size was detected at 221 nm, and for HMW it was 393 nm.
A gradual, sustained release of the drug was found in all nanosystems after 24 h but
LMW HA nanoemulsion with surfactant was the highest, with 10–15%. The different
MW of HA did not affect the oedema inhibition for the anti-inflammatory activity of the
nanoemulsion. However, the use of a surfactant decreased the oedema inhibition activity
of the nanoemulsion. HMW HA only seemed to affect the size of the nanoemulsion.

Manca et al. used curcumin-loaded HA vesicles (hyalurosomes) for skin lesions [84].
This study evolved the field of vesicles by synthesizing hyalurosomes. The group enhanced
the properties of conventional liquid vesicles by including a gel-core structure to provide
more stability and a nanosized diameter to make them nanovesicles. The organic solvent-
free polymer dispersion method was used for the synthesis. Two w/v concentrations of
200–400 kDa HA were tested: 0.1% and 0.5%. The concentration of 0.1% showed a size
of 166 nm and an encapsulation efficiency of 76%, whereas that of 0.5% showed a size
of 157 nm and a curcumin encapsulation efficiency of 79%. The enhanced nanovesicle
structure increased the encapsulation by 10–13% as compared to conventional liposomal
vesicles. However, 0.5% w/v hyalurosomes showed a higher viscosity than 0.1% and more
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stiffness, by 14%, with the addition of curcumin. An increased improvement in induced
skin lesions in in vivo tests was seen in 0.5% w/v hyalurosomes. Re-epithelialized skin was
also observed by day 6.

Yang et al. synthesized HA nanostructured lipid carriers (NLCs) loaded with ropiva-
caine (RVC) and dexmedetomidine (DMDT) [85]. NLCs are evolved lipid nanoparticles
that include both liquid and solid lipids that decrease the order of crystal arrangement
of conventional lipid nanoparticles to provide a higher drug loading efficiency [86]. The
group used the solvent diffusion method to create an HA-based (3 kDa) drug delivery
system that increased the duration of the analgesic effects of RVC and DMDT by 75%.
The NLCs had a size of 108 nm, a ζ-potential of −30.7 mV due to the presence of HA,
and drug encapsulation efficiency of 89.5% for RVC and 88.1% for DMDT. The HA NLCs
also increased the cell viability of the drugs from 61.2% (free drug solution) to 80%. The
group also performed in vivo skin permeation tests that showed that the encapsulation of
the drugs in the NLCs increased their permeability by 67%. The NLCs also increased the
antinociceptive effect of the drugs by 80 min. It was found that co-loading RVC and DMDT
had a higher analgesic effect than loading a single drug.

Yue et al. also decided to formulate NLCs for TDD of their drug bupivacaine (BPV)
for local anaesthesia [87]. The group used 300 kDa HA modified with linoleic acid and
polyethylene glycol (PEG) for stealth properties. The NLCs were made with lipid melt-
emulsification and solvent injection techniques that had a size of 154 nm, a ζ-potential of
−40.1 mV and a BPV encapsulation efficiency of 88.9%. The NLCs showed a cell viability
of 70% as compared to the 40% obtained by free drug solution. In vivo tests showed an
increased antinociceptive effect by the NLCs as compared to free drug solution, by 50%.

Both the above-mentioned studies [85,87] used NLCs for their formulations; however,
there were some notable differences between the two drug delivery systems. After 75 h
of administration, one of the NLCs [85] showed a 70% antinociceptive activity, whereas
this was only at 60% for the other NLC [87]. While this may not be a major difference, it is
possible that the synergistic effect of co-loading two drugs favoured the former. The higher
NLC size used by the latter can be attributed to their use of HMW HA.

Iannitti et al. tested the efficacy of an HA- and chondroitin sulfate (CS)-based medical
device called Esoxx® for the treatment of inflammation of the gastric mucosa, also known
as gastritis [88]. The presence of HA and CS was seen to reduce inflammation and the
discomfort that comes along with it in the tested patients. HA provides hydrophilicity
to the submucosal connective tissue, which provides it with a better chance of healing.
The group, however, concluded that further studies are needed, with a higher number of
patients, for definitive results.

