
Università degli Studi di Camerino
School of Advanced Studies

Dottorato di Ricerca in Scienze e Tecnologie
Computer Science - XXXV Ciclo

DSLs for Modelling, Coordinating
and Programming Multi-Robot

Systems

Relatore Dottorando

Prof. Francesco TIEZZI Khalid BOURR

Commissione Esaminatrice
Prof. Alberto Lluch LAFUENTE
Prof. Stefano SERIANI

Anno Accademico 2022-2023

University of Camerino
School of Advanced Studies

Doctor of Philosophy in Sciences and Technology
Computer Science - XXXII Cycle

DSLs for Modelling, Coordinating
and Programming Multi-Robot

Systems

Supervisor PhD Candidate

Prof. Francesco TIEZZI Khalid BOURR

Doctoral Examination Committee
Prof. Alberto Lluch LAFUENTE
Prof. Stefano SERIANI

Academic Year 2022-2023

“You can never cross the ocean until you have the courage to
lose sight of the shore.”

-Christopher Columbus

Abstract of the Dissertation

Software development for robotics applications is still a major challenge
that becomes even more complex when considering a Multi-Robot System
(MRS). Such a distributed software has to perform multiple cooperating tasks
well-coordinatedly to avoid unsatisfactory emerging behavior. This thesis
presents a high-level programming and modeling approach for MRSs using
X-Klaim programming language and the Business Process Modeling No-
tation (BPMN). The computation and communication model of X-Klaim,
based on multiple distributed tuple spaces, permits coordinating with the
same abstractions and mechanisms both intra- and inter-robot interactions
of an MRS. This allows developers to focus on the MRS behavior, achiev-
ing readable, reusable, and maintainable code. Alongside this, BPMN offers
an effective mechanism for representing the high-level design of MRS mis-
sions. Its graphical nature aids in depicting complex mission sequences and
interactions in a way that is easily comprehensible, promoting clarity and
interoperability. Our approach consolidates these two paradigms, enabling a
smooth transition from the conceptual design to concrete implementation of
MRS missions. We achieve this by providing a systematic mapping of BPMN
elements to X-Klaim constructs, which preserves the logic and structure of
the original design while adding necessary detail for execution in Robot Op-
erating System (ROS) environment. ROS is a flexible framework for writing
robot software and provides the tools, libraries and conventions to simplify
the process. To validate the feasibility and effectiveness of our approach,
we implemented and tested it across different MRS scenarios. The results
showed that our approach scales effectively when applied to increasingly com-
plex scenarios, allowing for code reusability. Further, our solution introduces
a slightly higher but acceptable latency compared to traditional ROS im-
plementations based on Python code, and it consumes less memory. This
research contributes towards improving the efficiency and quality of MRS
software development, bringing together the power of BPMN, X-Klaim and
ROS in a synergistic and integrated design-to-implementation process. Our

iv

findings offer promising implications for future development of more complex,
scalable, and effective MRS missions.

Acknowledgments

The journey through this PhD was a series of interconnected challenges,
where each experience organically led to the next, enriching my academic
voyage. In Camerino, my arrival was marked by an unforeseen dark down-
pour. The rain soaked my phone, rendering it inoperative and thus depriving
me of GPS, which left me without immediate guidance to a shelter, foreshad-
owing the intricate maze of challenges and twists my PhD journey was set to
unveil. Moving from the structured realm of Mathematics to the expansive
horizons of Computer Science was more than just an academic shift; it ne-
cessitated a deep cognitive transformation and an evolution in my approach
to challenges. This academic evolution took another turn when my mentor
moved to another university, compelling me to swiftly adapt to a new aca-
demic environment. Parallel to these intellectual adaptations was a cultural
journey—settling in a new land, away from the familiar warmth of family, I
found myself balancing the academic rigors with the nuances of an unfamiliar
cultural landscape.

Yet, every challenge was surmounted, including speaking the Italian lan-
guage, not just by personal grit but also due to the unwavering support and
guidance I received.

At the forefront of this journey, Professor Francesco Tiezzi has been my
guiding star. His unwavering support, invaluable insights, and relentless
dedication have been the cornerstone of my PhD experience. Without him,
the completion of this thesis would undoubtedly remain a distant dream.
My heartfelt gratitude to him for every discussion, every guidance, and every
moment he invested in me. In parallel, I must acknowledge Professor Barbara
Re. Her assistance and insights added depth to my research, and I am deeply
thankful for her contributions.

To the esteemed committee members who oversaw and critiqued my work,
your contributions were invaluable in refining my research. Professor Alberto
Lluch Lafuente and Professor Stefano Seriani, your expertise and feedback
not only helped shape the outcome of this study but also broadened my

vi

understanding of the subject at hand. Your constructive insights will remain
a foundational part of my academic journey.

Further, the very inception of this journey owes much to the PhD admis-
sions committee at University of Camerino. In particular, I wish to extend
my gratitude to Professor Michele Loreti, whose role as the coordinator of
the PhD program was pivotal in setting the direction of my research. Simi-
larly, Professor Andrea Polini’s contributions have been instrumental, and I
deeply appreciate the trust and faith both of you placed in me.

Within the walls of the PROS Lab, I journeyed through vibrant land-
scapes of innovation and team synergy. Professor Flavio Corradini, with his
dynamic leadership, transformed the lab into a beacon of knowledge and
motivation. My tenure there thrives on a foundation of excellence and per-
petual learning. My heartfelt gratitude goes out to Professor Corradini and
the entire team for sculpting my academic trajectory.

Navigating the intricate world of academia, the collaborative spirit served
as my guiding wind. My voyage was deeply enriched by the wisdom of Pro-
fessors Rosario Pugliese and Lorenzo Bettini from the University of Florence,
whose insights reshaped my research perspectives. Their mentorship remains
a cherished chapter of my journey. Moreover, the expertise of Professors Pa-
trizio Pellicione, Catia Trubiani, and Riccardo Pincirolli from the GSSI was
instrumental. Their guidance gave my research depth and breadth, and their
unwavering support transcended mere professional ties, for which I am pro-
foundly grateful.

Throughout my journey, Dr. Fabrizio Fornari was not only a guiding
figure academically but also a pillar of support beyond the confines of the
university. His unwavering assistance, both in addressing bureaucratic intri-
cacies and personal challenges, was invaluable. I am deeply grateful to him
for his steadfast presence. Additionally, my thanks extend to Dr. Lorenzo
Rossi and Dr. Michela Quadrini for their insights and support. Alongside
them, the cameraderie of Aniqa Rahman, Alessandro Marcelleti, Caterina
Luciani and Sara Pettinari was instrumental. Beyond just colleagues, they
were steadfast allies and friends. Their unwavering encouragement and the
moments we shared have greatly enriched my path. To all, my profound
gratitude for guiding and accompanying me in this academic adventure.

Last but not least, nothing can be achieved without the unconditional
support of family. My parents through every challenge and triumph, their un-
wavering faith and boundless love have been my guiding force. Even though
miles separated us, their encouragement has always bridged every distance.
My brothers, too, have added immeasurable depth to my journey with their
invaluable experiences. I owe my deepest gratitude; They are the bedrock
upon which all my achievements rest.

To all these luminaries, and many others who have touched my academic

vii

journey, my sincere thanks. You have made this more than just a pursuit of
knowledge; you’ve made it an unforgettable adventure.

This work was partially supported by the PRIN projects “SEDUCE” n.
2017TWRCNB.

List of Publications

• Bettini, Lorenzo. Bourr, Khalid. Pugliese, Rosario. Tiezzi, Francesco.
"Writing robotics applications with X-Klaim." In Proceedings of 9th
International Symposium on Leveraging Applications of Formal Meth-
ods Verification and Validation: Engineering Principles, ISoLA 2020,
Part II (Vol. 12477, pp. 361-379). Lecture Notes In Computer Science.
Springer.

• Bourr, Khalid. Corradini, Flavio. Pettinari, Sara. Re, Barbara. Rossi,
Lorenzo. Tiezzi, Francesco. "Disciplined use of BPMN for mission
modeling of Multi-Robot Systems." In Proceedings of the Practice of
Entreprise Modeling Conference (PoEM) Forum. 2021 (Vol. 3045,
pp.1-10).

• Bettini, Lorenzo. Bourr, Khalid. Pugliese, Rosario. Tiezzi, Francesco.
"Programming multi-robot systems with X-Klaim." In Proceedings of
11th International Symposium on Leveraging Applications of Formal
Methods Verification and Validation: Engineering Principles , ISoLA
2022, Part III (Vol. 13703, pp. 283-300). Lecture Notes In Computer
Science. Springer.

• Bettini, Lorenzo. Bourr, Khalid. Pugliese, Rosario. Tiezzi, Francesco.
"Coordinating and Programming Multiple ROS-Based Systems with
X-Klaim." International Journal on Software Tools for Technology
Transfer Journal, 2023 (to appear).

• Bourr, Khalid. Tiezzi, Francesco. "From BPMN to X-Klaim: A sys-
tematic Methodology for model translation and program generation"
(ongoing work).

Contents

Abstract of the Dissertation iii

Acknowledgments v

List of Publications ix

I Introduction and Background 1

1 Introduction 3
1.1 Motivations . 3

1.1.1 Complexity of MRS Programming 4
1.1.2 The Need for High-Level Modeling and Abstraction . . 5
1.1.3 Bridging the Gap between Modeling and Implementation 6
1.1.4 Contributions to the State-of-the-Art 6

1.2 Research Questions . 6
1.3 Structure and Contributions 7

1.3.1 Part I - Introduction and Background 8
1.3.2 Part II - Coordinating and Programming MRSs 8
1.3.3 Part III - From MRSs Models to Code 8
1.3.4 Part IV - Conclusions 9

2 Background 11
2.1 Klaim and X-Klaim . 11

2.1.1 Klaim . 11
2.1.2 Klava and X-Klaim 13

2.2 BPMN . 16
2.2.1 Business Process Management 16
2.2.2 Business Process Model and Notation 2.0 17
2.2.3 BPMN Notation . 17
2.2.4 Well-structuredness in BPMN collaborations 21

xii CONTENTS

2.3 Robotics . 21
2.3.1 History of Multi-Robot Systems (MRS) 22
2.3.2 Coordination in MRS 23
2.3.3 ROS . 25

3 Systematic Literature Review on Domain-specific Languages
for ROS-based Systems 27
3.1 SLR Methodology . 28

3.1.1 SLR Questions . 28
3.1.2 Search Strategy . 28
3.1.3 Inclusion and Exclusion Criteria 29
3.1.4 Search and Filtering Process 30
3.1.5 Screening and Selection Process 30
3.1.6 Data Extraction and Synthesis 31

3.2 Results and Analysis . 32
3.2.1 Sub-domain Distribution in Robotics DSLs (RQ1) . . . 32
3.2.2 DSL Type Distribution in Robotics (RQ2) 33
3.2.3 DSL Support for Multi-robot Systems and Heteroge-

neous Robots (RQ3) 34
3.2.4 DSL Support for Coordination and Decentralized Co-

ordination in Multi-robot Systems (RQ4) 34
3.2.5 Code Generation in DSLs for robotics (RQ5): 35
3.2.6 IDE in DSLs for robotics (RQ6): 36
3.2.7 Prevalence of formal languages in DSLs for robotics

(RQ7): . 37

II Coordinating and Programming MRSs 39

4 Coordinating and Programming Multiple ROS-based Robot
with X-Klaim 43
4.1 The X-Klaim approach to multi-robot programming 43
4.2 The X-Klaim approach at work on MRS scenarios 46

4.2.1 Simple warehouse scenario 46
4.2.2 Enriching the warehouse scenario 54
4.2.3 Other Scenarios . 59

4.3 Experimental Evaluation . 60
4.3.1 Time consumption . 60
4.3.2 Memory consumption 62

4.4 Discussion and Related work 62

CONTENTS xiii

5 X-Klaim Mission Specification Patterns for ROS-Based
Robots Systems 67
5.1 Core Movement Patterns for ROS-based Robots 67

5.1.1 Visit . 68
5.1.2 Sequenced Visit . 70
5.1.3 Ordered Visit . 70
5.1.4 Strict Ordered Visit . 71
5.1.5 Fair Visit . 72
5.1.6 Patrolling . 72
5.1.7 Sequenced Patrolling 73
5.1.8 Ordered Patrolling . 74
5.1.9 Strict Ordered Patrolling 74
5.1.10 Fair Patrolling . 75

5.2 Mission Scenarios Using Core Movement Patterns 75
5.2.1 Perimeter Surveillance Mission 75
5.2.2 Coordinated Sector Coverage Mission 76
5.2.3 Search and Rescue Mission 78

5.3 Discussion . 79

III From MRSs Models to Code 81

6 Multi-Robot Mission Modeling using BPMN 83
6.1 Disciplined Use of BPMN . 83

6.1.1 Selection of BPMN elements for MRSs 83
6.1.2 Example Scenario . 85
6.1.3 Guidelines for MRS modeling. 86

6.2 Related works . 90

7 From BPMN to X-Klaim: A Systematic Methodology for
Model Translation and Program Generation 91
7.1 The Process of Translation . 91

7.1.1 Mapping of BPMN elements to X-Klaim constructs . 92
7.1.2 Examples of BPMN processes translated into X-Klaim 99
7.1.3 Code Optimization . 102
7.1.4 Prototype of BPMN2XKLAIM Tool 103

7.2 Translation of the Agriculture Scenario 104
7.2.1 Translation of the collaboration 104
7.2.2 Translation of the Drone mission 105
7.2.3 Translation of the Tractor mission 105
7.2.4 Translation of event-subprocess 107

7.3 Related works . 107

xiv CONTENTS

IV Conclusions 109

8 Concluding remarks 111

9 Future work 115

Bibliography 119

A Appendix 133

PART I

INTRODUCTION AND BACKGROUND

Chapter 1
Introduction

In the contemporary landscape of computing and robotics, Multi-Robot Sys-
tems (MRSs) have emerged as an integral aspect of a broad spectrum of ap-
plications, ranging from exploration missions in inhospitable environments to
industrial automation and precision agriculture. Their widespread adoption
can be attributed to the many advantages they offer, including improved
performance, robustness, scalability, and fault tolerance. However, as the
adoption of MRSs continues to rise, the inherent complexities associated
with their programming and coordination are becoming more pronounced.

1.1 Motivations

The evolution of Multi-Robot Systems (MRSs) has been both promising and
problematic. While they offer tremendous advantages in terms of perfor-
mance and scalability, the complexities tied to their programming and co-
ordination cannot be underestimated. Traditional methods have limitations
that make them inefficient and prone to errors, calling for more abstract and
high-level solutions. This thesis addresses these critical challenges by intro-
ducing a tailored Domain-Specific Languages (DSL) for MRS programming
and coordination, and by enhancing the prototyping of MRS missions. Fur-
thermore, it establishes a seamless transition from high-level mission models
to low-level implementations. To do this effectively, the thesis leverages the
computational robustness of X-Klaim and the expressive power of BPMN.
X-Klaim has been chosen for its proficiency in simplifying programming
tasks associated with distributed systems, such as MRSs, and BPMN, for
its versatility in modeling the high-level interactions within these systems.
Together, they create a comprehensive, efficient, and more understandable
framework for the design and implementation of MRSs, offering concrete so-
lutions to the motivations outlined and making significant contributions to

4 CHAPTER 1. INTRODUCTION

the field.

1.1.1 Complexity of MRS Programming

Autonomous robots are software-intensive systems increasingly used in many
different fields. Their software components interact in real-time with a highly
dynamic and uncertain environment through sensors and actuators. To com-
plete tasks that are beyond the capabilities of an individual autonomous
robot, multiple robots are teamed together to form an MRS. An MRS can
take advantage of distributed sensing and action, and greater reliability.
However, an MRS requires robots to cooperate and coordinate to achieve
common goals.

The development of the software controlling a single autonomous robot
is still a challenge [1, 2, 3]. This becomes even more arduous in the case
of MRSs [4, 5], as it requires dealing with multiple cooperating tasks to
drive the robots to work as a well-coordinated team. To meet this challenge,
various software libraries, tools and middlewares have been proposed to assist
and simplify the rapid prototyping of robotics applications. Among them,
nowadays, a prominent solution is ROS (Robot Operating System [6]), a
popular framework largely used in both industry and academia for writing
robot software. On the one hand, ROS provides a layer to interact with many
sensors and actuators for many robots while abstracting from the underlying
hardware. On the other hand, programming with ROS still requires dealing
with low-level implementation details; hence, robotics software development
remains a complex and demanding activity for practitioners from the robotic
domain. To face this issue, many researchers have proposed using Domain-
Specific Languages (DSLs) which offer higher-level abstractions tailored to
a specific problem domain, thus simplifying complex programming tasks.
Programmers exploit these to drive the software development process and
then resort to tools for the automated generation of executable code and
system configuration files. Many proposals in the literature are surveyed
in [7, 3, 8, 9].

Along this line of research, we propose using the language X-Klaim to
program multiple ROS-based systems. This choice is motivated by the fact
that X-Klaim provides mechanisms based on distributed tuple spaces for
coordinating the interactions between these software components at a high
level of abstraction. In fact, the X-Klaim’s computation and communica-
tion model is particularly suitable for dealing both with (i) the distributed
nature of the architecture of each robot belonging to an MRS, where the soft-
ware components dealing with actuators and sensors execute concurrently,
and (ii) the inherent distribution of the MRS, which is formed by multi-
ple interacting robots. Notably, the same tuple-based mechanisms are used
both for intra- and inter-robot communication. This simplifies the design

CHAPTER 1. INTRODUCTION 5

and implementation of MRS’s software in terms of an X-Klaim application
distributed across multiple threads of execution and hardware platforms, re-
sulting in better readable, maintainable, and reusable code.

1.1.2 The Need for High-Level Modeling and Abstrac-
tion

The design and development of missions for MRSs present a complex array of
challenges. These range from the coordination of tasks between robots [10],
management of environmental uncertainty [11], and task allocation [12], to
the need for real-time responsiveness and robustness against individual robot
failure. With the increasing complexity of MRSs and the tasks they are
designed to perform, traditional low-level coding methods have proven to be
labor-intensive, error-prone, and inadequate for the task at hand [8, 9, 5].

A promising alternative that has been gathering momentum in recent
years is the use of high-level modeling and abstraction techniques, such as
the Business Process Model and Notation (BPMN) [13]. BPMN has emerged
as widely adopted graphical representation for specifying business processes
in a workflow. Its versatility and expressive power make it particularly suited
for modeling the intricate interaction of workflow, for example in IoT [14].

BPMN facilitates the creation of intuitive, high-level models that effec-
tively capture the collaborative behavior of MRSs. This approach not only
simplifies the development process but also enhances its efficiency [15]. The
high expressivity of BPMN collaborations encapsulates the interplay of con-
trol flow, data flow, and communication within a unique diagram, making the
modeling activity easier to manage and understand. The resulting models
are human-readable, providing a common language for stakeholders, and they
are also suitable for automated model-to-code solutions, reducing potential
coding errors and increasing the efficiency of the development process [16].

Furthermore, BPMN is backed by a wealth of supportive tools and tech-
niques that enhance the development of high-quality systems. These include
formalization, which aids in defining precise and unambiguous models [17],
execution and animation tools, which provide the ability to simulate and
validate models prior to deployment [18], and verification mechanism, which
ensure that the model satisfies a set of specified properties before its imple-
mentation [19].

Importantly, in this thesis we propose the usage of the BPMN standard
without extensions, demonstrating that is possible to successfully model the
behavior of a cooperative MRS using only the tools and constructs defined
in the BPMN 2.0 standard. This approach offers two main benefits. First,
model designers are not required to learn new, possibly complex, extensions.
Second, existing BPMN tools can be employed without the need for any

6 CHAPTER 1. INTRODUCTION

customization.

1.1.3 Bridging the Gap between Modeling and Imple-
mentation

Achieving a seamless transition from the modeling phase to the implemen-
tation phase has remained a persistently challenging task in MRS missions.
This process typically involves transforming an abstract model into a con-
crete program ready for deployment on physical robots, requiring a thorough
understating of both the high-level mission objectives and the low-level sys-
tem intricacies.

This research is motivated by the aim to streamline this process, devis-
ing a systematic methodology for translating BPMN models into X-Klaim
programs. This approach seeks to marry the best of the both worlds, com-
bining the high-level abstraction and visual intuitiveness of the BPMN with
the expressiveness and computational robustness of X-Klaim.

1.1.4 Contributions to the State-of-the-Art

In light of the challenges and motivations outlined, this research makes the
following contributions to the state-of-the-art:

1. Enhanced Programming and Coordination for Highly Hetero-
geneous MRSs: Introduced a DSL tailored specifically for program-
ming and coordinating highly heterogeneous MRSs, emphasizing its
integration with a prominent robotic software framework (ROS).

2. High-Level MRS Mission Prototyping: Established a DSL fo-
cused on simplifying the prototyping of MRS missions, using selected
elements to enhance mission visualization, catering especially to the
intricacies of established robotic platforms.

3. Streamlined Design-to-Implementation Process: Presented a
systematic methodology that ensures a seamless transition from high-
level missions models to concrete programs, integrating established
modeling notations with a robust programming paradigm to ensure
efficient deployment in robotic environments.

1.2 Research Questions

The focus of this thesis is to explore how DSLs can be defined to program and
coordinate highly heterogeneous multi-robot systems and model their mis-
sions while abstracting distribution and communication complexities. The

CHAPTER 1. INTRODUCTION 7

ultimate goal is to bridge the gap between high-level mission modeling and
practical system implementation. To guide this investigation, we pose the
following main research question and associated sub-questions:

Main Research Question:
RQ: "How can DSLs be defined to program and model highly heterogeneous
multi-robots systems?"

Sub-Research Questions:
RQ1: "How can we define DSLs to facilitate efficient programming and high-
level coordination in highly heterogeneous multi-robot systems?"

This question delves into the intrinsic features of DSLs that sup-
port them in managing the complexities associated with program-
ming and coordinating heterogeneous multi-robot systems. It
also explores the potential of DSLs to simplify the communica-
tion process among multi-robot systems and enhance their coor-
dination.

RQ2: "How can DSLs be used to model and abstract the mission of multi-
robot systems?"

This question focuses on identifying the unique attributes of DSLs
that make them suitable for high-level mission modeling in multi-
robot systems. It further delves into the ability of DSLs in sim-
plifying complex mission characteristics and rendering them com-
prehensible for multi-robot systems.

RQ3: "How can the gap between high-level mission modeling and practical
system implementation be bridged?"

This question aims to explore the mechanism, processes, and
strategies that can effectively mediate between high-level mis-
sion design and practical, real-word execution in multi-robot sys-
tems, thus facilitating seamless transition from conceptual mis-
sion modeling to on-ground deployment.

1.3 Structure and Contributions

This thesis is organized into four main parts, reflecting the progression of the
research from foundational concepts to experimental evaluations and conclu-
sions. Below an overview of the thesis’ parts is provided, explaining for each
chapter which research question is addressed, and which publications form
the basis of the chapter. .

8 CHAPTER 1. INTRODUCTION

1.3.1 Part I - Introduction and Background

This part provides the foundational knowledge required for the rest of the
thesis.

• Chapter 2, Background: An insight into crucial topics such as
Klaim and X-Klaim languages, the principles of business process
management, and the functionalities of BPMN 2.0. It particularly
sheds light on the BPMN elements used in this study, and the property
of well-structuredness of BPMN collaboration diagrams. Additionally,
it offers a brief overview of MRSs, including their coordination and the
use of ROS for robot software development.

• Chapter 3, Systematic Literature Review on Domain-Specific
Languages for ROS-based Systems: A state-of-the-art review of
languages used for multi-robot systems and ROS-based systems.

1.3.2 Part II - Coordinating and Programming MRSs

This part focuses on programming and coordination in multi-robot systems.

• Chapter 4, Coordinating and Programming Multiple ROS-
based Robots with X-Klaim (Publications [20],[21],[22],
RQ1): presents how X-Klaim enhances MRS coordination with intra-
and inter-robot interactions in various scenarios, including simplified
and enriched warehouse scenarios. The effectiveness and efficiency of
the proposed approach are evaluated experimentally in terms of time
and memory consumption.

• Chapter 5, X-Klaim Mission Specification Patterns for ROS-
Based Robots Systems (RQ1,RQ2): elaborates the use of
X-Klaim to implement core movement patterns for ROS-based robots.
These patterns, forming the basis for a variety of mission scenarios,
demonstrate the flexibility and scalability of X-Klaim in mission plan-
ning and execution.

1.3.3 Part III - From MRSs Models to Code

This part focuses on programming and coordination of multi-robot systems.

• Chapter 6, Multi-Robot Mission Modeling using BPMN (Pa-
per [23], RQ2): introduces BPMN 2.0 collaboration diagrams as a
tool for high-level modeling of cooperative behavior in MRSs, an ap-
proach that simplifies representation of complex interactions and coor-
dination among robots, and a concrete application scenario illustrates
its effectiveness.

CHAPTER 1. INTRODUCTION 9

• Chapter 7, From BPMN to X-Klaim: A Systematic Method-
ology for Model Translation and Program Generation (Pa-
per [24], RQ3): bridges the gap between design and execution of
MRSs, outlining a systematic method to translate BPMN diagrams
into X-Klaim programs. The chapter elucidates the comprehensive
mapping of BPMN elements to X-Klaim constructs, with a view to
improving the efficiency and accessibility of MRS programming.

1.3.4 Part IV - Conclusions

Divided into two chapters.

• Chapter 8, Concluding remarks:, Summarises the work done in
this thesis.

• Chapter 9, Future work:, presents areas and topics that could be
investigated in the future.

Chapter 2
Background

In this section, we recall a few background notions on the languages and
technologies we use in our approach. We refer the interested reader to the
cited sources for a complete account.

2.1 Klaim and X-Klaim

2.1.1 Klaim

Klaim (Kernel Language for Agents Interaction and Mobility, [25]) is a for-
mal language specially devised to design distributed applications consisting
of possibly mobile software components deployed over the nodes of a network
infrastructure. Klaim is based on process calculi [26]. It generalizes the no-
tion of generative communication, introduced by the coordination language
Linda [27], to multiple distributed tuple spaces. A tuple space is a shared
data repository consisting of a multiset of tuples. Tuples are anonymous
sequences of data items that are associatively retrieved from tuple spaces us-
ing a pattern-matching mechanism. Communicating processes are decoupled
both in space and time as there is no need for producers (i.e., senders) and
consumers (i.e., receivers) of a tuple to synchronize. Interprocess communi-
cation occurs through the asynchronous exchange of tuples via tuple spaces:
processes can indeed insert, read, and withdraw tuples into/from tuple spaces.
Tuple spaces are identified through localities, which are symbolic addresses
of network nodes where processes and tuples can be allocated. Localities
themselves can be exchanged through interprocess communication.

A computational node of a Klaim network is characterized by its locality
and a collection of running processes. Processes are the active computational
units of Klaim and can be executed concurrently, either at the same local-
ity or at different localities. Processes can execute basic actions acting on

12 CHAPTER 2. BACKGROUND

Figure 2.1: A Klaim node.

network nodes, process variables, and process calls, either sequentially or in
parallel. Klaim supports higher-order communication since processes can
exchange code and possibly execute it. Recursive behaviors are modeled via
calls to process definitions.

Figure 2.1 depicts a generic Klaim node and the basic actions which
processes are made of. In these actions, processes can use the distinguished
locality self to refer to their current hosting node.

Action out(tuple)@nodeLocality adds the tuple resulting from the evalua-
tion of the argument tuple to the tuple space of the target node identified by
the (possibly remote) locality nodeLocality. A tuple is a sequence of actual
fields, i.e., expressions, localities, or processes. In general, any of these fields
can contain variables. The evaluation of a tuple consists of evaluating the
expressions it contains. Hence an evaluated tuple cannot contain variables.

