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Abstract: In this paper, a comprehensive probabilistic framework is proposed and adopted to perform
seismic reliability and risk analysis of existing link slab (LS) bridges, representing a widely diffused
structural typology within the infrastructural networks of many countries worldwide. Unlike classic
risk analysis methods, innovative fragility functions are used in this work to retrieve more specific
and detailed information on the possible failure modes, without limiting the analysis to the global
failure conditions but also considering several intermediate damage scenarios (including one or
more damage mechanisms), and providing insights on the numerosity of elements involved within
a given damage scenario. Reliability analyses are performed on a set of LS bridges with different
geometries (total lengths and pier heights) designed according to the Italian codes enforced in the
1970s. Accurate numerical models are developed in OpenSees and Multiple-Stripe nonlinear time–
history analyses are carried out to build proper demand models, from which fragility functions are
determined according to two limit states: damage onset and near-collapse. Mean annual rates of
exceeding are thus estimated through the convolution between the hazard and the fragility. The
results shed light on the main failure mechanisms characterizing this bridge typology, highlighting
how different levels of risk (hence safety margins) can be associated with failure scenarios that differ
in terms of elements/mechanisms involved and damage extension. Such a higher level of detail in the
risk analysis may be useful to better quantify post-earthquake consequences (e.g., costs and losses)
and define more tailored retrofit interventions. A comparison of the reliability levels associated with
bridges of the same class with different geometries is finally presented.

Keywords: seismic risk; bridges; link slab; expansion joints; seismic vulnerability; OpenSees; damage;
failure; collapse; hazard; stochastic ground motion

1. Introduction

Bridges play a critical role within transportation and infrastructure networks. Their
disruption can have a significant socioeconomic impact and their failure can jeopardize
people’s lives [1]. Over the last few decades, we have witnessed a significant growth of
scientific literature focusing on vulnerability and risk assessment of bridges under diverse
sources of danger. For instance, numerous studies have been focused on seismic-related
problems (hazard, design, assessment, retrofit) [2–6]; other works have been dedicated to
flood and scour [7–10], which are also serious phenomena undermining bridge stability and
integrity. Some recent studies have been dedicated to special subjects, such as the reliability
of existing prestressed bridges [11,12], structural health monitoring strategies [13,14], bridge
inspection data analysis [15], and safety assessment under traffic loads [16].

Within such a wide context concerning bridges, the current paper focuses on the
seismic reliability analysis of a widespread typology of bridges characterizing a broad
percentage of the existing infrastructural networks worldwide. The systems at hand are
represented by the class of multi-span simply supported reinforced concrete (RC) Link Slab
(LS) bridges, based on a technology that has been widely employed over the past 50 years
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to realize structural joints in bridge superstructures [17–21]. It is known that expansion
joints are traditionally provided and designed to accommodate deformations induced by
temperature gradients in order to avoid structural problems, and they usually are effective
in this aim, though some issues may arise when water drains through them, penetrating
the substructures (piers and abutments), and thus contributing to and accelerating the
degradation process of bearing devices and substructure themselves (Figure 1a). These
joints are moreover prone to ruin because of the gradual accumulation of materials within
them (Figure 1b).
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Figure 1. (a) Typical consequences of the expansion joints permeability: degradation and corrosion of
a cylindrical hinge bearing device. (b) Debris and materials accumulation within an expansion joint
compromising its functionality.

Continuous bridges can represent a solution to the aforementioned issues, but at the
expense of generally higher complexity in the design process. A widely used alternative
strategy to realize jointless bridges without renouncing the advantages of simply supported
static schemes is exploiting a link slab solution. This allows the connection of the decks
belonging to adjacent simply supported spans without resorting to specific expansion
joint devices. In general, this solution is employed to realize one or more kinematic
chains, composed of a given amount of jointless spans and a limited number of traditional
expansion joints located at the end of these chains (and usually in correspondence with
one of the two abutments), with the advantage of increasing the smoothness (consequently
the safety) of driving, eliminating problems relating to atmospheric agents penetration
on substructures.

The large presence of existing bridges adopting this technology, designed and built
before the entrance in force of proper and detailed seismic codes, is the main reason behind
this study. Indeed, a thorough analysis of the seismic reliability offered by existing link
slab-reinforced concrete bridges is, to date, missing in the scientific literature.

A comprehensive probabilistic framework is thus proposed and adopted in this study
to perform seismic reliability and risk analysis of these systems. One of the key points of
the framework is represented by a novel practical-oriented procedure for fragility analysis
recently proposed by Minnucci et al. (2022) [22] with the aim of overcoming some limits of
classical approaches and providing rapid and useful data to directly support the decision-
making process.

Indeed, the common practice, according to the existing literature, is that of cataloging
bridges within homogeneous fragility classes [23–25], performing fragility analysis fo-
cusing on either the overall performance of the bridge or based on a unique response
parameter [26–28], where often an “in-series” system assumption is invoked for the evalua-
tion of the global failure [29–32]. Some effort was made by a few authors to address the
problem of multiple critical components in seismic assessment of bridges [33–37].
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However, the main difference of the strategy adopted here with respect to the common
approaches currently available relies on the capability of the novel fragility functions to
retrieve more specific and detailed information on the possible failure modes, without lim-
iting the analysis to the global failure conditions but also considering several intermediate
damage scenarios (including one or more damage mechanisms), and providing insights
on the numerosity of elements involved within a given damage scenario. For instance,
while classic risk analysis approaches do not permit a wide spectrum of information on the
expected damage conditions but only permit a global assessment (e.g., global attainment of
a given limit state), the proposed methodology is capable of providing the probability of
attainment of a given limit state by a specific structural component or by a group of two or
more components.

