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We propose a scheme for enhancing the optomechanical coupling between microwave and
mechanical resonators by up to seven orders of magnitude to the ultrastrong coupling limit in
a circuit optomechanical setting. The tripartite system considered here consists of a Josephson
junction Cooper-pair box that mediates the coupling between the microwave cavity and the
mechanical resonator. The optomechanical coupling can be modified by tuning the gate charge
and the magnetic flux bias of the Cooper-pair box which in turn affect the Josephson capacitance
of the Cooper-pair box. We additionally show that with suitable choice of tuning parameters, the
optomechanical coupling vanishes and the system exhibits purely a cross-Kerr type of nonlinearity
between the cavity and the mechanical resonator. This allows the system to be used for phonon
counting.

I. INTRODUCTION

Cavity optomechanics1 using superconducting
microwave circuits2–6 is an emerging platform for studies
of macroscopic quantum phenomena. In particular, there
is a growing research interest in ultrastrong coupling
regime7–12 where the strength of the single-photon
optomechanical coupling is comparable to the resonant
frequency of the mechanical resonator. Optomechanical
coupling arises from the radiation pressure force acting
on a mechanical resonator and, in the microwave regime,
this radiation pressure coupling is intrinsically weak.
The weak coupling can be amplified by applying a
strong coherent pump to the cavity which linearizes
the interaction between the cavity and the mechanical
resonator. In the linear interaction limit, the quantum
effects are observable only close to the quantum zero
point fluctuations. However, a nonlinearity can be
introduced into the system and single photon strong
coupling regime can be reached allowing rich quantum
physics experiments, e.g., preparing non-classical states
of light and mechanical resonator13–17 for potential
quantum information processing applications.

In the superconducting circuit architecture18,
several types of configurations have been proposed
to add nonlinearities into the system such as a
transmon qubit19, SQUID20, quantum capacitance of a
nanotube in Coulomb blockade regime21, and Josephson
inductance22,23 which has also been experimentally
realized24. We propose to employ “Josephson
Capacitance” of the Cooper-pair box (CPB) which
is dual to the operation of Josephson inductance as the
nonlinear element for enhancing the optomechanical
coupling. Looking from the gate electrode, a CPB can
act as a nonlinear capacitive element known as the
Josephson capacitance. This capacitance originates from

the curvature of the energy bands of the CPB with
respect to gate charge25–29. Josephson capacitance has
been proposed to be utilized as a very sensitive phase
detector30 and a pair breaking radiation detector31.
Here, we consider a tripartite system consisting of a
microwave cavity, a CPB, and a mechanically movable
capacitance. The coupling between the cavity and the
mechanical resonator is mediated by the Josephson
capacitance of the CPB and it can be tuned by the
charge and flux bias of the CPB. We show that with
suitably tuned, realistic experimental parameters, the
optomechanical coupling can be enhanced by seven
orders of magnitude compared to direct optomechanical
coupling without the presence of CPB, reaching the
ultrastrong coupling regime.

In addition to boosting of the optomechanical coupling,
a cross-Kerr (CK) type nonlinearity between the
cavity and the mechanics is also formed amidst other
nonlinear terms in the system Hamiltonian. The CK
coupling gCKn̂an̂b between two resonators a and b,
with number operators n̂a and n̂b, can be used for
quantum nondemolition measurements of number of
quanta in one of the resonators since it directly affects
the resonance frequency of the readout resonator.32 In
recent years, CK coupling in optomechanical systems
has attracted theoretical interest33–36 including a recent
scheme to enhance the coupling to the order of
the cavity linewidth37. Tunable CK interaction has
been experimentally demonstrated for superconducting
microwave circuits.38

II. DESCRIPTION OF THE SYSTEM

A circuit diagram of the setup is presented in Fig.
1. The CPB formed of two Josephson junctions with
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FIG. 1: Circuit diagram of the investigated
optomechanical setup with the gate capacitance of the
Cooper-pair box connected in parallel to the microwave

cavity capacitance. The elements in the circuit are
described in the text.

Josephson energies EJ1, EJ2 and capacitances CJ1, CJ2

couples a mechanical displacement dependent gate
capacitance Cg1 (x) to a superconducting microwave
cavity, modeled as a simple LC oscillator in a bias-
T configuration. Here, we assume Cg1 (x) = Cg10 +
∂Cg1(x)
∂x x + 1

2
∂2Cg1(x)
∂x2 x2, where the derivatives are

approximated for a parallel plate capacitor. This
configuration allows the CPB to act as a capacitive
element and, additionally, blocks the DC gate bias from
entering into the microwave cavity and prevents the AC
signal leaking out through the DC gate. The inductor LB

in the bias-T and the capacitor Cg2 have impedances such
that they do not affect the qubit dynamics. The junction
capacitances CJ1 and CJ2 and the static part of the gate
capacitance give the total single electron charging energy
of the qubit, EC = e2/2 (Cg10 + CJ1 + CJ2). Tunneling
of a Cooper pair into the qubit island is tunable by the
static gate charge given by the number of Cooper pairs
in the island ng0 = −VgCg10/(2e) where Vg is the gate
voltage. Furthermore, the CPB is split and hence, by
applying a magnetic flux ΦE to the superconducting loop,
the Josephson energy of the qubit can be controlled.

To better illustrate the procedure of deriving the
effective Hamiltonian for the system, we assume in the
following, without loss of generality, that the Josephson
energies of the two junctions are equal, i.e. EJ1 = EJ2 =
EJ/2, in which case the Hamiltonian of the unperturbed
qubit is

ĤQB = −1

2

∑
j=1,3

Bjσj (1)

with the ground state energy, EGS = −
√
B2

1 +B2
3/2 =

−B/2 where B1 = EJ cos(πΦE

Φ0
) and B3 = −4EC(1 −

2ng0). Here σj are the Pauli spin matrices and Φ0 = h/2e
is the flux quantum. In principle, the junction energies
can be different, and the explicit full calculations of the
system dynamics are presented in the Appendices.

III. CIRCUIT MODEL

Enhancement of the radiation pressure coupling can be
understood from the quantum capacitance picture where
the effective capacitance of the CPB is affecting the total
capacitance of the cavity. For band k of the CPB, the
effective capacitance is given by27,28

Ckeff =
Cg1CJ

CΣ1
−
C2

g1

4e2

∂2Ek(ΦE, ng)

∂n2
g

, (2)

where we denote CJ = CJ1 + CJ2 and CΣ1 = Cg1 + CJ.

This effective capacitance Ceff , containing both
geometric and quantum capacitance contributions of the
CPB, is in parallel with the cavity capacitance Cc. As
a consistency check, one sees that in the limit of small
Josephson energy the effective capacitance approaches
the geometric gate capacitance. The resonance frequency
of the cavity is then ωc = 1/

√
LcCtot, where the total

capacitance consist of the cavity capacitance in parallel
with the second gate capacitance and the effective

CPB capacitance, i.e. Ctot = Cc +
(

1
Cg2

+ 1
Ceff

)−1

.

The radiation pressure coupling is given by the linear
expansion of the resonant frequency with respect to the
mechanical displacement

~grp = −~∂ωc

∂x
xzp, (3)

where xzp is the zero point motion of the mechanical
displacement.

A straightforward calculation yields

∂ωc

∂x
= −1

2

C2
g2

(Cg2 + Ceff)
2

ωc

Ctot

∂Ceff

∂x
, (4a)

∂Ceff

∂x
= −

CJCg1C
′
g1

(Cg1 + CJ)
2 +

CJC
′
g1

Cg1 + CJ

−
Cg1C

′
g1

2e2

∂2Ek
∂n2

g

−
C2

g1

4e2

∂

∂x

(
∂2Ek
∂n2

g

)
(4b)

with ∂
∂x

(
∂2Ek

∂n2
g

)
=

∂ng

∂x
∂
∂ng

(
∂2Ek

∂n2
g

)
where

∂ng

∂x = −C
′
g1

2e Vg.

Plugging Eqs. (4a) and (4b) in to Eq. (3), we obtain
the final expression for optomechanical coupling

~grp =~xzp

[
1

2

C2
g2

(Cg2 + Ceff)
2

ωc

Ctot

]

×

[
−

CJCg1C
′
g1

(Cg1 + CJ)
2 +

CJC
′
g1

Cg1 + CJ

−
Cg1C

′
g1

2e2

∂2Ek
∂n2

g

+
C2

g1C
′
g1

8e3
Vg
∂3Ek
∂n3

g

]
.