Action in(template)@nodeLocality (resp., read(template)@nodeLocality)
withdraws (resp., reads) tuples from the tuple space hosted at the (possi-
bly remote) locality nodeLocality. If matching tuples are found, one is non-
deterministically chosen. Otherwise, the process is blocked until a matching
tuple is found. These retrieval actions exploit templates as patterns to se-
lect tuples in tuple spaces. Templates are sequences of actual and formal
fields, where the latter are used to bind variables to values, localities, or pro-
cesses. Templates must be evaluated before they can be used for retrieving
tuples. Their evaluation is like that of tuples, where the evaluation leaves
formal fields unchanged. Intuitively, an evaluated template matches against
an evaluated tuple if both have the same number of fields and corresponding
fields match; two values/localities match only if they are identical, while for-
mal fields match any value of the same type. Upon a successful matching, the
template variables are replaced with the values of the corresponding actual
fields of the accessed tuple.

Action eval(Process)@nodeLocality sends Process for execution to the
(possibly remote) node identified by nodeLocality.

CHAPTER 2. BACKGROUND 13

2.1.2 Klava and X-Klaim

The implementation of Klaim consists of two main components:

• the Java package Klava;

• the programming language X-Klaim.

Klava (Klaim in Java, originally introduced in [28]) provides the imple-
mentation of the Klaim concepts (Section 2.1) in terms of Java classes and
methods, relying on the IMC framework [29] for the communication infras-
tructure. Any Java object can be stored into and retrieved from a Klava
tuple, and the implemented pattern matching mechanism keeps Java subtyp-
ing into consideration. Klava strives to make Java programmers’ life easier,
but programmers still have to obey the rules of Java, particularly its ver-
bosity. For this reason, we also developed X-Klaim, a Domain-Specific Lan-
guage (DSL) closer to Klaim also providing typical high-level programming
constructs. X-Klaim (eXtended Klaim) was initially introduced in [30]
and reimplemented from scratch in [31]. The X-Klaim compiler translates
X-Klaim programs into Java code that uses the Java package Klava. The
produced Java code can then be compiled and executed using the standard
Java toolchain.

The new implementation of X-Klaim [31] is based on Xtext [32], an
Eclipse framework for developing programming languages and DSLs. Xtext
also provides complete IDE support based on Eclipse: editor with syntax
highlighting, code completion, error reporting, and incremental building,
to mention a few. Furthermore, we used another mechanism provided by
Xtext, that is, Xbase [33], an extensible and reusable expression language.
By using Xbase in X-Klaim, besides a rich Java-like syntax, we inherit its
interoperability with Java and its type system. Thus, an X-Klaim program
can smoothly access any Java type and Java library available in the project’s
classpath. The interoperability with Java allowed us to integrate X-Klaim
seamlessly with the Java-ROS connector (see Section 4.1).

In the rest of this section, we briefly describe the main features of
X-Klaim relevant to this paper.

An X-Klaim program (a file with extension .xklaim) can contain def-
initions of nets, nodes, and processes. All these components can also be
defined in separate files and referred to through a Java-like import mech-
anism. As in a standard Java program, imports are also used to import
existing Java types in an X-Klaim program, relying on the integration with
Java mentioned above.

An X-Klaim network definition consists of net and node definitions as
shown in the following example:

14 CHAPTER 2. BACKGROUND

net ANet {
node Node1 { ... initialization code ... }
node Node2 { ... initialization code ... }
...

}

In particular, the name of a node also represents its locality within the net-
work. Each node can specify some initialization code for creating and running
a few processes, as shown in the examples of Section 4.2. This is the simplest
way of specifying a flat network. X-Klaim also implements the hierarchical
version of the Klaim model as presented in [34], but we will not use it in
this paper.

A process definition consists of a name, a list of parameters (using the
Java syntax for declaring parameters), and a body:
proc AProcess(... parameters ...) { ... body ... }

The body consists of Xbase expressions, whose syntax has been extended
with the Klaim operations that we described in Section 2.1. Typical pro-
gramming structures such as if, while, and OOP Java-like mechanisms,
such as object creation and method invocation, are already part of Xbase.

The syntax of Xbase is similar to Java, and it should be easily understood
by Java programmers, but it removes much “syntactic noise” from Java. For
example, terminating semicolons and other syntax elements like parenthesis
when invoking a method without arguments are optional. Moreover, Xbase
comes with a powerful type inference mechanism compliant with the Java
type system: the programmer can thus avoid specifying types in declarations
when they can be inferred from the context. Variable declarations start
with val or var for final and non-final variables, respectively. The types
of variables can be omitted if they can be inferred from the initialization
expression.

In Figure 2.2, we show a simple code snippet of an X-Klaim process
body. The code should be easily readable by a Java programmer. We men-
tion a few additional X-Klaim syntax features to make the code more un-
derstandable. Such types as String and Double are Java types since, as
mentioned above, X-Klaim programs can refer directly to Java types. Sim-
ilarly, System.err.println is the standard Java static method to print
something on the screen. In most code snippets, we omit the Java-like im-
port statements. Here we also see the typical Klaim operations, in and
out, acting on possibly distributed tuple spaces. Formal fields in a tuple are
specified as variable declarations since formal fields implicitly declare vari-
ables that are available in the code occurring after in and read operations
(just like in Klaim). The X-Klaim operation eval allows a process to
start a new process concurrently at the specified locality. X-Klaim pro-
vides syntactic sugar for collection literals: #[...]. In the code snippet,
strings is inferred to be of type List<String>. In X-Klaim, lambda
expressions have the shape [param1, param2, ... | body] where

CHAPTER 2. BACKGROUND 15

in("item", var String itemId,
var Double x, var Double y)@self

System.err.println("Coordinates: " + x + ", " + y)
out(itemId, x, y)@otherLoc
eval(new AProcess(x,y))@self
val strings = #["first", "second", "third"]
strings.stream().map([s | s.length()])

.forEach([l | System.err.println(l)])

Figure 2.2: An example of X-Klaim code.

the types of parameters can be omitted if they can be inferred from the
context. An X-Klaim lambda expression can be used in any Java context
where a lambda expression can be used, according to the Java type system:
the type of the lambda expression must match the target Java functional
interface. The code snippet shows standard Java stream operations using
X-Klaim lambda expressions.

The X-Klaim compiler is completely integrated into Eclipse: typical
IDE mechanisms like content assist and code navigation are available in the
X-Klaim editor. The same holds for the automatic building mechanisms
of Eclipse: saving an X-Klaim file automatically triggers the Java code
generation, which in turn triggers the generation of Java byte code. From a
single X-Klaim program, our compiler generates several Java classes (e.g.,
one for a net, one for each node, and one for each process) that extend and use
Klava classes. The relation between X-Klaim elements and the generated
Java classes is handled transparently. For example, removing a process from
an X-Klaim program will automatically remove the previously generated
corresponding Java class.

Finally, the X-Klaim Eclipse support also includes the ability to directly
run or debug an X-Klaim file with dedicated context menus: there’s no
need to run the generated Java code manually. Debugging an X-Klaim pro-
gram directly is crucial when programming distributed applications accessing
remote tuple spaces. We can set a breakpoint in the X-Klaim program, pos-
sibly based on a condition. During the execution of the corresponding gen-
erated Java code, the execution is suspended on the X-Klaim program: we
can inspect the current values of variables, either in the “Variables” Eclipse
view or by hovering over a variable in the program. The debugging mech-
anisms of X-Klaim are as powerful as Eclipse’s standard Java debugging
mechanism. For example, during an X-Klaim debugging session, we can
evaluate expressions on the fly.

16 CHAPTER 2. BACKGROUND

2.2 BPMN

2.2.1 Business Process Management

Business Process Management (BPM) is a robust, comprehensive approach
that focuses on improving the efficiency and effectiveness of an organiza-
tion’s operations. In its essence, BPM is concerned with designing, analyz-
ing, executing, monitoring, and refining business processes [35], as depicted
in Figure 2.3 1. This ongoing practice nurtures an environment of contin-
uous improvement, with each iteration aimed at enhancing the quality of
operations and the value delivered to stakeholders.

Figure 2.3: BPM Lifecycle

BPM is not a one-time project or a finite initiative. Rather, it is a per-
petual practice that involves the constant analysis and refinement of business
processes to meet evolving operational demands, organizational goals, and
market dynamics. Its iterative cycle typically commences with process iden-
tification, proceeds with process discovery and analysis, progresses towards
process redesign and implementation, and continues with consistent moni-
toring and refinement.

BPM is a critical bridge connecting business strategy and operational im-
plementation. By offering a lucid visualization of processes, it allows stake-
holders to gain an in-depth understanding of the complex interdependencies
between different tasks, identify potential bottlenecks, and make data-driven
decisions regarding process enhancement and resource allocation. The cyclic
nature of BPM ensures that processes remain relevant, adaptable and con-
sistently optimized in response to changing business landscapes.

1Figure source: https://www.yworks.com/assets/images/use-cases/bpm/
bpm-illustration.cf19f42ad5.svg

https://www.yworks.com/assets/images/use-cases/bpm/bpm-illustration.cf19f42ad5.svg
https://www.yworks.com/assets/images/use-cases/bpm/bpm-illustration.cf19f42ad5.svg

CHAPTER 2. BACKGROUND 17

2.2.2 Business Process Model and Notation 2.0

Introduced by Object Management Group (OMG), Business Process Model
and Notation 2.0 (BPMN 2.0) is an essential standard for visualizing and
managing business processes [36]. Its shared language bridges the divide
between business stakeholders and IT professionals, fostering a mutual un-
derstanding of complex business operations [37].

At its core, BPMN 2.0 stands as a graphical tool that defines the steps and
order of a business process. It encompasses a set of symbols and conventions
that allow businesses to create process diagrams, outlining the sequence of
activities that lead to a certain outcome. This, in turn, provides a clear,
visual roadmap for better understanding, optimization, and automation [38,
39, 40].

Yet, BPMN 2.0 moves beyond simple process flow diagrams. Its strength
lies in its ability to visualize intricate collaboration scenarios [23, 18, 41, 42].
By using collaboration diagrams, BPMN 2.0 enables organizations to repre-
sent interactions among different participants or processes, whether they are
within the same business entity or across multiple organizations. This visual
representation fosters a shared understanding among stakeholders, promot-
ing effective collaboration and reducing miscommunications [42, 41].

BPMN 2.0 also stands out with its expressive language for modeling com-
munication and coordination mechanisms [43]. By leveraging a variety of
events, messages, and gateways, BPMN 2.0 effectively depicts the commu-
nication flow, synchronization points, and conditional paths within and be-
tween processes [44].

In the following section, we will delve into the specifics of the BPMN 2.0
notation. This will provide a more comprehensive understanding of how this
versatile tool achieves its powerful visual representation of business processes
ultimately fostering efficient communication, process management, and col-
laborative efforts.

2.2.3 BPMN Notation

The scope of BPMN 2.0 extends to a vast array of over 85 elements, each
serving specific roles within the process modeling environment. However, not
every element is equally critical for all applications. For the purpose of this
thesis, a subset of these elements has been carefully chosen to facilitate the
efficient depiction of processes, collaborations, and coordination mechanisms.
The selection was guided by a top-down approach driven by modeling activity
across different scenarios and a bottom-up approach inspired by experiments
with various implementations.

Here is a brief overview of the BPMN 2.0 elements selected for use in this
thesis:

18 CHAPTER 2. BACKGROUND

• Collaboration Diagrams: These are visual representation of multiple
interacting processes. Each diagram contains pools which can be multi-
instance housing various processes.

• Pools (Figure 2.4): are used to represent participants or organisations
involved in the collaboration, and include details on internal process
specifications and related elements. Pools are drawn as rectangles, and
they usually have a name associated with, referring to the name of the
organisation. BPMN allows to assign a multi-instance marker (three
vertical lines) to a pool, representing multiple instances playing the
same role.

Figure 2.4: BPMN Pools.

• Processes: These are sequences of activities, gateways, and events
that are interconnected by sequence flows. Data objects are also as-
sociated with these elements, depicting the flow of information and
material.

• Activities (Figure 2.5): These represent the work to be performed
within a process. Notably, a Call Activity calls another process, al-
lowing for the structuring of large and complex models as decoupled
reusable processes. A Script Task signifies the execution of a piece of
code.

Figure 2.5: Considered BPMN Activities.

• Event Sub-Process (Figure 2.6): This is a sub-process that is not
part of the normal flow of its parent process.

CHAPTER 2. BACKGROUND 19

Figure 2.6: BPMN Event Sub-Process.

• Connecting Edges (Figure 2.7) are used to connect process elements
inside or across different pools. Sequence Edges are solid connectors
used to specify the internal flow of the process, thus ordering elements
in the same pool, while Message Edges are dashed connectors used to
visualize communication flows between organizations.

Figure 2.7: BPMN Connecting Edges.

• Gateways (Figure 2.8): Gateways offer a sophisticated mechanism
to govern the flow of a process, enabling the representation of par-
allel activities and decision-making paths. This is achieved through
four types of gateways: Exclusive (XOR), Parallel (AND), Inclusive
(OR), and Event-Based. Exclusive gateways, denoted “ ˆ ”, facilitate
singular decisions in the process flow, activating only one outgoing
path. Parallel gateways, denoted by “ ` ”, enable the simultaneous
execution and synchronization of multiple process branches. Inclusive
gateways, marked with an “⃝ ”, introduce flexibility by allowing any
number of non-mutually exclusive outgoing paths. Event-based gate-
ways, depicted with a double-rounded “ 9 ”, control flow based on the
occurrence of external events. These gateways, equipped with guard
conditions on their outgoing sequence edges, provide an expressive and
nuanced toolset for modeling complex decision-making processes and
parallel execution paths.

• Events (Figure 2.9): These serve as vital components, capturing the
diverse dynamics that occur at the initiation, during the unfolding, and
at the culmination of a process. Notably, Timer and Conditional events
act in response to time-bound or condition-specific changes, adding
flexibility and adaptability to the model. Equally important, Error
events address unexpected anomalies during execution, contributing to

20 CHAPTER 2. BACKGROUND

Figure 2.8: Considered BPMN Gateways.

the robustness of the process model. On the other hand, communica-
tion within and between processes is elegantly handled by Signal and
Message events. Signal events embody broadcast communications akin
to a multicast mechanism, while Message events represent directed,
unicast exchanges between specific entities. To signify the abrupt end
of all activities within a process, Terminate events are used. They serve
as definitive markers for the conclusion of all ongoing processes within
a pool. Lastly, there are End events. These are employed to denote the
point where a process concludes under normal circumstances, providing
a clean and clear endpoint to a process flow.

Figure 2.9: Considered BPMN Events.

Data Objects (Figure 2.10): represent information and material flow-
ing in and out of activities. They are depicted as a document with the

CHAPTER 2. BACKGROUND 21

upper-right corner folded over, and linked to activities with a dotted
arrow with an open arrowhead (called data association in BPMN).

Figure 2.10: Considered BPMN Data Object.

2.2.4 Well-structuredness in BPMN collaborations

Understanding the concept of well-structuredness in BPMN is essential, given
its pivotal role in maintaining coherence and integrity in process modeling
and collaboration. Well-structuredness is a property that emphasizes the
organization and flow of a business process, adhering to certain structural
rules to ensure process consistency and clarity [45]. This property becomes
particularly crucial when translating a BPMN collaboration into another
language paradigm, such as X-Klaim, which we focus in this thesis.

This principle implies that every node with multiple outgoing edge (a
‘split‘) should have a corresponding node with multiple incoming edges (a
‘join‘). This pattern forms a structured core, providing a Single Entry Sin-
gle Exit (SESE) process component, often perceived as a well-structured
unit [46].

The structured core can encompass various process elements including
activities, intermediate events, or composite processes initiated with (AND,
XOR, Event-based) and concluded with a corresponding join. Loops are also
permitted within a well-structured model; however, they must be formed
through XOR gateways to maintain the well-structuredness.

When this property is applied to a BPMN collaborations, it necessitates
that all processes involved in a collaboration are well-structured. This pro-
motes effective communication and collaboration by ensuring each process
is understood in the same way by all participants [47]. In essence, well-
structuredness is a fundamental attribute in BPMN, greatly influencing pro-
cess efficiency, understandability, and manageability.

2.3 Robotics

Robotics is a scientific and engineering discipline that is focused on the un-
derstanding and use of artificial, semi-autonomous systems that can interact

22 CHAPTER 2. BACKGROUND

physically and socially with the environment, and perform tasks with various
degrees of autonomy [48].

2.3.1 History of Multi-Robot Systems (MRS)

The concept of MRS, despite being relatively recent in the annals of robotic
research, has already left an indelible mark on the field, from both practical
and theoretical perspectives. It is a discipline at the intersection of robotics,
computer science, and control theory that seeks to understand and design
systems of multiple robots working in concert [49].

The genesis of MRS can be tracked back to the late 1980s and early
1990s when researchers started envisioning the benefits of multiple robots
working collectively to perform tasks. This was a period marked by the
pioneering works of researchers like Hiroaki Yamaguchi and Lynne E. Parker
who demonstrated the potential of cooperative robots [50, 51].

In the 2000s, the research in MRS took a leap forward with the introduc-
tion of bio-inspired algorithms, drawing parallels from nature, like ant and
colonies and bird flocks. This led to the development of swarm robotics, a
subfield of MRS where large numbers of relatively simple robots cooperate
to perform tasks [52].

At the same time, the focus shifted towards problems related to com-
munication, sensing and processing in MRS. Researchers started working on
communication protocols, sensing techniques, and distributed algorithms to
handle the complexities of MRS [53].

The advent of Robotic Operating System (ROS) in 2007 further bolstered
the development of MRS by providing a robust and versatile platform for
designing complex robot systems [6] (Section 2.3.3). The focus now includes
not just homogeneous systems (Figure 2.11) where all robots are identical
but also heterogeneous systems (Figure 2.12) where robots have different
capabilities and roles.

Figure 2.11: Homogeneous MRS. Figure 2.12: Heterogeneous MRS.

CHAPTER 2. BACKGROUND 23

Today, MRS has found a wide range of applications, from environmen-
tal monitoring [54, 55], search and rescue operations [56], to space explo-
ration [57] and more. Despite its rapid growth, MRS still poses many fasci-
nating and challenging problems that continue to attract researchers world-
wide [58, 59].

2.3.2 Coordination in MRS

Coordination in MRS is a sophisticated and intricate area of study, embody-
ing the interactions, collaborations, and shared task achievement of multi-
ple robots. Understanding its dynamics not only requires a grasp of signal
robot operations but also an intricate perception of how multiple autonomous
agents can work in unison while navigating complex environments and per-
forming various tasks [58, 49, 60, 61, 62].

The idea of coordination in MRS is inspired by biological systems such
as flocks of birds [63], colonies of ants [64, 65], and schools of fish [66], where
simple local rules lead to complex and coherent global behaviors [59]. The
goal in MRS coordination is to engineer these complex behaviors in a more
controlled, reliable, and predictable manner.

A novel taxonomy was proposed to classify the various approaches to
coordination within MRS [61, 60]. This taxonomy is structured around two
main groups of dimensions: the coordination dimensions and the system
dimensions. These dimensions represent distinct features that have been
collectively organized within the taxonomy.

The coordination dimensions encompass the areas of cooperation, knowl-
edge, coordination, and organization. Meanwhile, the system dimensions
include communication, team composition, system architecture, and team
size (Table 2.1).

Coordination Dimensions System Dimensions

Cooperation Communication

Knowledge Team composition

Coordination System architecture

Organization Team size

Table 2.1: Taxonomy Classification Dimensions.

This taxonomy provides a hierarchical structure for the coordination di-
mensions. These include the cooperation level, the knowledge level, the co-
ordination level, and the organisation level (Figure 2.13).

This first level of the taxonomy, the cooperation level, is related to sys-
tem’s capacity to collaborate for the accomplishments of specific tasks. The

24 CHAPTER 2. BACKGROUND

Figure 2.13: Hierarchical structure of the MRS coordination.

second level, the knowledge level, pertains to the extent of awareness each
robot has about the presence of other robots within the system. The third
level, the coordination level, concerns the mechanism employed to achieve
system-wide cooperation. The fourth and final level, the organization level,
considers how the decision-making is implemented within the MRS. Here,
two predominant strategies emerge: centralized coordination and decentral-
ized coordination [67, 68].

In centralized coordination, a designated entity or ’leader’ presides over
the actions of all the robots in the system. This can be strongly centralized
where leadership is constant, or weakly centralized, allowing dynamic changes
in leadership roles throughout the operation [69].

Conversely, Decentralized coordination empowers each robot to make au-
tonomous decisions based on locally available information, without a specific
leader. Here, coordination is achieved through peer-to-peer interactions and
mutual adjustments of actions [50].

CHAPTER 2. BACKGROUND 25

2.3.3 ROS

Robotic Operating System (ROS)2 is one of the most sophisticated and pop-
ular frameworks for writing robot software. ROS has its origins in the late
2000s, fundamentally altering the way researchers and developers approach
multi-robot systems and robotic applications as a whole [6].

In 2007, Willow Garage, a California-based robotics research lab, be-
gan the development of ROS. Their objectives was to provide a unified and
flexible framework for writing robust robot software aiming to mitigate the
challenge of writing custom code for each robotic application [70].

ROS provides tools and libraries for simplifying the development of com-
plex controllers while abstracting from the underlying hardware. ROS works
with more than a hundred types of robots, ranging from autonomous cars to
drones and humanoid robots, and integrates many sensors.

The core element of the ROS framework is the message-passing mid-
dleware, which enables hardware abstraction for a wide variety of robotic
platforms. The processes of a robotics application can exchange data, being
agnostic with respect to the source of the data. The communicated data can
be sensor readings or actuator commands, formatted in a standardized way,
produced by, or directed to the robot’s devices.

Although ROS supports different communication mechanisms, in this
work, we only use the most common one: the anonymous and asynchronous
publish/subscribe mechanism. To send a message, a process has to publish
it in a topic, which is a named and typed bus. A process interested in such a
message must subscribe to the topic. The subscriber will be notified when-
ever a new message is published on the topic. This decouples the production
of data from its consumption.

Figure 2.14: ROS publish/subscribe mechanism.

2https://www.ros.org/

https://www.ros.org/

26 CHAPTER 2. BACKGROUND

Figure 2.15: Interactions within a mobile ROS robot.

Multiple publishers and subscribers for the same topic are allowed. The
diagram in Figure 2.14 illustrates this concept. In contrast, the one in Fig-
ure 2.15 shows how a robot controller interacts with the devices of a mobile
robot in a black-box, hardware-independent fashion. In the latter diagram,
the controller acts as both publisher and subscriber. As a publisher, it sends a
message directed to the navigation node responsible for actuating the wheels.
At the same time, as a subscriber, it receives back messages containing the
robot’s actual position. The topic /goal stands for the goal position that
the mobile robot should attempt to reach. The topic /amcl_pose stands
for the estimated pose of the robot, in a known map, calculated from the
robot sensors data with the “Adaptive Monte Carlo Localization” approach.

Chapter 3
Systematic Literature Review on
Domain-specific Languages for
ROS-based Systems

Recent years have seen a surge in advancements in the field of robotics, driven
by the growing demand for intelligent, autonomous systems that can execute
complex tasks across various domains. Designing and implementing effective
software systems poses a significant challenge when developing robotic ap-
plications. This process can be streamlined using domain-specific languages,
offering custom solutions to meet the unique requirements of robotics. These
languages aid developers in modeling and programming individual robots,
and in coordinating multi-robot systems more efficiently.

Inspired by [3], this systematic literature review (SLR) sets out to ex-
amine the current state-of-the-art of domain-specific languages for robotics
and ROS-based systems. The focus will be on how these languages tackle
challenges in modeling, programming, and coordinating (multi-)robot sys-
tems. Various sub-domains of robotics will be explored, including task and
behavior specification, robot coordination and collaboration, perception and
sensing, manipulation and grasping, robot modeling and simulation, human-
robot interaction (HRI), robot programming languages, robotic architecture,
and safety & security.

In this chapter, a comprehensive overview of pertinent literature is pre-
sented, discussing the various domain-specific languages and their applica-
tions in the field of robotics. These languages will be categorized based on
their features, capabilities, and targeted application domains. The objective
is to improve understanding of the existing landscape and identify potential
areas for future research. This systematic literature review will clearly out-
line our contributions and demonstrate how they advance the current state
of the art.

28 CHAPTER 3. SLR FOR ROS-BASED SYSTEMS

3.1 SLR Methodology

3.1.1 SLR Questions

The systematic literature review process is guided by research questions that
focus on analyzing the current state of domain-specific languages in robotics.
The primary research question aims to cover the overall state of the art, while
the secondary research questions explore specific facets of the subject.

Primary Question

SLR-Q: What are the key features, capabilities, and applications of Domain-
Specific Languages in the field of robotics, particularly in the context of
multi-robot systems and ROS-based systems?

Secondary Questions

SLR-Q1: Which functional aspects are typically addressed with DSLs in
robotics?

SLR-Q2: What is the distribution of DSL types used in the field of
robotics?

SLR-Q3: Do DSLs support multi-robot systems and heterogeneous robots?

SLR-Q4: Do DSLs address coordination and decentralized coordination
among robots?

SLR-Q5: What types of programming languages are typically generated
by DSLs for robotics?

SLR-Q6: Do DSLs integrate with Integrated Development Environments
(IDEs)?

SLR-Q7: What is the prevalence of formal languages in DSLs for robotics?

3.1.2 Search Strategy

A systematic search strategy was utilized to identify relevant articles for
our research. This strategy involved multiple databases and search engines,
including Scopus, IEEE Xplore, ACM Digital Library, ScienceDirect, and
Google Scholar. The search focused on key terms and phrases relating to
robotics, domain-specific languages, ROS-based systems, coordination, and
multi-robot systems.

The search terms were refined as follows:

CHAPTER 3. SLR FOR ROS-BASED SYSTEMS 29

• Domain-specific languages and modeling notations: "domain-specific
language", "domain-specific modeling language", "formal language",
"specification language", "description language", "code generation",
"DSL", "DSML", "meta-modeling", "metamodel", "model-driven en-
gineering", "model-driven software engineering", "model-driven archi-
tecture", "MDE", "MDSE", "MDD".

• Robotics and multi-robot systems: "robot", "ROS", "coordination",
"multi-robot", "swarm", "distributed systems", "coordination lan-
guage", "coordination model", "multi-agent", "multi-agent system",
"MAS", "cooperative".

Using these terms in conjunction with appropriate filters, we ensured
a comprehensive literature review covering the overlap of domain-specific
languages and multi-robot systems.

3.1.3 Inclusion and Exclusion Criteria

To direct the systematic literature review towards relevant studies, we es-
tablished clear inclusion and exclusion criteria. These rules aid in selecting
articles that directly address the research questions and contribute to the
understanding of domain-specific languages in robotics.

Inclusion criteria

IC1: Publication was published in one of the specified conferences, work-
shops, or journals related to robotics or model-driven engineering.

IC2: Publication includes keywords related to domain-specific languages,
metamodeling, robotics, and coordination.

Exclusion criteria

EC1: The paper does not focus on domain-specific languages, modeling
languages, or related concepts.

EC2: The paper does not discuss robotics or related concepts.

EC3: The paper published prior to 2012 is not considered, as the scope
of the study encompasses the ten-year period preceding the conclusion of the
SLR at the end of 2022.

EC4: The paper is not available in a repository or does not have open
access.

30 CHAPTER 3. SLR FOR ROS-BASED SYSTEMS

3.1.4 Search and Filtering Process

Our systematic search strategy, as detailed in Section 3.1.2, was applied
across multiple databases and search engines as previously mentioned. After
the initial search was performed, we used advanced search features and filters
to refine the results. We filtered for papers published within a ten-year
period, from 2012 to 2022. We also applied filters to limit results to specific
conferences, workshops, and journals as listed in Table 3.1, adhering to our
first inclusion criterion (IC1).

After applying these search criteria and filters, we refined the initial col-
lection of 2,103 papers down to 211. These shortlisted papers were then
subjected to the screening process that led to the final selection of 29 papers,
which were carefully analyzed and used for data extraction.