A set of case studies is presented, consisting of LS RC bridges with different geometries,
which have been preliminarily designed according to the codes that were enforced in Italy
during the 1970s. These systems are modeled in OpenSees and Multiple-Stripe nonlinear
time–history analyses are carried out to build proper demand models, from which various
types of fragility functions are determined according to two limit states, the damage onset
and near-collapse. Mean annual rates of exceeding are thus estimated for both limit states
through the convolution between the hazard and the fragility. The results shed light on the
main failure mechanisms characterizing this bridge typology, highlighting how different
levels of risk (hence, safety margins) can be associated with failure scenarios that differ in
terms of elements/mechanisms involved and damage extension.

A comparison in terms of annual rates of failure is made considering the different
bridge geometries.

The paper structure is as follows. The methodology is presented in the former part of
the manuscript in order to highlight the novelty and the strengths with respect to classic
seismic vulnerability analysis. Case studies are then introduced providing details about
the geometry, the simulated seismic design process, the numerical modeling strategy and
the considered response parameters and related capacity thresholds. In Section 4, results
are presented in terms of both fragility functions and mean annual rates of exceedance con-
sidering the damage onset and collapse limit state and quantitative insights concerning the
reliability level achieved by these systems are provided. The paper ends with a conclusive
section in which all the most relevant results are recapped.

2. Seismic Reliability Framework

In this work, a conditional probabilistic approach is used for the seismic performance
assessment of bridges. This type of approach exploits an intensity measure (IM) to decom-
pose the problem into separate tasks: hazard analysis and seismic demand analysis. In the
following, these tasks are described in detail.

2.1. Seismic Scenario and Hazard

A typical scenario of medium-high seismicity regions in Italy is considered for the
purposes of these applications.

As an intensity measure, IM, the maximum spectral acceleration component [38],
IM = max{Sa,X(T), Sa,Y(T)}, is chosen for the following two reasons: (i) it allows accounting
for the bidirectional features of the seismic input (both the horizontal, X and Y, seismic
components are considered), (ii) unlike the Peak Ground Acceleration (PGA) [29], the
spectral amplification related to the system dynamic properties can be accounted for
through the definition of the vibration period, and an average period between transversal
and longitudinal vibration modes is considered in this study. However, several alternative
(scalar and vector-valued) IMs are also available but this aspect goes out of the scope of the
present study.

A widely used and validated stochastic ground motion model [39,40] is adopted to
characterize the underlying seismicity and provide a proper IM hazard curve (through
the procedure detailed in the work [41]). Moreover, sets of synthetic ground motion



Appl. Sci. 2024, 14, 112 4 of 21

samples are generated through the stochastic model in order to obtain a suitable database
of earthquakes conditional to different IM levels, according to the analysis setup described
in the next subsection. It is worth noting that, using simulated ground motion samples,
the typical issues of deficit of high magnitudes real records and the consequent need for
scaling procedures (especially at the highest IM levels) are overcome. The only limit of the
adopted stochastic model is the incapability to produce pulse-like ground motions, so this
type of event is not considered in this work. Further details concerning the seismic scenario
and the stochastic model are provided in Appendix A to the present paper.

The chart of Figure 2 reports the IM hazard curve, i.e., a plot of the Mean Annual
Frequency (MAF) of exceeding different intensity spectral acceleration values. Black mark-
ers on the curve identify the IM levels at which seismic analysis will be performed. Two
horizontal dotted lines are superimposed on the chart to identify the MAF corresponding to
two main limit states considered in this study: Damage onset (blue) and Near-Collapse limit
states, corresponding to return periods TR equal to 100 years and 1950 years, respectively.
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Figure 2. IM hazard curve with IM levels and (damage and near-collapse) limit states highlighted.

These limits stem from the current Italian seismic code (but the values comply with
European Standards as well, e.g., Eurocode 0 [42]) under the assumption of a strategic role
played by the bridge during its service life (note that these values are halved for ordinary
constructions). The correlation between return periods and IM levels is summarized in
Table 1. In order to show the features of the seismic ground motion samples used to
perform probabilistic analyses, the charts in Figures 3 and 4 are provided. In Figure 3, the
response spectra (single components of the 20 earthquakes, average and percentiles) are
provided for two IM levels with a return period close to the reference Limit States; the
conditioning on the target IM is highlighted through red markers. In Figure 4, pairs (X and
Y) of accelerograms selected for the two aforementioned IM levels are shown.
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Figure 3. Response spectra of the ground motion samples conditional to two different IM levels:
(a) IM 7 (83 years return period) and (b) IM 13 (2200 years return period). Red dots identify the
conditioning IM value.
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2.2. Fragility Functions

Among the different probabilistic tools currently available, Multiple-Stripe Analysis
(MSA) [41,43] is selected in this paper due to its efficiency and accuracy in building seismic
demand models (e.g., models relating IM values to structural response values D). In more
detail, based on the outcomes of the extensive parametric study performed in [41], and in
order to achieve a level of accuracy comparable to that of robust direct simulation methods
(i.e., Monte Carlo-like methods), the following setup of analysis is adopted:

• the IM hazard curve is discretized in 20 IM levels equally spaced in the log–log plane,
thus MSA analysis is performed at 20 stripes;

• a set of 20 pairs (two horizontal components) of ground motion samples is used at each
IM level, for a total amount of analysis equal to 400 for every case study; this setting
reveals essential to properly account for the record-to-record variability typical of real
earthquakes (i.e., ground motion features variability with the seismic intensity [44]);

• IM hazard curve truncation at sufficiently low MAF levels (i.e., 10–5 year−1), with the
aim of accounting for the seismic intensity variability through a properly wide interval
of IMs, ranging from frequent to rare seismic events.