(5)
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FIG. 2: (a) The enhancement of the optomechanical coupling grp due to the quantum capacitance compared to
direct coupling g0 as a function of flux bias and gate charge. Here EC/h = 30 GHz and EJ/h = 7.5 GHz. (b) The

enhancement of the optomechanical coupling for different EJ/EC ratio as a function of gate charge with
EJ/h = 5 GHz at ΦE = 0.

The enhancement of the radiation pressure coupling is
compared to the direct optomechanical coupling in the
absence of the qubit

g0 = −1

2

C2
g2

(Cg1 + Cg2)
2

ωc

Cd
C ′g1xzp, (6)

where the cavity frequency is influenced by the total

capacitance Cd = Cc +
(

1
Cg1

+ 1
Cg2

)−1

in the direct

coupling scheme.
For a numerical estimation of the radiation pressure

coupling, presented in Fig. 2a, we choose a cavity of
resonant frequency ωc/2π = 5 GHz with characteristic
impedance Z0 = 100 Ω resulting in capacitance Cc =
0.318 pF and inductance Lc = 3.18 nH. The other
parameter values chosen are: Vg = 10 V, EC/h = 30 GHz
(∼ 124µeV), EJ/h = 7.5 GHz (∼ 21µeV), thus EJ/EC =
1/6. The reason to choose these values for EC, EJ

is to minimize quasiparticle poisoning which is a well
known limiting factor associated with CPB devices. The
band energies of CPB are 2e periodic with respect to
gate charge modulation. In practice, however, due to
tunnelling of non-equilibrium quasiparticles on and off
the CPB island,39,40 the periodicity can change from
2e to 1e. To reduce this effect, it is desirable to have
EC smaller than the superconducting energy gap ∆g.
Typically qubits are made of superconducting Aluminum
(Al) junctions and for Al, critical current (TC) is 1.2 K,
the superconducting gap ∆g ∼ 1.76kBTC ∼ 182µeV
which is well above the chosen value.

Another crucial factor that influences the coupling
strength is the EJ/EC ratio. In Fig. 2b, we plot the
coupling enhancement grp/g0 against gate charge ng for
several EJ/EC ratios at flux ΦE = 0 to better illustrate
how the enhancement depends on ng. The maximum
coupling is reachable near the charge qubit limit EC �
EJ.

As depicted below in the quantum mechanical
treatment of the circuit, Eq.(21), the device exhibits a
cross-Kerr type of nonlinearity gCKa

†ab†b. Using the
quantum capacitance approach similar to deriving Eq.
(5), we obtain the cross-Kerr coupling

~gCK = ~
∂2ωc

∂x2
x2

zp, (7)

where the second order derivative of the cavity frequency
is

∂2ωc

∂x2
=

1

4
ωcC

2
g2

(
∂Ceff

∂x

)2

× Cg2 (4Cc + 3Cg2) + 4 (Cc + Cg2)Ceff

(Cg2 + Ceff)
2

[CcCg2 + (Cc + Cg2)Ceff ]
2

− 1

2
ωcC

2
g2

∂2Ceff

∂x2

× 1

(Cg2 + Ceff) [CcCg2 + (Cc + Cg2)Ceff ]

(8)

with
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FIG. 3: (a) The cross-Kerr coupling gCK, scaled by g0, arising from the circuit quantum capacitance calculations as
a function of flux bias and gate charge. Here EC/h = 30 GHz and EJ/h = 7.5 GHz. (b) The scaled cross-Kerr

coupling for different EJ/EC ratios with EJ/h = 5 GHz at ΦE = 0.

∂2Ceff

∂x2
=−

CJC
′2
g1

(Cg1 + CJ)
2 +

CJC
′′
g1

Cg1 + CJ
+ CJCg1

[
2C ′2g1

(Cg1 + CJ)
3 −

C ′′g1

(Cg1 + CJ)
2

]

− 1

4e2

{(
2C ′2g1 + 2Cg1C

′′
g1

) ∂2Ek
∂n2

g

−
(

2Cg1C
′2
g1

Vg

e
+ C2

g1C
′′
g1

Vg

2e

)
∂3Ek
∂n3

g

+ C2
g1

(
−Vg

2e
C ′g1

)2
∂4Ek
∂n4

g

}
.

(9)

Noticeably the radiation pressure coupling is
antisymmetrical with respect to the degeneracy point
ng = 1/2 whereas the cross-Kerr coupling is completely
symmetrical in this sense and, additionally, the radiation
pressure vanishes when the gate charge is tuned to the
degeneracy point of the qubit, as shown in Figs. 2a and
2b. However, the cross-Kerr term does not vanish at this
point, see Figs. 3a and 3b. By choosing EJ/EC � 1 and
detuning very close to charge degeneracy point, we are
able to achieve a very strong Kerr nonlinearity without
the optomechanical coupling. Therefore, with a proper
choice of the gate charge and detuning, the system can
be described with a simple Hamiltonian

ĤCK = ~ωcâ
†â+ ~ωmb̂

†b̂+ ~gCKâ
†âb̂†b̂. (10)

Looking at Eq. (10), the cavity resonant frequency
is starkly shifted due to the number of phonons in the
mechanical part, since with proper parameter selection
the maximum predicted gCK can reach up to typical
microwave cavity linewidth κ ∼ 2π × 1 − 10 MHz.5,24

This allows the system to function as a very good phonon
counter with the cavity as the readout.

IV. PERTURBATIVE QUANTUM MECHANICS
APPROACH

Here we consider the dynamics of the system with
a fully quantum mechanical treatment. This approach
better highlights the involvement of the qubit to the
enhancement of the cavity-mechanics coupling. In the
above circuit model, the quantum capacitance of the
Josephson junctions is seen to affect the total capacitance
felt by the cavity, whereas here the coupling is seen to
arise from a direct perturbation of the cavity and the
mechanics on the qubit.

Naturally, the cavity and the mechanics can be
considered as harmonic oscillators with Hamiltonians

Ĥc = ~ωcâ
†â, (11a)

Ĥm = ~ωmb̂
†b̂. (11b)

Here â(†) and b̂(†) are the annihilation (creation)
operators of the cavity photons and the phonons in the
moving capacitor, respectively, and we have neglected
some terms arising from the detailed derivation provided
in Appendix D, since these terms do not contribute to
the radiation pressure and cross-Kerr couplings.

The charging energy Hamiltonian of the qubit in the
charge basis, expressed with the number of Cooper pairs,
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is

Ĥch = 4EC

∑
n

[
(n̂− ng (x))

2
+

2e

CΣ1c
n̂Q̂c

]
|n〉 〈n| .

(12)
Here the first term is standard charging energy of a
CPB and the second term causing a slight displacement
of the qubit degeneracy point arises from the direct
coupling between the cavity and the CPB. The effect
that the second term has on the couplings turns out to
be negligible with reasonable experimental parameters,
but we include the term for completeness. We denote
CΣ1c = −2Cc (Cg1 + CJ) /CJ.

Considering the two lowest Cooper pair charge states
|int (ng0)〉 and |int (ng0) + 1〉 as the ground state and
excited states, |0〉 and |1〉, respectively, the charging
energy Hamiltonian becomes in the two-level system
approximation

Ĥch = −B3

2
σz − gcpp̂cσz − gmx̂mσz + gcmx̂mp̂cσz, (13)

where the following shorthand notation is used

gm = 4EC
∂ng

∂x
xzp = 4EC

(
− 1

2e
C ′g1Vg

)
xzp, (14a)

gcp = 2
e

CΣ1c
Qzpng0, (14b)

gcm = 2
e

CΣ1c

∂ng

∂x
Qzpxzp, (14c)

x̂m = b̂+ b̂†, (14d)

p̂c = −i
(
â− â†

)
. (14e)

Here, σx, σy, σz are Pauli matrices acting on the space

spanned by the states |0〉 and |1〉, and â(†). The first
term gives the unperturbed qubit excitation energy, and
the second arises from qubit-cavity interaction, and the

rest from the charge fluctuations δng =
∂Cg1

∂x x̂.
The node fluxes on the cavity side of the Josephson

junctions and on the qubit island are −φc/2 and φ1,
respectively. The tunneling energy Hamiltonian is thus

HJJ =− EJ1 cos

(
2π
φ1 + 1

2φc + 1
2ΦE

Φ0

)
− EJ2 cos

(
2π
φ1 + 1

2φc − 1
2ΦE

Φ0

)
= − EJ cos

(
π

ΦE

Φ0

)[
cos

(
2π
φ1

Φ0

)
cos

(
π
φc

Φ0

)
− sin

(
2π
φ1

Φ0

)
sin

(
π
φc

Φ0

)]
,

(15)

where symmetrical JJs are assumed. The following
results are all written assuming EJ1 = EJ2 = EJ/2
for simplicity, and the full formulas are presented in the
Appendices.