Table 3.1: Considered Conferences, Journals, and Workshops in Robotic and Computer Science

Robotic Field Computer Science Field

IEEE Intl. Conf. on Robotic Computing (IRC),
Wiley Journal of Field Robotics (JFR),
IEEE Robotics and Automation Letters,
Robotics: Science and Systems Conference (RSS),
Intl. Journal of Advanced Robotic Systems,
Robotics and Autonomous Systems,
Springer Proceedings in Advanced Robotics,
IEEE Intl. Conf. on Simulation, Modeling and Pro-
gramming for Autonomous Robots (SIMPAR),
Intl. Conf. on Control, Automation, Robotics and Vi-
sion (ICARCV),
ACM/IEEE Intl. Conf. on Human-Robot Interaction,
Autonomous Agents and Multi-Agent Systems,
Intl. Conf. on Control, Automation and Systems,
Intl. Journal of Robotics Research,
Science Robotics,
Intl. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS),
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS),
IEEE International Conference on Robotics and Au-
tomation (ICRA)

ACM Transactions on Autonomous and Adaptive Sys-
tems,
IEEE/ACM International Conference on Software En-
gineering (ICSE),
IEEE Transactions on Software Engineering,
Information and Computation,
Intl. Journal on Software Tools for Technology Trans-
fer,
Journal of Logical and Algebraic Methods in Program-
ming,
Intl. Conf. on Model Driven Engineering Languages
and Systems (MODELS),
Proceedings Intl. Computer Software and Applications
Conference,
Computer Languages Systems and Structures,
Computer Science and Information Systems,
Conference on Model-driven Engineering and Software
Development (MODELSWARD),
International Conference on Coordination Models and
Languages,
International Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA)

3.1.5 Screening and Selection Process

The pool of 211 papers, derived from the search and filtering process, un-
derwent a preliminary screening. This screening involved a review of each
paper’s abstract, conclusions, and keywords to ascertain their relevance. Pa-
pers failing to meet the inclusion and exclusion criteria were removed from
further consideration.

Following this screening, we chose 29 papers for a full-text review. This
step involved a thorough reading and analysis of each paper, during which
we extracted relevant information. We then synthesized this data in line
with the categories detailed in Section 3.1.6. For more in-depth look at this
analysis, refer to Appendix A, which houses a comprehensive classification
table.

CHAPTER 3. SLR FOR ROS-BASED SYSTEMS 31

3.1.6 Data Extraction and Synthesis

In our systematic literature review, we extracted data from the 29 selected
papers and classified them according to the following categories:

Sub-domain We classified the DSLs based on the specific sub-domain
within robotics, an approach inspired by [3]. The identified sub-
domains comprise:

Human-robot interaction Focused on facilitating communica-
tion and collaboration between humans and robots.

Robot coordination and collaboration Concerned with
the management of multiple robots working together towards a
common goal.

Manipulation and grasping Addresses the challenges related to
robot manipulation and grasping of objects in their environment.

Robot programming Aims to simplify the programming of robot
behavior and control logic.

Robotic architecture Deals with the design and implementa-
tion of the software architecture for robot systems.

Security and safety Focuses on ensuring the safe and secure op-
eration of robots and their interactions with the environment and
humans.

Task and behavior specification Involves defining and de-
scribing the tasks and behaviors that a robot should perform.

Robot modeling and simulation Provides tools and tech-
niques for modeling and simulating robot systems for design, anal-
ysis, and testing purposes.

Formal Language DSLs that provide formal semantics, syntax, or a well-
defined mathematical model for their constructs.

Multi-robot Support DSLs that explicitly support multi-robot systems
or provide abstractions for these types of systems.

Heterogeneous Robot Support DSLs that cater to the needs of het-
erogeneous robot systems, involving robots with different characteris-
tics and capabilities.

Coordination Support DSLs that provide abstractions for robot coor-
dination or address coordination in an explicit way.

Decentralized Coordination Support DSLs that provide abstrac-
tions or mechanisms for decentralized coordination among robots.

32 CHAPTER 3. SLR FOR ROS-BASED SYSTEMS

IDE Integration DSLs that offer integration with a development envi-
ronment to facilitate editing, debugging, and testing.

3.2 Results and Analysis

3.2.1 Sub-domain Distribution in Robotics DSLs (RQ1)

Our analysis of the sub-domains targeted by the reviewed DSLs reveals
a diverse range of application areas within robotics. As depicted in
Figure 3.1, the most prevalent sub-domains include robot programming
p48.28%q, robotic architecture p44.48%q, and security & safety p41.38%q.
These results suggest that the design and development of DSLs are primarily
focused on improving the programmability, architectural design, and safety
aspects of robotic systems. Other sub-domains such as robot coordination
and collaboration p31.03%q, task and behavior specification p17.24%q, and
robot modeling and simulation p13.79%q also receive attention, highlighting
the demand for DSLs that cater to these specific needs. However, areas such
as human-robot interaction p6.90%q and perception and sensing p3.45%q ap-
pear to be less explored, indicating potential opportunities for future research
and development in these sub-domains.

The work of this thesis focuses on the robot programming, robot coordi-
nation and collaboration, and task and behavior specification.

Figure 3.1: Distribution of subdomains in DSLs for robotics

CHAPTER 3. SLR FOR ROS-BASED SYSTEMS 33

Figure 3.2: DSL type distribution in robotics

3.2.2 DSL Type Distribution in Robotics (RQ2)

Our analysis of the DSL types employed in the reviewed robotics literature
reveals a different types of languages. As depicted in Figure 3.2, the most
common DSL type seems to be the textual one, with 15 instances found
in our review. This prevalence might be attributed to the familiarity and
ease of the use associated with textual representations, which resemble tra-
ditional programming languages. Graphical DSLs account for 11 instances
in our review, reflecting a growing interest in visual representations that can
intuitively depict complex robotic systems and interactions. This approach
proved especially beneficial for those with minimal programming experience,
as it facilitates their active involvement in the process. As users gain familiar-
ity with robotics applications, the textual notation grows increasingly useful
for managing larger-scale applications with more specific requirements. This
enhances their ability to interact effectively with the process. Additionally,
3 instances of DSLs combine both graphical and textual elements, providing
users with the flexibility to choose the most suitable representation based on
their needs and preferences. This hybrid approach may enhance the usabil-
ity and expressiveness of the DSLs, catering to a wider range of users and
applications within the robotics domain.

The work of this thesis provides both textual and graphical DSLs.

34 CHAPTER 3. SLR FOR ROS-BASED SYSTEMS

3.2.3 DSL Support for Multi-robot Systems and Het-
erogeneous Robots (RQ3)

In response to RQ3, we found that 14 of the reviewed DSLs explicitly sup-
port multi-robot systems or provide abstraction of such systems, showcasing
a growing interest in designing languages that cater to the needs of multi-
robot systems. Moreover, our review identified 8 DSLs that support hetero-
geneous robot systems, which consist of robots with diverse characteristics
and capabilities.

(a) Supports Multi-robot (b) Supports Heterogeneous Robots

Figure 3.3: Distribution of DSLs supporting multi-robot systems and het-
erogeneous robots

However, we noticed a significant gap in DSLs addressing distribution
and high heterogeneity in multi-robot systems. In fact, only few DSLs stands
alone in addressing distribution among the DSLs studied [71, 72, 73], which
is crucial aspect of effective resource allocation, load balancing, and task
assignment in multi-robot systems. Furthermore, high heterogeneity, which
promotes versatility and adaptability in operations, is also addressed only by
a small subset of DSLs [71, 72, 73]

The work of this thesis supports multi-robot systems, addressing distri-
bution and high-heterogeneity.

3.2.4 DSL Support for Coordination and Decentralized
Coordination in Multi-robot Systems (RQ4)

In response to RQ4, we analyzed the reviewed DSLs concerning their sup-
port for coordination and decentralized coordination in multi-robot systems,
whether or not they include build-in constructs or libraries that facilitate the
coordination of multiple robots, such as synchronization, communication, or
task allocation. As depicted in Figure 3.4a, almost half of the reviewed DSLs
support the coordination which indicates an increasing focus on facilitating
collaboration among multiple robots.

CHAPTER 3. SLR FOR ROS-BASED SYSTEMS 35

(a) Supports Coordination
(b) Supports Decentralized Coordi-
nation

Figure 3.4: Distribution of DSLs supporting coordination and decentralized
coordination in multi-robot systems

Yet, only 7 DSLs explicitly support decentralized coordination, suggest-
ing that there is room for improvement in the development of languages that
cater to distributed control and decision-making in multi-robot systems. De-
centralized coordination is crucial in scenarios where centralized control is
either not feasible or undesirable due to communication limitations, dynamic
environments, or the need for increased robustness and scalability. We also
observed that only a few DSLs provide high-level abstractions for coordi-
nation, which could simplify the design, implementation, and verification of
coordination strategies in multi-robot systems. Addressing this gap may re-
sult in more accessible and efficient tools for designing and programming co-
ordinated multi-robot systems, ultimately enhancing their performance and
adaptability in complex, real world scenarios. The limited number of DSLs
supporting coordination, decentralized coordination of multi-robot systems
at a high-level is noticeable. This highlights potential areas for research and
development in domain-specific languages.

The work presented in this thesis primarily focuses on high-level coordi-
nation within a decentralized topology of multi-robot systems.

3.2.5 Code Generation in DSLs for robotics (RQ5):

In response to RQ5, we examined the code generation capabilities of the re-
viewed DSLs for robotics, as shown in Figure 3.5. The ability to generate
code in widely used programming languages is essential for ensuring compat-
ibility and ease of integration with existing software and hardware platforms.

36 CHAPTER 3. SLR FOR ROS-BASED SYSTEMS

Figure 3.5: Distribution of code generation languages in DSLs for robotics

Out of the 29 DSLs analyzed, C++ is the most common target language
for code generation, with 12 DSLs generating C++ code. This is likely due
to the widespread adoption of C++ in the robotics community, thanks to
its performance benefits and mature performance. Python is the next most
common target language, with 5 DSLs generating Python code, reflecting its
popularity as a versatile and user-friendly language. Other code generation
languages include Java (2 DSLs), C(1 DSL), XML (1 DSL), Custom Byte-
code(1 DSL), and a combinaison of C++/Python (1 DSL). Additionally, 6
DSLs generate code in other languages not listed here.

The target language in the thesis work is Java.

3.2.6 IDE in DSLs for robotics (RQ6):

In the analysis of the 29 DSLs, we found that 13 instances of DSLs for
robotics explicitly offered integration with Integrated Development Environ-
ment (IDEs), as shown in Figure 3.6. This integration plays vital role in
streamlining the development process and enhancing the user experience.
By incorporating IDE support, DSLs for robotics can significantly improve
productivity, provide debugging and testing capabilities, and facilitate better
collaboration among development teams. Furthermore, IDE integration of-
ten allows for more accessible entry points for users who are new to robotics
or DSLs, promoting broader engagement in the field.

CHAPTER 3. SLR FOR ROS-BASED SYSTEMS 37

Figure 3.6: Distribution of IDE integration in DSLs for robotics

Overall this trend reflects the growing importance of comprehensive tool-
ing and environments for successful development and deployment of robotics
applications.

The DSL considered in this thesis offers an integration with Eclipse.

3.2.7 Prevalence of formal languages in DSLs for
robotics (RQ7):

The analysis of the 29 selected papers reveals that 13 of them (44.8%) em-
ploy formal languages in their DSLs for robotics, as depicted in Figure 3.7.
Formal languages contribute to system analysis and verification by providing
well-defined syntax, semantics, and mathematical models for their constructs.
This ensures a higher level of precision, consistency, and correctness in the
design and implementation of robotic systems. The use of formal languages
allows for rigorous analysis of robotic systems, which can help identify poten-
tial errors, inconsistencies, or vulnerabilities before deployment. Addition-
ally, formal languages enable the verification of system properties, ensuring
that the implemented robotic system meet their design specification and re-
quirements.

38 CHAPTER 3. SLR FOR ROS-BASED SYSTEMS

Figure 3.7: Distribution of formal DSLs for robotics

The prevalence of formal languages in DLSs for robotics highlights the im-
portance of rigorous analysis and verification techniques in the development
of complex robotic systems, ultimately contributing to the safety, reliability,
and robustness of these systems.

The work of this thesis is based on a formal language.

PART II

COORDINATING AND PROGRAMMING
MRSS

41

Chapter 4
Coordinating and Programming
Multiple ROS-based Robot with
X-Klaim

The complexity of software development for robotics applications increases
significantly when dealing with Multi-Robot Systems. To address these chal-
lenges, this study proposes an approach for programming MRSs at a high
abstraction level using X-Klaim. X-Klaim’s computation and communica-
tion of both intra- and inter-robot interactions, allowing developers to focus
on MRS behavior and achieve readable, reusable, and maintainable code.

4.1 The X-Klaim approach to multi-robot pro-
gramming

In this section, we describe our approach and software framework for pro-
gramming MRS applications based on integrating ROS and X-Klaim.

A single autonomous robot has a distributed architecture consisting of co-
operating components, particularly sensors and actuators. Such cooperation
is enabled and controlled by the ROS framework.

When passing from a single-robot system to an MRS, the distributed and
heterogeneous nature of the overall system becomes even more evident. The
software architecture for controlling an MRS reflects such a distribution: each
robot is equipped with ROS, on top of which the controller software runs.
This allows the robot to act independently and, when needed, to coordinate
with the other robots of the system to work together coherently.

In X-Klaim, the distributed architecture of the MRS’s software is natu-
rally rendered as a network where the different parts are deployed. As shown
in Figure 4.1, we associate an X-Klaim node to each robot of the MRS.

44 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

Figure 4.1: Software architecture of an MRS in X-Klaim.

Figure 4.2: The integrated framework.

In its turn, the internal distribution of the software controller of each robot
is managed by concurrent processes that synchronize their activities using
tuples stored in the robot’s tuple space. Inter-robot interactions rely on the
same communication mechanism by specifying remote tuple spaces as targets
of communication actions.

In our proposal, we prescribe that processes related to the behavior of a
single robot can be structured in different logical layers to clearly separate
their responsibilities. The top layer defines the lifecycle of the robot’s behav-
ior, which is typically expressed as a process that cyclically performs a main
macro activity. In a second layer, we specify the logic of the macro activity
by coordinating specific robot’s activities, expressed as processes interacting
with the robot’s physical devices. These latter processes are the building
blocks of the programming approach and form the bottom layer. All lay-
ers’ processes can be parameterized to be reusable in the same or different
robotics applications.

In practice, to program the behaviors of the robots forming an MRS, we

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 45

{"topic": "/robot1/move_base_simple/goal",
"msg": {"header": { ... },

"pose": {"position": {"x": −0.21, "y": 0.31,
"z": 0.0 },

"orientation": { ... } } } }

Figure 4.3: Example of a JSON message for the /goal topic.

enabled X-Klaim programs to interact with robots’ physical components
by integrating the X-Klaim language with the ROS middleware. The com-
munication infrastructure of the integrated framework, graphically depicted
in Figure 4.2, is based on ROS Bridge. This server is included in the ROS
framework and provides a JSON API to ROS functionalities for external
programs. This way, the ROS framework installed in a robot receives and
executes commands on the physical components of the robot and gives feed-
back and sensor data.

The use of JSON enables the interoperability of ROS with most program-
ming languages, including Java. As an example, we report in Figure 4.3 a
message pose in the JSON format published on the ROS topic /goal, pro-
viding information for navigating a delivery robot to a given goal position.
In our example, the goal is the position p´0.21, 0.31q.

X-Klaim programs can indirectly interact with the ROS Bridge server,
publishing and subscribing over ROS topics via objects provided by the Java
library java_rosbridge.1 In its own turn, java_rosbridge communicates with
the ROS Bridge server via the WebSocket protocol through the Jetty web
server.2

ROS permits checking the execution of the code generated from an
X-Klaim program by means of the Gazebo3 simulator. Gazebo [74] is an
open-source simulator of robot behaviors in complex environments that is
based on a robust physics engine and provides a high-quality 3D visualiza-
tion of simulations. Gazebo is fully integrated with ROS; in fact, ROS can
interact with the simulator via the publish-subscribe communication mecha-
nism of the framework. The use of the simulator is not mandatory when ROS
is deployed in real robots. However, even in such a case, the MRS software
design activity may benefit from using a simulator to save time and reduce
development costs.

Since the X-Klaim compiler generates plain Java code, which depends
only on Klava and a few small libraries, deploying an X-Klaim application
can be made by using standard Java tools and mechanisms. It is enough to

1https://github.com/h2r/java_rosbridge
2Jetty 9: https://www.eclipse.org/jetty/
3https://gazebosim.org/

https://github.com/h2r/java_rosbridge
https://www.eclipse.org/jetty/
https://gazebosim.org/

46 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

create a jar with the generated Java code and its dependencies (Klava and
java_rosbridge), that is, a so-called “fat-jar” or “uber-jar”. Such a jar file can
be deployed to every physical robot where a Java virtual machine is already
installed. Under that respect, X-Klaim provides standard Maven artifacts
and a plugin to generate Java code outside Eclipse, e.g., in a Continuous
Integration server. Moreover, the dependencies of an X-Klaim application,
including java_rosbridge, are only a few megabytes, which makes X-Klaim
applications suitable also for embedded devices like robots.

4.2 The X-Klaim approach at work on MRS
scenarios

To illustrate the proposed approach, in this section, we show and briefly
comment on a few interesting parts of implementing two warehouse scenarios4

involving an MRS that manages the movement of items.
In Section 4.2.1, we present a simple warehouse scenario with an MRS

composed of an arm robot and a delivery robot working together in an en-
vironment free of obstacles. Then, in Section 4.2.2, we show an enriched
version of the scenario with multiple delivery robots and a more realistic
warehouse environment, focusing on how the code of Section 4.2.1 can be
reused and extended in only a few parts.

4.2.1 Simple warehouse scenario

This first simple scenario comprises an arm robot and a delivery robot. The
arm robot, positioned in the center of the warehouse, picks up one item from
the floor, calls the delivery robot, and releases the item on top of the delivery
robot. The delivery robot delivers the item to the appropriate delivery area
and becomes available for a new delivery.

In Figure 4.4, we show a part of the network for our scenario implemen-
tation. Each robot is rendered as an X-Klaim node, whose name represents
its locality (see Section 2.1.2).

Each node creates its process locally, representing the node/robot be-
havior, and executes it concurrently using the X-Klaim operation eval.
The delivery robot process behavior is parametric concerning the identifier
and the sector. These parameters facilitate the reusability of the process, as
shown in Section 4.2.2. The node Environment provides an interface with
the simulated environment. In this scenario, it notifies the arm robot about
the presence of items to be picked up and consumes them when delivered

4The complete source code of the scenarios’ implementation can be found at https:
//github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios.

https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 47

net MRS_one_delivery physical "localhost:9999" {
node Arm {

eval(new ArmBehavior())@self
}

node DeliveryRobot {
val robotId = "robot"
val sector = "sector"
eval(new DeliveryRobotBehavior

(robotId, sector, Arm))@self
}

node Environment {...}
}

Figure 4.4: The X-Klaim net of the simple warehouse scenario.

import static xklaim.arm.ArmConstants.∗

proc ArmBehavior() {
eval(new PickAndReleaseOneItem())@self
in(IS_IN_THE_INITIAL_POSITION)@self
eval(new ArmBehavior())@self

}

Figure 4.5: The process representing the arm robot behavior.

to the destination. While these actions are simulated here, in a real-world
implementation of the scenario they might be performed by physical devices
or human actors.

In this paper, the processes representing robot behavior have a com-
mon shape. As an example, we show the process of the arm behavior
in Figure 4.5. The idea is that the behavior process defines the lifecy-
cle while the actual implementation logic is delegated to another process
(PickAndReleaseOneItem, in this case). The process responsible for im-
plementing the logic is meant to be usable with different behaviors. In this
example, all the behaviors are recursive. In fact, in Figure 4.5, after the
execution of the implementation logic, the ArmBehavior evaluates another
instance of the behavior. Hence, before starting a new instance of the be-
havior, it has to coordinate with PickAndReleaseOneItem. The latter
is expected to put a tuple in the local tuple space with an agreed string. To
avoid possible spelling mistakes when using constants in tuples, we define the
constants in a Java class ArmConstants. Note that, thanks to the inte-
gration with Java (see Section 2.1.2), X-Klaim can use Java constants with
standard “import static” mechanisms. Recall that eval spawns another con-

48 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

current process and is a non-blocking operation. Thus, the currently running
behavior process ArmBehavior terminates after starting another instance
of itself.

In Figure 4.6, we show the code of the process
PickAndReleaseOneItem. This process waits for a tuple with in-
formation concerning an item available for delivery (in our implementation
this is provided by the node Environment of Figure 4.4). Then, it defines
a few constants representing trajectories. Trajectories are implemented with
plain Java objects and contain a few double numbers corresponding to phys-
ical points in the scenario, some of which depend on the item coordinates.
We do not show them here because they are not relevant to the aim of
this section. The actual logic is implemented by relying on a few reusable
processes: MoveArm and UseGripper, whose names and usages should be
self-explanatory. Both processes are parameterized with a trajectory struc-
ture, that represents the actual movement, and are started, once again, with
eval. They notify the completion of their task by outputting a particular
tuple which is consumed by the process PickAndReleaseOneItem before
starting the execution of the next process. On its termination, the process
outputs the tuple with IS_IN_THE_INITIAL_POSITION, expected by
ArmBehavior (Figure 4.5), to notify that it has finished its tasks.

In Figure 4.7, we show the code of the process MoveArm. Like
UseGripper (which we do not show here), MoveArm relies on the ROS
Bridge. As already discussed in Section 4.1, the execution of an X-Klaim
robotics application requires the ROS Bridge server to run, providing a Web-
Socket connection at a given URI. The URI of the ROS Bridge WebSocket is
one of the Java constants we defined. In the code of our example application,
we consider the ROS Bridge server running on the local machine (0.0.0.0) at
port 9090.

The process MoveArm connects to the ROS Bridge and initializes a pub-
lisher for the topic related to the control of arm movements. The process
defines the trajectory for the arm movement and publishes it. Then, the
process uses the Java API provided by java_rosbridge for subscribing to a
specific topic (we refer to java_rosbridge documentation for the used API).
The last argument of bridge.subscribe is a lambda expression (see Sec-
tion 2.1.2). The lambda expression will be executed when an event for the
subscribed topic is received. In particular, the lambda expression reads some
data from the event (in JSON format) concerning the “positions”. ROS dic-
tates the JSON message format. To access the contents, we use the standard
Java API (data is of type JsonNode, from the jackson-databind library).
The lambda expression calculates the delta between the actual joint positions
and the destination positions to measure the arm movement’s completeness.
The if determines when the arm has completed the rotation movement ac-

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 49

proc PickAndReleaseOneItem() {
in(ITEM, var String itemId,

var String sector, var String itemType,
var Double x, var Double y)@self

val HALF_DOWN = new ArmTrajectory(...)
val COMPLETE_DOWN = new ArmTrajectory(...)
val UP = new ArmTrajectory(...)
val ROTATE = new ArmTrajectory(...)
val LAY_DOWN = new ArmTrajectory(...)
val INITIAL_POSITION = new ArmTrajectory(...)
val CLOSE = new GripperTrajectory(...)
val OPEN = new GripperTrajectory(...)

eval(new MoveArm(HALF_DOWN))@self
in(MOVE_ARM_COMPLETED)@self

eval(new MoveArm(COMPLETE_DOWN))@self
in(MOVE_ARM_COMPLETED)@self

eval(new UseGripper(CLOSE))@self
in(USE_GRIPPER_COMPLETED)@self

eval(new MoveArm(UP))@self
in(MOVE_ARM_COMPLETED)@self

out(ITEM_READY_FOR_DELIVERY,sector)@self

eval(new MoveArm(ROTATE))@self
in(MOVE_ARM_COMPLETED)@self

in(DELIVERY_ROBOT_ARRIVED)@self

eval(new MoveArm(LAY_DOWN))@self
in(MOVE_ARM_COMPLETED)@self

eval(new UseGripper(OPEN))@self
in(USE_GRIPPER_COMPLETED)@self

out(GRIPPER_OPENED,itemId,itemType)@self

eval(new MoveArm(INITIAL_POSITION))@self
in(MOVE_ARM_COMPLETED)@self

out(IS_IN_THE_INITIAL_POSITION)@self
}

Figure 4.6: The process with the logic of the arm robot.

50 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

proc MoveArm(ArmTrajectory armTrajectory) {
val bridge = new XklaimToRosConnection

(ROS_BRIDGE_SOCKET_URI)
val pub = new Publisher("/arm_controller/command",

"trajectory_msgs/JointTrajectory", bridge)
val JointTrajectory trajectory = new JointTrajectory()

.positions(armTrajectory.trajectoryPoints).jointNames(#[
"joint1","joint2","joint3","joint4","joint5","joint6"])

pub.publish(trajectory)

bridge.subscribe(
SubscriptionRequestMsg

.generate("/arm_controller/state")

.setType(
"control_msgs/JointTrajectoryControllerState")
.setThrottleRate(1).setQueueLength(1),

[data, stringRep |
val actual = data.get("msg")

.get("actual").get("positions")

var delta = 0.0
for (var i = 0;

i < armTrajectory.trajectoryPoints.size; i++)
delta += Math.pow(actual.get(i).asDouble() −

armTrajectory.trajectoryPoints.get(i), 2.0)
val norm = Math.sqrt(delta)

if (norm <= armTrajectory.tolerance) {
out(MOVE_ARM_COMPLETED)@self
bridge.unsubscribe("/arm_controller/state")

}
]

)
}

Figure 4.7: The process for moving the robotic arm.

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 51

cording to a specific tolerance. When that happens, the lambda expression
notifies that the task is completed. This is achieved by inserting a particular
tuple in the local tuple space. The process in Figure 4.6 will consume this
tuple and will go on by spawning the process for the next movement. Finally,
we can unsubscribe from the topic to stop receiving notifications from the
ROS Bridge.

Note that the thread executing MoveArm terminates immediately af-
ter executing the bridge.subscribe call. On the contrary, from
a logical point of view, the task of the process MoveArm terminates
only after the lambda (executed by a different thread, which is part of
the java_rosbridge publish/subscribe mechanism) has published the tuple
MOVE_ARM_COMPLETED. This is typical of the asynchronous multi-threaded
nature of publish/subscribe frameworks. This is the reason why, to start exe-
cution of the next process, the process PickAndReleaseOneItem cannot
simply wait for the termination of MoveArm but leverages the coordination
mechanism provided by the tuple space.

The implementation of the delivery robot (see the node DeliveryRobot
in Figure 4.4) follows a similar strategy. The DeliveryRobotBehavior
is similar to the behavior of Figure 4.5, and we do not show it here.

The process with the logic of the delivery robot is shown in Figure 4.8.
Similarly to PickAndReleaseOneItem of Figure 4.6, this process dele-
gates the physical actions to reusable processes that use the ROS Bridge:
WaitForItem (which we do not show here) and MoveTo, which is param-
eterized over the target destination.

We show MoveTo in Figure 4.9, including the parts that deal with math-
ematical computations concerning the currently read position. The parts for
using the ROS Bridge and coordinating through the tuple space are similar
to the ones of MoveArm of Figure 4.7. The delivery robot navigation in
this process is based on a proportional control technique that adjusts the
robot’s linear and angular velocities depending on its current position and
orientation relative to the target. It calculates the heading error, which is
the difference between the angle the robot is currently facing and the angle
it needs to reach the target, as well as the distance error. The linear and
angular velocities are then adjusted based on proportional gain, where the
distance error is proportional to the linear velocity and the heading error is
proportional to the angular velocity. This approach is simple but effective
for navigating to a specific point in an environment free of obstacles. How-
ever, it may not be suitable for more complex scenarios that include static
and dynamic objects. In those cases, a more advanced navigation system,
like 2D navigation stack provided by ROS, may be required, as shown in
Section 4.2.2.