Once data are collected from MSA analysis, Fragility functions Fd(im) can be analyti-
cally determined. It is recalled that, according to its usual definition [45], a seismic fragility
function expresses the probability that an undesirable event will occur as a function of the
value im assumed by the random value IM. In the following subsections, fragility function
computation will be widely discussed based on both classical and innovative approaches.

2.2.1. Fragility Functions (Classic)

A limit state is described by a set of thresholds relevant to different potential failure
modes (e.g., ductile or fragile crisis of an element, etc.). Different limit states (sets of
thresholds) can be of interest, according to different performance levels of the structure,
e.g., serviceability or ultimate (collapse) conditions. Therefore, failures could occur in
different components and concern different response parameters and thresholds exceedance
(limit states).
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Each structural element can be assessed to evaluate if a given limit state is reached,
and a classic definition of the fragility function can be used for this aim:

Fd(im) = P[D ≥ d∗|IM = im] (1)

which expresses the probability of a response parameter D exceeding a limit threshold value
d* identifying the passage from a functional/safe condition into a compromise/unsafe
condition. For instance, in a bridge, D might represent the bearing maximum displacement
demand and d∗ the corresponding end-stroke, after which the deck loses its vertical support.

Classic fragility functions can be defined according to Equation (1) for any relevant
failure mode and for any limit state of interest. So, if different failure modes are considered
then the fragility function characterizing the global failure of the system, F, can be defined
as the probability of their union, i.e.,

P[F|IM = im] (2)

which is also equal to the maximum probability observed on the single failure modes.
The fragility functions defined above (Equations (1) and (2)) represent classic typolo-

gies commonly adopted to perform seismic vulnerability analysis of bridges.
Two novel typologies have recently been proposed [22] to provide a wider spectrum

of information on the possible failure mechanisms, their interaction and extent. These are
examined in the following subsections.

2.2.2. Fragility Functions of Concurrent Failure Mechanisms

Being a multi-component system, a bridge can manifest diverse damage mechanisms
involving different structural elements and these can combine to produce a variety of
damage scenarios. For instance, a seismic event might produce the attainment of the
ultimate conditions on both piers and bearings; thus, one might be interested in quantifying
the likelihood associated with such a combined failure event, in particular expressing its
probability conditional to a given intensity level (IM = im). Such a particular type of fragility
function can be mathematically expressed as follows:

FMl (im) = P[Ml |IM = im] (3)

where Ml (with l = 1, . . . NM) is one of the NM potential failure scenarios including one or
more damage mechanisms. In other terms, Ml are disjoint partitions of the global failure
set, F, and the probability of the latter, P[F], is given by the sum ∑l P[Ml ].

2.2.3. Damage Extent Fragility Functions

Additional information we might be interested in retrieving is related to the extent
of a specific failure mode; indeed, while performing seismic losses analysis, it would be
useful to know the effective number/percentage of components showing a given degree of
damage or exceeding a specific performance level, because this will guide and make us
more aware of the reconstruction/repair cost assessment.

If we analyze a single failure mode (e.g., piers slight damage attainment) identifying it
as event E, partitions of E, e.g., subsets Si, i = 1. . .NS, can be defined to represent failures
occurring in 1, 2, . . . all NS elements belonging to the same family.

Sometimes, rather than creating partitions for individual elements, it might be conve-
nient to work with percentages of the elements of the family (e.g., less than 30%, from 30%
to 60%, and so on), thus creating rougher partitions Si, i = 1. . . NR, with NR ≤ NS.

Therefore, subsets of disjoint events Di can be considered as follows.{
Di = Si i = 1

Di = Si/Si−1 i = 2, . . . , NR
(4)
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For example, if we assume the following partitions of the event E, S1 = 35%,
S2 = 70%, S3 = 100%, the resulting disjoint events are D1 = [0%, 35%), D2 = [35%, 70%),
D3 = [70%, 100%].

Obviously, the probability of E can be retrieved by summing up the probabilities P[Di]
of all the identified NR sub-events.

P[E] = ∑NR
i=1 P[Di] (5)

Starting from the above assumptions, the following two types of fragility functions
will be adopted in this work:

FDi (im) = P[Di|IM = im] (6)

provides the conditional (to the seismic intensity) probability of having a specific sub-
set (e.g., between 70% and 100% according to D3 of the previous example) of elements
(e.g., piers) failed;

FSi (im) = P[Si|IM = im] (7)

provides the conditional probability of a specific damage condition (e.g., 70% damaged
elements).

2.3. Annual Failure Rates

Once both the hazard and the fragility are characterized, it is possible to proceed
with the estimation of the mean annual failure rate, νE(e), i.e., the mean annual rate of
exceedance of a given failure event E. For instance, the failure event E might be represented
by the attainment of the collapse limit state for a combined damage scenario involving
piers and bearings simultaneously (using fragility function of the type of Equation (3); or
the attainment of a serviceability condition on the link bars according to one of the possible
shades of analysis: at least one link damaged (using fragility of Equation (1)), a given
percentage of them damaged (fragility of Equations (6) and (7)) and so on.