3.2. Macrophage Targeting Nanosystems

It has been well established that macrophages have an important role to play in modu-
lating inflammatory responses and pain [10,11,43]. The pro-inflammatory M1-macrophage
phenotype is responsible for the first line of defence, which is inflammation. Hence, for
antinociceptive therapies, studies have developed nanosystems that target the CD44 re-
ceptor, which is heavily present on the surface of M1 macrophages. These therapies either
work by lowering/inhibiting the effect of pro-inflammatory cytokines or polarising the
macrophage phenotype from M1 to M2.

Zhang et al. used a layer-by-layer (LBL) NLC system for lidocaine (LA)-loaded chi-
tosan and HA drug delivery systems [89] (Figure 5). LBL involves the alternative deposition
of oppositely charged polyelectrolytes via electrostatic interaction for the assembly of mul-
tilayer films. This method decreases the drug release rate and enhances skin permeability.
The group compared the characteristics of LBL-NLCs with simple NLCs. It is important to
note that the size of the nanoparticles is a major deciding factor in whether the drug delivery
system will reach the target site. The NLCs showed a size of 181 nm and a ζ-potential of
+37.6 mV due to the outermost layer of chitosan. The in vivo tests for anaesthesia showed
that NLCs had a 30% effect after 24 h of administration, whereas LBL-NLCs had an 80%
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effect. The combined biocompatibility of hyaluronic acid and chitosan provides a great
template for the loading of drugs and target studies [90].
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anesthetic effects of LA-containing formulations. Adapted with permission from [89].

Farajzadeh et al. synthesized curcumin-loaded HA-polylactide (PLA) nanoparticles
to test CD44-targeted antinociceptive activity and macrophage repolarization [43]. An
HA of 20 kDa MW was used to prepare HA-PLA conjugates of 102 nm in size, with a
ζ-potential of -24.5 mV and a curcumin encapsulation efficiency of 88%. Mouse peritoneal
macrophages were used for in vitro studies that detected a burst release in the first 8 h
of administration and a consistent subsequent release with 33% drug release after 144 h
(6 days). The initial burst release could be due to the presence of the drug, which was
closer to the surface of the nanoparticles. In vivo nanoparticle uptake was promoted by
endocytosis; hence, it was necessary to stimulate the nanoparticles under similar conditions.
Endocytosis is supported by an acidic environment, so the group also tested the drug release
from the nanoparticles at a pH of 4.4. This test showed a 50% drug release after 120 h of
administration. Markers for M1 and M2 macrophages (iNOS and Arg-1, respectively) were
quantified to check macrophage repolarization. Curcumin-loaded nanoparticles increased
Arg-1 expression by 50% as compared to free drug administration. This concluded the
successful repolarization from M1 macrophages to M2 macrophages. The expressions of
pro-inflammatory cytokines, TNF-α, IL-1β and IL-6, were also reduced by 86%, 85% and
87%, respectively, when compared to free drug administration.

Tran et al. also experimented with shifting the macrophage polarity as a means of
therapy for inflammation [91]. However, instead of curcumin, they encapsulated plas-
mid deoxyribonucleic acid (pDNA) in their HA nanoparticles by modifying HA with a
positively charged polymer poly(ethyleneimine) (PEI) (Figure 6). The pDNA expressed
interleukin-4 (IL-4) and interleukin-10 (IL-10) genes that inhibit the production of TNF-α,
which is a direct promoter of M1-expressed inflammatory cytokines. This reduction in
the expression of TNF-α also leads to lower M1 polarisation and subsequently higher
M2 polarisation [92]. However, the direct administration of IL-4 and IL-10 is reported to
have toxic effects. Therefore, the group combined gene therapy with nanotechnology to
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synthesise a nanosystem that not only represses inflammatory cytokines but also polarises
macrophages towards alternative activation.
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Figure 6. (a) Schematic illustration of pDNA encapsulation into HA-PEI nanoparticles for the re-
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distribution of HA-PEI/pDNA (9:1) in PBS by DLS. (c) TEM image of HA-PEI/pDNA in PBS (9:1).
(d) Confocal microscopy and FACS analysis of CD44 expression in J774A.1 macrophages. (e) Uptake
of HA-PEI/pDNA nanoparticles in J774A.1 macrophages. Reprinted with permission from [91].
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Kosovrasti et al. targeted another M1-specific cytokine to reduce inflammation, TNF-
α [93]. The group encapsulated TNF-α-specific, small, interfering RNA (siTNF-α) in HA
nanoparticles. The formulation of the nanoparticles involved the blending of HA-PEI,
HA-hexyl fatty acid and HA-PEG. The 78–90 nm diameter HA nanoparticles encapsulating
siTNF-α reduced the level of production of LPS-induced TNF-α in macrophages, and hence
reduced inflammation. The group concluded that this study could be beneficial when
researching therapies for acute inflammatory diseases.