To recap, we propose an approach that clearly separates the responsibil-

52 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

proc DeliveryOneItem(String robotId,
String sector, Locality Arm) {

in(ITEM_READY_FOR_DELIVERY,sector)@Arm

// the arm robot has a fixed, known position
val x = −0.21
val y = 0.31
eval(new MoveTo(robotId, x, y))@self
in(MOVE_TO_COMPLETED)@self

out(DELIVERY_ROBOT_ARRIVED)@Arm

in(GRIPPER_OPENED,
var String itemId, var String itemType)@Arm

eval(new WaitForItem(robotId))@self
in(ITEM_LOADED)@self

// the destination has a fixed, known position
val x2 = −8.0
val y2 = 0.0
eval(new MoveTo(robotId, x2, y2))@self
in(MOVE_TO_COMPLETED)@self

out(ITEM_DELIVERED,itemId,x2,y2)@self

out(AVAILABLE_FOR_DELIVERY)@self
}

Figure 4.8: The process with the logic of the delivery robot.

ities among different processes, which can be seen as different logical layers:

• We have a process for the high-level behavior of the robot, like
ArmBehavior of Figure 4.5, which only takes care of establishing
the lifecycle of the robot;

• We have a process for implementing the main logic of the robot, like
PickAndReleaseOneItem of Figure 4.6, which relies on the reusable
building blocks of parameterized processes that are responsible for using
the ROS Bridge for communicating with the robot’s physical parts;

• These latter processes implement the main physical actions. Still, they
are reusable thanks to their parameterization. For example, we have a
single process representing the “movement of the arm”; according to the
parameter, the process will go down, get up, rotate, etc. This is quite
different from the approach presented in [21], where we used a different

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 53

proc MoveTo(String robotId, Double x, Double y) {
val local = self
// set the tolerance for distance and angle error
val distanceTolerance = 0.1;
val angleTolerance = 0.1;
// connect to the ROS bridge
val bridge = new XklaimToRosConnection(ROS_BRIDGE_SOCKET_URI)
// initialize a publisher for the topic related to the control of the robot’s wheels
val pub = new Publisher("/" + robotId + "/cmd_vel", "geometry_msgs/Twist", bridge)
// create the message for sending velocity commands
val vel_msg = new Twist()
val PI = 3.141592654;
// gain K used to calculate the linear velocity
val double K_l = 0.5;
// gain K used to calculate the angular velocity
val double K_a = 0.5;
// subscribe to the robot’s odometry sensor data
bridge.subscribe(

SubscriptionRequestMsg.generate("/" + robotId + "/odom").setType("nav_msgs/Odometry").setThrottleRate(1).
setQueueLength(1),

[data, stringRep |
var mapper = new ObjectMapper();
var JsonNode rosMsgNode = data.get("msg");
var Odometry odom = mapper.treeToValue(rosMsgNode, Odometry);
var double currentX = odom.pose.pose.position.x;
var double currentY = odom.pose.pose.position.y;
var angle = new EulerAngles(odom.pose.pose.orientation)
var currentTheta = angle.yaw
// calculate the error in heading and distance b
var deltaX = x − currentX;
var deltaY = y − currentY;
var angular = Math.atan2(deltaY, deltaX)
var headingError = angular − currentTheta
if (headingError > PI) {

headingError = headingError − (2 ∗ PI); // wrap angle to [−PI,PI]
}
if (headingError < −PI) {

headingError = headingError + (2 ∗ PI); // wrap angle to [−PI,PI]
}
var distance = Math.sqrt(Math.pow((x − currentX), 2) + Math.pow((y − currentY), 2))
if ((distance > distanceTolerance)) {

if (Math.abs(headingError) > angleTolerance) {
vel_msg.linear.x = 0.0;
// calculating angular velocity to correct heading
vel_msg.angular.z = K_a ∗ headingError;

} else {
vel_msg.linear.x = K_l ∗ distance;
vel_msg.angular.z = 0.0;

}
pub.publish(vel_msg)

} else {
// the robot reached the goal and stops moving
vel_msg.linear.x = 0
vel_msg.angular.z = 0
pub.publish(vel_msg)
out(MOVE_TO_COMPLETED)@local
bridge.unsubscribe("/" + robotId + "/odom")

}
]

)
}

Figure 4.9: The process for moving the delivery robot.

54 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

Figure 4.10: Enriched warehouse scenario.

X-Klaim process for every single movement, e.g., GetDown, GetUp,
Rotate, etc. This led to many processes with some code duplicated
across those processes that might become hard to read and maintain.

We believe this clear separation of responsibilities enhances our code’s
re-usability, readability, and maintainability. This also allows us to follow
an incremental approach, as shown in this section: we start focusing on a
smaller problem/scenario (one single delivery robot, one single item type,
no obstacles); then, we scale to a more complex one (two delivery robots,
different item types, presence of obstacles), by reusing most of the code of
the simple scenario and extending/modifying only a few processes for the
goal of the advanced scenario, as we show in the next Section 4.2.2.

4.2.2 Enriching the warehouse scenario

In this section, we present an evolution of the simple scenario of Section 4.2.1.
Most of the code is the same as in Section 4.2.1, and in this section, we focus
on the parts that must be adapted for the evolved scenario.

As shown in Figure 4.10, in this scenario, the MRS is composed of an arm
robot and two delivery robots, and the warehouse is divided into two sectors,
each one served by a delivery robot. Similarly to the previous scenario, the
arm robot, positioned in the center of the warehouse, picks up one item at a
time from the ground, calls the delivery robot assigned to the item’s sector,
and releases the item on top of the delivery robot. The latter delivers the
item to the appropriate delivery area, which depends on the item’s color, and
then becomes available for a new delivery. In addition, delivery robots must
deal with obstacles (e.g., pallets) that are in the warehouse.

In Figure 4.11, we show a part of the network for this scenario implemen-
tation. The network is similar to the one of Figure 4.4 since we reuse the
processes for the behavioral parts. It mainly differs for the fact that, since
in this scenario the destination coordinates depend on the item type (i.e.,

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 55

net MRS physical "localhost:9999" {
node Arm {

eval(new ArmBehavior())@self
}

node DeliveryRobot1 {
val robotId = "robot1"
val sector ="sector1"
out(ITEM_DESTINATION,"red",−9.0,−9.0)@self
out(ITEM_DESTINATION,"blue",9.0,−9.0)@self
eval(new DeliveryRobotBehavior

(robotId, sector, Arm))@self
}

node DeliveryRobot2 {
val robotId = "robot2"
val sector ="sector2"
out(ITEM_DESTINATION,"red",9.0,9.0)@self
out(ITEM_DESTINATION,"blue",−9.0,9.0)@self
eval(new DeliveryRobotBehavior

(robotId, sector, Arm))@self
}

node Environment {...}
}

Figure 4.11: The X-Klaim net of the enriched warehouse scenario.

color), before activating the DeliveryRobotBehavior processes, the de-
livery robot nodes insert in the local tuple space the ITEM_DESTINATION
tuples that define the mapping from item type to destination coordinates.

We have to adapt the process DeliveryOneItem as shown in Fig-
ure 4.12. Comparing the code of this process with the corresponding
one of the first scenario (Figure 4.8), we see that it retrieves the des-
tination coordinates at run-time from the local tuple space through the
ITEM_DESTINATION tuples. Notably, the two robots deliver items of the
same type to different destinations.

We also have to adapt the process MoveTo as shown in Figure 4.13. This
process is much simpler in this scenario, even if it relies on a more sophis-
ticated navigation system leveraging the navigation stack packages provided
by ROS. Specifically, we exploit the topic move_base_simple to commu-
nicate with the ROS node of the navigation system, which accepts messages
containing the goal coordinates. This node is an integral component of the
navigation stack. It is responsible for linking the global planner with the
local planner to determine the robot’s trajectory while avoiding obstacles.
The global planner generates the path as a sequence of waypoints the robot

56 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

proc DeliveryOneItem(String robotId,
String sector, Locality Arm) {

in(ITEM_READY_FOR_DELIVERY,sector)@Arm

val x = −0.21
val y = 0.31
eval(new MoveTo(robotId, x, y))@self
in(MOVE_TO_COMPLETED)@self

out(DELIVERY_ROBOT_ARRIVED)@Arm

in(GRIPPER_OPENED,
var String itemId, var String itemType)@Arm

eval(new WaitForItem(robotId))@self
in(ITEM_LOADED)@self

// the delivery destination coordinates
// must be retrieved: they are not known
read(ITEM_DESTINATION, itemType,

var Double x2, var Double y2)@self

eval(new MoveTo(robotId, x2, y2))@self
in(MOVE_TO_COMPLETED)@self

out(ITEM_DELIVERED,itemId,x2,y2)@self

out(AVAILABLE_FOR_DELIVERY)@self
}

Figure 4.12: The process with the logic of the delivery robot in the enriched
warehouse scenario.

must follow. The local planner generates the low-level plan to move from one
waypoint to the next. This mechanism relies on a map of the environment
and localization facilities to achieve this. To determine the completion of the
robot’s movement, the process MoveTo subscribes to the topic amcl_pose,
which provides an estimate of the robot’s pose in the given map using the
“Adaptive Monte Carlo Localization" algorithm (AMCL).

The other processes for implementing this scenario are the same as the
corresponding ones of the simple scenario. As anticipated in Section 4.2.1,
having separated responsibilities in reusable processes allowed us to follow
an incremental approach: we reused most of the code of the simple scenario,
and we had to modify/replace only a few processes according to the require-
ments of this scenario. The screenshot in Figure 4.14 shows this scenario in
execution. On the left, the Eclipse IDE with our X-Klaim code is shown
(see the logged messages on the Console). On the right, the Gazebo simu-

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 57

proc MoveTo(String robotId, Double x, Double y) {
val bridge = new XklaimToRosConnection

(ROS_BRIDGE_SOCKET_URI)
val pub = new Publisher("/" + robotId +

"/move_base_simple/goal",
"geometry_msgs/PoseStamped", bridge)

// publish the destination position
val destination = new PoseStamped()

.headerFrameId("world").posePositionXY(x, y)

.poseOrientation(1.0)
pub.publish(destination)

// waiting until the destination position is reached
bridge.subscribe(

SubscriptionRequestMsg
.generate("/" + robotId + "/amcl_pose")
.setType("geometry_msgs/PoseWithCovarianceStamped")
.setThrottleRate(1).setQueueLength(1),

[data, stringRep |
// the actual position from the robot’s status
var mapper = new ObjectMapper()
var JsonNode rosMsgNode = data.get("msg")
var current_position = mapper

.treeToValue(rosMsgNode,
PoseWithCovarianceStamped)

.pose.pose
// calculate the delta between the actual position
// and the destination position
// to measure the completeness of the movement
val tolerance = 0.16
var deltaX = Math.abs(

current_position.position.x −
destination.pose.position.x)

var deltaY = Math.abs(
current_position.position.y −
destination.pose.position.y)

if (deltaX <= tolerance && deltaY <= tolerance) {
val pubvel = new Publisher(

"/" + robotId + "/cmd_vel",
"geometry_msgs/Twist", bridge)

val twistMsg = new Twist()
pubvel.publish(twistMsg)
out(MOVE_TO_COMPLETED)@self
bridge.unsubscribe("/" + robotId + "/amcl_pose")

}
]

)
}

Figure 4.13: The process for moving the delivery robot in the enriched ware-
house scenario.

58 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

Figure 4.14: Execution of the X-Klaim robotics application of the enriched
warehouse scenario.

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 59

lator is shown, visualizing the arm in the center, ready to drop the item on
top of the delivery robot’s white plate.

4.2.3 Other Scenarios

Rescue Robot

The rescue robot scenario5 involves a robot looking for potential victims in a
disaster area. By following a random walk, the robot explores an unknown,
flat environment where a number of obstacles are present while avoiding
collisions with them. As soon as the robot has localized a potential victim,
it stops near the victim and signals its position. The robot has a limited
battery lifetime and the battery’s state of charge is monitored during the
course of the robot’s activities. If the state of charge drops under a given
threshold value, then the robot stops searching for a victim and rather moves
towards a charging station.

Robot Collective Search

In the robot collective search scenario6, a team of four robots works together
to locate each uniquely colored flag within a designated area, despite not
having prior knowledge of their positions. The flags are placed randomly
throughout the environment. As they navigate through the environment, the
robots must avoid the obstacles and continuously gather information about
their proximity to the flags. When a robot detects a flag nearby, based on a
predefined distance threshold, it notifies the other robots about the discovery.
Once all the flags have been found, the robots cease their movements and
the task is considered complete.

Formation Pattern

In the formation pattern scenario7, we consider a team of autonomous, anony-
mous, and identical mobile robots forming various patterns, such as line,
circle, and grid formations. For the line formation, the robots arrange them-
selves in a straight line, maintaining a specific distance from each other.This
formation can be useful in scenarios where the robots need to traverse nar-
row passages or when they are required to maintain a clear line of sight. In
the circle formation, the robots position themselves equidistantly around a

5The full source code of the rescue robot scenario can be found at https://github.
com/LorenzoBettini/xklaim-ros-example.

6The full source code of the robot collective search can be found at: https:
//github.com/khalidbourr/Collective_Search_MRS.

7The full source code of the formation pattern can be found at https://github.
com/khalidbourr/xklaim-ros-swarm-robots.

https://github.com/LorenzoBettini/xklaim-ros-example
https://github.com/LorenzoBettini/xklaim-ros-example
https://github.com/khalidbourr/Collective_Search_MRS
https://github.com/khalidbourr/Collective_Search_MRS
https://github.com/khalidbourr/xklaim-ros-swarm-robots
https://github.com/khalidbourr/xklaim-ros-swarm-robots

60 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

central point, formation a circle. This formation can be beneficial in sce-
narios where the robots need to surround an area of interest or maintain a
perimeter. The grid formation involves the robots being organized in a grid
pattern, where each robot occupies a cell within the grid. This formation can
be advantageous in scenarios where the robots are required to cover a large
area efficiently, such as during search and rescue missions or environmental
monitoring tasks.

In each formation type, the robots communicate with their neighbors,
share their positions, and adjust their positions based on the desired for-
mation pattern. These formations enable the team of robots to adapt to
different tasks and environmental constraints effectively.

4.3 Experimental Evaluation

In this section, we illustrate the experiments we carried out to determine the
impact of our approach on MRS performance. The experiments are designed
to provide a comparison of time and memory performance of our implemen-
tation of the MRS of the warehouse scenarios based on Java code and ROS
Bridge against the traditional ROS implementation based on Python code.8
To this aim, we exploit the warehouse scenario in Section 4.2.2, evaluating
the overall execution time in milliseconds and memory consumption for each
robot activity while using our solution and the traditional one. To guaran-
tee consistency, the same hardware/software9, input, and tasks are used in
both environments. To account for variance, we ran the same experiments
(i.e., the Java-based and the Python-based code) 30 times and averaged the
results10.

4.3.1 Time consumption

We determined the average completion time for each robot activity in mil-
liseconds using our implementation, based on java_rosbridge, and the Python
one, based on rospy.11 We discuss here the results of the experiments con-

8The Python code and the data of all the experiments are available at https:
//github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/
master/experiments.

9We conducted our experiments on a workstation with Intel(R) Core(TM) i7-7700HQ
(8 cores, 2.80GHz) and 32GB RAM, running Linux Ubuntu 20.04.5 LTS, ROS Noetic, and
OpenJDK 64-Bit Server VM 11.0.17.

10We use averaged results because the standard deviation in these experi-
ments is low (data of the experiment results are available at https://github.
com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/
experiments/Results).

11http://wiki.ros.org/rospy

https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments/Results
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments/Results
https://github.com/LorenzoBettini/xklaim-ros-warehouse-scenarios/tree/master/experiments/Results
http://wiki.ros.org/rospy

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 61

Figure 4.15: Time consumption

cerning the arm robot’s activities; the ones concerning the delivery robots
returned similar results. Each activity uses a publisher for sending the mes-
sage that starts the enactment of the activity and a subscriber for receiving
sensor data.

Figure 4.15 shows the time consumption for the activities of the arm
robot. Each activity corresponds to an X-Klaim process in our approach (ex-
cept for “Move down” that corresponds to two executions of MoveArm, with
arguments HALF_DOWN and COMPLETE_DOWN, respectively) and a class in
the Python implementation. For example, the “Rotate” activity takes an
average of 3955 milliseconds in Python and 4019 milliseconds in Java to ex-
ecute. The time consumption is similar for activities using different topics;
e.g., “Open gripper” takes 3986 milliseconds in Python and 4021 milliseconds
in Java. The experiment results indicate that the Java program has a slightly
greater latency than the Python version. This is a consequence of the seri-
alization and deserialization of messages, network overhead, and connection
with the ROS Bridge server via the WebSocket protocol. However, in the
case under evaluation, the average delay difference between the two setups is
at most 200 milliseconds. Therefore, the overhead introduced by our solution
does not significantly affect the mission of the considered MRS.

62 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

Figure 4.16: Memory consumption of the Rotate activity.

4.3.2 Memory consumption

To measure the memory consumption, we employed two different tools for
performance profiling and monitoring: VisualVm12 for Java code, and Mem-
ray13 for Python.

We show here the results of the experiments on one robot’s activity,
namely “Rotate”. As shown in Figure 4.16, after the start-up phase of the
activity, the heap used by Python is more than 50MB, while Java uses almost
30MB. The trend for the other activities is quite similar. Even if identifying
the cause of this difference is not relevant to our investigation, we think that,
in this experiment, the difference might be attributed to more efficient auto-
matic memory management in Java compared to Python. It is worth noting
that our approach also requires the execution of the ROS Bridge server, which
uses around 135KB of memory and, hence, does not significantly affect the
overall memory cost.

4.4 Discussion and Related work

Over the last few years, researchers have attempted to define notations closer
to the robotics domain to raise the abstraction level for enabling automated
code generation, behavior analysis, and property verification (e.g., safety
and performance). This section reviews several high-level languages and

12https://visualvm.github.io
13https://github.com/bloomberg/memray

https://visualvm.github.io
https://github.com/bloomberg/memray

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 63

frameworks for modeling, designing, and verifying ROS-based applications
and some languages for coordinating collaborative MRSs. We summarize in
Table 4.1 our considerations and comparison with the languages more strictly
related to ours.

64 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

D
S
L

F
or

m
al

la
n
gu

ag
e

H
ig

h-
le

ve
l

la
n
gu

ag
e

M
u
lt
i-
ro

bo
ts

H
et

er
og

en
ou

s
ro

bo
ts

C
oo

rd
in

at
io

n
D

ec
en

tr
al

iz
ed

co
or

di
n
at

io
n

O
pe

n
-e

n
de

dn
es

s
C
om

pi
le

r
ID

E
R
O

S

A
R
T

2
o
o
l
[7

5
]

✓
✓

✓
A
T

L
A

S
[7

6
]

✓
✓

✓
✓

✓
B

R
ID

E
[7

7
]

✓
✓

✓
✓

C
o
m

m
o
n
L
an

g
[7

8
]

✓
✓

✓
D

ro
n
a

[7
9
]

✓
✓

✓
✓

✓
✓

✓
F
L
Y
A

Q
[8

0
]

✓
✓

✓
H

y
p
er

fl
ex

[8
1
]

✓
✓

✓
✓

IS
P
L

[7
2
]

✓
✓

✓
✓

✓
✓

K
o
o
rd

[8
2
]

✓
✓

✓
✓

✓
✓

✓
✓

P
R

O
M

IS
E

[8
3
]

✓
✓

✓
R

o
b
o
tC

h
ar

t
[8

4
]

✓
✓

✓
✓

R
O

S
B

u
zz

[8
5
]

✓
✓

✓
✓

✓
✓

✓
✓

✓
R

S
S
M

[8
6
]

✓
✓

✓
S
C

E
L

[7
1
]

✓
✓

✓
✓

✓
✓

✓
✓

X
-K

la
im

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

Ta
bl

e
4.

1:
Fe

at
ur

es
co

m
pa

ri
so

n
of

th
e

re
la

te
d

w
or

ks
.

CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT 65

High-level languages and frameworks Many DSLs for component-
based modeling of robotic systems are based on UML and target mostly the
architectural aspect of robotic applications, e.g., RobotML [1], V3CMM [87],
BRICS [88], RoboChart [84], and SafeRobots [89]. Some of them can be
used to build ROS-based systems by either supporting a direct translation,
e.g., Hyperflex [81], or serving as a base for other platforms. For example, in
BRIDE [77], which relies on BRICS, the components are modeled using UML
and converted to ROS meta-models to generate runnable ROS C++ code.
Additional meta-models (i.e., deployment meta-model and experiment meta-
model) for rapid prototyping component-based systems are provided in [90].
UML has also been used to model and design robotic tasks and missions, e.g.,
Art2ool [75] supports the development cycle of robotic arm tasks in which
atomic tasks are abstracted with UML class diagrams. Textual languages,
e.g., CommonLang [78], are another type of language used to model robotic
systems. For example, in [91], a DSL based on the Python language can
be used interactively, through the Python command-line interface, to create
brand new ROS nodes and reshape existing ROS nodes by wrapping their
communication interfaces.

Some other contributions, to some extent, allow for the verification of
ROS-based systems. ROSGen [92] takes a specification of a ROS system
architecture as an input and generates ROS nodes as an output. Using the
theorem prover Coq, the generation process is amenable to formal verifica-
tion. DeROS [93] permits describing robot’s safety rules (and their related
corrective actions) and automatically generating a ROS safety monitoring
node by integrating these rules with a run-time monitor. Another frame-
work for run-time verification of ROS-based systems is described in [94],
which allows generating C++ code for a monitoring node from user-defined
properties specified in terms of event sequences. In [95], robot systems are
modeled as a network of timed automata that, after verification in Uppaal,14

are automatically translated into executable C++ code satisfying the same
temporal logic properties as the model. Finally, RSSM [86] enables modeling
of multi-agent robot’s activities using Hierarchical Petri Nets. After checking
for deadlock absence on the model, RSSM can generate C++ code for ROS
packages automatically.

The approaches mentioned above have not been applied to such com-
plex systems as MRSs, and some are not even suitable for such systems.
Very few high-level languages for MRSs have been proposed. For example,
FLYAQ [80] is a set of DSLs based on UML to specify the civilian missions
for unmanned aerial vehicles. This work is extended in [96] for enabling the
use of a declarative specification style, but it only supports homogeneous
robots. ATLAS [76], which also provides a simulator-based analysis, takes a

14https://uppaal.org/

https://uppaal.org/

66 CHAPTER 4. PROGRAMMING MULTIPLE ROS-BASED ROBOT

step further towards coordinating MRSs but only supports centralized coor-
dination. PROMISE [83] allows specifying the missions of MRSs using Linear
Temporal Logic operators for composing robotic mission patterns. Finally,
RMoM [97] first allows using a high-level language for specifying various
constraints and properties of ROS-based robot swarms with temporal and
timed requirements and then automatically generating distributed monitors
for their run-time verification.

Languages for coordination Coordination for MRSs has been inves-
tigated from several diverse perspectives. Nowadays, many techniques can
be used to orchestrate the actions and movements of robots operating in
the same environment [10, 4]. Designing fully-automated and robust MRSs
requires strong coordination of the involved robots for autonomous decision-
making and mission continuity in the presence of communication failures [61].
Several studies recommend using indirect communication to cut implemen-
tation and design costs usually caused by direct communication. Indirect
communication occurs through a shared communication structure that each
robot can access in a distributed concurrent fashion. Some languages provid-
ing communication and coordination primitives suitable for designing robust
MRSs are reviewed in [5]. In ISPL [72], communication is obtained as an in-
direct result of synchronizing multiple labeled transition systems on a specific
action. In SCEL [71], a formal language for the description and verification
of collective adaptive systems, communication is related to the concept of
knowledge repositories, represented by tuple spaces. In Buzz [98], a lan-
guage for programming heterogeneous robot swarms, communication is im-
plemented as a distributed key-value store. For this latter language, integra-
tion with the standard environment of ROS has also been developed, which is
named Rosbuzz [85]. Unlike X-Klaim, however, Rosbuzz does not provide
high-level coordination primitives, robots’ distribution is not explicit, and
permits less heterogeneity. Drona [79] is a framework for distributed drones
where communication is somehow similar to the one used in ISPL. Koord [82]
is a language for programming and verifying distributed robotic applications
where communication occurs through a distributed shared memory. Unlike
X-Klaim, however, robot distribution is not explicit, and open-endedness
is not supported. Finally, in [99], a programming model and a typing dis-
cipline for complex multi-robot coordination are presented. The program-
ming model uses choreographies to compositionally specify and statically
verify message-based communications and jointly executed motion between
robotics components in the physical space. Well-typed programs, which are
terms of a process calculus, are then compiled into programs in the ROS
framework.

Chapter 5
X-Klaim Mission Specification
Patterns for ROS-Based Robots
Systems

Efficient and effective mission planning and execution play a crucial role in
the successful operation of robots in various environments. By leveraging
the capabilities of the X-Klaim programming language, we can design and
implement complex robotic tasks that are both scalable and maintainable. In
this chapter, we will explore a comprehensive set of core movement patterns,
following the approach outlined in [100], which offers a catalog of 22 mission
specification patterns for mobile robots. In our work, we focus on a set of
core movement patterns and their corresponding X-Klaim implementation.
Serving as fundamental building blocks for creating and executing diverse
robotic missions, these patterns provide a structured approach to mission
planning, laying the groundwork for the development for more robust, scal-
able, and reusable robotic solutions developed using X-Klaim.

The complete X-Klaim implementations for all patterns can be found in
the GitHub1 repository.

5.1 Core Movement Patterns for ROS-based
Robots

Core movement patterns form the foundation for designing robotic missions,
providing a structured approach to mission planning and execution. By
combining and adapting these patterns, we can create more complex tasks
and behaviors suitable for a wide range of robotic applications. The core

1https://github.com/khalidbourr/xklaim-patterns-robot-mission.

https://github.com/khalidbourr/xklaim-patterns-robot-mission

68 CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS

movement patterns can be broadly divided into two categories: Coverage
(Visit, Sequenced Visit, Ordered Visit, etc.) and Surveillance
(Patrolling, Ordered Patrolling, etc.). Coverage patterns focus on
ensuring that the robot visits all specified locations, while Surveillance pat-
terns emphasize the continuous monitoring of specific areas. These building
blocks are designed to extend and enhance the capabilities of the MoveTo
action, described in Section 4.2.2. By building upon MoveTo action, these
patterns integrate and coordinate robot movement more effectively, allowing
for a seamless transition between tasks and increased mission flexibility. As
a result, these extended building blocks enable more advanced mission spec-
ifications, making it easier to tailor robotic missions to the specific needs of
various applications. In this section, we provide a description and an ex-
ample for each pattern, illustrated with a graph. We focus on detailing the
X-Klaim implementations of the Visit and Patrolling patterns, which
serve as representative examples for the coverage and surveillance categories,
respectively. The logic and structure of other patterns are quite similar to
the ones presented here, making it easier for readers to understand their
implementation based on the provided examples.

5.1.1 Visit

Description: The robot must visit a set of locations in an unspecified order.
Example: A robot must visit locations l1,l2, and l3 but can do so in any or-
der, a possible trace is depicted in Figure 5.1, where lx

2 is a location different
from l1,l2, and l3.

Figure 5.1: An Example of a Visit Pattern Trace

The implementation of the pattern, illustrated in Figure 5.2, begins by
obtaining the number locations from the input list and generating a random
trace using the createRandom function from the TraceGenerator class.
This trace determines the order in which the robot visits the locations. A

2Notably, lx is an intermediary location that the robot may traverse, distinct from the
predefined set of target locations. lx is dynamically determined based on the robot’s un-
derlying movement algorithms and the state of its current environment, including variables
such as obstacles or other entities in the robot’s path. As such, lx is not a static location
and may vary during runtime, reflecting changes in the robot’s trajectory or environmental
conditions.

CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS 69

list, named visitedLocations, is created to track the locations visited
by the robot. The process iterates through the trace, retrieves each location,
and adds its name to the visitedLocations list while printing a message
indicating the robot’s movement. To move the robot to the desired location,
the MoveTo process is called with the robot’s ID and the target location’s
coordinates. The process then waits for MOVE_TO_COMPLETED tuple to
ensure the robot has arrived at the location. Once all the locations are
visited, the process outputs the tuple with VISIT_COMPLETED and prints
the list of visited locations.