The estimation of νE(e) follows from the application of Total Probability Theorem [41]
and stems from the following convolution integral

νE(e) =
∫

IM
P(e|im) · |dνIM(im)| (8)

between fragility function P(e|im) (any of the proposed ones) and seismic hazard νIM(im).
The above integral can be easily solved numerically, as graphically shown in the charts of
Figure 5, which provide visual representations of the convolution between hazard (yellow
curve) and fragility (blue curve) performed via the rectangular numerical integration
technique (proposed for its simplicity). It is worth noting how fragility functions do not
need to be monotonic within their domain of definition (as we are used to when classic
fragility is adopted) but convolution can be performed regardless of this, as specifically
shown in the explicative chart of Figure 5b where a non-monotonic fragility is assumed.
This is important because the proposed fragility functions (Equations (3), (6) and (7)) can
be notably non-monotonic because of the particular type of information they carry.
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3. Case Studies
3.1. Considered Bridge Geometries

Link slab (LS) r.c. bridges represent a fairly typical structural typology within the
infrastructural networks of many countries worldwide, especially in Italy.

The geometries of the case studies investigated in this study were selected on the basis
of the most recurrent geometries observed on two major motor routes located in the Marche
region, i.e., the SS76 and SS77 roads.

The analysis of the dataset on the SS76 and SS77 showed that the most frequent
numbers of spans are N = 5 and N = 10, with a mean span length Ls = 25 m and a deck
width B = 12.50 m. Based on the above, the choice of considering the following two L/B
ratios: L/B = 10 (with total bridge length L = 131.0 m and N = 5), L/B = 20 (with L = 263.5 m
and N = 10). To complete the set of case studies, besides the two L/B ratios, the H/D
ratio (H being the pier height and D the corresponding diameter) is also assumed to
parametrically vary within a reasonable range of values: H/D = 3, H/D = 5, H/D = 7. From
the combination of the aforesaid cases, six multi-span link slab r.c. bridges characterized by
different total lengths and pier slenderness are considered and analyzed in this study.

The deck cross-section is assumed to be B = 12.50 m wide and composed of a cast-in-
site slab supported by three V-shape pre-stressed concrete girders (Figure 6). Single piers
with circular cross sections are considered. These features are common to all the selected
case studies.

3.2. Design Properties

Each case study is conceived to be representative of existing Italian bridges constructed
between 1970 and 1980, i.e., in the interval prior to the enforcement of proper specific seismic
design codes. To this aim, a simulated design was carried out preliminarily on the whole set
of bridges considering both gravity and seismic loads according to old Italian codes [46,47].

A simple cantilever static scheme is assumed for the seismic design of piers, with an
equivalent punctual seismic force (7% of the gravity loads according to [46,47]) applied
on the top. Gravity loads derive from the deck self-weight and superstructure permanent
loads (approximately 50 kN/m).

Consistent with the bridge typology, spans are longitudinally connected, in corre-
spondence with the joints and at the slab level, through kinematic links realized by means
of DYWIDAG bars. These are designed considering the cumulative contributions of the
seismic forces transmitted by the spans: abutment B is assumed as fixed, thus with a link
slab designed to withstand the seismic mass of the whole kinematic chain (made of all the
spans of the bridge), therefore at this joint, the number of link bars is the highest; on the
contrary, an expansion joint is assumed in correspondence of abutment A, where there are
no links; all the intermediate joints (on piers) have a number of link bars which is scaled
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depending on the specific location within the chain, i.e., bars number reduces moving from
abutment B towards abutment A.
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Material properties (Table 2) are assumed as follows: concrete grade Rck300 (i.e., cu-
bic characteristic strength 30 MPa), stirrups and longitudinal rebars steel grade FeB44k
(i.e., yielding strength 435 MPa), link DYWIDAG bars made of harmonic steel with peak
strength 950 MPa.

Table 2. Steel and concrete mechanical properties.

E (MPa) fyk (MPa) fuk (MPa) εy εu

DYWIDAG 206,000 950 1050 0.0046 0.04

Steel 206,000 435 540 0.00207 0.12000

Confined
concrete 30,000 26.75 18.57 0.0027 0.0114

Unconfined
concrete 30,000 25.00 3.58 0.002 0.0060

Features stemming from the simulated design process are summarized in Table 3
(piers design properties) and Table 4 (DYWIDAG link bars design properties at every
structural joint).

Neoprene bearings are placed between each beam and the pier cap (or abutment);
related properties are as follows [48]: bearing area A = 157.5 cm2, thickness t = 52 mm and
shear modulus G = 1 MPa.

Schematic bridges representation (longitudinal prospective view, planar view and
cross sections) are shown in Figure 6. Note that structural details of link slabs are taken
from the design documents of a real existing bridge built in the 1980s [45].
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Table 3. Piers design properties for different H/D ratios.

H/D = 3 H/D = 5 H/D = 7

Pier height H (m) 6 10 14
Long. Rebars: number/diameter (mm) 30ϕ26 59ϕ26 66ϕ30
Long. Rebar geometric ratio (%) 0.51 1.00 1.49
Stirrups: diameter (mm)/spacing (mm) ϕ14/250 ϕ14/250 ϕ14/250

Table 4. Joint design properties (number and diameter of DYWIDAG bars) for different H/L ratios.