In general, a node flux can be related to the phase
of the node with ϕi = 2π φi

Φ0
. One can show that the

quantized phase of the cavity node can be tied to the
annihilation (creation) operator of photons â(†) so that

ϕ̂c/2 = η(â + â†) where η =
√
e2Z0/(2~) with Z0 =√

Lc/Cc. The conjugate variable of the cavity flux, the

cavity charge is similarly defined Q̂c = −iQzp

(
â− â†

)
,

where the zero-point motion of charge is Qzp =
√

~
2Z0

.

See Appendix D for the derivations.
The cavity-qubit coupling parameter η � 1 for typical

microwave cavities. Therefore, we can now expand the
sine and cosine terms of ϕ̂c in Eq. (15) up to second
order in η. Properties of the phase operators also allow us
to identify the superconducting phase of the island with
ladder operators in the effective qubit so that considering
on the states |0〉 and |1〉, we obtain cos(ϕ̂1) 7→ σx/2 and
sin(ϕ̂1) 7→ −σy/2, see Appendix D for derivation. The
approximate quantized Hamiltonian for the Josephson
junctions is thus

ĤJJ = −B1

2
σx −

B2

2
σy + g1σyx̂c + g2σxx̂

2
c (16)

with g1 = −B1η/2, g2 = B1η
2/4, and x̂c = â+ â†.

Let us decompose the Hamiltonians (13) and (16) into
parts with the different Pauli matrices, and write the full
system Hamiltonian

Ĥ = Ĥc + Ĥm −
1

2

3∑
k=1

B̃kσk (17)

with the perturbed qubit terms

B̃1 = B1 − 2g2x̂
2
c , (18a)

B̃2 = −2g1x̂c, (18b)

B̃3 = B3 + 2gmx̂m + 2gcpp̂c − 2gcmp̂cx̂m. (18c)

The Hamiltonian (17) can thus be interpreted as the
cavity and the mechanics slightly perturbing the isolated
qubit parameters Bk (B2 = 0 for symmetrical JJs). In
other words, the qubit mediates the interaction between
the cavity and the mechanics leading to a notable
enhancement of the coupling.

Let us consider a perturbative approach to solving
the cavity-mechanics couplings from Eq. (17), and
note that the eigenenergies of a qubit with Hamiltonian

− 1
2

∑3
k=1 B̃kσk are ± 1

2

√
B̃2

1 + B̃2
2 + B̃2

3 . We write the

Hamiltonian (17) in terms of its ground state

Ĥ =Ĥc + Ĥm −
1

2

√
B̃2

1 + B̃2
2 + B̃2

3

=Ĥc + Ĥm

− 1

2
B
{

1 +
1

B2

(
βx̂2

c + δx̂4
c + εx̂m + λx̂2

m

+ξ1p̂c + ξ2p̂
2
c + ξ3p̂cx̂m + ξ4p̂

2
c x̂m + ξ5p̂cx̂

2
m

)} 1
2

(19)
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with

B =
√
B2

1 +B2
3 , (20a)

β = 4
(
g2

1 −B1g2

)
, (20b)

δ = 4g2
2 , (20c)

ε = 4B3gm, (20d)

λ = 4g2
m, (20e)

ξ1 = 4B3gcp, (20f)

ξ2 = 4g2
cp, (20g)

ξ3 = 4 (2gcpgm −B3gcm) , (20h)

ξ4 = −8gcpgcm, (20i)

ξ5 = −8gmgcm. (20j)

We can expand the square root term as
√

1 + x ≈
1 + x

2 −
x2

8 , and we note that the expansion is more
accurate further away from the degeneracy point of the
qubit, where B is larger. This technique yields cavity-
mechanics couplings that approach the ones obtained
from the circuit model far away from the degeneracy
point when EJ � EC. We also note that the terms ξi
are negligible compared to the other contributions using
reasonable experimental parameters, and expanding the
Hamiltonian to higher orders is easier when these terms
are omitted after which all terms in the expanded
Hamiltonian commute.

Up to the second order in the expansion, we obtain

− 1

2

√
B̃2

1 + B̃2
2 + B̃2

3

≈− 1

2
B

− 1

4B

(
βx̂2

c + δx̂4
c + εx̂m + λx̂2

m + ξ1p̂c

+ξ2p̂
2
c + ξ3p̂cx̂m + ξ4p̂

2
c x̂m + ξ5p̂cx̂

2
m

)
+

1

16B3

(
βx̂2

c + δx̂4
c + εx̂m + λx̂2

m + ξ1p̂c

+ξ2p̂
2
c + ξ3p̂cx̂m + ξ4p̂

2
c x̂m + ξ5p̂cx̂

2
m

)2
,

(21)

where, after normal ordering the cavity and mechanics
operators, we identify the radiation pressure coupling as

the prefactor of the term −~grpâ
†â
(
b̂† + b̂

)
~grp =

1

2B
ξ4 −

1

4B3
[ε (β + 6δ + ξ2)

+ξ4 (2β − 3δ + 3λ)]
(22)

and the cross-Kerr coupling as the prefactor of the term

~gCKâ
†âb̂†b̂

~gCK =
1

4B3

[
2λ (β + 6δ) + ξ2

3 + 6ξ2
4 + 6ξ2

5

+2εξ4 + 2λξ4] .
(23)

The circuit and quantum mechanical descriptions of
the system dynamics agree qualitatively but have

differences quantitatively close to the degeneracy point
of the qubit due to the inaccuracy of the perturbative
quantum mechanical approach in that regime. However,
importantly the circuit and quantum mechanical models
align well far away from the degeneracy point and better
agreement is naturally obtained by going to higher orders

in the expansion of the − 1
2

√
B̃2

1 + B̃2
2 + B̃2

3 term. In

Appendix E, we calculate the third order results for
these couplings by omitting the ξi terms that are small
compared to other terms in the expansion. An important
agreement of the two descriptions is also that at the
degeneracy point the radiation pressure coupling vanishes
and the cross-Kerr coupling obtains a large nonzero
value enabling a rich platform for phonon counting
experiments.

V. DISCUSSION

We are interested in reaching the ultrastrong single-
photon coupling regime grp > ωm where one can observe
the intrinsic nonlinearity of optomechanical coupling
that goes unseen for weaker couplings that allow the
linearization of the interaction. With our scheme, we are
able to obtain radiation pressure coupling enhancement
of seven orders of magnitude by utilizing the high range of
tunability offered by the setup. With the proper selection
of gate charge and the magnetic flux through the qubit
loop, the desired coupling strength for a specific purpose
can be obtained. Moreover, owing to the wide tuning
options, one can find a regime with enhanced radiation
pressure coupling and vanishing cross-Kerr coupling or
vice versa which makes this setup practical for multiple
types of studies.

For an optomechanical setup with a direct radiation
pressure coupling g0 of the order of 10 Hz, we are thus
able to reach a coupling of the order of 100 MHz, which
facilitates probing of the ground state of a typical flexural
nanomechanical resonator without the need for sideband
cooling.

Above, we performed our model calculations for a
cavity with impedance Z0 = 100 Ω, which means that
the zero-point fluctuations of flux Φzp =

√
~Z0/2

exceed the zero-point fluctuation of charge Qzp =√
~/ (2Z0), making the device characteristics more

strongly influenced by flux than charge fluctuations. As
seen in Figs. 2a and 3a, the enhancement of the radiation
pressure and cross-Kerr couplings is more affected by
changes in ng than in ΦE. With proper tuning of
ng, sizeable enhancements to grp and gCK can still be
obtained even with averaging effects in ΦE arising from
large phase fluctuations.