/∗∗
∗ Visit a set of locations in an unspecified order.
∗
∗ @param robotId the ID of the robot
∗ @param locations the list of locations to visit
∗/
proc Visit(String robotId, List<Location> locations) {

// Get the number of locations
val n = locations.size()

// Generate a random trace
val trace = TraceGenerator.createRandom(n)

// Create a list to store the visited locations
val visitedLocations = new ArrayList<String>()

// Visit the locations according to the trace
for (i : trace) {

// Get the location to visit
val location = locations.get(i)

// Print a message indicating the location the robot is moving to
println("Moving to location: " + location.name)

// Move to the location and wait for completion
eval(new MoveTo(robotId, location.x, location.y))@self
in(MOVE_TO_COMPLETED)@self
// Add the location to the visited locations list
visitedLocations.add(location.name)

}

out(VISIT_COMPLETED)@self
// Print the visited locations list
println("Visited locations: " + visitedLocations)

}

Figure 5.2: X-Klaim implementation of the Visit pattern

The createRandom method, shown in Figure 5.3, is responsible for
generating a random trace for visiting the locations. It uses a set called
uniqueNumbers to ensure that each location is visited at least once. The
generated trace is stored in the trace list. With the help of a random
number generator, we add unique numbers to the trace list until it reaches
the desired size. Finally, we convert the trace list into an integer array and
return it.

70 CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS

public static int[] createRandom(int n) {
// Set to keep track of unique numbers
HashSet<Integer> uniqueNumbers = new HashSet<>();
// List to store the resulting trace
List<Integer> trace = new ArrayList<>();
// Random number generator
Random rand = new Random();
// Initialize the last added number to an invalid value
int lastAdded = −1;

while (uniqueNumbers.size() < n || trace.size() < 2 ∗ n) {
int nextValue = rand.nextInt(n);
// If the generated number is not equal to the last added number, add it to the trace
if (lastAdded != nextValue) {

trace.add(nextValue);
lastAdded = nextValue;
uniqueNumbers.add(nextValue);

}
}

// Convert the trace list to an int array and return it
return trace.stream().mapToInt(i −> i).toArray();

}
}

Figure 5.3: X-Klaim implementation of Visit pattern

5.1.2 Sequenced Visit

Description: The robot must visit a set of locations in a specified order.
Example: A robot must visit locations l1,l2, and l3 in that order, a possible
trace is depicted in Figure 5.4.

Figure 5.4: An Example of a Sequenced Visit Pattern Trace

The implementation specifics are not detailed here due to their similarity
to the Visit pattern previously discussed, with the main distinction being
that this pattern relies on the createSequenced method to generate a
visit trace in a specific order.

5.1.3 Ordered Visit

Description: While similar to the Sequenced Visit pattern in its re-
quirement for the robot to visit a set of locations in a specific order, this
pattern imposes additional restrictions. Unlike the Sequenced Visit pat-
terns, which permits the robot to visit a location later in the sequence before

CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS 71

its predecessor, this pattern strictly forbids this. the robot can visit other
locations, but it must strictly adhere to the order for the specified locations.
Example: A robot must visit locations l1,l2, and l3 in that order but can
visit other locations as necessary, a possible trace is depicted in Figure 5.5.

Figure 5.5: An Example of an Ordered Visit Pattern Trace

The Ordered Visit pattern’s implementation revolves around the
createOrdered method. This method builds upon the logic of
createSequenced but incorporates an additional to enforce strict adher-
ence to the sequence order. It ensure no location appearing later in the
sequenced is visited before its predecessor.

5.1.4 Strict Ordered Visit

Description: The robot must visit a set of locations in a specific order, and
cannot visit any location more than once before visiting the next location in
the sequence.
Example: A robot must visit locations l1,l2, and l3 in that order, without
revisiting any of the locations before completing the sequence, a possible
trace is depicted in Figure 5.6.

Figure 5.6: An Example of a Strict Ordered Visit Pattern Trace

For the Strict Ordered Visit pattern, the implementation employs
the createStrictOrdered method. This method not only enforces the
strict sequence of visits but also precludes any predecessor location from
being visited multiple times before its successor. This added rule allows for
a more granular control of the robot’s visiting sequence.

72 CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS

5.1.5 Fair Visit

Description: The robot must visit a set of locations, ensuring that the
difference in the number of visits to each location is at most one.
Example: A robot must visit locations l1,l2, and l3, making sure that each
location is visited an equal number of times or with at most one difference,
a possible trace is depicted in Figure 5.7.

Figure 5.7: An Example of a Visit Pattern Trace

The implementation of Fair Visit pattern is facilitated by the
createFair method. Initially, it generates a random trace, then veri-
fies that each location is visited an equivalent number of times, ensuring the
visitation discrepancy between any two locations is at most one.

5.1.6 Patrolling

Description: The robot must continuously visit a set of locations but not
in a particular order.
Example: A robot must continuously visit locations l1,l2, and l3 in any
order, a possible trace is depicted in Figure 5.8.

Figure 5.8: An Example of a Patrolling Pattern Trace

The Patrolling process, shown in Figure 5.9, designed for continuous
surveillance of a set of locations without a specific order, accepts a robot
ID, a list of locations, and the number of iterations as input parameters. It
employs a loop that iterates a defined number of times to visit the given lo-
cations, ensuring the robot’s ongoing patrol of the area. Within the loop, the
Visit process handles the task of visiting each location in a randomly gener-
ated sequence. Upon completion, a VISIT_COMPLETED tuple is consumed,

CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS 73

confirming the conclusion of the visiting process before initiating the next
iteration. This implementation allows the robot to consistently patrol the
designated locations, fulfilling the mission requirement for the Patrolling
pattern 3. It is worth mentioning that, during each iteration of the loop, a
fresh trace adhering to the visit pattern’s requirements is generated, ensuring
that the robot continues to patrol the area in varying sequences.

/∗∗
Keep visiting a set of locations, but not
in a particular order.

∗
∗ @param robotId the ID of the robot
∗ @param locations the list of locations to visit
∗ @param iterations the number of time the process should be executed
∗/
proc Patrolling(String robotId,List<Location> locations, Integer iterations) {

var count=0
while(count<iterations){

eval(new Visit(robotId, locations))@self
in(VISIT_COMPLETED)@self
count = count +1

}
out(PATROLLING_COMPLETED)@self

}

Figure 5.9: X-Klaim implementation of Patrol pattern

5.1.7 Sequenced Patrolling

Description: The robot must continuously visit a set of locations in a
specific order, but may visit other locations between the required ones.
Example: A robot must continuously visit locations l1,l2, and l3 in that
order but can visit other locations as necessary, a possible trace is depicted
in Figure 5.10.

Figure 5.10: An Example of a Sequenced Patrolling Pattern Trace

3The randomized sequence of locations for each patrol cycle is generated dynamically
within the loop, not pre-computed before the loop begins. This ensures a varying and
unpredictable patrol pattern in each iterations.

74 CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS

In its implementation, this pattern achieves the desired result by contin-
uously calling the Sequenced Visit process.

5.1.8 Ordered Patrolling

Description: The robot must continuously visit a set of locations in a
specific order, but may visit other locations between the required ones.
Example: A robot must continuously visit locations l1,l2, and l3 in that
order, but can visit other locations as necessary, a possible trace is depicted
in Figure 5.11.

Figure 5.11: An Example of a Ordered Patrolling Pattern Trace

The pattern is implemented by invoking the Ordered Visit process
in a loop.

5.1.9 Strict Ordered Patrolling

Description: The robot must continuously visit a set of locations in a
specific order, and cannot visit any location more than once before visiting
the next location in the sequence.
Example: A robot must continuously visit locations l1,l2, and l3 in that
order, without revisiting any of the locations before completing the sequence,
a possible trace is depicted in Figure 5.12.

Figure 5.12: An Example of a Patrolling Pattern Trace

This pattern is executed by looping the Strict Ordered Visit pro-
cess.

CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS 75

5.1.10 Fair Patrolling

Description: The robot must continuously visit a set of locations, ensuring
that the difference in the number of visits to each location is at most one.
Example: A robot must continuously visit locations l1,l2, and l3, making
sure that each location is visited an equal number of times or with at most
one difference. A possible trace is depicted in Figure 5.13.

Figure 5.13: An Example of a Fair Patrolling Pattern Trace

In terms of implementation, this pattern involves continuously repeating
Fair Visit process in a loop to ensure fairness in the frequency of visits.

5.2 Mission Scenarios Using Core Movement
Patterns

In this section, we discuss the usability and adaptability of the core movement
patterns presented earlier. The flexibility and composability of X-Klaim al-
low for the combination of patterns to create complex missions. The language
enables sequential actions by inserting a tuple indicating the completion of
the action and consuming the tuple to move to next action as explained in
Section 4.2.1, and running processes in parallel, supporting the creation of
mission scenarios tailored to user’s needs. We present three mission scenarios,
highlighting the utilization of the core movement patterns and demonstrat-
ing the adaptability of X-Klaim in creating missions. These examples serve
to showcase how the patterns can be combined, extended, or modified to fit
specific mission requirements.

5.2.1 Perimeter Surveillance Mission

In a perimeter surveillance mission, a robot is tasked with continually moni-
toring the perimeter of a specified area. It follows a predefined path, detect-
ing and addressing any intrusions that might occur. This mission scenario
showcases how the integration of core movement patterns and custom pro-
cesses can result in a practical and efficient perimeter surveillance system.

76 CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS

The PerimeterSurveillanceMission process accepts the robot’s ID,
a list of perimeter locations, and a specific number of iterations as input
parameters. Initially, the robots patrols the designated perimeter locations
using the Patrolling process. Simultaneously, it runs a custom process,
DetectIntrusion, designed to monitor to potential intrusions.

proc DetectIntrusion(String robotId){
while(true){

// Implement intrusion detection logic here
// If an intrusion is detected, output the intrusion location

if(intrusionDetected==true){
out(INTRUSION_DETECTED, intrusionLocation)@self}

}
}

proc HandleIntrusion(String robotId, Location intrusionLocation){
// Implement intrusion handling logic here
// For example; alert security, capture images, ect.

out(INTRUSION_HANDLED)@self
}

proc PerimeterSurveillanceMission(String robotId,List<Location> perimeterLocations, Integer iterations) {
eval(new Patrolling(robotId, perimeterLocations, iterations))@self
eval(new DetectIntrusions(robotId))@self
in(INTRUSION_DETECTED, Location intrusionLocation)@self

eval(new Visit(robotId, intrusionLocation))@self
in(VISIT_COMPLETED)@self

eval(new HandleIntrusion(robotId, intrusionLocation))@self
in(INTRUSION_HANDLED)@self

eval(new PerimeterSurveillanceMission(robotId, perimeterLocations, iterations))@self
}

Figure 5.14: X-Klaim implementation of Perimeter Surveillance Mission

The DetectIntrusion process is responsible for implementing the in-
trusion detection logic. Upon detecting an intrusion, it outputs the location
where the intrusion was detected. Following the detection of an intrusion, the
Visit process is invoked, leading the robot to the intrusion location. After
reaching the site of the intrusion, a custom process, HandleIntrusion, is
executed to appropriately address the detected intrusion. Once the intrusion
has been handled, the robot continues its surveillance duties by recursively
calling the PerimeterSurveillanceMission process.

5.2.2 Coordinated Sector Coverage Mission

This multi-robot scenario exemplifies the efficacy and adaptability of core
movement patterns in the context of a coordinated sector coverage mission.

CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS 77

In this mission, two robots are assigned to patrol different sectors of an
area, with each sector containing four distinct locations, see Figure 5.15. By
leveraging the Patrolling pattern, the robots can effectively cover their
designated sectors, as depicted in Figure 5.16.

Figure 5.15: Sector Coverage Mission

net MRS physical "localhost:9999" {
node Robot1 {

val robotId = "robot1"
val sector = #[l1,l2,l3,l4]
val iterations = 10
eval(new CoverageMission(robotId, sector, iterations))@self

}
node Robot2 {

val robotId = "robot2"
val sector = #[l5,l6,l7,l8]
val iterations = 10
eval(new CoverageMission(robotId, sector, iterations))@self

}

}

/∗ Sector coverage process ∗/
proc CoverageMission(String robotId, List<Location> sector, Integer iterations) {

eval(Patrolling(robotId, sector, iterations))@self
in(PATROLLING_COMPLETED)@self

}

Figure 5.16: X-Klaim implementation of Sector Coverage Mission

In this implementation, the Patrolling process is employed, with each
robot covering its assigned sector. The CoverageMission process accepts
the robotId, a list of locations in the sector, and the number of iterations
for the patrolling action as input parameters. By tailoring the mission to
incorporate multiple robots and sectors, we can achieve efficient area cover-
age while demonstrating the versatility and flexibility of the core movement
patterns in X-Klaim.

78 CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS

5.2.3 Search and Rescue Mission

In a search and rescue mission, a robot (typically a drone) may be required
to patrol a set of locations to search for survivors. Once a survivor is de-
tected, another robot (a rescuer robot) is tasked with rescuing the survivor
and transporting them to an extracting point, as depicted in Figure 5.17.
The code in Figure 5.18 demonstrates the effective combination of core
movement patterns and custom processes to achieve this complex objec-
tive. The SearchMission process takes the drone’s ID, a list of patrol
locations, and a frequency of patrolling as input parameters. The drone pa-
trols the area and simultaneously detects survivors using the Patrolling
and DetectSurvivor processes running in parallel. The detected sur-
vivor locations are outputted to the rescuer robot. On the other side, the
RescueMission process handles the task of the rescuer robot. It takes
the robot’s ID and an extraction point location as input parameters. Upon
receiving a survivor location from the drone, the rescuer robot proceeds to
visit the survivor location using Visit process. It then executes the cus-
tom RescueSurvivor process for the located survivor, implementing the
scenario-specific rescue logic. After rescuing a survivor, the robot transports
them to the extraction point using the Visit process.

Figure 5.17: Search And Rescue Mission

By seamlessly integrating the core movement patterns (Patrolling
and Visit) with custom processes (RescueSurvivor and
DetectSurvivor), and by making effective use of parallelism and
communication of these elements between nodes, the Search and Rescue
Mission code exemplifies how a combination of these elements can achieve
complex objectives such as patrolling, locating survivors, rescuing them,
and transporting them to an extraction point.

CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS 79

net MRS physical "localhost:9999" {
node Drone {

val robotId = "DroneId" // Set drone id
val patrolLocations = #[...] // Set patrol locations
val iterations = 10 // Set frequency of patrolling
eval(new SearchMission(robotId, patrolLocations, iterations))@self

}

node RescuerRobot {
val robotId = "RescuerId" // Set rescuer id
val extractionPoint = ... // Set extraction point location
eval(new RescueMission(robotId, extractionPoint))@self

}

proc SearchMission(String robotId, List<Location> patrolLocations, Integer iterations) {
eval(new Patrolling(robotId, patrolLocations, iterations))
eval(new DetectSurvivor(robotId))@self
in(PATROLLING_COMPLETED)@self

}

proc DetectSurvivor(String robotId) {
// Implement survivor detection logic here

out(SURVIVOR_LOCATION, survivorLocation)@RescuerRobot
}

proc RescueMission(String robotId, Location extractionPoint) {
in(SURVIVOR_LOCATION, Location survivorLocation)@self

eval(new Visit(robotId, survivorLocation))@self
in(VISIT_COMPLETED)@self

eval(new RescueSurvivor(robotId, survivorLocation))@self
in(SURVIVOR_RESCUED)@self

eval(new Visit(robotId, extractionPoint))@self
in(VISIT_COMPLETED)@self

eval(new RescueMission(robotId, extractionPoint))@self
}

proc RescueSurvivor(String robotId, Location survivorLocation) {
// Implement rescue logic here

out(SURVIVOR_RESCUED)@self
}

}

Figure 5.18: X-Klaim implementation of Search And Rescue Mission

5.3 Discussion

In this section, we elaborate on the ways our work builds upon and distin-
guishes itself from the prior work that presented a catalogue of 22 mission
specification patterns for mobile robots [100]. While the earlier work primar-
ily centers on providing a set of patterns expressed in LTL and CTL temporal
logics, our work harnesses the power of X-Klaim programming language to

80 CHAPTER 5. X-KLAIM MISSION SPECIFICATION PATTERNS

design, implement, and coordinate complex robotic missions.

Process Coordination Our approach places significant emphasis on the
coordination and communication between the various processes in-
volved in robotic missions. Employing the X-Klaim language enables
us to facilitate seamless interaction between these processes, resulting
in enhanced mission efficiency and effectiveness.

Multi-node Deployment By allowing mission patterns to be deployed
across several robot nodes, our work expands the original catalogue’s
scope. This facilitates a more scalable and distributed approach to mis-
sion planning, paving the way for increasingly complex and coordinated
missions.

Concurrent Execution We take advantage of the X-Klaim language’s in-
herent support for concurrent execution of processes. This capability
enables our mission patterns to run simultaneously, improving over-
all mission performance and facilitating the excursion intricate, multi-
robot missions.

Pattern Composability Our work augments the flexibility and adaptabil-
ity of the core movement patterns by enabling their compositions and
combination in diverse ways. This leads to the creation of complex
missions tailored to specific user needs, making our approach highly
versatile and customizable.

Extensibiilty and Adaptabilty The X-Klaim language empowers users
to extend and modify core movement patterns to suit particular mission
requirements. This feature enables our work to address a wider range
of mission scenarios and use case, yielding more robust, scalable, and
reusable robotic solutions.

It is important to note that the core movement patterns have been rig-
orously tested in the Gazebo simulator. Nevertheless, the mission scenar-
ios outlined in this chapter primarily serve as illustrations to showcase the
pattern’s versatility in various robotic tasks. These examples highlight the
potential applications of the patterns within X-Klaim, rather than repre-
senting actual deployed missions.

PART III

FROM MRSS MODELS TO CODE

Chapter 6
Multi-Robot Mission Modeling
using BPMN

In this chapter, we introduce a novel approach for high-level modeling of co-
operative behavior of MRSs by utilizing BPMN 2.0 collaboration diagrams.
The proposed methodology provides a user-friendly framework to represent
complex interactions and coordination among robots, thereby addressing the
challenges associated with programming individual behaviours and orches-
trating their collaborative efforts. Our proposal, again, is guided by ROS
framework, which serves as reference for programming robotic systems. By
demonstrating the applicability of our methodology in a smart agriculture
scenario, we showcase its effectiveness in streamlining the modeling process
and facilitating seamless implementation across diverse MRS applications.

6.1 Disciplined Use of BPMN

In this section, we present our approach for modeling the collective behav-
ior of a MRS in ROS using BPMN. We first introduce a subset of BPMN
elements we selected for describing the robots’ mission. Then, we present a
list of guidelines driving the use of the selected BPMN elements to compose
a collaboration diagram that specifies actions and interactions of each robot
in a MRS.

6.1.1 Selection of BPMN elements for MRSs

The subset of BPMN elements adopted in our approach are illustrated in Fig-
ures 6.2 and 6.1. The selected items resulted from extensive discussions aimed
at determining the best of over 85 elements to suit the needs of MRSs. The
debate was driven by a top-down approach based on the modeling activity

84 CHAPTER 6. MULTI-ROBOT MISSION MODELING USING BPMN

Figure 6.1: Selected BPMN events.
conducted on different application scenarios, and a bottom-up approach in-
formed by experiments carried out with ROS implementations via the Gazebo
simulator.

Let us briefly recall the meaning of the BPMN elements resulting from our
selection (we refer to Section 2.2 for an introduction to the BPMN notation).
A collaboration diagram consists of a collection of (possibly multi-instance)
pools, which contain processes. In turn, a process consists of activities, gate-
ways and events connected to each other through sequence flows, as well as
data objects connected to activities and events through data associations.
Activities represent one or more pieces of work to be performed within a pro-
cess. Specifically, a Call Activity refers to a call to another process, enabling
the structuring of (possibly large and complex) models in terms of decoupled
reusable processes. A Script Task refers to a piece of code to be executed.
An Event Sub-Process is a sub-process that is not part of the normal flow
of its parent process. Gateways are used to control the execution flow of a
process, managing parallel activities (AND gateway) and internal/external
choices (XOR and Event-based gateways). Events represent something that
can happen at the beginning, during, or at the close of the process execu-

CHAPTER 6. MULTI-ROBOT MISSION MODELING USING BPMN 85

Figure 6.2: Selected BPMN elements.
tion (Start, Intermediate, or End events, respectively). Start events serve as
alternative entry points for enacting a process. When used in an event sub-
process, they can interrupt or not the parent process. Intermediate events
can happen during the normal flow of the process, by connecting them with
sequence flows, or during an activity execution, by attaching them to the
activity border. End events represent the possible termination of a process
or a sub-process. All these events can be further characterized to describe
their type and a different semantic meaning. Specifically, we consider Timer
and Conditional events, to react respectively on a time delay or a condition;
Error events, to throw or catch execution errors; Signal events, to describe
broadcast and point-to-point communications that may carry data (see [13,
p. 235]); and the Terminate events to kill all the processes in a pool. Fi-
nally, Data objects represent information and material flowing in and out of
activities and events.

6.1.2 Example Scenario

To better reason on how to specify the behavior of a MRS, we present here
an example depicting a smart agriculture scenario.

86 CHAPTER 6. MULTI-ROBOT MISSION MODELING USING BPMN

The cooperation between unmanned ground vehicles, e.g. smart tractors
or harvesting robots, and unmanned aerial vehicles, usually called drones, is
a promising solution to achieve a fully autonomous and optimized farming
system. The proposed application scenario consists of two, or possibly more,
tractors and one drone that cooperate to identify and remove weed grass in a
farmland to enhance the yields. Both the drone and the tractors are equipped
with a controller, enabling computations and communications, a battery, and
several sensors and actuators. At the system start-up, the drone is the only
robot that can start its behavior: it receives the field’s boundaries to inspect,
and starts the exploration. During the overflight of the area, the drone uses
the camera to recognize weed grass areas and, when found, it sends to the
tractors the coordinates. This enacts the tractors, which store the weed grass
coordinates and send back to the drone their distance to the weed grass area.
The drone can hence elect the closest tractor and notify it. At this point, the
selected tractor starts moving towards the field, avoiding possible obstacles.
Once it reaches the weed grass area, it activates the blade to cut the weed,
and stops its process until it receives a new position from the drone.

6.1.3 Guidelines for MRS modeling.

We provide a list of guidelines for modeling an MRS through a BPMN col-
laboration. These guidelines define a disciplined use of the BPMN elements
introduced earlier to represent an MRS’s cooperative behavior while leaving
the designer enough freedom to specify almost any MRS mission. Consid-
ering the running scenario of Section 6.1.2, the BPMN collaboration in Fig-
ure 6.3 is a possible result of our approach; we refer to it to better present
the following guidelines.

G1 Robots as pools. Robots involved in a MRS are abstracted by pools,
representing the participants in the collaboration.

G1.1 Heterogeneous robots as single-instance pools. Robots that
are heterogeneous, i.e., robots of a different kind or robots with different
missions, are abstracted by single-instance pools. Considering Figure 6.3,
the drone is represented as a single-instance pool.

G1.2 Homogeneous robots as multi-instance pools. Robots that
are homogeneous, i.e., robots of the same kind with the same mission, are
abstracted by multi-instance pools. This simplifies the resulting diagram,
as a multi-instance pool represents many robots in terms of several in-
stantiations of the same process, avoiding the repetition of the same robot
process into different pools. In Figure 6.3, the tractors are represented as
a multi-instance pool.

CHAPTER 6. MULTI-ROBOT MISSION MODELING USING BPMN 87

Figure 6.3: Collaboration diagram of the smart agriculture scenario.

88 CHAPTER 6. MULTI-ROBOT MISSION MODELING USING BPMN

G2 Mission as a process. The mission to be performed by a robot is
abstracted by a process diagram within the pool of the considered robot.
The process diagram expresses the control flow of the mission. For instance,
the process contained into the drone pool in Figure 6.3 depicts the robot’s
behavior from the take-off until the return to the base. Activities are related
to each other via sequence flows, to define their execution order, and via
gateways (see guidelines G2.3-2.5), to control the execution flow.

G2.1 Actions as activities. A robot mission is mainly made by a set of
actions; these actions are abstracted by activities within the mission process
diagram. Based on the complexity of the action to specify, we distinguish
the type of activity to use in the model between call activities and script
tasks.

G2.1.1 Complex actions as call activities. Complex actions, e.g.,
navigation, perception and control, that can be decomposed into several
steps and/or reuse already modeled procedures, are abstracted by call
activities. Indeed, a call activity can be used for referencing another
process diagram or other existing activities. This enables the modulari-
sation of diagrams and lowers their dimension, speeding up the modeling
of the MRS through the re-use of already modeled behaviors. Consid-
ering Figure 6.3, the call activity Return to Base appears three times
in the diagram, indicating that in all these cases the called procedure is
implemented in the same way.

G2.1.2 Simple actions as script tasks. Simple actions, which does
not require any further decomposition, are abstracted by script tasks.
This element refers to a piece of code to be executed by the considered
robot. Considering Figure 6.3, to get the tractor closest to the weed, it is
used the script task Update Closest that performs simple mathematical
operations.

G2.2 Event handlers as event sub-processes. Procedures handling
an event (such as the expiration of a timer, the satisfaction of a condition,
the occurrence of an error, or the reception of a signal) are abstracted
by event sub-processes. Indeed, this element triggers an handling process
concurrent to the main process describing the robot mission. Based on
the event type, the main process can be interrupted or not. For example,
checking the battery after an amount of time, as depicted in Figure 6.3,
can be performed in parallel with the mission, and thus it is abstracted by
a non-interrupting start event.

G2.3 Concurrent behaviors by means of AND gateways. Concur-
rent behaviors in a robot mission are rendered by means of AND split
gateways.

CHAPTER 6. MULTI-ROBOT MISSION MODELING USING BPMN 89

G2.4 Internal choices as XOR gateways. Internal choices in a robot
mission are rendered by XOR split gateways. In Figure 6.3, the decision
taken on the basis of the battery charge in the Battery check event sub-
process is rendered as a XOR gateway, with two possible outcomes.

G2.5 External choices as event-based gateways. Choices driven by
events in a robot mission are abstracted by means of event-based gateways.
Referring to Figure 6.3, a tractor waits for a closest_tractor signal at most
for 30 seconds by means of an event-based gateway followed by two catching
events.

G2.6 Missions activation as start events. The beginning of a mission
is abstracted by a start event. In more detail, a none start event fires imme-
diately the robot mission. The other event types activate the mission when
a specific circumstance occurs. Referring to Figure 6.3, the main process
of the drone contains a none start event triggered at the system start-up,
while the tractors are activated only when they receive the weed_position
signal.

G2.7 Missions shutdown as end events. The end of a mission is
abstracted by an end event. The none end event stops only the current
execution flow of a mission, while the terminate end event completely stops
the mission.

G3 Communication via signal events. Intra- and inter-robot communi-
cations, even in presence of a payload, are abstracted by signal events. The
sending of a message corresponds to a throwing signal event, and the receiv-
ing of a message is made by a catching signal event. The correlation between
one or more senders and one or more receivers is made by means of the event
name. Considering Figure 6.3, the signal event weed_position corresponds
to the same-named topic of which the drone is the only publisher, and the
tractors are the subscribers.

G4 Data as data objects. The data used along the execution of the
robot’s mission are abstracted by data objects. They provide storage in
which activities and signal events can read or write information. We explicitly
represent in the model, in terms of data objects, only the information used
to drive the decision making and the data exchange in the mission execution.
Of course, at implementation level, other data will be required. However,
since they are confined within low-level pieces of code and do not play any
role at the abstraction level of the model, they are omitted. This permits
reducing the complexity of the diagram.