Joint Number 1 2 3 4 5 6 7 8 9 10

DYWIDAG bars:
number/diameter (mm)

L/B = 5 2ϕ40 2ϕ40 3ϕ40 4ϕ40 5ϕ40 - - - - -

L/B = 10 2ϕ40 2ϕ40 3ϕ40 4ϕ40 5ϕ40 6ϕ40 7ϕ40 8ϕ40 9ϕ40 10ϕ40

3.3. OpenSees Numerical Model

All the case studies were modeled in OpenSees [49] following the strategy described
below and schematically represented in Figure 7.
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Bridge models are 3D and account for both mechanical and geometrical nonlinearity.
Deck girders are not expected to show nonlinear responses and are thus modeled through
elastic frames. The kinematic links at the joints are explicitly modeled to reproduce the
scheme shown in Figure 6, with a central bare portion of the DYWIDAG bar and two
lateral parts embedded within the concrete slabs. This detail is realized in OpenSees
adopting a straight layer of fibers with Steel02 uniaxial material for the DYWIDAG bars
and the Concrete01 uniaxial material for the slab in the side portions. A bilinear contact
element (see [50]) is adopted to account for the potential pounding between adjacent spans,
assuming a gap distance in compression equal to 40 mm; in particular, such a phenomenon
is expected after the link bar failure, which is explicitly accounted by the model thanks
to the implementation of a MinMax material, i.e., a fictitious material wrapping the bars
constitutive law that deactivates the DYWIDAG elements once attained their ultimate
strain capacity. An analog contact material is inserted to catch the pounding between the
deck and the abutments.

Zero-length elements with Steel01 uniaxial material are used to model the neoprene
bearings [51], assuming an elastic stiffness k = GA

t and a maximum admissible strength
equal to the lower value between the friction resistance µ0w (where w is the vertical load
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transmitted on the bearing, and µ0 = 0.25 is the friction coefficient between concrete and
neoprene surfaces), and the shear strength γuGA (assuming γu = 1.0 is the ultimate shear
strain of the neoprene pads).

Distributed plasticity with fiber sections is used for the piers, with the Concrete01
material set according to Mander [52] in order to simulate both confined and unconfined
portions (i.e., parts within and outside the hoops, respectively). Pier steel reinforcements
are also modeled using fibers exploiting the Steel02 uniaxial material. Pier caps are modeled
as rigid.

Regarding the abutments, a classic seat type resting on piles is considered.
The interaction between abutments and soil is considered following validated strate-

gies available in the literature, briefly recalled below. Along the longitudinal direction,
bridge motions inducing compression of the soil behind the abutment backwall produce,
as the main effect, the development of a passive resistance within the soil, and this is
simulated using the hyperbolic model proposed by Shamsabadi et al. [53] for a granular
soil type. Longitudinal movements of the bridge away from the abutment generate (active)
forces mainly withstood by piles, and this response can be simulated through a trilinear
force deformation law [54]. A similar behavior is expected along the transverse direction
hence the same model is used. Each of the aforesaid (passive/active) constitutive laws is
implemented through a proper set of zero-length elements.

It is worth mentioning that, in this work, neither the influence of asynchronous seismic
inputs nor soil–structure interaction effects under the piers are taken into account, but
refinements would be possible (e.g., [55,56]) provided that a proper knowledge of the
geotechnical conditions of the soil is reached.

3.4. Limit States and Capacity Thresholds

Based on the main failure mechanisms expected on the bridge, a set of relevant
response parameters is selected to be monitored during numerical simulations and post-
processed through the proposed probabilistic framework.

The failure modes potentially occurring are on piers (according to shear and/or
flexural crisis), bearings, links, and abutments. In light of this, capacity thresholds are
determined for each of these structural components and for two different limit states (LSs):
a damage onset limit state (simply referred to as damage LS hereinafter) and a near collapse
LS (collapse hereinafter). Threshold values summarized in Table 5 are derived in part
from the literature [54,57] (abutment capacity), and in part from seismic codes and relevant
technical documents [51,58] (bearings and piers limits). Thresholds adopted for the link
bars directly follow the constitutive law of this specific steel grade.

Table 5. Limit states and capacity thresholds of different structural subcomponents.

Limit State Links Axial Strain Piers Top Displacement
(mm)

Bearings Stroke
(mm)

Abutment Displacement
(mm)

H/D 3 H/D 5 H/D 7 Passive Active Transversal

Damage 0.0046 21.7 76.6 149.7 80 37 9.75 9.75
Collapse 0.0400 106.5 234.3 407.6 200 1000 1000 1000

It must be noted that the limit values for piers are expressed in terms of top displace-
ments because it is easier to track this response parameter during the analysis. However,
preliminary moment–curvature sectional analyses were performed on the piers cross-
section (according to a cantilever static scheme) in order to correlate the damage level
(plastic hinge at the base) to the proper values of the pier top displacement.

4. Failure Rate and Result Discussion

This section collects the main outcomes stemming from the probabilistic analysis.
Results are presented in terms of fragility functions and mean annual rates of exceedance
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considering two limit states, i.e., damage onset LS (corresponding to TR = 100 years,
ν = 1 × 10−2 1/year) and collapse LS (corresponding to TR = 1950 years, ν = 5 × 10−4 1/year).

The results presentation is organized as follows. The bridge with L/B = 10 (the longest)
and H/D = 5 (intermediate pier slenderness) is assumed as a reference case study and a
detailed discussion on the seismic vulnerability and reliability of this system is provided in
the next subsections: failure rates derived from classic element-based fragility functions
(Section 4.1), failure rates derived from combined failure mechanisms (Section 4.2), failure
rates related to different damage extent scenarios (Section 4.3).

Finally, a comparison among the failure rates associated with different bridge geome-
tries is presented and thoroughly discussed in Section 4.4.