In summary, we have analyzed an optomechanical
setup based on utilization of Josephson (“quantum”)
capacitance of a Cooper-pair box to boost the
optomechanical coupling. We reach an enhancement of
radiation pressure by seven orders of magnitude, which
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brings the system well into the ultrastrong coupling
regime. The coupling is highly tunable by charge and flux
bias and, by proper selection of the bias point, strongly
enhanced Cross-Kerr coupling without radiation pressure
effects can be achieved for phonon counting purposes.
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Foundation of the Finnish Academy of Science and
Letters. This work was also supported in part by COST
Action CA16218 (NANOCOHYBRI) and the European
Microkelvin Platform (EMP, No. 824109).

Appendix A: Forming the Hamiltonian

We define the node flux at the node i at time t as

φi (t) =

∫ t

Vi (τ) dτ. (A1)

This implies that the voltage at node i can be expressed as

Vi (t) = φ̇i. (A2)

The node flux is also related to the phase of the node with

ϕi = 2π
φi
Φ0
, (A3)

where Φ0 = h
2e is the flux quantum. The node indices corresponding to each capacitive island of the circuit can be

seen in Fig. 4.
The energy stored in the capacitive elements of the circuit is

T =
CJ

2

(
φ̇1 − φ̇4

)2

+
Cg1

2

(
φ̇1 − φ̇2

)2

+
Cg2

2

(
φ̇2 − φ̇3

)2

+
Cc

2

(
φ̇2

3 − φ̇2
4

)2

+
CB

2
φ̇2

2

=
CJ

2

(
φ̇1 +

1

2
φ̇c

)2

+
Cg1

2

(
φ̇1 − φ̇2

)2

+
Cg2

2

(
φ̇2 −

1

2
φ̇c

)2

+
Cc

2
φ̇2

c +
CB

2
φ̇2

2,

(A4)

where CJ = CJ1 + CJ2 is the capacitance of the Josephson junctions, Cg1 and Cg2 the gate capacitances, and Cc the
capacitance of the LC cavity. The position dependence of Cg1 = Cg1 (x) is omitted for notational convenience. The
bias capacitance CB is included to induce a bias voltage on to the island 2. After taking CB → ∞, the voltage on
island 2 corresponds to the bias voltage. Detailed calculations are given below. Additionally, in order for the method
of nodes to work, the net of the capacitive elements connecting all of the nodes of the circuit needs to be simply
connected.41

Similarly, the inductive energy of the system is

U = − EJ1 cos

(
2π
φ1 − φ4 + 1

2ΦE

Φ0

)
− EJ2 cos

(
2π
φ1 − φ4 − 1

2ΦE

Φ0

)
+

1

2LB
φ2

2 +
1

2Lc
(φ3 − φ4)

2

= − EJ1 cos

(
2π
φ1 + 1

2φc + 1
2ΦE

Φ0

)
− EJ2 cos

(
2π
φ1 + 1

2φc − 1
2ΦE

Φ0

)
+

1

2LB
φ2

2 +
1

2Lc
φ2

c .

(A5)

Here EJ1, EJ2 are the Josephson energies of the junctions, ΦE the external flux through the loop of the Cooper-pair
box, LB the bias inductance, and Lc the inductance of the LC cavity.
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Cc Lc

φ3 = φc
2

φ4 = − φc
2

ΦEEJ1, CJ1 EJ2, CJ2

φ1

Cg1 (x) x

Cg2

φ2

LB

CB

FIG. 4: Schematics of the Cooper-pair box circuit for enhancement of optomechanical coupling. For elements, see
text.

The Lagrangian L
(
φi, φ̇i

)
is thus

L = T − U =
1

2
~̇
φᵀ [C]

~̇
φ− U , (A6)

where

[C] =

CJ + Cg1 −Cg1
1
2CJ

−Cg1 Cg1 + Cg2 + CB − 1
2Cg2

1
2CJ − 1

2Cg2 Cc + 1
4CJ + 1

4Cg2

 ;
~̇
φ =

φ̇1

φ̇2

φ̇c

 . (A7)

Now, the Hamiltonian of the system H (φi, Qi) can be expressed with the conjugate momenta

Qi =
∂L
∂φ̇i

(A8)

that correspond to the electric charge on the island i. The canonical relation between the Lagrangian and the
Hamiltonian gives

H =
∑
i

φ̇i
∂L
∂φ̇i
− L =

∑
i

φ̇iQi − L

=
1

2
~Qᵀ [C]

−1 ~Q+ U .
(A9)

Here, the inverse of the capacitance matrix is

[C]
−1

=

 1
CΣ1

1
CΣ12

1
CΣ1c

1
CΣ12

1
CΣ2

1
CΣ2c

1
CΣ1c

1
CΣ2c

1
CΣc

 (A10)
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with the following shorthand notations

1

CΣ1
=

Cg1Cg2 + 4Cc (Cg1 + Cg2) + CJ (Cg1 + Cg1) + CB (4Cc + Cg2 + CJ)

CBCg1 (4Cc + Cg2) + CBCJ (4Cc + Cg1 + Cg2) + 4 [CcCg1Cg2 + CJCg1Cg2 + CcCJ (Cg1 + Cg2)]
, (A11a)

1

CΣ2
=

Cg2CJ + 4Cc (Cg1 + Cg2) + Cg1 (Cg2 + CJ)

CBCg1 (4Cc + Cg2) + CBCJ (4Cc + Cg1 + Cg2) + 4 [CcCg1Cg2 + CJCg1Cg2 + CcCJ (Cg1 + Cg2)]
, (A11b)

1

CΣc
=

4Cg1 (CB + Cg2) + 4CJ (CB + Cg1 + Cg2)

CBCg1 (4Cc + Cg2) + CBCJ (4Cc + Cg1 + Cg2) + 4 [CcCg1Cg2 + CJCg1Cg2 + CcCJ (Cg1 + Cg2)]
, (A11c)

1

CΣ12
=

4CcCg1 − Cg2CJ + Cg1 (Cg2 + Cg)

CBCg1 (4Cc + Cg2) + CBCJ (4Cc + Cg1 + Cg2) + 4 [CcCg1Cg2 + CJCg1Cg2 + CcCJ (Cg1 + Cg2)]
, (A11d)

1

CΣ1c
=

2Cg1Cg2 − 2CJ (CB + Cg1 + Cg2)

CBCg1 (4Cc + Cg2) + CBCJ (4Cc + Cg1 + Cg2) + 4 [CcCg1Cg2 + CJCg1Cg2 + CcCJ (Cg1 + Cg2)]
, (A11e)

1

CΣ2c
=

2Cg1 (Cg2 − CJ) + Cg2CJ

CBCg1 (4Cc + Cg2) + CBCJ (4Cc + Cg1 + Cg2) + 4 [CcCg1Cg2 + CJCg1Cg2 + CcCJ (Cg1 + Cg2)]
. (A11f)

Thus, the Hamiltonian can be written out explicitly

H =
1

2CΣ1
Q2

1 +
1

2CΣ2
Q2

2 +
1

2CΣc
Q2

c +
1

CΣ12
Q1Q2 +

1

CΣ1c
Q1Qc +

1

CΣ2c
Q2Qc + U . (A12)

Define the nominal bias voltage

Vg =
Q2

CΣ2
(A13)

and calculate the real voltage on island 2

∂H
∂Q2

=
1

CΣ2
Q2 +

1

CΣ12
Q1 +

1

CΣ2c
Qc = Vg +

1

CΣ12
Q1 +

1

CΣ2c
Qc. (A14)

In the limit CB →∞, we obtain ∂H
∂Q2

= Vg, i.e. island 2 is now set to a potential that can be tuned with Vg.

Define the charging energy of the Cooper-pair box, the number of Cooper pairs on island 1, and the nominal gate
charge

EC =
e2

2CΣ1
, (A15a)

n =
Q1

2e
, (A15b)

ng = − 1

2e

CΣ1CΣ2

CΣ12
Vg. (A15c)

With these definitions along with Eq. (A13), the Hamiltonian (A12) can be reformulated to a standard form

H = 4EC (n− ng)
2

+ 4EC

(
C2

Σ12

CΣ1CΣ2
− 1

)
n2

g

+
1

2CΣc
Q2

c +

(
1

CΣ1c
· 2en+

CΣ12

CΣ1CΣ2c
· 2eng

)
Qc + U .