It is important to note that the nanosystems developed in two previously mentioned
studies [43,91] were not tested in vivo, and both groups concluded that further studies were
needed to ascertain the effect of their respective HA-based nanosystems under complex
in vivo homeostatic conditions. However, the HA nanoparticles encapsulating siTNF-α
by the group [93] were tested in vivo, and the expected anti-inflammatory results were
found. However, they also noted that the results from one study should not be considered
conclusive evidence.

Xie et al. used HA-containing ethosomes (ES) for the delivery of rhodamine B for
TDD [94]. Ethosomes are a kind of liposomal vesicles that are known for increasing skin
permeability, drug accumulation and targeting drug delivery [95–97] to avoid systemic
toxicity. A 150 kDa HA was used to enhance drug entrapment in the ES using amphiphilic
modifications to the HA backbone. Different ratios of HA:ES were tested for optimization:
2.5:1, 5:1 and 10:1. The increase in the ratio of HA led to an increase in the size of the
drug delivery system, with a range of 593–916 nm according to dynamic light scattering
(DLS); however, transmission electron microscopy (TEM) detected the size of the system
to be <100 nm. This difference could be because TEM analysis is conducted on a dry
sample and DLS is performed in water, which leads to swelling of the particles. A high HA
concentration also led to an increase in the quantity of the encapsulated drug. In vivo tests
were conducted, which noted skin permeation within 30 min of administration. HA was
also noted to increase the effectiveness of the system by 30% compared to the drug delivery
system without HA. Therefore, the 5:1 ratio was concluded to be optimal.

The specific targeting ability of HA and its transdermal absorption is paramount in its
use of TDD [98]. HA is a major synovial fluid component and artificially administered HA
provides temporary relief for OA [99]. Zerrillo et al. decided to take advantage of the low
pH conditions in the synovial fluid and synthesize HA-loaded, pH-responsive poly(lactic-
co-glycolic acid) (PLGA) nanoparticles with a triggered burst release for OA [100]. The
therapeutic approach of HA on OA partly includes reducing the inflammation at the OA site.
The burst release of drug in this study was triggered by the ammonium bicarbonate loaded
in the PLGA nanoparticles. The 750–1000 kDa HA was injected into the PLGA nanoparticles
that showed a size of 202 nm and 28% encapsulation efficiency. In vitro studies showed
that PLGA-HA nanoparticles had a faster uptake than only PLGA nanoparticles. In vivo
studies were also conducted, which showed that pH-responsive nanoparticles had a faster
cargo release than non-pH-responsive nanoparticles. Fluorescence showed the presence of
the nanoparticles in the knee even after 35 days of administration. The group concluded
that a combined therapy of pH-responsive and non-pH-responsive nanoparticles would
have a synergistic effect for optimal therapeutic conditions. Therefore, pH-responsive
nanoparticles would have a burst release and non-pH-responsive nanoparticles would
have a gradual, steady release of the drug.