4.1. Failure Rates from Classic Element-Based Fragility Functions

First, classic fragility curves are presented in Figure 8 to provide a global overview of
the different vulnerabilities shown by the bridge at the damage and collapse limit states.
The considered failure mechanisms are those presented in Section 3.4 and involve the
structural elements here briefly recalled: Link bars, Piers, Bearings, and Abutments. The
latter can show three different failure modes, related to longitudinal active or passive
response and transversal response.
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Figure 8. Fragility curves for different elements and failure modes evaluated for two limit states:
(a) damage, (b) collapse.

The annual rates of exceedance associated with each of the aforementioned failure
modes (obtained through the convolution between fragility and hazard functions) are
collected in the chart of Figure 9. Markers with different colors identify damage (grey) and
collapse (red) failure rates. Using the same colors, two horizontal dotted lines are super-
imposed on the chart to identify the code-based MAFs corresponding to the considered
limit states (ν = 1 × 10−2 1/year for damage LS, ν = 5 × 10−4 1/year for collapse LS).
Quantitative assessment of the reliability of the system can be carried out by comparing
the obtained failure rate values with the reference MAF levels defined by the codes; in
particular, annual rates above the line corresponding to the code-based MAF denote “un-
safe” conditions, while annual rates below the line identify “safe” situations; the vertical
distance between the marker and the line is a measure of the safety margin against that
specific mode of failure.

In light of this, the outcomes presented in Figure 9 can be interpreted as follows:

• at the collapse limit state, piers and abutments (and all related mechanisms) show
satisfactory safety margins, while bearings and links manifest failure rates higher than
desired (slightly higher for bearings, notably higher for links);

• at the damage limit state, all the elements/mechanisms present rates of exceedance
which are, on average, around the target MAF value, except for the markers of links
and abutment active response which are above the reference line.

It shall be noted that these results might be not sufficient to provide a clear under-
standing of the level of vulnerability of the bridge, because information on the extension
of the damage is missing. Indeed, failure rates stemming from classic fragility functions
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refer to the occurrence of at least one unsatisfactory event and thus any detailed evidence
concerning the number of elements experiencing damage is totally hidden. To complete
this information, one should refer to Section 4.3, where the novel fragility functions are
used to estimate the risk related to different damage extent scenarios.
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4.2. Failure Rates Associated with Different Damage Mechanisms Combination

In order to enrich the level of information concerning the specific vulnerabilities of the
bridge, fragility analysis is performed using the novel approach defined by Equation (3),
capable of quantifying the probability (conditional to seismic intensity levels) of occurrence
of multiple failure modes (i.e., groups of mechanisms activated simultaneously).

Fragility curves for different subsets of failure scenarios are presented in Figure 10
for both damage and collapse limit states. This type of fragility analysis is useful (even
before moving to the next step of risk estimation) because useful insights can be retrieved
concerning the group of damage mechanisms most representative of different intervals
of seismic intensity. For instance, looking at the collapse limit state (Figure 10b), it can
be observed how the range of IMs approximately from 0.2 g to 0.75 g is governed by
link-only related failures, while at the higher intensities both bearings and links failures are
predominant. An additional fragility type, labeled as Global, is reported in Figure 10, and it
is given by the sum, im-by-im, of the probabilities related to the different damage scenarios.
This fragility can be also seen as the envelope of the classic ones presented in the previous
Section 4.1 (Figure 8).
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Figure 10. Fragility curves for different damage mechanism combinations evaluated for two limit
states: (a) damage, (b) collapse.

The annual rates of exceedance associated with each of the aforementioned failure
mode combinations are collected in the chart of Figure 11. The combined damage scenarios
are identified with capital letters denoting the initials of the names of the involved elements
(e.g., PLBA = Piers–Links–Bearings–Abutments; LB = Links–Bearings, and so on). The risk
estimates related to Global fragility are also shown in the chart using a colored asterisk as a
marker and are labeled as Global. It is worth noting that the failure rates presented in this
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chart are always lower or at maximum equal to those presented in the previous subsection,
simply because they refer to mutual partitions of the failure.
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4.3. Failure Rates Associated with Different Damage Extension Scenarios

In this section, the analysis of the vulnerability and risk is pushed a little bit fur-
ther. Information about the extension of the failure mechanisms identified on each struc-
tural element is indeed provided, first in terms of fragility curves (derived according to
Equations (6) and (7)) and then in terms of annual rates of exceedance.

Results are presented separately for the three main families of structural elements,
i.e., Bearings (Figure 12), Links (Figure 13), and Piers (Figure 14).
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Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 22 
 

Figure 12. Fragility curves for different percentages of damaged bearings, evaluated for two limit 
states: (a) damage, (b) collapse. 

  
(a) (b) 

Figure 13. Fragility curves for different percentages of damaged link–bars, evaluated for two limit 
states: (a) damage, (b) collapse. 

  
(a) (b) 

Figure 14. Fragility curves for different percentages of damaged piers, evaluated for two limit states: 
(a) damage, (b) collapse. 

Different percent intervals of damage extent are considered. Besides the fragility 
curves of each percentage range, the curve obtained by summing up all the single curves 
is superimposed with a solid black line, and this corresponds to the classic fragility curve 
of each element already presented in Figure 8 of Section 4.1. The only difference between 
the classic curves presented in Figure 8 and the current one in Figures 12–14 is in the 
lognormal assumption used only to compute the ones in Figure 8. However, apart from 
the different degrees of smoothness, these curves carry the same identical information on 
the global damage probability of single structural elements. 