90 CHAPTER 6. MULTI-ROBOT MISSION MODELING USING BPMN

6.2 Related works

In this section, we shed light in the existing works that focus on modeling
workflows of robotic activities. Bozhinoski et al. [101] describe a tool for
the mission specification for a team of multicopters and the generation of a
detailed flight plan, by a custom DSL that is translated into an intermediate
language which represents the basic actions of an aerial vehicle. Exploiting
the same tool, Ciccozzi et al. [80] define a set of DSLs to specify the civilian
missions for unmanned aerial vehicles. The mission specification is done
through a web-based graphical interface, that communicates with some ROS-
based controllers which send commands to the copters. A use of the BPMN
notation is shown by De la Croix et. al [102], which describe the TRACE
tool to tailor BPMN to the robotics domain in order to model a sequence
of robotic activities. The aim of this approach is to understand what will
happen after an unplanned event and check if it will compromise the mission.
The authors applied their proposal to a single robot equipped with ROS,
which can execute its tasks and autonomously act to unexpected events.
Otsu et al. [103] present an application of the TRACE tool to a multi-robot
scenario. The mission is specified in a BPMN file, uploaded inside all the
vehicles, and each block of the model corresponds to a robot behavior. The
system uses the ROS framework with an open-source package that allows a
custom message passing among multiple master nodes. This approach could
be avoided and improved by using ROS2 with DDS. Another integration of
BPMN standard with an autonomous robot is presented by Rey et al. [104].
The authors automatize a warehouse process by implementing a human-
robot cooperation system managed by a web interface able to control the
entire process in real-time.

Chapter 7
From BPMN to X-Klaim: A
Systematic Methodology for
Model Translation and Program
Generation

This chapter outlines the translation of BPMN collaboration diagrams into
X-Klaim programs for MRSs. BPMN diagrams enhance the readability and
usability of MRS designs, while X-Klaim enables process control over robot
interactions. We detail a comprehensive mapping from BPMN to X-Klaim
constructs, ensuring seamless transition from design to execution. Through
this integration, we aim to improve MRS programming efficiency, increasing
its accessibility and paving the way for direct execution.

7.1 The Process of Translation

The process of translating a BPMN model into a X-Klaim code, a vital phase
of our systematic methodology, is designated to be user-friendly. Although it
is based on an in-depth understanding of the structural and semantic nuances
of both languages and a recognition of complexities of multi-robot systems,
the users are not required to delve into these intricacies. At the core of this
translation process lies the mapping of each BPMN element to its equivalent
X-Klaim constructs. This alignment aims to maintain the functionality and
meaning of the MRS design as encapsulated within the BPMN model while
transcribing it into the more execution-oriented language of X-Klaim.

To ensure a smooth translation process, we adhere to set a guiding prin-
ciples. First, we emphasize the maintenance of system integrity. This means
that the translated X-Klaim program should reflect the same behavior as

92 CHAPTER 7. FROM BPMN TO X-KLAIM

the original BPMN model. Second, we strive for accuracy and efficiency in
the resulting X-Klaim code. This ensures that the multi-robot system will
function as expected without unnecessary computational overhead. We aim
for readability and maintainability in the X-Klaim program. This means
creating code that is easy to understand, update, and debug, thus improving
the long-term sustainability of the MRS. Given the diversity and complexity
of BPMN elements, our systematic translation process is designed to handle
these variations reliably, details of which will be discussed in the follow-
ing section. While some BPMN elements have a clean one-to-one mapping
with X-Klaim constructs, others require more complex translations, possi-
bly involving multiple X-Klaim constructs or the introduction of additional
X-Klaim code to capture the intended behavior.

7.1.1 Mapping of BPMN elements to X-Klaim con-
structs

For successful translation of BPMN elements into X-Klaim, the diagrams
must be well-structured and adhere to the guidelines presented in the for-
mal classification of BPMN collaborations [47]. A brief explanation of what
constitutes a well-structured diagram can be found in subsection 2.2.4 of
section 2.2. The working principles of X-Klaim necessitates each BPMN
element to dispatch a tuple representing a token marking an outgoing edge,
before transitioning to the next element. Consumption of this tuple is es-
sential before the transition, ensuring process synchronization and execution
order, thereby eliminates the possibility of conflicts or inconsistencies in the
final output.

BPMN Events. In X-Klaim, both messages and signals are repre-
sented as tuples. For messages, these values embody the transmitted data,
while for signals, the tuple values typically indicate an event or state change.
We refer to Tables 7.1, 7.2 and 7.3 for a comprehensive mapping of BPMN
events to their X-Klaim equivalents.

Unicast and Multicast Communications. In the context of
X-Klaim, effective management of unicast and multicast communica-
tion scenarios significantly aids in the seamless operation of distributed
processes. Unicast communication is characterized by Message Throw/-
Catch Event within BPMN. In X-Klaim, unicast communication is en-
acted through a pair of operations: an outgoing message, expressed as
out(message)@receiverLoc, originating from the current process and
directed to a specific recipient, followed by the receipt of the message at
the recipient’s location, expressed as in(message)@self. This opera-
tion sequence ensures that the one-to-one communication setup inherent in
unicast scenarios is accurately maintained, mimicking the precise message

CHAPTER 7. FROM BPMN TO X-KLAIM 93

passing semantics of BPMN. For multicast communication, on the other
hand, it operates on a one-to-many interaction model, paralleling the struc-
ture of a Signal Throw/Catch Event within BPMN. X-Klaim represents
multicast communication through a distinct pair of operations: the emis-
sion of a signal from the current process into the tuple space, represented as
out(signal)@self, followed by the reception of this signal by multiple
recipients, represented as read(signal)@senderLoc. Intriguingly, the
read operation permits multiple recipients to access the signal concurrently
without removing it from the tuple space, facilitating the multiple recipient
scenario inherent in multicast communication. The tuple representing the
signal is then removed when a given timeout (specified by the programmer
via the constant Signal_Duration) expires. This operation sequence accu-
rately mirrors the multicast communication semantics of BPMN. For scenar-
ios involving non-interrupting events, X-Klaim extends its capabilities with
read_nb and in_nb constructs, which allow for non-blocking read and in
operations, respectively. These non-blocking operations permit processes to
continue operation even if the incoming message or signal has not been fully
consumed. This robust handling of non-interrupting events is an essential
aspect of translation from BPMN to X-Klaim, reinforcing the faithfulness
of the translation process.

BPMN Gateways. X-Klaim interprets the Exclusive Gateway
through an if-else statement, determining a path based on conditional
logic and executing the BPMN element linked with the selected path. Con-
versely, the Parellel Gateway initiates simultaneous execution of multiple
paths, demanding the completion of all paths before the gateway can exit.
Moreover, X-Klaim enables the translation of loops, which allow repeated
execution of a BPMN element based on a while loop, see Table 7.4.

BPMN Activities. The BPMN elements, such as Call Activity, Event
Sub-Process are translated into a new process that is defined separately and
given a unique name. This process is evaluated with an activity that has
an initialization of code and an output edge, which is used to indicate the
completion of the activity. Similarly, Script Task is translated into an activity
with an initialization code and an output edge, see Table 7.5.

BPMN Flow. The sequence flow construct is translated by ensuring
that the action of the first BPMN elementpP1q is finished before proceeding
with the next BPMN elementpP2q, by consuming the tuple that corresponds
to the edge connecting the two elements, see Table 7.6.

BPMN Pool. As depicted in Table 7.7, The translation of Pool and
Multi-Instance Pool in X-Klaim involve creating a collaboration network
with participant nodes that contain the translated processes. The Pool trans-
lation is straightforward, as it only requires the definition of the collabora-

94 CHAPTER 7. FROM BPMN TO X-KLAIM

tion name and physical address, with the participant node containing the
translated process. However, for Multi-Instance Pool translation, multiple
participant nodes need to be defined, each containing the translated pro-
cess. The collaboration name and physical address are also required for this
translation. These translations highlight the ability of X-Klaim to handle
complex collaborative processes involving multiple participants.

BPMN Data Object. The Data Object construct is mapped to tuple
that have multiple attributes or properties, and allow for easy passing multi-
ple data elements as single parameter in messages between processes. Simple
data also can be mapped to a tuple in X-Klaim, see Table 7.8.

It is important to note that the mapping from BPMN to X-Klaim follows
a compositional approach. This means that each BPMN construct is trans-
lated independently and then combined together to form the final X-Klaim
code. This approach allows for a flexible and easy-to-modify translation, as
modifications to one construct do not impact the translation of the others.

BPMN Element X-Klaim Translation Note

None
Start
Event

out(e0)@self • Ensure the correct edge-
tuple mapping.

Message
Start
Event

in(m)@self
out(e1)@self

• Message flows are re-
quired.

• Ensure the message is
correctly mapped to the
tuple.

• Ensure the correct edge-
tuple mapping.

Signal
Start
Event

read(s)@senderLoc
out(e1)@self

• Ensure the signal is cor-
rectly mapped to the tu-
ple.

• Require sender location
to be specified corre-
sponding to the process
sending the signal.

• Ensure the correct edge-
tuple mapping.

Table 7.1: Start Events

CHAPTER 7. FROM BPMN TO X-KLAIM 95

BPMN Element X-KLAIM Translation Note

Message
Intermedi-
ate Catch
Event

in(m)@self
out(e1)@self

• Similar to Message Start
Event

• For non-interrupting
in_nb is used instead.

Signal
Intermedi-
ate Catch
Event

read(s)@senderLoc
out(e1)@self

• Similar to Signal Start
Event

• For non-interrupting
read_nb is used instead.

Message
Intermedi-
ate Throw
Event

out(m)@receiverLoc
out(e1)@self

• Message flows are re-
quired.

• The receiver’s location
can be determined based
on the destination of the
message flow.

• Ensure the message is
correctly mapped to the
tuples.

• Ensure the correct edge-
tuple mapping.

Signal
Intermedi-
ate Throw
Event

out(s)@self
Thread.sleep(Signal_Duration)
in(s)@self
out(e1)@self

• Ensure the signal is cor-
rectly mapped to the tu-
ple.

• Ensure the correct edge-
tuple mapping.

• Signal_Duration is a
constant with a timeout
value in milliseconds.

Table 7.2: Intermediate Events

96 CHAPTER 7. FROM BPMN TO X-KLAIM

BPMN Element X-KLAIM Translation Note

None End
Event

stop()

Message
End
Event

out(m)@receiverLoc
stop()

• Message flows are re-
quired.

• The receiver’s location
can be determined based
on the destination of the
message flow.

• Ensure the message is
correctly mapped to the
tuples.

• Ensure the correct edge-
tuple mapping.

Signal
End
Event

out(s)@self
Thread.sleep(Signal_Duration)
in(s)@self
stop()

• Ensure the signal is cor-
rectly mapped to the tu-
ples.

• Ensure the correct edge-
tuple mapping.

• Signal_Duration is a
constant with a timeout
value in milliseconds.

Table 7.3: End Events

CHAPTER 7. FROM BPMN TO X-KLAIM 97

BPMN Element X-Klaim Translation Note

XOR
Gateway

if(condition){
translate(P1)
in(e4)@self }

else{
translate(P2)
in(e5)@self }

out(e2)@self

• Ensure the correct use
of in and out opera-
tions with appropriate
edge identifiers.

• Gateways should be
properly connected to
their corresponding pro-
cesses using well-defined
edges.

• The order of execu-
tion enforced by the
gateways should corre-
spond accurately with
the BPMN model.

• Ensure the correct edge-
tuple mapping in condi-
tional statements.

AND
Gateway

translate(P1)
translate(P2)
in(e4)@self
in(e5)@self
out(e2)@self

• Similar to XOR Gate-
way.

Loop
while(condition){

translate(P1)
in(e4)@self}

out(e2)@self

• Similar to XOR Gate-
way.

Table 7.4: BPMN Gateways

98 CHAPTER 7. FROM BPMN TO X-KLAIM

BPMN Element X-Klaim Translation Note

Call
Activity

eval(new Activity(e1))@self

// Process to be added to the node
proc Activity(String edgeOut){

{ ... initialization code ... }

out(edgeOut)@self
}

• Make sure that each ac-
tivity is properly defined
and initialized.

• Ensure that the activ-
ity is correctly trans-
lated into the corre-
sponding process and
given a unique name.

Event
Sub-
Process

eval(new EventSubProcess())@self

// Process to be added to the node
proc EventSubProcess(){

translate(P)
}

• Similar to Call Activity.

Script
Task

// Snippet code of the task

{ ... initialization code ... }
out(e1)@self

Table 7.5: BPMN Activities

BPMN Element X-Klaim Translation Note

Sequence

in(e1)@self

• Use the in operation to
ensure that the action of
the first process is fin-
ished before starting the
next one.

• Ensure the tuple cor-
responds the edge con-
necting two Elements
(P1) and (P2).

Table 7.6: Sequence Flow

CHAPTER 7. FROM BPMN TO X-KLAIM 99

BPMN Element X-Klaim Translation Note

Pool

net Coll_name physical "localhost:9999" {
node participant {

translate(P)
}

}

• Ensure the correct defi-
nition of the collabora-
tion network with par-
ticipant nodes.

Multi
Instance
Pool

net Coll_name physical "localhost:9999" {
node participant1 {

translate(P)
}

.

.
node participantN {

translate(P)
}

}

• Ensure the correct defi-
nition of the collabora-
tion network with par-
ticipant nodes.

• Ensure the correct cre-
ation of multiple partic-
ipant nodes, each con-
taining the translated
process.

• N is the maximum num-
ber of instances of the
pool (specified as an at-
tribute of the pool ele-
ment).

Table 7.7: BPMN Collaboration

BPMN Element X-Klaim Translation Note

Data

("Data",
datatype attribute1,
datatype attribute2,
...)

Make sure the data ob-
jects are correctly rep-
resented as tuples with
correct attributes.

Table 7.8: Data Flow

7.1.2 Examples of BPMN processes translated into
X-Klaim

In the following section, we provide examples of BPMN processes and their
translations to X-Klaim.

Example 1

The BPMN process in Figure 7.1, consisting of a start event, two call activ-
ities, and an end event. In order to translate the process into X-Klaim, the
sequences of elements in the BPMN graph are mapped to the corresponding
X-Klaim code. We begin with the start event, which is translated into an
equivalent X-Klaim construct. Following this, the sequence connecting the

100 CHAPTER 7. FROM BPMN TO X-KLAIM

start event to the first call activity is translated into X-Klaim. This pattern
of sequential translation continues for the remaining elements in the diagram
until we reach and translate the final end event.

out(e0)@self
in(e0)@self

eval(new (Activity 1(e1)))@self
in(e1)@self

eval(new (Activity 2(e2)))@self
in(e2)@self

stop()

Figure 7.1: The BPMN graph and its X-Klaim translation

Example 2

Consider the BPMN process shown in Figure 7.2, comprising a start event,
an XOR gateway to choose between two call activities, a call activity, and an
end event. The translation of this process into X-Klaim follows a systematic
process. We initiate the translation with the start event, moving it into its
equivalent X-Klaim form. The sequence connecting the start event to the
XOR gateway is then mapped into X-Klaim. Next, the XOR gateway,
inclusive of the elements within it, is translated, and the sequence leading
to the subsequent element is also converted. The final call activity is then
translated into X-Klaim, as in the sequence linking it to the end event.
To conclude, the end event is translated. This careful step-by-step yields a
faithful and reliable X-Klaim representation of the original BPMN process,
as depicted in Figure 7.2.

out(e0)@self
in(e0)@self

if(Condition){
eval(new (Activity1(e4)))@self
in(e4)@self

}
else{

eval(new (Activity2(e5)))@self
in(e5)@self

}

out(e1)@self
in(e1)@self

eval(new (Activity3(e2)))@self
in(e2)@self

stop()

Figure 7.2: The BPMN graph and its X-Klaim translation

CHAPTER 7. FROM BPMN TO X-KLAIM 101

Example 3

Let us consider a rather complex BPMN graph, depicted in Figure 7.3, that
encompasses a start event, an XOR gateway that governs the execution of
either two parallel activities inside an AND gateway or a single call activ-
ity, and an end event. The translation of this graph into X-Klaim involves
several systematic steps. We initiate the translation with the start event,
followed by the mapping of the sequence leading to the XOR gateway. Next,
the XOR gateway is converted into X-Klaim. Depending on the specific
condition, the process will either continue to translate the parallel call activ-
ities within the AND gateway or translate a singular call activity. After the
call activities are transformed into their X-Klaim equivalents, we move into
the sequence leading to the subsequent call activity. Finally, the sequence
connecting to the end event is translated, with the translation process cul-
minating with the conversion of the end event. This methodical procedure
results in an accurate X-Klaim representation of the original BPMN process,
as demonstrated in Figure 7.3.

out(e0)@self
in(e0)@self

if(Condition){
eval(new (Activity1(e4)))@self
eval(new (Activity2(e5)))@self
in(e4)@self
in(e5)@self

out(e6)@self
in(e6)@self

}
else{

eval(new (Activity3(e8)))@self
in(e5)@self

}

out(e1)@self
in(e1)@self

eval(new (Activity4(e4)))@self
in(e2)@self

stop()

Figure 7.3: The BPMN graph and its X-Klaim translation

Example 4

Let us examine a BPMN collaboration diagram, depicted in Figure 7.4, rep-
resenting a business process involving a two participants. The process for
the first participant comprises a start event, two call activities, and a mes-
sage end event. For the second participant, the process involves a message
start event, two call activities, and an end event. The transformation of this
BPMN diagram into X-Klaim is realized in three main stages. The initial
stage involves creating a new X-Klaim network that corresponds to the pool
in the collaboration diagram. The network location, or the physical attribute,

102 CHAPTER 7. FROM BPMN TO X-KLAIM

is set as localhost:9999. The node attributes, which represent the par-
ticipants in the pool, are also defined at this phase. In the second stage, we
focus on translating the internal processes of the first participant. Keeping
consistent with our approach in previous examples, the translation begins
with the start event, move onto the call activities, and finally ends with the
message end event. The third and final stage of the transformation process
emphasizes the translation of the internal process of the second participant.
This procedure initiates with the message start event, continues with the
translation of the two call activities and concludes with the end event. This
systematic approach results in an accurate X-Klaim representation of the
BPMN collaboration diagram as shown in Figure 7.4.

net Coll name physical "localhost:9999" {
node participant1 {

out(e0)@self
in(e0)@self

eval(new (Activity 1(e1)))@self
in(e1)@self

eval(new (Activity 2(e2)))@self
in(e2)@self

out(message)@participant2
stop()

}
node participant2 {

in(message)@self
out(e3)@self
in(e3)@self

eval(new (Activity 3(e4)))@self
in(e4)@self

eval(new (Activity 4(e5)))@self
in(e5)@self

stop()
}

}

Figure 7.4: The BPMN graph and its X-Klaim translation

7.1.3 Code Optimization

A significant facet of this translation process is the focus on code optimiza-
tion in the X-Klaim representation. While mapping BPMN elements to
X-Klaim constructs, there is an opportunity to enhance the computational
efficiency of the resultant code. In some instances, the process creates se-
quences that are functionally redundant and can be eliminated without alter-
ing the system’s behavior. For instance, a sequence where an out operation
is immediately followed by an in using the same tuple merely adds unnec-
essary steps and computational overhead. Recognizing and eliminating such
redundancies improves not only the code’s execution efficiency but also its
readability and maintainability. Therefore, this optimization step serves a
dual purpose: streamlining code execution and enhancing its overall quality.

CHAPTER 7. FROM BPMN TO X-KLAIM 103

7.1.4 Prototype of BPMN2XKLAIM Tool

As part of this thesis, we have developed an initial prototype for a tool,
named BPMN2XKLAIM. This tool is designed to facilitate the generation of
X-Klaim code from BPMN models. The BPMN models are designed using
the Camunda plugin for Intellij. This plugin provides a convenient and intu-
itive interface for creating BPMN diagrams, which can then be exported as
XML files. These ’.bpmn’ XML files are then parsed by our BpmnParser,
resulting in the creation of BpmnElements. These elements are subse-
quently fed into our code Generator which translates the BPMN process into
X-Klaim code. To further enhance the efficiency of the generated code, an
Optimizer function is utilized, refining the code to its most efficient form.

Figure 7.5 provides a visual representation of this translation process. It
illustrates a simple drone mission consisting of the drone taking off, exploring
a field, and then returning to base. These tasks are represented by call
activities in the BPMN model, while the end of the mission is represented as
an end event. Below, you can see the corresponding X-Klaim code produced
by our tool from the given BPMN model.

Figure 7.5: BPMN2XKLAIM Tool.

At this stage, the BPMN2XKLAIM tool successfully translates activi-
ties, events, XOR gateways, and sequence flows from BPMN diagrams into
X-Klaim code. However, it is currently limited by its inability to handle
translation of collaborations, message flows, loop structures, and AND gate-
ways. These elements represent essential components of more complex MRS
mission scenarios and their incorporation is necessary for the tool to truly
reflect the diversity and intricacy of real-world missions.

104 CHAPTER 7. FROM BPMN TO X-KLAIM

Despite these limitations, the BPMN2XKLAIM tool, even in its initial
version, demonstrates considerable potential. It has made significant strides
in automating the transformation process from BPMN models into X-Klaim
code, contributing substantially to the simplification of this procedure.

7.2 Translation of the Agriculture Scenario

This section provides a comprehensive discussion of the translation of the
agriculture scenario from BPMN to X-Klaim, which was initially presented
in Chapter 6. The original BPMN model was modified to be well-structured,
adhering to the requirements of the systematic mapping methodology dis-
cussed previously. Specifically, the use of event-based gateway was omitted
as the mapping of this particular element to X-Klaim has not been addressed
in this thesis. We will begin with a discussion on the translation of the col-
laboration aspect, detailing how the interactions and dependencies between
the Drone and Tractors are captured. We then proceed to the translation
of the individual missions of the Drone and Tractors, illuminating how each
task within their respective main mission is represented in X-Klaim. Lastly,
we will illustrate how event subprocesses, crucial to the responsiveness and
adaptability of the system, are mapped to X-Klaim process.

7.2.1 Translation of the collaboration

The collaboration within the agriculture scenario involves interactions be-
tween the Drone and two Tractors. In X-Klaim, this is represented as
individual nodes for Drone, Tractor1, Tractor2, each executing their respec-
tive behavior. In Figure 7.6, we show the graphical representation of the
collaboration in BPMN and the corresponding X-Klaim code.

net MRS physical "localhost:9999" {
node Drone {

eval(new DroneBehavior(Tractor1,
Tractor2))@self
}

node Tractor1 {
val robotId = "robot1"
eval(new TractorBehavior(Drone))@self

}

node Tractor2 {
val robotId = "robot2"
eval(new TractorBehavior(Drone))@self

}
}

Figure 7.6: Translation of the Collaboration

CHAPTER 7. FROM BPMN TO X-KLAIM 105

7.2.2 Translation of the Drone mission

The translation of the Drone mission encapsulates the sequence of operations
that the drone undertakes in the agriculture scenario. The Drone’s mission
is structured around three key tasks: taking off, exploring the field, and
returning to the base. In the BPMN representation, this flow of activities
is depicted through the use of event and call activities. In the correspond-
ing X-Klaim translation, each of these activities is represented as a process
within the primary DroneBehavior process. Additionally, the event sub-
processes, which handle battery check, low battery, and weed handling, are
initiated concurrently with the main mission. In Figure 7.7, we show the
graphical representation of the Drone mission in BPMN and the correspond-
ing X-Klaim code.

proc DroneBehavior(Locality Tractor1,
Locality Tractor2) {

// Initiate event subprocesses for
// batery checks,handling of low
// battery events and weed handling

eval(new CheckBattery())@self
eval(new LowBatteryHandler())@self
eval(new WeedHandler())@self

// Start the main mission

//Drone takes off
eval(new TakeOff(e1))@self

// Drone explores field after takeoff
in(e1)@self
eval(new Explore(field, e2))@self

// Drone returns to base after
// exploration

in(e2)@self
eval(new ReturnBase(e3))@self

// Missions ends after returning
// to base

in(e3)@self
Stop()

}

Figure 7.7: Translation of the Drone mission

This translation not only maintains the sequential order of the operations
but also represents the concurrent subprocesses that could potentially inter-
rupt the main mission. The aim is to provide a comprehensive representation
of the drone’s autonomous mission behavior, maintaining the operational se-
quence while accounting for possible event-drive, interruptions.

7.2.3 Translation of the Tractor mission

The translation of the Tractor mission embodies the tasks performed by the
tractors in the agricultural scenario. In this sequence, the Tractor primarily
waits for signals from Drone, takes actions based on the information received,

106 CHAPTER 7. FROM BPMN TO X-KLAIM

and executes tasks such as moving to a specified location and cutting grass.
In the BPMN model, this behavior is represented as a series of signal events,
call activities, and conditional gateways. This allows the Tractor’s actions
to be driven by the signals it receives from the Drone and conditions in the
field. In the corresponding X-Klaim representation, each activity and event
is translated into a process within main TractorBehavior process. As
with Drone, event subprocesses are also present for the Tractor, handling
battery checks and low battery events. In Figure 7.8, we show the graph-
ical representation of the Drone mission in BPMN and the corresponding
X-Klaim code.

proc TractorBehavior(Locality Drone,
String robotId) {

// Initiate event subprocesses
eval(new CheckBattery(robotId))@self
eval(new LowBatteryHandler(robotId))@self

// Tractor reads position of the weed
// from Drone
read(WEED_POSITION,weedPos)@Drone

// Tractor sends its position to Drone
out(TRACTOR_POSITION, tractorPos)@self
Thread.sleep(Signal_Duration)
in(TRACTOR_POSITION, tractorPos)@self

// Tractor reads information about
// the closest tractor from Drone
read(CLOSEST_TRACTOR)@Drone

if(ClosestTractor){
// If it is the closest tractor,
// it moves towards the weed position
eval(new MoveTo(robotId, weedPos,
e4))@self

// Tractor cuts the grass after moving
// to the weed position
in(e4)@self
eval(new CutGrass(robotId,e5))@self

// Tractor mission ends after
// cutting the grass
in(e5)@self
Stop()

}
else{

// Tractor mission ends if it’s not
//the closest tractor
Stop()

}
}

Figure 7.8: Translation of the Tractor mission

The translation in X-Klaim aims to capture the autonomous behavior
of the tractors as they react to changes in the environment, maintaining the
order of operations as they are triggered by external signals and conditions.
This effectively encapsulates the Tractor’s reactive behavior in a manner
consistent with the overall collaborative robotic system design.

CHAPTER 7. FROM BPMN TO X-KLAIM 107

7.2.4 Translation of event-subprocess

Event sub-processes are vital components of the BPMN models that allow
for the handling of events that can occur at any time during the process
execution. In our agricultural scenario, such subprocesses are used to monitor
and manage battery-related events and the weeds. As a matter of example,
we discuss here the translation of the battery check subprocess; the other
event-subprocesses are translated similary.

In the BPMN model, the battery check is an event subprocess that con-
tinuously monitors the battery levels of the robotic entities. If a low battery
status is detected, a signal is sent to initiate the appropriate procedures. The
corresponding X-Klaim code captures this behavior using a recursive pro-
cess. The CheckBattery checks the battery status at a regular intervals.
If a critical battery level is detected (i.e, less than 5Wh in our scenario), a
low battery signal is emitted. After each check, the process invokes itself
recursively, creating a continuous cycle of battery checks. In Figure 7.9, we
show the graphical representation of the Battery check subprocess in BPMN
and the corresponding X-Klaim code.

proc CheckBattery(String robotId){
// The timer
Thread.sleep(60)

// Implement here the code to
// check battery status
{Initizaliation of code}

// If battery level is cricial
if(battery < 5Wh) {

//Emit low battery signal
out(LOW_BATTERY)@self
Time.sleep(signal_duration)
in(LOW_BATTERY)@self

stop()
}
else{

// No cricial battery status detected
stop()

}
// Repeat the battery check process
eval(new CheckBattery(robotId))

}

Figure 7.9: Translation of Battery check subprocess

7.3 Related works

The translation of BPMN into diverse formalisms is a growing research field,
with approaches varying based on the target formalism utilized. Some studies
have advocated the translation of BPMN diagrams to Petri Nets, thereby en-
abling the application of existing formal verification mechanism [105], while

108 CHAPTER 7. FROM BPMN TO X-KLAIM

others have leveraged Petri Nets to develop solutions for process collabora-
tion [106]. Significant work has also been carried out on mapping BPMN to
YAWL, a language featuring strictly defined execution semantics inspired by
Petri Nets and capable of supporting verification [107]. In parallel, a num-
ber of studies have employed Business Process Execution Language (BPEL)
as the target language, focusing on transition from BPMN to BPEL to ex-
pand the practical execution possibilities for BPMN diagrams [108, 109]. A
significant body of research has also utilised process calculi as a target for
BPMN translation. This includes Communicating Sequential Process (CSP)
based approaches, which address the challenge of BPMN verification through
a mapping to CSP, enabling formal verification [110, 111]. Similarly, the π-
calculus has also been adopted as a target language in the mapping [112, 113].
Other noteworthy translations include those to Concurrent Process Model-
ing (CPM) to facilitate the direct execution of process models [114], to the
mathematical Calculus for Orchestration of Web Services (COWS) for or-
chestrating web services [115], and to Recursive ECATNets, which can be
expressed in terms of conditional rewriting logic [116].