Zerrillo et al. conducted another study where they tested HA-grafted PLGA nanopar-
ticles for OA therapy [101]. Conventional HA therapy has a rapid clearance and short
retention time. Grafting is used as a method to overcome these issues. In this case, a 20 kDa
HA is used to synthesize a PLGA-HA copolymer and prepare PLGA-HA nanoparticles.
The nanoparticles showed a size of 200 nm. Near-infrared dye tests showed that PLGA-HA
nanoparticles had a 20% lower release rate after 10 days. There was a two-fold increase in
the in vitro binding studies for PLGA-HA nanoparticles. Intra-articular injection was used
for in vivo tests. After 48 h, PLGA-HA nanoparticles were noted to have penetrated the
cartilage, unlike PLGA nanoparticles without HA.
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Histochemical immunostaining has reported OA synovium to have a higher number
of CD44 receptors than normal. This leads to an increase in inflammation due to the active
presence of pro-inflammatory cytokines. This has further led to the increased targeting of
CD44 as a therapy for OA using HA, a well-known CD44 ligand [102–105].

3.3. Self-Assembling Nanosystems

The molecular arrangement of disorganised components into ordered structures as a
response to external stimulus is known as self-assembly. It is a phenomenon often found in
nature. Biological nanostructures come self-assembled to form a DNA double-helix, cell
membranes, peptide chains, etc. [106–108].

Vafaei et al. tested a budesonide (BDS)-loaded self-assembled HA nanosystem as a
therapeutic agent for inflamed intestinal mucosa caused by inflammatory bowel disease
(IBD) [109]. The self-assembling effect was enhanced by amphiphilic chemical modifications
to the HA backbone. The 10 and 25 kDa HAs were tested and the thin-film hydration
method was used to load BDS. The human colon carcinoma cell line was used for in vitro
tests. The increased degree of chemical modification led to a decrease in the size of
nanoparticles. The size for 10 kDa HA decreased by 97 nm and, for 25 kDa HA, the size
decreased by 61 nm.

Mota et al. synthesized a PLGA-loaded HA hybrid systems for viscosupplementation
in OA [110]. The group used 1500–1800 kDa HA, 45–75 kDa PLGA and a modified sponta-
neous emulsification/solvent diffusion method for synthesis. Oleic acid was also used to
propagate long-term controlled drug release and provide stability to the nanosystem. DLS
was used to check the size of HA-loaded PLGA particles (373 nm) and oleic-acid-modified
particles (4561 nm). The increase in the size of particles with oleic acid was attributed to
particle agglomeration. Since DLS cannot differentiate between particle agglomeration
and a large size, atomic force microscopy (AFM) was used to check the size of oleic-acid-
modified particles, which showed a particle size of 409 nm. The use of the hybrid system
for HA administration increased the drug release rate to up to 8 h, as compared to the
instant dissolution of free HA. The in vivo anti-inflammatory effect was tested for free HA
solution (76.9%) and HA-PLGA particles (82.6%).

Currently, the most common commercially available treatment method of OA is the
intra-articular injection of HMW HA. The therapy shows results but is short-lived owing to
the fact that HMW HA is prone to active HYAL-mediated degradation [48,53,111]. Kang
et al. realised the potential of using self-assembling HA nanoparticles as an alternative
therapy for OA [111] (Figure 7). The group chemically modified the backbone of 10 kDa
HA with cholanic acid to create amphiphilic HA nanoparticles. The 221 nm nanoparticles
were tested in vivo and in vitro, where they showed a remarkable improvement compared
to conventional HMW HA OA therapy. In vitro studies noted that HA-nanoparticles had
a larger CD44-mediated uptake and cartilage penetration, of up to 41 µm, than free HA.
Intra-articular injections were used for in vivo studies, where it was observed that HA-
nanoparticles blocked the CD44 receptor and prevented further cartilage degeneration in
OA-induced mice, unlike free HMW HA. The attenuated NF-κB pathway activity was
also noted to prevent pro-inflammatory cytokine expression. The group concluded that
empty amphiphilic HA-nanoparticles showed an increased resistance to HYAL degradation
compared to free HA. This study has the potential to be continued with loading HA-
nanoparticles to increase efficacy.
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Figure 7. Characteristics of HA-NPs. (A) Schematic illustration of HA-NPs for treatment of OA.
(B) TEM images and size distribution of HA-NP. Scale bar, 100 nm. (C) Time-dependent changes in
particle size and surface charge of HA-NP in PBS and DMEM. Data are presented as mean ± SEM
(n = 5). (D) Generation of N-acetyl-glucosamine after treatment of 1 mg/mL free HAs (10 kDa LMW
and 2000 kDa HMW) or HA-NP with 100 IU/ml HYAL-II. Data are presented as mean ± SEM
(n = 4). *** p < 0.001. (E) Representative serial images (25–41 µm depth at intervals of 4 µm) from the
femoral cartilages after i.a. injection of Cy5.5 and Cy5.5-labeled HA-NP into normal mice. Scale bars,
100 µm. (F) Three-dimensional lateral view of the femoral cartilages after i.a. injection of Cy5.5 and
Cy5.5-labeled HA-NP into normal mice. Scale bars, 100 µm. Reprinted with permission from [111].
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El-Refaie et al. also tested the use of hyalusomes; however, they made them self-
assembling TDD hyalusomes for use in OA [112]. The film hydration technique was used
to make 1% w/v HA (8–11.7 kDa) hyalusomes. The elasticity of the system was increased
by the addition of ethanol. Ethanol-modified gel-core hyalusomes showed a size of 226 nm
with an encapsulation efficiency of 32.6%. Ex vivo results showed that the skin permeability
of gel-core hyalusomes was increased by 5.5-fold as compared to 1% HA solution. In vivo
results also favoured a six-fold increase in HA in joint tissues after gel-core hyalusome
administration.