(A16)

Let us now focus on U in Eq. (A5) and specifically the Josephson junction part of it. Let us define the Josephson
energies of the junctions as

EJ1 = (1 + d)
EJ

2
, (A17a)

EJ2 = (1− d)
EJ

2
, (A17b)
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where d ∈ [ 0, 1) describes the difference of the Josephson energies of the two junctions. Using Eq. (A17) and the
identity cos (α± β) = cosα cosβ ∓ sinα sinβ, we can rewrite

− EJ1 cos

(
2π
φ1 + 1

2φc + 1
2ΦE

Φ0

)
− EJ2 cos

(
2π
φ1 + 1

2φc − 1
2ΦE

Φ0

)
= − EJ cos

(
π

ΦE

Φ0

)[
cos

(
2π
φ1

Φ0

)
cos

(
π
φc

Φ0

)
− sin

(
2π
φ1

Φ0

)
sin

(
π
φc

Φ0

)]
+ EJd sin

(
π

ΦE

Φ0

)[
cos

(
2π
φ1

Φ0

)
sin

(
π
φc

Φ0

)
+ sin

(
2π
φ1

Φ0

)
cos

(
π
φc

Φ0

)]
.

(A18)

Now, the total Hamiltonian of the system can be written as

H =4EC (n− ng)
2

+ 4EC

(
C2

Σ12

CΣ1CΣ2
− 1

)
n2

g

+
1

2CΣc
Q2

c +

(
1

CΣ1c
· 2en+

CΣ12

CΣ1CΣ2c
· 2eng

)
Qc

− EJ cos

(
π

ΦE

Φ0

)[
cos

(
2π
φ1

Φ0

)
cos

(
π
φc

Φ0

)
− sin

(
2π
φ1

Φ0

)
sin

(
π
φc

Φ0

)]
+ EJd sin

(
π

ΦE

Φ0

)[
cos

(
2π
φ1

Φ0

)
sin

(
π
φc

Φ0

)
+ sin

(
2π
φ1

Φ0

)
cos

(
π
φc

Φ0

)]
+

1

2LB
φ2

2 +
1

2Lc
φ2

c .

(A19)

In the limit CB →∞, the definitions introduced in Eqs. (A11) and (A15) simplify to

1

CΣ1
→ 4Cc + Cg2 + CJ

Cg1 (4Cc + Cg2) + CJ (4Cc + Cg1 + Cg2)
≈ 1

Cg1 + CJ
, (A20a)

1

CΣ2
→ 0, (A20b)

1

CΣc
→ 4Cg1 + 4CJ

Cg1 (4Cc + Cg2) + CJ (4Cc + Cg1 + Cg2)
≈ 1

Cc
, (A20c)

1

CΣ1c
→ − 2CJ

Cg1 (4Cc + Cg2) + CJ (4Cc + Cg1 + Cg2)
≈ − CJ

2Cc (Cg1 + CJ)
, (A20d)

1

CΣ12
→ 0, (A20e)

1

CΣ2c
→ 0, (A20f)

ng → −
(
Cg1 −

Cg2CJ

4Cc + Cg2 + CJ

)
Vg

2e
≈ −Cg1

2e
Vg. (A20g)

The rightmost approximate results are recovered in the case, where Cc is the dominant capacitance in the system.

Appendix B: Deriving the effective capacitance

In the following we determine the effective capacitance of the Cooper-pair box part of the circuit. Let us first
determine the electric charges on the different islands of the circuit. These arise from the relation in Eq. (A8)

Q1 =
∂L
∂φ̇1

= (CJ + Cg1) φ̇1 − Cg1φ̇2 +
1

2
CJφ̇c, (B1a)

Q2 =
∂L
∂φ̇2

= (Cg1 + Cg2 + CB) φ̇2 − Cg1φ̇1 −
1

2
Cg2φ̇c, (B1b)

Qc =
∂L
∂φ̇3

=

(
Cc +

1

4
Cg2 +

1

4
CJ

)
φ̇c +

1

2
CJφ̇2 −

1

2
Cg2φ̇2. (B1c)
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Recall the definition of Vg in Eq. (A13). In the large CB limit, CΣ2 → CB, and together with the relation (B1b),

φ̇2 = Vg is implied. Now that the voltage on the island is fixed to Vg in this limit, the number of Cooper pairs on
island 1 can be determined by combining the relations (A15b) and (B1a)

n =
Q1

2e
=

(CJ + Cg1) φ̇1 − Cg1Vg + 1
2CJφ̇c

2e
. (B2)

The voltage on the Cooper-pair box island is thus

VI = φ̇1 =
Cg1

CJ + Cg1
Vg −

1

2

CJ

CJ + Cg1
φ̇c +

2en

CJ + Cg1
(B3)

and, therefore, the charge across Cg1 can be written

Qg1 = Cg1 (Vg − VI) =
CJCg1

CJ + Cg1
Vg −

Cg1

CJ + Cg1
2en+

1

2

CJCg1

CJ + Cg1
φ̇c. (B4)

Notice that here the second term has the opposite sign compared to the calculation presented by Duty et al.28.
However, also our gate charge is defined with the opposite sign with respect to the gate voltage, see Eq. (A20g). Thus
the effective capacitance obtained here aligns with the results in28

Ceff =
∂Qg1

∂Vg
=
Cg1CJ

CΣ1
−
C2

g1

4e2

∂2Ek
∂n2

g

, (B5)

where Ek is the kth energy band of the Cooper-pair box. We do not have to take the position dependence of Cg1

into consideration in this part of the derivation. Since were are considering a voltage bias setup with a resonance
frequency well below RC cutoff effects, the voltage on the Cooper-pair box island is able to follow the movement of
the capacitor without difficulties.

Appendix C: Radiation pressure and cross-Kerr couplings

Consider the resonance frequency of an LC circuit

ωc =
1√

LcCtot

, (C1)

where the total capacitance Ctot arises from the cavity capacitor that is parallel with the second gate capacitor and
the effective Cooper-pair box capacitor

Ctot = Cc +

(
1

Cg2
+

1

Ceff

)−1

. (C2)

The cavity frequency can be expanded in the position of the moving capacitor Cg1 (x)

ωc ' ωc0 +
∂ωc

∂x
x+

1

2

∂2ωc

∂x2
x2. (C3)

Here, the linear term corresponds to the radiation pressure coupling. Thinking about a simple optical cavity, the
decrease in cavity length should lead to the increase in cavity frequency. The quantization of the circuit gives the
position operator the form x̂ = xzp

(
b† + b

)
, where xzp is the zero point motion. Thus the radiation pressure coupling

is

~grp = −~∂ωc

∂x
xzp. (C4)

A straightforward calculation yields

∂ωc

∂x
= −1

2

C2
g2

(Cg2 + Ceff)
2

ωc

Ctot

∂Ceff

∂x
(C5)
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with

∂Ceff

∂x
= −

CJCg1C
′
g1

(Cg1 + CJ)
2 +

CJC
′
g1

Cg1 + CJ
−
Cg1C

′
g1

2e2

∂2Ek
∂n2

g

−
C2

g1

4e2

∂

∂x

(
∂2Ek
∂n2

g

)
(C6)

arising from the expression (2). Here the prime notation is used to mark the x-derivatives. Using the chain rule, we
can determine

∂

∂x

(
∂2Ek
∂n2

g

)
=
∂ng

∂x

∂

∂ng

(
∂2Ek
∂n2

g

)
= −Vg

2e
C ′g1

∂3Ek
∂n3

g

, (C7)

where the gate charge definition (A20g) is used. Thus we obtain

∂Ceff

∂x
= −

CJCg1C
′
g1

(Cg1 + CJ)
2 +

CJC
′
g1

Cg1 + CJ
−
Cg1C

′
g1

2e2

∂2Ek
∂n2

g

+
C2

g1C
′
g1

8e3
Vg
∂3Ek
∂n3

g

(C8)

leading to the radiation pressure coupling

~grp =~xzp

[
1

2

C2
g2

(Cg2 + Ceff)
2

ωc

Ctot

]

×

[
−

CJCg1C
′
g1

(Cg1 + CJ)
2 +

CJC
′
g1

Cg1 + CJ
−
Cg1C

′
g1

2e2

∂2Ek
∂n2

g

+
C2

g1C
′
g1

8e3
Vg
∂3Ek
∂n3

g

] (C9)

by plugging (C5) and (C8) back to (C4).