Our approach, mapping BPMN to X-Klaim, distinctly sets itself apart
from existing work through several key aspects. Unlike previous studies that
generally focus on formal verification of BPMN our method primarily aims
at code generation, delivering executable skeleton code from BPMN collabo-
ration diagrams. This practical emphasis facilitates a clear comprehension of
participant roles and message exchanges, enhancing usability in real world ap-
plications. Additionally, we employ a target language, X-Klaim, grounded
in the formal language Klaim, make the output code amenable to formal
analysis, paving the way for future robustness and safety considerations in
complex systems like autonomous robots. Furthermore, our method’s com-
patibility with the prevalent ROS middleware and potential adaptability to
its future versions add to its applicability in modern robotics software infras-
tructures [20, 21].

PART IV

CONCLUSIONS

Chapter 8
Concluding remarks

As we draw our journey through the exploration of heterogeneous robotics
applications programming to a close, it’s time to reflect upon the research
questions we have addressed. Our objective has been to provide a solu-
tion that facilitates the development and coordination of MRSs, taking into
consideration the complexities of dealing with heterogeneity in both behavior
and communication among different robots. We aimed to model and abstract
MRS missions at a high level and to effectively bridge the gap between the
conceptual design and concrete implementation of MRS missions. Now, let’s
revise our research questions and discuss how our proposed approach has
been able to effectively address each of them.

Addressing RQ1: Programming and Coordinating MRSs

Chapters addressed: Chapter 4 and Chapter 5 (publications [20],[21],[22])
X-Klaim has proved expressive enough to smoothly implement MRSs’

behaviors, and its integration with Java allowed us to seamlessly use the
java_rosbridge API directly in the X-Klaim code to access the publish/-
subscribe communication infrastructure of ROS. Our experimental results
show that the use of X-Klaim and java_rosbridge introduces just a slightly
greater but acceptable latency than the traditional ROS implementation
based on Python code.

We believe the X-Klaim computation and communication model is par-
ticularly suitable for programming MRSs’ behavior. On the one hand,
X-Klaim natively supports concurrent programming, which is required by
the distributed nature of robots’ software. On the other hand, the organiza-
tion of an X-Klaim application in terms of a network of nodes interacting
via multiple distributed tuple spaces, where communicating processes are de-
coupled both in space and time, naturally reflects the distributed structure
of an MRS. In addition, X-Klaim tuples permit to model both raw data

112 CHAPTER 8. CONCLUDING REMARKS

produced by sensors and aggregated information obtained from such data.
This allows programmers to specify the robot’s behavior at different levels of
granularity, thus permitting to structure the code in logical layers that pro-
vide a systematic approach to program MRS missions. Moreover, the form of
communication offered by tuple spaces, supported by X-Klaim, favors the
scalability of MRSs in terms of the number of components and robots that
can be dynamically added and meets the open-endedness requirement (i.e.,
robots can dynamically enter or leave the system). Both features are crucial
in MRSs.

It is worth noticing that in this work we exploit both the tuple-based
communication model, which X-Klaim inherits from Klaim, and the pub-
lish/subscribe one, supported by ROS and enabled in X-Klaim by the
java_rosbridge library. The former communication model is used to coordi-
nate both the execution of concurrent processes running in a robot and the
inter-robot interactions. The latter model, instead, is used to send/receive
messages for given topics to/from the ROS framework installed in a sin-
gle robot. In principle, the former model can be used to express the latter.
However, this would require introducing intermediary processes that consume
tuples and publish their data on the related topics and, vice-versa, generate
a tuple each time an event for a subscribed topic is received. This would in-
troduce significant overhead in the communication with the ROS framework,
especially for what concerns the handling of the subscriptions (as topics re-
lated to sensors usually produce message streams). In our proposal, we have
shown how the use of the publish/subscribe mechanism can be made trans-
parent to the programmer, overcoming the performance issue by elevating
the level of abstraction. The programming framework we provide does not
replace topics with tuples, but offers ready-to-use reusable processes acting
as building blocks for creating robotics applications. These processes will
hide the interactions with ROS to the programmer, and produce tuples only
when events relevant to the coordination of the MRS behavior occur (e.g.,
a robot reached a given position or a requested movement has been com-
pleted). For example, the MoveArm process performs different movements
of the robot’s arm depending on the argument passed when the process is
called. It notifies the completion of the movement by emitting a given tuple
in the local tuple space.

Harnessing the expressive nature of X-Klaim, we build upon our core
movement patterns to develop mission scenarios tailored to specific user
needs. These patterns, rooted in real-world mission requirements, serve
as foundational blocks, allowing us to create, modify, and deploy complex
robotic tasks. Through the versatility of these patterns, we have achieved a
higher level of flexibility and customization of our MRS mission designs. The
adaptability and scalability brought about these patterns have propelled us

CHAPTER 8. CONCLUDING REMARKS 113

towards creating more efficiency and effectiveness.
Moreover, these mission patterns encapsulated in X-Klaim have been

vital in fostering better coordination among different processes, concurrent
execution of tasks, and facilitation of a distributed approach towards mission
planning. By bringing these intricate processes together, we have shown that
the most complex of missions can be broken down into simpler, manageable
parts - an approach that paves for more ambitious an complex MRS missions
in the future.

Addressing RQ2: Modeling and Abstracting MRS Missions

Chapter addressed: Chapter 6 (paper [23])
In our approach of modeling MRS missions at a high level, we identified

and utilized a selection of BPMN elements, with specific reference to their
implementation within ROS. This selective application ensured that we ex-
tracted the most suitable facets of BPMN for MRS missions, aligning closely
with the operational intricacies of ROS.

BPMN’s unique attributes come into play in its graphical nature, which
is adept at representing intricate mission sequences and interactions. This
level of abstraction is instrumental in rendering complex mission in an easy-
to-understand manner.

The power of BPMN goes beyond representation. The standardized na-
ture of this DSL promotes clarity, precision, and interoperability, resulting in
an improved understanding of MRS mission designs. These characteristics
reinforce BPMN as an optimal choice for MRS mission modeling.

Finally, the expressiveness of our approach has been validated in complex
real-world applications, such as smart agriculture. Our selection of BPMN
elements, tailored to MRS missions specifics, proved sufficiently expressive
to accommodate the intricacies of such applications. To aid the adoption of
our approach, we developed a set of guidelines to streamline the creation of
MRS mission models using BPMN. These guidelines ensure consistent and
effective application our our approach across various scenarios

Addressing RQ3: Bridging the Gap Between Modeling and Imple-
mentation

Chapter addressed: Chapter 7 (paper [24])
Building upon our strides in X-Klaim-based MRS design and our adapta-

tion of BPMN, we then explored a systematic mapping of the BPMN elements
to X-Klaim constructs, achieving a high-level of integration between these
two tools. This methodology has not only bolstered the clarity and main-
tainability of our mission designs but has also permitted a more streamlined
transition from an abstract BPMN model to a concrete X-Klaim program.

114 CHAPTER 8. CONCLUDING REMARKS

The power of this approach lies in its utility: By starting with BPMN
model, roboticists and domain experts can together design missions at a high-
level of abstraction, ensuring that the mission’s purpose and broad steps are
well understood by all stakeholders. Then, the model can be systematically
translated into an X-Klaim program, preserving the structure and logic of
the original design while adding the necessary detail for execution in a ROS
environment.

This progression - from abstract mission design in BPMN to concrete
program implementation in X-Klaim - is an elegant encapsulation for our
research contributions. We have filled effectively the gap between high-level
mission planning and low-level mission execution, achieving a balance be-
tween abstraction and precision, accessibility and power, design and imple-
mentation.

Overall Achievements

Looking back at our journey through these chapters, we appreciate the syner-
gistic fusion of X-Klaim, BPMN and ROS that we have achieved. Through
the use of X-Klaim for coordinating and programming multiple-ROS based
system, we have been able to raise the level of abstraction, enhancing read-
ability and usability. The systematic translation from BPMN to X-Klaim
paves the way for a more integrated and seemless design-to-implementation
process.

Chapter 9
Future work

Our long-term goal is to design a domain-specific language for the robotics do-
main that, besides being used for automatically generating executable code, is
integrated with tools supporting formal verification and analysis techniques.
These tools are indeed highly desirable for such complex and often safety-
critical systems as autonomous robots [117]. The tools already developed for
Klaim, e.g., type systems [118, 119, 120, 121], behavioral equivalences [122],
flow logic [123], and model checking [124, 125, 126], could be a valuable
starting point. A first attempt to define a formal verification approach for
the design of MRSs using the Klaim stochastic extension StoKlaim and the
relative stochastic logic MoSL [125] has been presented in [127]. Along this
direction, we plan to investigate the integration of the proposed approach
with spatial model checking [128], as done in [129] for a monitoring scenario
involving agents moving in physical space. For example, this would permit
to guarantee that the robots do not cross unauthorized zones without first
signalling themselves in some authorization area, or to verify whether all
the items are reachable without crossing a given zone. In addition, as the
completion time of the robots’ activities may be crucial in some robotics sce-
narios, we also intend to consider the analysis of spatial-temporal properties,
as in [130].

Runtime adaptation is another important capability of MRSs. In [131],
we have shown that adaptive behaviors can be smoothly rendered in Klaim
by exploiting tuple-based higher-order communication to exchange code and
possibly execute it. We plan to investigate to what extent we can benefit
from this mechanism to achieve adaptive behaviors in robotics applications.
For example, an X-Klaim process (a controller or an actuator) could dy-
namically receive code from other possibly distributed processes containing
the logic to continue the execution.

X-Klaim has several other features that we did not use in this work.
We list here the most interesting ones, which could be useful for future work

116 CHAPTER 9. FUTURE WORK

in the field of MRSs. Non-blocking versions of in and read are available:
in_nb and read_nb, respectively. These are useful to check the presence
of a matching tuple without being blocked indefinitely. Under that respect,
X-Klaim also provides “timed” versions of these operations: as an additional
argument, they take a timeout, which specifies how long the process executing
such action is willing to wait for a matching tuple. If a matching tuple is
not found within the specified timeout, the programmer can adopt adequate
countermeasures. In the example of this paper, we used the simplest way
of specifying a flat and closed network in X-Klaim. However, X-Klaim
also implements the hierarchical version of the Klaim model as presented
in [34], which allows nodes and processes to be dynamically added to existing
networks so that modular programming can be achieved and open-ended
scenarios can be implemented.

MRSs act in highly dynamic and uncertain environments, which may lead
such systems to face unpredictable or not fully codified situations. In these
cases, an advanced decision support system empowered with AI technology
can be helpful in deciding the action to take. It is possible to integrate AI
functionalities in an X-Klaim application at different levels in different ways:

• By using an existing ROS package that provides AI functionalities. This so-
lution does not require any development effort and is completely transparent
to the X-Klaim code, which can activate and take advantage of the new
functionalities by resorting to the publish/subscribe communication mecha-
nism as usual.

• By using existing Python libraries (e.g., TensorFlow1, Keras2, PyTorch3,
scikit-learn4, etc.) to define custom AI models and exposing them as ROS
nodes. Again, once the ROS nodes have been created, this solution is com-
pletely transparent to the X-Klaim code.

• By importing an existing Java library (e.g., Deeplearning4j5, DJL6, etc.) or
a Java wrapper of a library written in another language. This way, the AI
functionalities will be directly and easily accessible from the X-Klaim code,
thanks to the interoperability with Java provided by Xbase.

We plan to investigate these kinds of integration in future work.
Building upon the insights obtained from Chapter 5, we look towards

expanding our research in several promising directions. Firstly, we plan to

1https://www.tensorflow.org
2https://keras.io/
3https://pytorch.org/
4https://scikit-learn.org/
5https://deeplearning4j.konduit.ai/
6https://djl.ai/

https://www.tensorflow.org
https://keras.io/
https://pytorch.org/
https://scikit-learn.org/
https://deeplearning4j.konduit.ai/
https://djl.ai/

CHAPTER 9. FUTURE WORK 117

enhance the functionality of X-Klaim mission specification patterns by in-
corporating a broader array of building blocks. This would allow us to more
accurately represent a diverse range of multi-robot missions and scenarios,
thereby broadening the applicability of our work.

In conjunction with these efforts, we are also working on further develop-
ments of our BPMN2XKLAIM tool. The aim is to enhance its capabilities
beyond generating X-Klaim skeleton code from simple BPMN models. This
involves refining the tool to support translations of more intricate BPMN el-
ements, such as collaborations, message flows, loop structures, and AND
gateways. Our vision is to cultivate a tool that not only reduces potential
for human error and increases efficiency, but also can handle a broader range
of BPMN elements. By doing so, we intend to make the tool more versatile
and capable of dealing with complex multi-robot systems and their missions.

Additionally, we recognize the need to extend our existing BPMN to
X-Klaim mapping to include all selected BPMN elements to MRS modeling
presented in Chapter 6. This planned expansion will ensure a more compre-
hensive and versatile translation capability between the two languages.

Furthermore, in this work we have used the version 1 of ROS as a reference
middleware for the proposed approach, because currently this seems to be
most adopted in practice. We plan anyway to investigate the possibility
of extending our approach to the version 2 of ROS, which features a more
sophisticated publish/subscribe system based on the OMG DDS standard.

Lastly, we are keen to validate and expand our work through increased
engagement with industry sectors. We plan to conduct further experiments
and pilot projects, refining our approaches based on real-world applications
and feedback. We believe this will be crucial in ensuring that our work
continues to be grounded in practical, industry-relevant considerations.

Bibliography

[1] Dhouib, S., et al. RobotML, a domain-specific language to design,
simulate and deploy robotic applications. In Proc. of SIMPAR, volume
7628 of LNCS, pages 149–160. Springer, 2012.

[2] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell. A domain spe-
cific language for kinematic models and fast implementations of robot
dynamics algorithms. In Proc. of DSLRob’11, volume abs/1301.7190
of CoRR, 2013.

[3] Arne Nordmann, Nico Hochgeschwender, Dennis Wigand, and Sebas-
tian Wrede. A survey on domain-specific modeling and languages in
robotics. Software Engineering for Robotics, 7:75–99, 2016.

[4] Rajesh Doriya, Siddharth Mishra, and Swati Gupta. A brief survey
and analysis of multi-robot communication and coordination. In Int.
Conf. on Computing, Communication, Automation, pages 1014–1021,
2015.

[5] Rocco De Nicola, Luca Di Stefano, and Omar Inverso. Toward formal
models and languages for verifiable multi-robot systems. Frontiers in
Robotics and AI, 5, 2018.

[6] Quigley, M., et al. Ros: an open-source robot operating system. In
ICRA Workshop on Open Source Software, 2009.

[7] Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. A sur-
vey on domain-specific languages in robotics. In SIMPAR, LNCS 8810,
pages 195–206. Springer, 2014.

[8] Edson de Araújo Silva, Eduardo Valentin, Jose Reginaldo Hughes Car-
valho, and Raimundo da Silva Barreto. A survey of Model Driven
Engineering in robotics. Computer Languages, 62:101021, 2021.

120 BIBLIOGRAPHY

[9] Casalaro, G.L., et al. Model-driven engineering for mobile robotic sys-
tems: a systematic mapping study. Software and Systems Modeling,
2021.

[10] Zhi Yan, Nicolas Jouandeau, and Arab Ali. A survey and analysis of
multi-robot coordination. International Journal of Advanced Robotic
Systems, 10:1, 12 2013.

[11] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric
Klavins, and George J Pappas. Symbolic planning and control of robot
motion [grand challenges of robotics]. IEEE Robotics & Automation
Magazine, 14(1):61–70, 2007.

[12] Brian P Gerkey and Maja J Matarić. A formal analysis and taxonomy
of task allocation in multi-robot systems. The International journal of
robotics research, 23(9):939–954, 2004.

[13] OMG. Business Process Model and Notation (BPMN) v. 2.0, 2011.

[14] Compagnucci et al. Modelling notations for IoT-aware business pro-
cesses: A systematic literature review. In BP-Meet-IoT, volume 397 of
LNCS, pages 108–121. Springer, 2020.

[15] Wei Tan, Yushun Fan, and MengChu Zhou. A petri net-based method
for compatibility analysis and composition of web services in business
process execution language. IEEE Transactions on Automation Science
and Engineering, 6(1):94–106, 2008.

[16] Marco Häußler, Sebastian Esser, and André Borrmann. Code compli-
ance checking of railway designs by integrating bim, bpmn and dmn.
Automation in Construction, 121:103427, 2021.

[17] F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi. Formalising and
animating multiple instances in BPMN collaborations. Information
Systems, 101459, 2019.

[18] Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and
Francesco Tiezzi. Formalising and animating multiple instances in
bpmn collaborations. Information Systems, 103:101459, 2022.

[19] Corradini et al. A formal approach to modeling and verification of
business process collaborations. SCP, 166:35–70, 2018.

[20] Lorenzo Bettini, Khalid Bourr, Rosario Pugliese, and Francesco Tiezzi.
Writing robotics applications with X-Klaim. In ISoLA 2020, volume
12477 of LNCS, pages 361–379, Heidelberg, 2020. Springer.

BIBLIOGRAPHY 121

[21] Lorenzo Bettini, Khalid Bourr, Rosario Pugliese, and Francesco Tiezzi.
Programming Multi-robot Systems with X-Klaim. In Leveraging Ap-
plications of Formal Methods, Verification and Validation. Adaptation
and Learning, volume 13703 of LNCS, pages 283–300. Springer, 2022.

[22] Lorenzo Bettini, Khalid Bourr, Rosario Pugliese, and Francesco
Tiezzi. Coordinating and programming multiple ros-based systems
with X-Klaim. International Journal on Software Tools for Tech-
nology Transfer, 2023. to appear.

[23] Khalid Bourr, Flavio Corradini, Sara Pettinari, Barbara Re, Lorenzo
Rossi, and Francesco Tiezzi. Disciplined use of BPMN for mission
modeling of multi-robot systems. In Proceedings of PoEM-Forum, vol-
ume 3045 of CEUR Workshop Proceedings, pages 1–10. CEUR-WS.org,
2021.

[24] Khalid Bourr and Francesco Tiezzi. From BPMN to X-Klaim: A
systematic methodology for model translation and program generation.
ongoing work, 2023.

[25] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM:
A Kernel Language for Agents Interaction and Mobility. IEEE Trans.
Software Eng., 24(5):315–330, 1998.

[26] Robin Milner. Communication and concurrency. PHI Series in com-
puter science. Prentice Hall, 1989.

[27] D. Gelernter. Generative Communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, 1985.

[28] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java package for
distributed and mobile applications. Software – Practice and Experi-
ence, 32(14):1365–1394, 2002.

[29] L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, and M. Loreti. A
Flexible and Modular Framework for Implementing Infrastructures for
Global Computing. In DAIS, volume 3543 of LNCS, pages 181–193.
Springer, 2005.

[30] Lorenzo Bettini, Rocco De Nicola, Rosario Pugliese, and Gian Luigi
Ferrari. Interactive Mobile Agents in X-Klaim. In WETICE, pages
110–117. IEEE Computer Society, 1998.

[31] Lorenzo Bettini, Emanuela Merelli, and Francesco Tiezzi. X-Klaim Is
Back. In Models, Languages, and Tools for Concurrent and Distributed
Programming, volume 11665 of LNCS, pages 115–135. Springer, 2019.

122 BIBLIOGRAPHY

[32] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing, 2nd edition, 2016.

[33] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow,
Robert von Massow, Wilhelm Hasselbring, and Michael Hanus. Xbase:
Implementing Domain-Specific Languages for Java. In GPCE, pages
112–121. ACM, 2012.

[34] Lorenzo Bettini, Michele Loreti, and Rosario Pugliese. An infrastruc-
ture language for open nets. In SAC, pages 373–377. ACM, 2002.

[35] Rami-Habib Eid-Sabbagh, Remco Dijkman, and Mathias Weske. Busi-
ness process architecture: use and correctness. In Business Process
Management: 10th International Conference, BPM 2012, Tallinn, Es-
tonia, September 3-6, 2012. Proceedings 10, pages 65–81. Springer,
2012.

[36] OMG Omg, R Parida, and S Mahapatra. Business process model and
notation (bpmn) version 2.0. Object Management Group, 1(4):18, 2011.

[37] Stephen A White et al. Process modeling notations and workflow pat-
terns. Workflow handbook, 2004(265-294):12, 2004.

[38] M Weske. Chapter 1: Introduction. Business Process Management:
Concepts, Languages, Architectures. Springer Science & Business Me-
dia, pages 1–24, 2012.

[39] Bruce Silver. BPMN Method and Style: A Structured Approach Fopr
Business Process Modeling and Implementation Using BPMN 2.0.
Cody-Cassidy Press, 2011.

[40] Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to
the standard. Computer Standards & Interfaces, 34(1):124–134, 2012.

[41] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and
analysis of business process models in bpmn. Information and Software
technology, 50(12):1281–1294, 2008.

[42] Gero Decker and Alistair Barros. Interaction modeling using bpmn.
In Business Process Management Workshops: BPM 2007 International
Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws, Bris-
bane, Australia, September 24, 2007, Revised Selected Papers 5, pages
208–219. Springer, 2008.

[43] Michael zur Muehlen and Jan Recker. How much language is enough?
theoretical and practical use of the business process modeling notation.

BIBLIOGRAPHY 123

Seminal Contributions to Information Systems Engineering: 25 Years
of CAiSE, pages 429–443, 2013.

[44] Gustav Aagesen and John Krogstie. Analysis and design of business
processes using bpmn. Handbook on Business Process Management 1:
Introduction, Methods, and Information Systems, pages 213–235, 2010.

[45] Artem Polyvyanyy, Luciano García-Bañuelos, and Marlon Dumas.
Structuring acyclic process models. Information Systems, 37(6):518–
538, 2012.

[46] Bartek Kiepuszewski, Arthur Harry Maria Ter Hofstede, and
Christoph J Bussler. On structured workflow modelling. In Ad-
vanced Information Systems Engineering: 12th International Confer-
ence, CAiSE 2000 Stockholm, Sweden, June 5–9, 2000 Proceedings 12,
pages 431–445. Springer, 2000.

[47] Flavio Corradini, Andrea Morichetta, Chiara Muzi, Barbara Re, and
Francesco Tiezzi. Well-structuredness, safeness and soundness: a for-
mal classification of bpmn collaborations. Journal of Logical and Alge-
braic Methods in Programming, 119:100630, 2021.

[48] Bruno Siciliano, Oussama Khatib, and Torsten Kröger. Springer hand-
book of robotics, volume 200. Springer, 2008.

[49] Gregory Dudek, Michael RM Jenkin, Evangelos Milios, and David
Wilkes. A taxonomy for multi-agent robotics. Autonomous Robots,
3:375–397, 1996.

[50] Lynne E Parker. Alliance: An architecture for fault tolerant multirobot
cooperation. IEEE transactions on robotics and automation, 14(2):220–
240, 1998.

[51] Hiroaki Yamaguchi. A cooperative hunting behavior by mobile robot
troops. In Proceedings. 1998 IEEE International Conference on
Robotics and Automation (Cat. No. 98CH36146), volume 4, pages
3204–3209. IEEE, 1998.

[52] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic
systems. In Robots and biological systems: towards a new bionics?,
pages 703–712. Springer, 1993.

[53] M Ani Hsieh, Anthony Cowley, Vijay Kumar, and Camillo J Taylor.
Maintaining network connectivity and performance in robot teams.
Journal of field robotics, 25(1-2):111–131, 2008.

124 BIBLIOGRAPHY

[54] Maria Valera Espina, Raphael Grech, Deon De Jager, Paolo Re-
magnino, Luca Iocchi, Luca Marchetti, Daniele Nardi, Dorothy Mon-
ekosso, Mircea Nicolescu, and Christopher King. Multi-robot teams for
environmental monitoring. Innovations in Defence Support Systems–3:
Intelligent Paradigms in Security, pages 183–209, 2011.

[55] Kshitij Tiwari and Nak Young Chong. Multi-robot Exploration for En-
vironmental Monitoring: The Resource Constrained Perspective. Aca-
demic Press, 2019.

[56] Joseph L Baxter, EK Burke, Jonathan M Garibaldi, and Mark Nor-
man. Multi-robot search and rescue: A potential field based approach.
Autonomous robots and agents, pages 9–16, 2007.

[57] Faiza Gul, Imran Mir, Laith Abualigah, and Putra Sumari. Multi-
robot space exploration: An augmented arithmetic approach. IEEE
Access, 9:107738–107750, 2021.

[58] Lynne E Parker, Daniela Rus, and Gaurav S Sukhatme. Multiple mo-
bile robot systems. Springer handbook of robotics, pages 1335–1384,
2016.

[59] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco
Dorigo. Swarm robotics: a review from the swarm engineering per-
spective. Swarm Intelligence, 7:1–41, 2013.

[60] Markus Hannebauer, Jan Wendler, Enrico Pagello, Luca Iocchi,
Daniele Nardi, and Massimiliano Salerno. Reactivity and deliberation:
a survey on multi-robot systems. In Balancing Reactivity and Social
Deliberation in Multi-Agent Systems: From RoboCup to Real-World
Applications, pages 9–32. Springer, 2001.

[61] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot systems: a classifi-
cation focused on coordination. IEEE Trans. on Systems, Man, and
Cybernetics, Part B (Cybernetics), 34(5):2015–2028, 2004.

[62] Tucker Balch and Ronald C Arkin. Behavior-based formation control
for multirobot teams. IEEE transactions on robotics and automation,
14(6):926–939, 1998.

[63] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, pages 25–34, 1987.

[64] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Ant algorithms and
stigmergy. Future generation computer systems, 16(8):851–871, 2000.

BIBLIOGRAPHY 125

[65] C Ronald Kube and Eric Bonabeau. Cooperative transport by ants
and robots. Robotics and autonomous systems, 30(1-2):85–101, 2000.

[66] Iain D Couzin, Jens Krause, Nigel R Franks, and Simon A Levin.
Effective leadership and decision-making in animal groups on the move.
Nature, 433(7025):513–516, 2005.

[67] Tom Wagner, John Phelps, and Valerie Guralnik. Centralized vs. de-
centralized coordination: Two application case studies. An Application
Science for Multi-Agent Systems, pages 41–75, 2004.

[68] Vipin P Veetil. Coordination in centralized and decentralized systems.
Available at SSRN 2600735, 2017.

[69] Lynne E Parker. Distributed intelligence: Overview of the field and its
application in multi-robot systems. In AAAI fall symposium: regarding
the intelligence in distributed intelligent systems, pages 1–6, 2007.

[70] Morgan Quigley, Brian Gerkey, and William D Smart. Programming
Robots with ROS: a practical introduction to the Robot Operating Sys-
tem. " O’Reilly Media, Inc.", 2015.

[71] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco
Tiezzi. A formal approach to autonomic systems programming: the
scel language. ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), 9(2):1–29, 2014.