4. Hyaluronic Acid Nanosystems, Study Gaps and Future Directions

The active involvement of HA in inflammation makes it a top contender for use as
a nanosized drug carrier. However, its negative charge is critical for in vivo use. Several
studies have reported that positively charged particles are more prone to causing the
secretion of cytokines, inducing more T-cell proliferation, which leads to the recruitment of
cytotoxic T cells, directly damaging the erythrocyte membrane, and eliciting an immune
response [113–118].

The rapid evolution of nanotechnology has changed the fundamental chemical, phys-
ical and physiological aspects of a successful drug delivery system [119]. Nanosystems
come in different shapes and sizes, such as nanohydrogels, nanoparticles, nanocomposites,
and self-assembling nanoparticles, among others. With their high drug encapsulation
efficiency and biological efficacy, they have become the top contenders for research on
therapeutics, diagnostics, and imaging. Table 1 summarises the HA-based nanosystems
referred to in this review.

In this review, we highlight the recent advancements in HA-based nanosystems being
developed for antinociceptive and anti-inflammatory activities. Providing an overview
of the mechanism of action of pain and inflammation, we consolidated some HA-based
nanosystems that are being used as drugs and encapsulating agents to target CD44 receptor
on macrophages for therapy for various disorders, such as gastritis [90], IBD [109], breast
cancer [68], glioblastoma [69], inflammatory joint disease [70,112], wound healing [82], local
anaesthetic [87], OA [100,101,110–112] and skin lesions [83,84]. These drug-encapsulating
nanosystems have shown increased pharmacokinetic properties as compared to solo drug
administration due to their biological versatility and targeting ability.

The size of the nanosystem is important for successful targeted drug delivery action.
Nanosystems of <100 nm are rapidly cleared by the RES and macromolecules are cleared
by the kidney and the spleen. The HA-based nanosystems mentioned above fall within
the preferred range of drug delivery systems that can favourably avoid clearance by the
body. The hydrophilicity of HA provides the nanosystem with a stealth effect that avoids
opsonization [120].

Along with the advantages of using HA, it is also important not to overlook the
associated challenges. The effect of the molecular weight of HA on inflammation is not
completely understood. Broadly, it is accepted that HMW HA holds anti-inflammatory
properties and LMW HA is pro-inflammatory [55,56]. However, Zerrillo et al. found
anti-inflammatory results with LMW HA [100,101]. When designing and synthesising
nanosystems, LMW HA is preferred as it is easy to work with. LMW HA also produces
smaller size nanosystems that are more effectively hidden from clearance by the immune
system. As Kang et al. reported, HMW HA is degraded by HYAL, which can be avoided
with LMW HA [111]. Further studies are required to clearly lay out the role of different
MWs of HA in the functioning of the human body.
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Table 1. Summary of HA-based nanosystems discussed in the review.