The annual rates of exceedance are presented in Figure 15 in separate charts, one 
dedicated to each structural element. Damage and Collapse failure rates are compared 
using the usual legend of colors and symbols. 

   
(a) (b) (c) 

Figure 15. Annual failure rates for different damage and collapse extent scenarios involving: (a) 
links, (b) bearings, (c) piers. 

The main conclusions drawn from these outcomes are listed below: 

Figure 13. Fragility curves for different percentages of damaged link–bars, evaluated for two limit
states: (a) damage, (b) collapse.



Appl. Sci. 2024, 14, 112 15 of 21

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 22 
 

Figure 12. Fragility curves for different percentages of damaged bearings, evaluated for two limit 
states: (a) damage, (b) collapse. 

  
(a) (b) 

Figure 13. Fragility curves for different percentages of damaged link–bars, evaluated for two limit 
states: (a) damage, (b) collapse. 

  
(a) (b) 

Figure 14. Fragility curves for different percentages of damaged piers, evaluated for two limit states: 
(a) damage, (b) collapse. 

Different percent intervals of damage extent are considered. Besides the fragility 
curves of each percentage range, the curve obtained by summing up all the single curves 
is superimposed with a solid black line, and this corresponds to the classic fragility curve 
of each element already presented in Figure 8 of Section 4.1. The only difference between 
the classic curves presented in Figure 8 and the current one in Figures 12–14 is in the 
lognormal assumption used only to compute the ones in Figure 8. However, apart from 
the different degrees of smoothness, these curves carry the same identical information on 
the global damage probability of single structural elements. 

The annual rates of exceedance are presented in Figure 15 in separate charts, one 
dedicated to each structural element. Damage and Collapse failure rates are compared 
using the usual legend of colors and symbols. 

   
(a) (b) (c) 
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Figure 14. Fragility curves for different percentages of damaged piers, evaluated for two limit states:
(a) damage, (b) collapse.

Different percent intervals of damage extent are considered. Besides the fragility
curves of each percentage range, the curve obtained by summing up all the single curves is
superimposed with a solid black line, and this corresponds to the classic fragility curve of
each element already presented in Figure 8 of Section 4.1. The only difference between the
classic curves presented in Figure 8 and the current one in Figures 12–14 is in the lognormal
assumption used only to compute the ones in Figure 8. However, apart from the different
degrees of smoothness, these curves carry the same identical information on the global
damage probability of single structural elements.

The annual rates of exceedance are presented in Figure 15 in separate charts, one
dedicated to each structural element. Damage and Collapse failure rates are compared
using the usual legend of colors and symbols.
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The main conclusions drawn from these outcomes are listed below:

• regarding the failure rates of the link bars, it can be observed how the fairly high
level of collapse risk previously identified in Section 4.1 actually involves a very small
number of elements (less than 25%), and this information notably helps to adjust this
result interpretation, which, based on the sole numbers provided in Figure 9, may
appear greater than it really is.

• It can be seen how the risk decreases rapidly as we look at higher damage extent sce-
narios, e.g., the MAF of having ruptures on 25–50% of links is one order of magnitude
lower than the MAF of having less than 25% of elements failed.

• Similar comments can be made for other structural elements.

4.4. Failure Rates Sensitivity to Different Bridge Geometries

To conclude, the failure rate sensitivity to the different examined bridge geometries
is assessed. Due to space constraints, it is not possible to maintain the previous level of
detail in the results presentation of every case study. A comparison among the risk values
obtained from different bridges is proposed in the charts of Figure 16. Different markers
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identify different bridges, according to the legend in Figure 16f; colors identify the limit
state (as before). The analysis of the outcomes leads to the following main comments:

• Overall, single-element failure rates (Figure 16a) of different bridges do not vary
significantly and the estimated MAFs remain relatively constant.

• A higher variability is observed on the annual rates characterizing different failure
mechanism combinations (Figure 16b), which are however expected to change from
case to case; in particular, this variability is higher at the damage LS and quite negligi-
ble at the collapse LS.

• Concerning the damage extent scenarios, it is worth noting that the failure rates on
bearings (Figure 16c) are comparable among all the case studies, while some differences
can be detected from the point of view of links (Figure 16d) and piers (Figure 16e).

• More specifically (Figure 16d), the longest bridge (L/B = 20) is the only one that shows
a different trend of MAF values, and this trend testifies that the probability of link
failure is higher but involves a limited number of elements; on the contrary, shorter
bridges have a higher probability of more widespread links disruptions.

• Regarding the piers, all the bridges show proper safety margins against the collapse,
while the damage extent scenarios at the damage limit state are characterized by MAF
values with a certain degree of variability.
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5. Conclusions

A comprehensive probabilistic framework is proposed and adopted in this study
to perform seismic reliability and risk analysis of existing link slab (LS) bridges, which
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represent a widely diffused structural typology within the infrastructural networks of
many countries.

The methodology is extensively presented in the former part of the paper in order to
highlight the novelty and the strengths with respect to classic seismic vulnerability analysis.

The main difference with respect to the common approaches relies on the types
of fragility functions adopted: the ones adopted in this study are capable of retrieving
more specific and detailed information on the possible failure modes, without limiting
the analysis to the global failure conditions while also considering several intermediate
damage scenarios (including one or more damage mechanisms) and providing insights on
the numerosity of elements involved within a given damage scenario.

A set of case studies is presented, consisting of Link-Slab reinforced concrete bridges
with different geometries, which were preliminarily designed according to the codes
enforced during the 1970s, modelled in OpenSees and then subjected to reliability analyses
exploiting the proposed probabilistic framework.