Conversely, the cross-Kerr coupling arises from ~ 1
2
∂2ωc

∂x2 x̂
2 ≈ ~∂

2ωc

∂x2 x
2
zpb
†b leading to

~gCK = ~
∂2ωc

∂x2
x2

zp. (C10)

A direct calculation leads to

∂2ωc

∂x2
=ωcC

2
g2

Cg2 (4Cc + 3Cg2) + 4 (Cc + Cg2)Ceff

4 (Cg2 + Ceff)
2

[CcCg2 + (Cc + Cg2)Ceff ]
2

(
∂Ceff

∂x

)2

− ωcC
2
g2

1

2 (Cg2 + Ceff) [CcCg2 + (Cc + Cg2)Ceff ]

∂2Ceff

∂x2
,

(C11)

where

∂2Ceff

∂x2
=−

CJC
′2
g1

(Cg1 + CJ)
2 +

CJC
′′
g1

Cg1 + CJ
+ CJCg1

[
2C ′2g1

(Cg1 + CJ)
3 −

C ′′g1

(Cg1 + CJ)
2

]

− 1

4e2

[
4Cg1C

′
g1

∂

∂x

(
∂2Ek
∂n2

g

)
+
(
2C ′2g1 + 2Cg1C

′′
g1

) ∂2Ek
∂n2

g

+ C2
g1

∂2

∂x2

(
∂2Ek
∂n2

g

)]
.

(C12)

Utilizing the second order chain rule ∂2y
∂x2 = ∂2y

∂z2

(
∂z
∂x

)2
+ ∂y

∂z
∂2z
∂x2 we obtain

∂2

∂x2

(
∂2Ek
∂n2

g

)
=

(
∂ng

∂x

)2
∂4Ek
∂n4

g

+
∂2ng

∂x2

∂3Ek
∂n3

g

=

(
−Vg

2e
C ′g

)2
∂4Ek
∂n4

g

− Vg

2e
C ′′g

∂3Ek
∂n3

g

(C13)

giving the explicit form of the second derivative

∂2Ceff

∂x2
=−

CJC
′2
g1

(Cg1 + CJ)
2 +

CJC
′′
g1

Cg1 + CJ
+ CJCg1

[
2C ′2g1

(Cg1 + CJ)
3 −

C ′′g1

(Cg1 + CJ)
2

]

− 1

4e2

[(
2C ′2g1 + 2Cg1C

′′
g1

) ∂2Ek
∂n2

g

−
(

2Cg1C
′2
g1

Vg

e
+ C2

g1C
′′
g

Vg

2e

)
∂3Ek
∂n3

g

+C2
g1

(
−Vg

2e
C ′g

)2
∂4Ek
∂n4

g

]
.

(C14)
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Appendix D: Quantizing the Hamiltonian

Let us divide the full Hamiltonian (A19) into parts. The cavity, mechanics, cavity-mechanics-CPB coupling,
charging, and Josephson-junction sub-Hamiltonians are

H = Hc +Hm +Hcm +Hch +HJJ, (D1a)

Hc =
1

2CΣc
Q2

c +
1

2Lc
φ2

c , (D1b)

Hm = 4EC

(
C2

Σ12

CΣ1CΣ2
− 1

)
n2

g, (D1c)

Hcm =
CΣ12

CΣ1CΣ2c
· 2engQc, (D1d)

Hch = 4EC (n− ng)
2

+
1

CΣ1c
· 2enQc, (D1e)

HJJ = −EJ cos

(
π

ΦE

Φ0

)[
cos (ϕ1) cos

(ϕc

2

)
− sin (ϕ1) sin

(ϕc

2

)]
(D1f)

+ EJd sin

(
π

ΦE

Φ0

)[
cos (ϕ1) sin

(ϕc

2

)
+ sin (ϕ1) cos

(ϕc

2

)]
.

1. Cavity Hamiltonian

Let us first quantize the cavity Hamiltonian (D1b). Quantized cavity flux and its conjugate momentum (charge)
fulfill the canonical commutation relation [

φ̂c, Q̂c

]
= i~, (D2)

and introduce bosonic operators â, â† with
[
â, â†

]
= 1 so that

φ̂c = Φzp

(
â+ â†

)
, (D3a)

Q̂c = −iQzp

(
â− â†

)
. (D3b)

Applying these to the canonical commutation relation (D2) implies

2ΦzpQzp = ~. (D4)

Thus we can rewrite the quantized cavity Hamiltonian

Ĥc =

(
Q2

zp

CΣc
+

Φ2
zp

Lc

)(
â†â+

1

2

)
+

(
−
Q2

zp

2CΣc
+

Φ2
zp

2Lc

)(
â2 + â†2

)
, (D5)

where we can denote ~ωc =
Q2

zp

CΣc
+

Φ2
zp

Lc
. Φzp and Qzp can be solved from this using the relation (D4) and the standard

way of writing the cavity angular frequency

ωc =
1√

LcCΣc

. (D6)

We find that

Qzp =

√
~

2Z0
, (D7a)

Φzp =

√
~Z0

2
, (D7b)

Z0 =

√
Lc

CΣc
, (D7c)
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and thus the cavity Hamiltonian can be written

Ĥc = ~ωc

(
â†â+

1

2

)
, (D8)

where the constant term can be neglected without loss of generality.

2. Mechanics Hamiltonian

The mechanics Hamiltonian (D1c) can be quantized in a similar fashion. Notice that the gate charge ng is
displacement x dependent as the capacitance Cg1 (x) depends on the separation of the gate electrodes. We approximate

ng ≈ ng0 +
∂ng

∂x
x (D9)

and using the definition of ng (A20g) we find

∂ng

∂x
= −

C ′g1

2e
Vg. (D10)

By defining bosonic operators for the mechanics b̂, b̂† with
[
b̂, b̂†

]
= 1, we may quantize the displacement as

x̂ = xzp

(
b̂+ b̂†

)
. (D11)

The quantized mechanics Hamiltonian is thus (neglecting constants)

Ĥm = 4EC

(
C2

Σ12

CΣ1CΣ2
− 1

)[
2

(
∂ng

∂x

)2

x2
zpb̂
†b̂+ 2ng

∂ng

∂x
xzp

(
b̂† + b̂

)
+

(
∂ng

∂x

)2

x2
zp

(
b̂†2 + b̂2

)]
= ~ωmb̂

†b̂+ h1

(
b̂† + b̂

)
+ h2

(
b̂†2 + b̂2

)
.

(D12)

We now have enough information to also quantize Hcm (D1d) that directly couples the cavity to the mechanics, and
obtain

Ĥcm =
CΣ12

CΣ1CΣ2c
· 2e

(
ng0 +

∂ng

∂x
x̂

)
Q̂c

= −i2e CΣ12

CΣ1CΣ2c

[
ng0 −

C ′g1

2e
Vgxzp

(
b̂+ b̂†

)]
Qzp

(
â− â†

)
.

(D13)

3. Josephson junction Hamiltonian

In order to quantize the Josephson junction Hamiltonian (D1f), let us first discuss how the phase on the CPB
island relates to the qubit operations when the tunneling junctions are considered as two-level systems. The following
derivation closely follows the treatment of tunnel junctions by Vool and Devoret41. The tunnelling Hamiltonian of
a Josephson junction can be written in a number basis using the transmitted charge through the junction, which in
terms of Cooper pairs reads as

ĤT = −ET

2

N=∞∑
N=−∞

[
|N〉 〈N + 1|+ |N + 1〉 〈N |

]
, (D14)

where the tunneling energy is denoted by ET. This number basis representation can be related to the alternate phase
basis by equations

|ϕ〉 =

∞∑
N=−∞

eiNϕ |N〉 , (D15a)

|N〉 =
1

2π

∫ 2π

0

dϕe−iNϕ |ϕ〉 . (D15b)
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A straightforward calculation reveals that the operator

eiϕ̂ =
1

2π

∫ 2π

0

dφeiϕ |ϕ〉 〈ϕ| (D16)

has the following translation properties

eiϕ̂ |N〉 = |N − 1〉 , (D17a)

e−iϕ̂ |N〉 = |N + 1〉 . (D17b)

Confining our approach to a two level setting, i.e. we only consider qubit states |0〉 and |1〉, directly leads to

cos ϕ̂ =
1

2

[
eiϕ̂ + e−iϕ̂

]
=

1

2

[
|1〉 〈0|+ |0〉 〈1|

]
=

1

2
σx, (D18a)

sin ϕ̂ =
1

2i

[
eiϕ̂ − e−iϕ̂

]
=
i

2

[
|1〉 〈0| − |0〉 〈1|

]
= −1

2
σy. (D18b)