Nanosystem HA in Nanosystem Administration Route Formulation Method Characterisation Drug Therapy Reference

Drug Delivery Systems

HA-nanogel loading quercetin 200 kDa Sodium hyaluronate - Solvent–non solvent
method

Size: 211.3 nm
ζ: −35.8 ± 1.3 mV quercetin Anti-inflammatory effect in

breast cancer tumour cells [68]

HA-nanogel loading quercetin 200 kDa Sodium hyaluronate - Solvent–non solvent
method

Size: 197.3 ± 3.3 nm
ζ: −31.3 ± 1.1 mV quercetin Anti-inflammatory effect in

glioblastoma tumour cells [69]

Non-crosslinked HA-fibrin
hydrogels containing HA-shell
nanocapsules co-loaded with

dexamethasone and galectin-3
inhibitor

40 kDa, 700 kDa, 1.5 MDa
Sodium hyaluronate Intra-articular Solvent displacement

method
Size: 122–135 nm
ζ: −29 ± 5 mV

dexamethasone and
galectin-3 inhibitor

Therapy for inflammatory joint
diseases [70]

HA nanocrystal hydrogels
loading baicalin

800–1000 kDa Sodium
hyaluronate TDD system Homogenization Size: 189.21 ± 0.36 nm baicalin anti-inflammation [79]

Thioether-grafted HA
nanofibrous hydrogel

1400 kDa Sodium
hyaluronate, thioether

modified and crosslinked
with Fe3+

TDD system Electrospinning Size: 60 ± 11 nm HMW HA wound healing in diabetic
conditions [82]

HA-based mangiferin
nanoemulsion 40-50 kDa and 1–1.2 MDa HA TDD system Emulsion method Size: 296 nm

ζ: −30 mV mangiferin Anti-inflammation for skin
lesions [83]

Curcumin-loaded
HA-nanovesicles

200–400 kDa Sodium
Hyaluronate TDD system Organic solvent-free

dispersion method
Size: 157–166 nm
ζ: 24 ± 4 mV curcumin Anti-inflammation for skin

lesions [84]

HA nanostructured lipid carriers
loading ropivacaine and

dexmedetomidine

3 kDa HA, PEG-DSPE
modified TDD system Solvent diffusion method Size: 108.2 ± 3.3 nm

ζ: −30.7 ± 2.8 mV
Ropivacaine and

dexmedetomidine Local analgesic [85]

HA-modified nanostructured
lipid carriers loading bupivacaine 300 kDa HA Local administration Emulsification and solvent

injection methods
Size: 154.6 ± 5.1 nm
ζ: −40.1 ± 3.9 mV bupivacaine Local anaesthetic [87]

HA-chondroitin sulfate medical
device (Esoxx) - Oral delivery - - Esoxx® Gastritis [88]

Macrophage-Targeting Nanosystems

HA-polylactide nanoparticles
encapsulating curcumin 20 kDa Sodium hyaluronate - Solvent evaporation

method
Size: 102.5 nm

ζ: −24.5 ± 2.2 mV Curcumin Macrophage repolarisation [43]

HA-chitosan lipid nanostructures
loading lidocaine (layer-by-layer) - TDD system Melt-emulsification

method
Size: 181.2 nm

ζ: +37.6 ± 4.2 mV Lidocaine Local anaesthesia [89]

HA-nanoparticles loading pDNA 20 kDa Sodium hyaluronate in vitro transfection Coupling reaction Size: 185.9 nm
ζ: −11.6 mV pDNA Macrophage repolarisation [91]

HA-nanoparticles encapsulating
siTNFα 20 kDa Sodium hyaluronate Transfection - Size: 85–110 nm TNF-α specific small

interfering RNA
Inhibiting LPS-induced

inflammation [93]

HA containing ethosomes
encapsulating rhodamine 150 kDa Sodium hyaluronate TDD system Homogenization Size: 593.8 nm

ζ: +10 mV Rhodamine Quick, high-efficiency TDD
system [94]

pH-responsive HA-loaded PLGA
nanoparticles

750–1000 kDa Sodium
hyaluronate Intra-articular injection Single-emulsion solvent

evaporation method
Size: 202.7 ± 2.3 nm

ζ: −21.0 mV HMW HA Osteoarthritis [100]
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Table 1. Cont.