[72] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. Mcmas: an
open-source model checker for the verification of multi-agent systems.
International Journal on Software Tools for Technology Transfer, 19:9–
30, 2017.

[73] Gregor B Banusić, Rupak Majumdar, Marcus Pirron, Anne-Kathrin
Schmuck, and Damien Zufferey. Pgcd: robot programming and verifi-
cation with geometry, concurrency, and dynamics. In Proceedings of the
10th ACM/IEEE International Conference on Cyber-Physical Systems,
pages 57–66, 2019.

[74] Nathan P. Koenig and Andrew Howard. Design and use paradigms for
Gazebo, an open-source multi-robot simulator. In IROS, pages 2149–
2154. IEEE, 2004.

[75] E Estévez, Alejandro Sánchez García, Javier Gámez García, and
Juan Gómez Ortega. Art2ool: a model-driven framework to gener-
ate target code for robot handling tasks. The International Journal of
Advanced Manufacturing Technology, 97(1-4):1195–1207, 2018.

126 BIBLIOGRAPHY

[76] James Harbin, Simos Gerasimou, Nicholas Matragkas, Athanasios
Zolotas, and Radu Calinescu. Model-driven simulation-based analysis
for multi-robot systems. In 2021 ACM/IEEE 24th International Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS), pages 331–341. IEEE, 2021.

[77] Alexander Bubeck, Florian Weisshardt, and Alexander Verl. Bride-a
toolchain for framework-independent development of industrial service
robot applications. In ISR/Robotik 2014; 41st International Sympo-
sium on Robotics, pages 1–6. VDE, 2014.

[78] Adrian Rutle, Jonas Backer, Kolbein Foldøy, and Robin T. Bye. Com-
monLang: A DSL for defining robot tasks. In Proc. of MODELS18
Workshops, volume 2245 of CEUR Workshop Proc., pages 433–442,
2018.

[79] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and San-
jit A Seshia. Drona: a framework for safe distributed mobile robotics.
In 8th Intern. Conference on Cyber-Physical Systems, pages 239–248,
2017.

[80] Federico Ciccozzi, Davide Di Ruscio, Ivano Malavolta, and Patrizio
Pelliccione. Adopting mde for specifying and executing civilian missions
of mobile multi-robot systems. IEEE Access, 4:6451–6466, 2016.

[81] Davide Brugali and Luca Gherardi. Hyperflex: A model driven
toolchain for designing and configuring software control systems for
autonomous robots. In Robot Operating System, volume 625 of Studies
in Computational Intelligence, pages 509–534. Springer, 2016.

[82] Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra. Koord:
a language for programming and verifying distributed robotics appli-
cation. Proceedings of the ACM on Programming Languages, 4(OOP-
SLA), 2020.

[83] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger,
and Tomas Bures. High-level mission specification for multiple robots.
In Proceedings of the 12th ACM SIGPLAN international conference on
software language engineering, pages 127–140, 2019.

[84] Miyazawa, A., et al. RoboChart: Modelling and verification of the
functional behaviour of robotic applications. Softw. Syst. Model.,
18(5):3097–3149, 2019.

BIBLIOGRAPHY 127

[85] David St-Onge, Vivek Shankar Varadharajan, Guannan Li, Ivan Svo-
gor, and Giovanni Beltrame. ROS and Buzz: consensus-based behav-
iors for heterogeneous teams. CoRR, abs/1710.08843, 2017.

[86] Maksym Figat and Cezary Zieliński. Robotic system specification
methodology based on hierarchical petri nets. IEEE Access, 8:71617–
71627, 2020.

[87] Alonso, D., et al. V3CMM: A 3-view component meta-model for model-
driven robotic software development. Journal of Software Engineering
for Robotics, 1:3–17, 2010.

[88] Herman Bruyninckx, Markus Klotzbücher, Nico Hochgeschwender,
Gerhard Kraetzschmar, Luca Gherardi, and Davide Brugali. The brics
component model: a model-based development paradigm for complex
robotics software systems. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 1758–1764, 2013.

[89] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. SafeR-
obots: A model-driven approach for designing robotic software archi-
tectures. In Proc. of CTS, pages 131–134. IEEE, 2014.

[90] Pranav Srinivas Kumar, William Emfinger, Gabor Karsai, Dexter
Watkins, Benjamin Gasser, and Amrutur Anilkumar. Rosmod: a tool-
suite for modeling, generating, deploying, and managing distributed
real-time component-based software using ros. Electronics, 5(3):53,
2016.

[91] Sorin Adam and Ulrik Pagh Schultz. Towards interactive, incremental
programming of ROS nodes. In Workshop on Domain-Specific Lan-
guages and models for Robotic systems, 2014.

[92] Meng, W., et al. Verified ros-based deployment of platform-
independent control systems. In NASA Formal Methods Symposium,
pages 248–262. Springer, 2015.

[93] Sorin Adam, Morten Larsen, Kjeld Jensen, and Ulrik Pagh Schultz.
Rule-based dynamic safety monitoring for mobile robots. Journal of
Software Engineering for Robotics, 7(1):120–141, 2016.

[94] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo,
Aravind Sundaresan, and Grigore Rosu. Rosrv: Runtime verification
for robots. In Runtime Verification: 5th International Conference, RV
2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings 5,
pages 247–254. Springer, 2014.

128 BIBLIOGRAPHY

[95] Rui Wang, Yong Guan, Houbing Song, Xinxin Li, Xiaojuan Li, Zhiping
Shi, and Xiaoyu Song. A formal model-based design method for robotic
systems. IEEE Systems Journal, 13(1):1096–1107, 2018.

[96] Swaib Dragule, Bart Meyers, and Patrizio Pelliccione. A generated
property specification language for resilient multirobot missions. In
SERENE, volume 10479 of LNCS, pages 45–61. Springer, 2017.

[97] Chi Hu, Wei Dong, Yonghui Yang, Hao Shi, and Ge Zhou. Runtime ver-
ification on hierarchical properties of ROS-based robot swarms. IEEE
Transactions on Reliability, 69(2):674–689, 2019.

[98] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. A tuple
space for data sharing in robot swarms. EAI Endorsed Trans. Collab.
Comput., 2(9):e2, 2016.

[99] Rupak Majumdar, Nobuko Yoshida, and Damien Zufferey. Multiparty
motion coordination: from choreographies to robotics programs. Proc.
ACM Program. Lang., 4(OOPSLA):134:1–134:30, 2020.

[100] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger.
Specification patterns for robotic missions. IEEE Transactions on Soft-
ware Engineering, 47(10):2208–2224, oct 2021.

[101] Bozhinoski et al. FLYAQ: Enabling non-expert users to specify and
generate missions of autonomous multicopters. In ASE, pages 801–
806, 2015.

[102] Jean-Pierre de la Croix and Grace Lim. Event-driven modeling and
execution of robotic activities and contingencies in the Europa lander
mission concept using BPMN. In i-SAIRAS. ESA, 2020.

[103] Otsu et al. Supervised Autonomy for Communication-degraded Subter-
ranean Exploration by a Robot Team. In AeroConf, pages 1–9. IEEE,
2020.

[104] Rafael Rey, Marco Corzetto, Jose Antonio Cobano, Luis Merino, and
Fernando Caballero. Human-robot co-working system for warehouse
automation. In ETFA, pages 578–585. IEEE, 2019.

[105] Wenjia Huai, Xudong Liu, and Hailong Sun. Towards trustworthy
composite service through business process model verification. In 2010
7th International Conference on Ubiquitous Intelligence & Computing
and 7th International Conference on Autonomic & Trusted Computing,
pages 422–427. IEEE, 2010.

BIBLIOGRAPHY 129

[106] Jorge Roa, Omar Chiotti, and Pablo Villarreal. A verification method
for collaborative business processes. In Business Process Management
Workshops: BPM 2011 International Workshops, Clermont-Ferrand,
France, August 29, 2011, Revised Selected Papers, Part I 9, pages 293–
305. Springer, 2012.

[107] Moe Thandar Wynn, HMW Verbeek, Wil MP van der Aalst,
Arthur HM ter Hofstede, and David Edmond. Business process
verification–finally a reality! Business Process Management Journal,
15(1):74–92, 2009.

[108] Zwikamu Dubani, Ben Soh, and Chris Seeling. A novel design frame-
work for business process modelling in automotive industry. In 2010
Fifth IEEE International Symposium on Electronic Design, Test & Ap-
plications, pages 250–255. IEEE, 2010.

[109] Lin Bai and Jun Wei. A service-oriented business process modeling
methodology and implementation. In 2009 International Conference on
Interoperability for Enterprise Software and Applications China, pages
201–205. IEEE, 2009.

[110] Peter YH Wong and Jeremy Gibbons. A process semantics for bpmn. In
Formal Methods and Software Engineering: 10th International Confer-
ence on Formal Engineering Methods, ICFEM 2008, Kitakyushu-City,
Japan, October 27-31, 2008. Proceedings 10, pages 355–374. Springer,
2008.

[111] Peter YH Wong and Jeremy Gibbons. Formalisations and applications
of bpmn. Science of Computer Programming, 76(8):633–650, 2011.

[112] Frank Puhlmann and Mathias Weske. Investigations on soundness re-
garding lazy activities. Business Process Management, 4102:145–160,
2006.

[113] Frank Puhlmann. Soundness verification of business processes specified
in the pi-calculus. In On the Move to Meaningful Internet Systems
2007: CoopIS, DOA, ODBASE, GADA, and IS: OTM Confederated
International Conferences CoopIS, DOA, ODBASE, GADA, and IS
2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part
I, pages 6–23. Springer, 2007.

[114] Yipeng Ji, Hailong Sun, Xudong Liu, Jin Zeng, and Shangda Bai. A de-
centralized framework for executing composite services based on bpmn.
In 2009 Computation World: Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns, pages 332–338. IEEE, 2009.

130 BIBLIOGRAPHY

[115] Davide Prandi, Paola Quaglia, and Nicola Zannone. Formal analysis
of bpmn via a translation into cows. In Coordination Models and Lan-
guages: 10th International Conference, COORDINATION 2008, Oslo,
Norway, June 4-6, 2008. Proceedings 10, pages 249–263. Springer,
2008.

[116] Ahmed Kheldoun, Kamel Barkaoui, and Malika Ioualalen. Specification
and verification of complex business processes-a high-level petri net-
based approach. In Business Process Management: 13th International
Conference, BPM 2015, Innsbruck, Austria, August 31–September 3,
2015, Proceedings 13, pages 55–71. Springer, 2015.

[117] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon, and
Michael Fisher. Formal specification and verification of autonomous
robotic systems. ACM Computing Surveys, 52:1–41, 2020.

[118] Rocco De Nicola, Gian Luigi Ferrari, Rosario Pugliese, and Betti Ven-
neri. Types for access control. Theor. Comput. Sci., 240(1):215–254,
2000.

[119] Daniele Gorla and Rosario Pugliese. Enforcing Security Policies via
Types. In SPC, volume 2802 of LNCS, pages 86–100. Springer, 2003.

[120] Daniele Gorla and Rosario Pugliese. Resource Access and Mobility
Control with Dynamic Privileges Acquisition. In ICALP, volume 2719
of LNCS, pages 119–132. Springer, 2003.

[121] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Confining data
and processes in global computing applications. Sci. Comput. Pro-
gram., 63(1):57–87, 2006.

[122] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observ-
ables for a calculus for global computing. Inf. Comput., 205(10):1491–
1525, 2007.

[123] Rocco De Nicola et al. From Flow Logic to static type systems for
coordination languages. Sci. Comput. Program., 75(6):376–397, 2010.

[124] Rocco De Nicola and Michele Loreti. A modal logic for mobile agents.
ACM Trans. Comput. Log., 5(1):79–128, 2004.

[125] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti,
and Mieke Massink. Model checking mobile stochastic logic. Theor.
Comput. Sci., 382(1):42–70, 2007.

BIBLIOGRAPHY 131

[126] Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Martin Wirs-
ing. Semantics, distributed implementation, and formal analysis of
KLAIM models in Maude. Sci. Comput. Program., 99:24–74, 2015.

[127] Gjondrekaj, E., et al. Towards a formal verification methodology for
collective robotic systems. In ICFEM12, volume 7635 of LNCS, pages
54–70. Springer, 2012.

[128] Gina Belmonte, Vincenzo Ciancia, Diego Latella, and Mieke Massink.
VoxLogicA: A spatial model checker for declarative image analysis. In
TACAS 2019, volume 11427 of LNCS, pages 281–298. Springer, 2019.

[129] Davide Basile, Maurice H. ter Beek, and Vincenzo Ciancia. An ex-
perimental toolchain for strategy synthesis with spatial properties. In
ISoLA 2022, volume 13703 of LNCS, pages 142–164. Springer, 2022.

[130] Vincenzo Ciancia, Stephen Gilmore, Gianluca Grilletti, Diego Latella,
Michele Loreti, and Mieke Massink. Spatio-temporal model checking
of vehicular movement in public transport systems. Int. J. Softw. Tools
Technol. Transf., 20(3):289–311, 2018.

[131] Edmond Gjondrekaj, Michele Loreti, Rosario Pugliese, and Francesco
Tiezzi. Modeling adaptation with a tuple-based coordination language.
In SAC12, pages 1522–1527. ACM, 2012.

[132] Tomasz Winiarski, Maciej Węgierek, Dawid Seredyński, Wojciech
Dudek, Konrad Banachowicz, and Cezary Zieliński. Earl—embodied
agent-based robot control systems modelling language. Electronics,
9(2):379, 2020.

[133] Gianluca Bardaro and Matteo Matteucci. Using aadl to model and de-
velop ros-based robotic application. In 2017 First IEEE International
Conference on Robotic Computing (IRC), pages 204–207. IEEE, 2017.

[134] Gianluca Bardaro, Andrea Semprebon, Agnese Chiatti, and Matteo
Matteucci. From models to software through automatic transforma-
tions: An aadl to ros end-to-end toolchain. In 2019 Third IEEE In-
ternational Conference on Robotic Computing (IRC), pages 580–585.
IEEE, 2019.

[135] Yingbing Hua, Stefan Zander, Mirko Bordignon, and Björn Hein. From
automationml to ros: A model-driven approach for software engineer-
ing of industrial robotics using ontological reasoning. In 2016 IEEE
21st International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8. IEEE, 2016.

[136] Dominik Kirchner, Stefan Niemczyk, and Kurt Geihs. Rosha: A multi-
robot self-healing architecture. In RoboCup 2013: Robot World Cup
XVII 17, pages 304–315. Springer, 2014.

[137] Hamza El Baccouri, Goulven Guillou, and Jean-Philippe Babau.
Robotic system testing with amsa framework. In MoDELS (Work-
shops), pages 316–325, 2018.

[138] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. Engineering robotics software architectures with exchangeable
model transformations. In 2017 First IEEE International Conference
on Robotic Computing (IRC), pages 172–179. IEEE, 2017.

[139] Nicola Bezzo, Junkil Park, Andrew King, Peter Gebhard, Radoslav
Ivanov, and Insup Lee. Demo abstract: Roslab—a modular program-
ming environment for robotic applications. In 2014 ACM/IEEE Inter-
national Conference on Cyber-Physical Systems (ICCPS), pages 214–
214. IEEE Computer Society, 2014.

[140] Paul Kilgo, Eugene Syriani, and Monica Anderson. A visual modeling
language for rdis and ros nodes using atom 3. In Simulation, Mod-
eling, and Programming for Autonomous Robots: Third International
Conference, SIMPAR 2012, Tsukuba, Japan, November 5-8, 2012. Pro-
ceedings 3, pages 125–136. Springer, 2012.

[141] Sebastian Götz, Max Leuthäuser, Jan Reimann, Julia Schroeter, Chris-
tian Wende, Claas Wilke, and Uwe Aßmann. A role-based language for
collaborative robot applications. In Leveraging Applications of Formal
Methods, Verification, and Validation: International Workshops, SARS
2011 and MLSC 2011, Held Under the Auspices of ISoLA 2011 in Vi-
enna, Austria, October 17-18, 2011. Revised Selected Papers, pages
1–15. Springer, 2012.

[142] David St-Onge, Vivek Shankar Varadharajan, Ivan Švogor, and Gio-
vanni Beltrame. From design to deployment: decentralized coordina-
tion of heterogeneous robotic teams. Frontiers in Robotics and AI,
7:51, 2020.

[143] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. A tuple
space for data sharing in robot swarms. In Proceedings of the 9th EAI
International Conference on Bio-Inspired Information and Communi-
cations Technologies (Formerly BIONETICS), BICT’15, page 287–294,
Brussels, BEL, 2016. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

Appendix A
Appendix

This appendix reports the analysis of the DSLs selected in Chapter 3.

D
S
L

F
o
rm

al
la

n
g
u
ag

e
H

ig
h
-l
ev

el
S
u
b
-d

o
m

ai
n

D
S
L

T
y
p
e

M
u
lt

i-
ro

b
o
t

H
et

er
o
g
en

eo
u
s

R
o
b
o
ts

C
o
o
rd

in
at

io
n

D
eR

o
s

[9
1
]

✓
S

T
ex

.
E
ar

l
[1

3
2
]

✓
T

,
M

G
ra

.
A

ad
l-
b
as

ed
D

S
L

[1
3
3
,
1
3
4
]

✓
P
,
A

T
ex

t.
,
G

ra
.

P
G

C
D

[7
3
,
9
9
]

✓
✓

P
T
ex

.
✓

✓
(h

ig
h
)

✓
R

S
S
M

[8
6
]

✓
M

,
A

G
ra

.
✓

(?
)

A
u
to

m
at

io
n
M

L
-b

as
ed

D
S
L

[1
3
5
]

✓
✓

P
,
A

G
ra

.
✓

✓
A

R
T

2
o
o
l
[7

5
]

✓
P
,
A

,
G

G
ra

.
B

C
M

[7
7
,
8
8
]

✓
P
,
G

G
ra

.
M

o
d
el

-b
as

ed
[9

5
]

✓
M

,
A

G
ra

.
R

o
sH

a
[1

3
6
]

✓
C

,
S

T
ex

.
✓

(?
)

H
y
p
er

F
le

x
[8

1
]

✓
P
,
A

G
ra

.
A

M
S
A

[1
3
7
]

✓
S

G
ra

.
M

A
T
ra

n
s

[1
3
8
]

✓
P
,
A

T
ex

.
R

O
S
M

O
D

[9
0
]

✓
A

G
ra

.
R

O
S
L
ab

[1
3
9
,
9
2
]

✓
✓

S
,
P
,
A

T
ex

.
(H

S
L
)-

R
M

o
M

[9
7
]

✓
C

,
S

T
ex

.
✓

R
O

S
R
V

[9
4
]

✓
S

T
ex

.
A

to
m

3
[1

4
0
]

✓
P

G
ra

.
F
ly

A
Q

[8
0
,
1
0
1
]

✓
C

,
T

,
H

G
ra

.
✓

✓
(l

ow
)

N
o
ei

x
[1

4
1
]

✓
C

,
T

T
ex

.
✓

(?
)

✓
K

o
o
rd

[8
2
]

✓
✓

P
,
C

,
S

T
ex

.
✓

✓
(h

ig
h
)

✓
A
T

L
A

S
[7

6
]

✓
M

,
C

T
ex

.
✓

✓
(l

ow
)

✓
S
C

E
L

[7
1
]

✓
✓

P
,
C

,
S

T
ex

.
✓

✓
(h

ig
h
)

✓
B

U
Z
Z

[9
8
,
8
5
,
1
4
2
,
1
4
3
]

✓
✓

C
,
P

T
ex

.
✓

✓
(l

ow
)

✓
P
R

O
M

IS
E

[8
3
]

✓
T

,
H

G
ra

.,
T
ex

✓
(?

)
IS

P
L

[7
2
]

✓
✓

S
T
ex

.
✓

✓
(h

ig
h
)

✓
D

R
O

N
A

[7
9
]

✓
✓

C
,
S
,
P

T
ex

t.
✓

✓
R

o
b
o
tC

h
ar

t
[8

4
]

✓
✓

P
,
S

G
ra

.,
T
ex

.
C

o
m

m
o
n
L
an

g
[7

8
]

✓
T

T
ex

t.

S
:
S
af

et
y

an
d

se
cu

ri
ty

T
:
T
as

k
an

d
b
eh

av
io

r
sp

ec
ifi

ca
ti

on
P
:
R

ob
ot

p
ro

gr
am

m
in

g
G

:
M

an
ip

u
la

ti
on

an
d

gr
as

p
in

g
H

:
H

u
m

an
-r

ob
ot

in
te

ra
ct

io
n

C
:
R

ob
ot

co
or

d
in

at
io

n
an

d
co

ll
ab

or
at

io
n

A
:
R

ob
ot

ar
ch

it
ec

tu
re

M
:
R

ob
ot

m
o
d
el

in
g

an
d

si
m

u
la

ti
on

Ta
bl

e
A

.1
:

SL
R

an
al

ys
is

D
S
L

D
ecen

tralized
C

o
o
rd

in
atio

n
C

o
m

p
iler

C
o
d
e

G
en

erated
D

ep
loy

m
en

t
P
latfo

rm
ID

E
In

teg
ratio

n
T
o
o
l
S
u
p
p
o
rt

D
eR

o
s

[9
1
]

✓
C

+
+

R
O

S
✓

X
T

E
X

T
E
arl

[1
3
2
]

✓
C

+
+

R
O

S
,
O

R
O

C
O

S
F
A

B
R

IC
A

ad
l-b

ased
D

S
L

[1
3
3
,
1
3
4
]

✓
C

+
+

R
O

S
,
O

R
O

C
O

S
✓

O
C

A
R

IN
A

,
O

S
A
T

E
P
G

C
D

[7
3
,
9
9
]

✓
✓

P
y
th

on
R

O
S

R
S
S
M

[8
6
]

✓
C

+
+

R
O

S
H

P
N

A
u
to

m
atio

n
M

L
-b

ased
D

S
L

[1
3
5
]

✓
C

+
+

,P
y
th

on
R

O
S

(?))
A

R
T

2
o
o
l
[7

5
]

✓
C

+
+

R
O

S
✓

A
R
T

2o
ol,

E
M

F
,
G

rap
h
iti,

S
p
ray

B
C

M
[7

7
,
8
8
]

✓
C

+
+

O
R

O
C

O
S
,
R

O
S

✓
(?)

M
o
d
el-b

ased
[9

5
]

✓
C

+
+

R
O

S
U

p
p
aal

R
o
sH

a
[1

3
6
]

✓
(?)

R
O

S
A

L
IC

A
H

y
p
erF

lex
[8

1
]

✓
X

M
L

O
R

O
C

O
S
,
R

O
S

H
y
p
erF

lex
A

M
S
A

[1
3
7
]

✓
C

+
+

R
O

S
✓

(?)
M

A
T
ran

s
[1

3
8
]

✓
P
y
th

on
R

O
S

M
on

tiA
rcA

u
tom

aton
,M

A
T
ran

s
R

O
S
M

O
D

[9
0
]

✓
C

+
+

R
O

S
✓

W
eb

G
M

E
R

O
S
L
ab

[1
3
9
,
9
2
]

C
+

+
R

O
S

✓
R

O
S
L
ab

,
R

O
S
G

en
(H

S
L
)-R

M
o
M

[9
7
]

(?)
R

O
S

(?)
R

O
S
R
V

[9
4
]

✓
P
y
th

on
R

O
S

R
O

S
R
V

A
to

m
3

[1
4
0
]

✓
P
y
th

on
R

O
S

✓
A
T

O
M

3
F
ly

A
Q

[8
0
,
1
0
1
]

(?)
R

O
S

✓
F
L
Y
A

Q
N

o
eix

[1
4
1
]

P
,A

,G
G

ra.
(?)

(?)
K

o
o
rd

[8
2
]

✓
✓

P
y
th

on
R

O
S

✓
C

y
P
h
y
H

ou
se

T
o
olch

ain
A
T

L
A

S
[7

6
]

✓
R

O
S

A
T

L
A

S
S
C

E
L

[7
1
]

✓
✓

JA
V
A

M
O

O
S
-Iv

P
S
C

E
L

B
U

Z
Z

[9
8
,
8
5
,
1
4
2
,
1
4
3
]

✓
✓

B
u
zz

b
y
teco

d
e

R
O

S
,
A

rG
os

✓
b
u
zzc,

b
u
zzacm

P
R

O
M

IS
E

[8
3
]

✓
IS

P
L

[7
2
]

✓
✓

C
+

+
M

C
M

A
S

D
R

O
N

A
[7

9
]

✓
✓

C
R

O
S

P
,
Z
in

g
R

o
b
o
tC

h
art

[8
4
]

✓
C

+
+

R
O

S
✓

X
tex

t,
S
iru

is
C

o
m

m
o
n
L
an

g
[7

8
]

✓
✓

X
tex

t

Table
A

.2:
SLR

analysis

	Abstract of the Dissertation
	Acknowledgments
	List of Publications
	I Introduction and Background
	Introduction
	Motivations
	Complexity of MRS Programming
	The Need for High-Level Modeling and Abstraction
	Bridging the Gap between Modeling and Implementation
	Contributions to the State-of-the-Art

	Research Questions
	Structure and Contributions
	Part I - Introduction and Background
	Part II - Coordinating and Programming MRSs
	Part III - From MRSs Models to Code
	Part IV - Conclusions

	Background
	Klaim and X-Klaim
	Klaim
	Klava and X-Klaim

	BPMN
	Business Process Management
	Business Process Model and Notation 2.0
	BPMN Notation
	Well-structuredness in BPMN collaborations

	Robotics
	History of Multi-Robot Systems (MRS)
	Coordination in MRS
	ROS

	Systematic Literature Review on Domain-specific Languages for ROS-based Systems
	SLR Methodology
	SLR Questions
	Search Strategy
	Inclusion and Exclusion Criteria
	Search and Filtering Process
	Screening and Selection Process
	Data Extraction and Synthesis

	Results and Analysis
	Sub-domain Distribution in Robotics DSLs (RQ1)
	DSL Type Distribution in Robotics (RQ2)
	DSL Support for Multi-robot Systems and Heterogeneous Robots (RQ3)
	DSL Support for Coordination and Decentralized Coordination in Multi-robot Systems (RQ4)
	Code Generation in DSLs for robotics (RQ5):
	IDE in DSLs for robotics (RQ6):
	Prevalence of formal languages in DSLs for robotics (RQ7):

	II Coordinating and Programming MRSs
	Coordinating and Programming Multiple ROS-based Robot with X-Klaim
	The X-Klaim approach to multi-robot programming
	The X-Klaim approach at work on MRS scenarios
	Simple warehouse scenario
	Enriching the warehouse scenario
	Other Scenarios

	Experimental Evaluation
	Time consumption
	Memory consumption

	Discussion and Related work

	X-Klaim Mission Specification Patterns for ROS-Based Robots Systems
	Core Movement Patterns for ROS-based Robots
	Visit
	Sequenced Visit
	Ordered Visit
	Strict Ordered Visit
	Fair Visit
	Patrolling
	Sequenced Patrolling
	Ordered Patrolling
	Strict Ordered Patrolling
	Fair Patrolling

	Mission Scenarios Using Core Movement Patterns
	Perimeter Surveillance Mission
	Coordinated Sector Coverage Mission
	Search and Rescue Mission

	Discussion

	III From MRSs Models to Code
	Multi-Robot Mission Modeling using BPMN
	Disciplined Use of BPMN
	Selection of BPMN elements for MRSs
	Example Scenario
	Guidelines for MRS modeling.

	Related works

	From BPMN to X-Klaim: A Systematic Methodology for Model Translation and Program Generation
	The Process of Translation
	Mapping of BPMNelements to X-Klaim constructs
	Examples of BPMNprocesses translated into X-Klaim
	Code Optimization
	Prototype of BPMN2XKLAIM Tool

	Translation of the Agriculture Scenario
	Translation of the collaboration
	Translation of the Drone mission
	Translation of the Tractor mission
	Translation of event-subprocess

	Related works

	IV Conclusions
	Concluding remarks
	Future work
	Bibliography
	Appendix