We may thus identify

cos (ϕ̂1) =
1

2
σx, (D19a)

sin (ϕ̂1) = −1

2
σy, (D19b)

where σk are the Pauli matrices with conventions

σx = |1〉 〈0|+ |0〉 〈1| =
(

0 1
1 0

)
, (D20a)

σy = i (|0〉 〈1| − |1〉 〈0|) = i

(
0 −1
1 0

)
, (D20b)

|0〉 =

(
0
1

)
, (D20c)

|1〉 =

(
1
0

)
. (D20d)

By recall the cavity flux operator (D3a) and the phase-flux relation ϕc = 2π φc

Φ0
, we can write

ϕ̂c

2
= η

(
â+ â†

)
, (D21a)

η =

√
e2Z0

2~
. (D21b)

We can expand the trigonometric functions of the cavity flux operators in the JJ Hamiltonian (D1f)

sin

(
ϕ̂c

2

)
≈ ϕ̂c

2
= η

(
â+ â†

)
, (D22a)

cos

(
ϕ̂c

2

)
≈ 1− 1

2

(
ϕ̂c

2

)2

= 1− 1

2
η2
(
â+ â†

)2
, (D22b)

and the Josephson junction Hamiltonian simplifies to

ĤJJ =− EJ

2

[
cos

(
π

ΦE

Φ0

)
σx + d sin

(
π

ΦE

Φ0

)
σy

]
− EJ

2

[
cos

(
π

ΦE

Φ0

)
σy − d sin

(
π

ΦE

Φ0

)
σx

]
η
(
â+ â†

)
− EJ

4

[
cos

(
π

ΦE

Φ0

)
σx + d sin

(
π

ΦE

Φ0

)
σy

]
η2
(
â+ â†

)2
=− B1

2
σx −

B2

2
σy + g1σyx̂c + g2σxx̂

2
c + g3σxx̂c + g4σyx̂

2
c

(D23)
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with

B1 = EJ cos

(
π

ΦE

Φ0

)
, (D24a)

B2 = EJd sin

(
π

ΦE

Φ0

)
, (D24b)

g1 = −B1

2
η, (D24c)

g2 =
B1

4
η2, (D24d)

g3 =
B2

2
η, (D24e)

g4 =
B2

4
η2, (D24f)

x̂c = â+ â†. (D24g)

4. Charging Hamiltonian

The charging Hamiltonian (D1e) can be written in a quantized form

Ĥch = 4EC

∑
n

[
(n̂− ng)

2
+

2e

CΣ1c
n̂Q̂c

]
|n〉 〈n| (D25)

with eigenenergies En = 4EC (n− ng)
2

+ 2e
CΣ1c

nQc that are parabolas as the function of ng displaced by the cavity

charge. Assuming that the EJ � EC, the contribution from the JJ Hamiltonian (D23) to the qubit energy is negligible
and the total qubit energy can be approximated with the parabolas En.

Concentrate on the states closest to ng0, i.e. n = int (ng0) and n = int (ng0) + 1, and call these states |0〉 and |1〉,
respectively. From En, we can see that the degeneracy point of this well-defined qubit is at ng = 1

2 + 1
8EC

2e
CΣ1c

Qc.
Thus, in the two-level system approximation, the charging Hamiltonian is

Ĥch = 2EC

[
1−

(
1

2
+

1

8EC

2e

CΣ1c
Q̂c

)−1

ng

]
σz

= 2EC

[
1−

(
1

2
+

1

8EC

2e

CΣ1c
Q̂c

)−1

ng0

]
σz − 2EC

(
1

2
+

1

8EC

2e

CΣ1c
Q̂c

)−1
∂ng

∂x
x̂σz.

(D26)

We can expand
(

1
2 + 1

8EC

2e
CΣ1c

Qc

)−1

≈ 2− 1
EC

e
CΣ1c

Q̂c which allows us to write the charging Hamiltonian

Ĥch = 2EC (1− 2ng0)σz − 2
e

CΣ1c
Qzpng0p̂cσz

− 4EC
∂ng

∂x
xzpx̂mσz + 2

e

CΣ1c

∂ng

∂x
xzpQzpx̂mp̂cσz

= −B3

2
σz − gcpp̂cσz − gmx̂mσz + gcmx̂mp̂cσz,

(D27)

where

B3 = −4EC (1− 2ng0) , (D28a)

gm = 4EC
∂ng

∂x
xzp = 4EC

(
− 1

2e
C ′g1Vg

)
xzp = −2

e
ECVgC

′
g1xzp, (D28b)

gcp = 2
e

CΣ1c
Qzpng0, (D28c)

gcm = 2
e

CΣ1c

∂ng

∂x
Qzpxzp, (D28d)

x̂m = b̂+ b̂†, (D28e)

p̂c = −i
(
â− â†

)
. (D28f)
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Appendix E: Perturbative approach to the qubit

Let us regroup the quantized Hamiltonians based on their effects on the qubit

Ĥ = Ĥ0 + Ĥx + Ĥy + Ĥz, (E1a)

Ĥ0 = Ĥc + Ĥm + Ĥcm, (E1b)

Ĥx =

[
−1

2
B1 + g3x̂c + g2x̂

2
c

]
σx = −1

2
B̃1σx, (E1c)

Ĥy =

[
−1

2
B2 + g1x̂c + g4x̂

2
c

]
σy = −1

2
B̃2σy, (E1d)

Ĥz =

[
−1

2
B3 − gmx̂m − gcpp̂c + gcmp̂cx̂m

]
σz = −1

2
B̃3σz (E1e)

with

B̃1 = B1 − 2g3x̂c − 2g2x̂
2
c , (E2a)

B̃2 = B2 − 2g1x̂c − 2g4x̂
2
c , (E2b)

B̃3 = B3 + 2gmx̂m + 2gcpp̂c − 2gcmp̂cx̂m. (E2c)

Provided that EC � EJ, the additional terms in B̃j on can be considered as a small perturbation to the unperturbed
qubit Hamiltonian

ĤQ0 = −1

2

∑
j

Bjσj . (E3)

We can treat our system with a perturbation approach to the ĤQ0 with eigenenergies ± 1
2

√
B2

1 +B2
2 +B2

3 . Thus we
can approximate the full Hamiltonian as a perturbation to the qubit ground state

Ĥ = Ĥ0 −
1

2

√
B̃2

1 + B̃2
2 + B̃2

3 . (E4)

Let us write in the above expression explicitly

− 1

2

√
B̃2

1 + B̃2
2 + B̃2

3

=− 1

2
B

√
1 +

1

B2
(αx̂c + βx̂2

c + ρx̂3
c + δx̂4

c + εx̂m + λx̂2
m + ξ1p̂c + ξ2p̂2

c + ξ3p̂cx̂m + ξ4p̂2
c x̂m + ξ5p̂cx̂2

m)

(E5)

with

B =
√
B2

1 +B2
2 +B2

3 , (E6a)

α = −4 (B1g3 +B2g1) , (E6b)

β = 4
(
g2

3 + g2
1 −B1g2 −B2g4

)
, (E6c)

ρ = 8 (g2g3 + g1g4) , (E6d)

δ = 4
(
g2

2 + g2
4

)
, (E6e)

ε = 4B3gm, (E6f)

λ = 4g2
m, (E6g)

ξ1 = 4B3gcp, (E6h)

ξ2 = 4g2
cp, (E6i)

ξ3 = 4 (2gcpgm −B3gcm) , (E6j)

ξ4 = −8gcpgcm, (E6k)

ξ5 = −8gmgcm. (E6l)
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FIG. 5: (a) Comparison between radiation pressure coupling from the quantum mechanical perturbation theory and
the circuit model. Ratio between them approaches 1 far away from charge degeneracy points as EJ/EC ratio

becomes smaller. (b) Similar comparison for the cross-Kerr couplings obtained from the two approaches.

Recall that
√

1 + x ≈ 1 + x
2 −

x2

8 + x3

16 which allows us to expand the above expression provided that B is large, i.e.
EC is large

− 1

2

√
B̃2

1 + B̃2
2 + B̃2

3

≈− 1

2
B

− 1

4B

(
αx̂c + βx̂2

c + ρx̂3
c + δx̂4

c + εx̂m + λx̂2
m

+ξ1p̂c + ξ2p̂
2
c + ξ3p̂cx̂m + ξ4p̂

2
c x̂m + ξ5p̂cx̂

2
m

)
+

1

16B3

(
αx̂c + βx̂2

c + ρx̂3
c + δx̂4

c + εx̂m + λx̂2
m

+ξ1p̂c + ξ2p̂
2
c + ξ3p̂cx̂m + ξ4p̂

2
c x̂m + ξ5p̂cx̂

2
m

)2
.