Nanosystem HA in Nanosystem Administration Route Formulation Method Characterisation Drug Therapy Reference

HA decorated on PLGA
nanoparticle surface

21–40 kDa Sodium
hyaluronate Intra-articular injection Double-emulsion solvent

method
Size: 200 ± 2 nm
ζ: −23 ± 2 mV HMW HA Osteoarthritis [101]

Self-Assembling Nanosystems

HA-nanoparticles loading BDS
10–25 kDa Sodium

hyaluronate, DA modified
for amphiphilicity

in vitro dynamic dialysis
drug release study

Thin-film hydration
method

Size: 207 ± 11 nm
ζ: −14.56 ± 0.22 mV Budesonide IBD-induced

pain/inflammation [109]

HA-PLGA hybrid systems 1.5–1.8 MDa Sodium
hyaluronate Viscosupplementation

Spontaneous
emulsification solvent

diffusion method

Size: 373 ± 270 nm
ζ: −16.65 mV HMW HA Osteoarthritis [110]

Amphiphilic HA-nanoparticles 10 kDa HA Intra-articular injection Chemical conjugation Size: 221 ± 1 nm
ζ: 15.08 ± 0.83 mV LMW HA OA treatment [111]

Gel-core HA nanovesicles 8–11.7 kDa HA TDD system Thin layer evaporation
technique

Size: 232.8 ± 7.2 nm
ζ: −45.1 ± 8.3 mV HMW HA OA therapy [112]
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The delivery method of the nanosystem to the target area also affects the drug design.
Therapeutics is moving toward simpler, non-invasive drug delivery designs. This, however,
can pose a limitation when synthesising the nanosystem. For instance, more and more
research is being conducted on the advancement of TDD systems. The anionic nature of HA
poses a problem in this case. The hydrophilicity of HA reduces its rate of skin permeabil-
ity [121,122]. Although this can be overcome either by hydrophobic modifications to the
HA chain or by coating it with a hydrophobic compound (such as chitosan), it still poses a
challenge, as it may not be a feasible step for the proposed function of the nanosystem.

Most of the nanosystems mentioned in this review are in the concept stage. Some have
only undergone in vitro experimentation, while others conclude that further in vivo studies
are required. No conclusive result can be provided until more research is conducted. There
is a gap in the understanding of the working of pro- and anti-inflammatory cytokines that
control macrophage polarisation. Obtaining a clearer picture of the biological mechanisms
that are involved will help to optimise the nanosystems for more targeted action. Further-
more, the preclinical drug delivery models need to be tested for biodegradability regarding
their reduced toxicity, absorbability and high retention rate for a prolonged effect.

Translating biomaterials from laboratory experiments to commercial development
takes decades [123,124]. Newer inventions must undergo a longer safety protocol to
become approved. A medical device that is “substantially equivalent” to one already on
the market will find it easier to obtain Food and Drug Administration (FDA) approval
than a newer one [125–127]. Therefore, while lab experiments continue to provide positive
results, further rigorous testing will need to be undertaken for years before it becomes
commercially available.

5. Conclusions

HA presents multiple beneficial characteristics, such as biocompatibility, hydrophilic-
ity, biodegradability, non-toxicity, and binding ability with the CD44 receptor, which make
it an optimal choice for usage in anti-inflammatory drug delivery systems. Studies have
shown that it can be formulated as a hydrogel, nanocomposite, or nanoparticle, or superfi-
cially and chemically modified for wider targetability. Combining it with other compounds
(PLGA, chitosan, etc.), enhances its chemical (amphiphilicity) and biological (resistance to
HYAL degradation) properties, improves the efficacy of the nanosystems, and increases
its in vivo half-life, leading to prolonged drug release [128,129]. While there further tests
and designs are needed in the proposed nanosystems, the results have been fairly positive,
with HA displaying high anti-inflammatory properties and CD44 targeting abilities.
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