According to outcomes stemming from the study, it is observed that the main failure
mechanisms characterizing this bridge typology involve the link bars and the bearings.

The former represents the peculiarity of these systems, introduced to exploit sev-
eral advantages in terms of driving comfort (reduced number of expansion joints) and
functionality (hyperstaticity under horizontal actions and simply supported beam scheme
under gravity loads). At the same time, these elements might represent a primary source
of vulnerability; indeed, annual failure rates much higher than expected are observed.
However, thanks to a refined fragility analysis, it was possible to further investigate the
entity of the problem in terms of damage extent. It was observed how the higher failure
rates are actually related to the disruption of a very limited number of links (less than 25%),
while the collapse probabilities associated with more widespread damages are lower and
comparable to the reference-expected hazard level at the collapse limit state.

Regarding the failure rates of bearings, it is realistic to have MAF values higher than
the code limit considering that neoprene pads commonly adopted in existing bridges were
not designed to withstand earthquakes and the rubber property is not comparable to that
of modern devices and isolators. This vulnerability could be removed by replacing the old
supports with newer and more suitable ones.

Piers, despite being designed with simplified seismic rules, were revealed to have
proper safety margins against the collapse. Such main results hold (with minor variations)
for all the bridge geometries investigated.

Besides these results being specifically related to the examined case studies, the
following general comments on the methods can be made.

The proposed strategy was revealed to be suitable to provide a higher level of in-
formation on the reliability of the systems because it allows the association of different
levels of risk (hence safety margins) to failure scenarios which differ in terms of ele-
ments/mechanisms involved and damage extension. Such a higher level of detail in the
risk analysis may be useful to better quantify post-earthquake consequences (e.g., costs and
losses) and define more tailored retrofit interventions, which are outside the scope of the
present work but are considered worth mentioning.

Moreover, the proposed probabilistic framework is made of different components,
namely: (1) a stochastic ground motion model for hazard characterization and ground
motion sample generation; (2) the multiple stripe analysis with proper parameter setup
aimed at providing accurate estimates of the risk; (3) innovative fragility functions. Each
of these tools was carefully chosen and set in order to make the framework reliable and
robust and offer the reader a suitable reference framework for performing risk analysis.

In future development, the proposed strategy will be used to assess the vulnerability
and risk of other widespread bridge classes, such as integral bridges, post-tensioned precast
bridges or more modern typologies such as steel–concrete composite bridges or bridges
with seismically isolated decks.
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Appendix A. Details on Seismic Hazard and Ground Motion Model

The seismic scenario is described by a source model characterized by two main random
seismological parameters, namely the moment magnitude M and the epicentral distance
R. A Gutenberg–Richter recurrence law is used to describe the magnitude–frequency
relationship of the seismic source:

νM(m) = 10(a−bm) (A1)

in which the parameter a accounts for the mean number of earthquakes expected from
the seismic source, while the parameter b is a regional seismicity factor governing the
proportion of small to large earthquakes. The assumed recurrence law, bounded within
the range of magnitudes of interest [m0, mmax], leads to the following probability density
function (PDF) of the moment magnitude:

fM(m) = β
e−β(m−m0)

1 − e−β(mmax−m0)
(A2)

being β = b* loge(10), m0 the magnitude value below which non-significant effects are
expected on the structures, and mmax the physical upper bound of the magnitudes expected
from the source. In this application, it is assumed m0 = 5.5, mmax = 8, a = 4.35 and b = 0.9, in
order to provide a seismic hazard representative of Italian medium-high seismicity zones.
The epicentral distance is modeled according to the following PDF:

fR(r) =
{ 2r

rmax
i f r < rmax

0 otherwise
(A3)

which is obtained under the hypothesis that the source produces random earthquakes with
equal likelihood anywhere within a distance from the site rmax = 100 km, beyond which
the seismic effects are assumed to become negligible. The soil condition is described by a
deterministic value of the shear-wave velocity parameter VS30 = 255 m/s, representative of
deformable soil condition.

The Atkinson-Silva [40] source-based ground motion model is used to describe the
attenuation from the source to the building site. This model, combined with the stochastic
point source simulation method of [39] is employed to generate synthetic accelerograms
consistent with the random variables characterizing the seismic scenario, i.e., mainly
magnitude M and source-to-site distance R.

For the simulation of two horizontal ground motion components, the stochastic model
of [39] is modified as suggested by [59], according to which the radiation spectra can
be considered to have the same shape for the two horizontal orthogonal directions, but
the intensities are scaled by two different scaling random parameters (random scaling
disturbance ε1, ε2) generated as samples of a multivariate lognormal distribution with zero
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mean, standard deviation σ = 0.523 and correlation ρ = 0.8. This way, the target radiation
spectra along directions 1 and 2 will be equal to A1(ω) = ε1A(ω) and A2(ω) = ε2A(ω).

The random scaling disturbance (ε1,ε2), together with the Gaussian white noise process
ensures the ground motions record-to-record variability to be accounted for. In particular,
for each earthquake sample a Gaussian white noise signal is generated (Figure A1a) and,
after being windowed through the envelope functions e(t) (Figure A1b), its normalized
frequency spectrum is applied to the target radiation spectrum (Figure A1c), thus providing
the variability of the energy content within the frequency domain. Such variability is further
amplified by the lognormally distributed multiplicative factors (ε1,ε2) of the radiation
spectra. The resulting sample of acceleration time series is finally generated by back-
transforming the spectrum from the frequency to the time domain (Figure A1d).
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