(E7)

We can now identify the terms contributing the radiation pressure coupling
(
x̂2k

c p̂2j
c x̂

2l+1
m

)
, cross-Kerr coupling(

x̂2k
c p̂2j

c x̂
2l
m

)
. We also need to take into account the prefactors arising from normal ordering the terms contributing to

these couplings â†â
(
b̂† + b̂

)
, â†âb̂†b̂, respectively.

The radiation pressure coupling is

−~grp = − 1

2B
ξ4 +

1

4B3
[ε (β + 6δ + ξ2) + ξ4 (2β − 3δ + 3λ)] (E8)

(note the minus sign fixing the radiation pressure coupling to grp = −∂ωc

∂x , i.e. ~ωc (x) â†â ≈ ~ (ωc − grpx̂m) â†â) and
the cross-Kerr coupling is

~gCK =
1

4B3

[
2λ (β + 6δ) + ξ2

3 + 6ξ2
4 + 6ξ2

5 + 2εξ4 + 2λξ4
]
. (E9)

Ignoring the asymmetry in the qubit eigenenergies introduced by the cavity charge in Eq. (D25), we can more easily
expand Eq. (E7) to higher order. These terms are accompanied with p̂c operators that do not commute with x̂c

thus making high order calculations significantly more cumbersome. Omitting these terms is valid, since the terms ξi
resulting from this cavity charge induced asymmetry are orders of magnitude smaller compared to the other terms in
the expansion. In this approximation, the radiation pressure and cross-Kerr couplings are in the third order expansion
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~grp =
ε

16B5

{
−4B2 (β + 6δ) + 3α2 + 36αρ+ 135ρ2 + 18

(
β2 + 15βδ + 70δ2 + βλ+ 6δλ

)}
, (E10a)

~gCK =− 1

8B5

{
λ
[
−4B2 (β + 6δ) + 3α2 + 36αρ+ 135ρ2 + 18

(
β2 + 15βδ + 70δ2

)]
(E10b)

+3 (β + 6δ) ε2 + 18 (β + 6δ)λ2
}
.

The third order expansion for the radiation pressure coupling is not crucial for the result to align well with the
circuit model far away from the degeneracy point of the qubit. However, for the cross-Kerr coupling, expanding to
the third order offers a much better agreement with the circuit model than just the second order expansion.

In Fig. 5a, we see that as EJ � EC limit is approached, the radiation pressure coupling arising from the perturbative
quantum mechanical method approaches the result from the circuit model far away from the degeneracy point of the
qubit. Similarly, in Fig. 5b, results for the cross-Kerr couplings from the two approaches become better aligned as
EJ/EC ratio decreases. Here, for the values obtained from the quantum mechanical approach, the second order result
(E8) is used for the radiation pressure coupling while the cross-Kerr comparison is calculated with the third order
equation (E10b).
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A 91, 043822 (2015).

34 R. Sarala and F. Massel, Nanoscale Systems 4, 18 (2015).
35 W. Xiong, D.-Y. Jin, Y. Qiu, C.-H. Lam, and J. Q. You,

Physical Review A 93, 023844 (2016).
36 S. Chakraborty and A. K. Sarma, J. Opt. Soc. Am. B 34,

1503 (2017).
37 T.-S. Yin, X.-Y. Lü, L.-L. Wan, S.-W. Bin, and Y. Wu,

Optics Letters 43, 2050 (2018).
38 M. Kounalakis, C. Dickel, A. Bruno, N. K. Langford, and

G. A. Steele, npj Quantum Information 4, 38 (2018).

http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/PhysRevLett.88.148301
http://dx.doi.org/10.1038/nphys974
http://dx.doi.org/10.1038/nphys974
http://dx.doi.org/10.1038/nature08093
http://dx.doi.org/10.1038/nature08681
http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1103/PhysRevA.93.022510
http://dx.doi.org/10.1103/PhysRevA.93.022510
http://dx.doi.org/10.1103/PhysRevA.97.063857
http://dx.doi.org/10.1103/PhysRevA.97.063857
https://doi.org/10.1088/1367-2630/aad497
https://doi.org/10.1088/1367-2630/aad497
http://dx.doi.org/ 10.1103/PhysRevA.98.053834
http://dx.doi.org/ 10.1103/PhysRevA.98.053834
http://dx.doi.org/ 10.1103/PhysRevA.101.063802
http://dx.doi.org/10.1103/PhysRevResearch.2.023335
http://dx.doi.org/10.1103/PhysRevResearch.2.023335
http://dx.doi.org/10.1103/PhysRevA.81.042311
http://dx.doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1364/OE.22.018254
https://doi.org/10.1364/OE.22.018254
http://dx.doi.org/ 10.1103/PhysRevLett.121.123604
http://dx.doi.org/ 10.1103/PhysRevLett.121.220404
http://dx.doi.org/ 10.1103/PhysRevLett.121.220404
https://doi.org/10.1038/s41586-018-0038-x
http://dx.doi.org/ 10.1103/PhysRevLett.114.173602
http://dx.doi.org/10.1103/PhysRevB.96.014508
http://dx.doi.org/10.1103/PhysRevB.96.014508
http://dx.doi.org/ 10.1038/s41467-020-15433-3
http://dx.doi.org/ 10.1103/PhysRevLett.112.203603
http://dx.doi.org/10.1088/1367-2630/16/5/055008
http://dx.doi.org/10.1038/ncomms7981
http://dx.doi.org/10.1038/ncomms7981
http://jetp.ac.ru/cgi-bin/dn/e_061_02_0407.pdf
http://jetp.ac.ru/cgi-bin/dn/e_061_02_0407.pdf
http://dx.doi.org/10.1103/PhysRevLett.91.057003
http://dx.doi.org/10.1103/PhysRevLett.91.057003
http://dx.doi.org/ 10.1103/PhysRevLett.95.206806
http://dx.doi.org/ 10.1103/PhysRevLett.95.206806
http://dx.doi.org/ 10.1103/PhysRevLett.95.206807
http://dx.doi.org/ 10.1103/PhysRevLett.95.206807
http://dx.doi.org/10.1103/PhysRevB.82.134533
http://dx.doi.org/10.1103/PhysRevB.71.024530
http://dx.doi.org/10.1103/PhysRevB.71.024530
http://dx.doi.org/ 10.1103/PhysRevB.79.144511
http://dx.doi.org/10.1103/PhysRevA.32.2287
http://dx.doi.org/10.1103/PhysRevA.32.2287
http://dx.doi.org/10.1103/PhysRevA.91.043822
http://dx.doi.org/10.1103/PhysRevA.91.043822
http://arxiv.org/abs/1509.00964
http://dx.doi.org/ 10.1103/PhysRevA.93.023844
http://dx.doi.org/10.1364/JOSAB.34.001503
http://dx.doi.org/10.1364/JOSAB.34.001503
http://dx.doi.org/ 10.1364/OL.43.002050
https://doi.org/10.1038/s41534-018-0088-9


20

39 P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H.
Devoret, Physical Review Letters 72, 2458 (1994).

40 J. Aumentado, M. W. Keller, J. M. Martinis, and M. H.
Devoret, Physical Review Letters 92, 066802 (2004).

41 U. Vool and M. H. Devoret, Int. J. Circ. Theor. Appl. 45,
897 (2017).

http://dx.doi.org/ 10.1103/PhysRevLett.72.2458
http://dx.doi.org/10.1103/PhysRevLett.92.066802
http://dx.doi.org/10.1002/cta.2359
http://dx.doi.org/10.1002/cta.2359

	Enhancement of the optomechanical coupling and Kerr nonlinearity using the Josephson Capacitance of Cooper-pair box
	Abstract
	I Introduction
	II Description of the system
	III Circuit model
	IV Perturbative quantum mechanics approach
	V Discussion
	 Acknowledgments
	A Forming the Hamiltonian
	B Deriving the effective capacitance
	C Radiation pressure and cross-Kerr couplings
	D Quantizing the Hamiltonian
	1 Cavity Hamiltonian
	2 Mechanics Hamiltonian
	3 Josephson junction Hamiltonian
	4 Charging Hamiltonian

	E Perturbative approach to the qubit
	 References


