
University of Camerino

School of Advanced Studies

Ph.D. in Computer Science and Mathematics

(XXXV Cycle)

Performability evaluation of BFT
protocols for DLT

Candidate:
Marco Marcozzi

Supervisor:
Prof. Leonardo Mostarda

Academic Year 2022-2023

Dedicated to Barbora Marcozzi

Contents

Abstract

Introduction iv

1 Background knowledge 1
1.1 Distributed Ledger Technologies . 1

1.1.1 Blockchains . 3
1.1.2 Directed Acyclic Graphs . 4

1.2 Consensus protocols for DLT . 6
1.2.1 Proof of Work . 10
1.2.2 Proof of Stake . 12
1.2.3 Byzantine Fault-Tolerance 15

1.3 Performability evaluation . 17
1.3.1 Analytical models . 19

2 Related Work 25
2.1 Consensus protocol selection . 25
2.2 Performability evaluation techniques 28

2.2.1 Definitions . 29
2.2.2 Benchmarking . 30
2.2.3 Analytical modeling . 33

3 Methodology 38

4 Protocol selection framework 42
4.1 Problem definition . 43

4.2 Criteria definition . 44
4.3 Criteria weights . 47
4.4 Data acquisition . 48
4.5 Consensus family selection . 48

5 Performability evaluation of BFT protocols 53
5.1 Availability model for BFT protocols 53
5.2 Performability model for BFT protocols 59

6 Results 66
6.1 Evaluation of availability for BFT protocols 66
6.2 Evaluation of performability for BFT protocols 69

6.2.1 Sensitivity analysis . 72

Conclusions 77

Bibliography 80

Abstract

The importance and interest about distributed systems as known an impulse, fol-
lowing the widespread appearance of distributed ledger technologies, in particular
blockchains. Researchers and developers have determined that a main source of
performance bottlenecks in the distributed system can be attributed to the con-
sensus protocol employed. In this thesis, it is presented the multi-criteria decision-
making process adopted to select a suitable consensus protocol to be used under
given conditions and requirements dictated by an arbitrary use scenario for the sys-
tem under development. Subsequently, two analytical models to assess availability
and performability of Byzantine fault-tolerant protocols are discussed and applied.
The main results include the measurement of availability when the occurrence of
malicious nodes in the network follows an arbitrary probability distribution, and
the estimation of performability metrics for Byzantine fault-tolerant protocols. In
particular, it emerges that all the evaluated quantities are non-linearly dependent
on the defined parameters, e.g. the total number of nodes and the transactions
service rate. Notably, the results from the analytical evaluation correctly replicates
the trend of empirical studies found in literature, even though the values from the
models and from the benchmarks are not consistently matching.

Abbreviations
DLT Distributed Ledger Technology
IoT Internet of Things
BFT Byzantine Fault-Tolerant
DAG Directed Acyclic Graph
PoX Proof of X
PoW Proof of Work
PoS Proof of Stake
DPoS Delegated Proof of Stake
PoC Proof of Capacity
PoA Proof of Authority
PoI Proof of Importance
PBFT Practical Byzantine Fault-Tolerant
RCPA Ripple Consensus Protocol/Algorithm
SCP Stellar Consensus Protocol
ABFT Asynchronous Byzantine Fault-Tolerant
Tx Transaction
P2P Peer-to-Peer
RDA Raw Data Application
SAT Session Application with Trace
SA Session Application
USD/US$ United States Dollar
MCDM Multi-Criteria Decision-Making
TPS Transactions per second
ASIC Application-Specific Integrated Circuit
GPU Graphics Processing Unit
MTTF Mean Time To Failure
MTTR Mean Time To Repair
IaaS Infrastructure as a Service
SRN Stochastic Reward Net
LU Lower–Upper (decomposition)
SVD Singular Value Decomposition
PBFTPEM Practical Byzantine Fault-Tolerant Performability Evaluation Model

i

Research goals statement

This thesis aims to answer the following research questions:

• Given certain properties characterizing a system (e.g. data throughput, la-
tency, energy consumption, etc.), can we understand which consensus pro-
tocol is more suitable in this scenario?

• Once selected a candidate solution, can analytical modeling effectively char-
acterize and predict the qualities of said consensus protocol?

Contribution to the field and novelty

There are some novel contributions to the field reported in this thesis, specifically:

• A MCDM framework to select the most suitable consensus protocols in var-
ious scenarios, along with the characterization of metrics associated with
DLT platforms and their consensus protocols.

• Novel analytical models for the availability and performability evaluation of
BFT protocols for DLT.

Published Articles, Proceedings Papers and Preprints

Articles

[Fil+22] Ernestas Filatovas et al. “A MCDM-based framework for blockchain con-
sensus protocol selection”. In: Expert Systems with Applications (2022), p. 117609.
doi: 10.1016/j.eswa.2022.117609
[MMC22] Marco Marcozzi, Leonardo Mostarda, and Diletta Cacciagrano. “Off-
chain trading for micro grid systems”. In: Frontiers in Blockchain 5 (2022). doi:
10.3389/fbloc.2022.956621

[Mar+23a] Marco Marcozzi et al. “Availability evaluation of IoT systems with
Byzantine fault-tolerance for mission-critical applications”. In: Internet of Things
23 (2023), p. 100889. doi: 10.1016/j.iot.2023.100889

ii

https://doi.org/10.1016/j.eswa.2022.117609
https://doi.org/10.3389/fbloc.2022.956621
https://doi.org/10.1016/j.iot.2023.100889

[MM23] Marco Marcozzi and Leonardo Mostarda. “Analytical model for performa-
bility evaluation of Practical Byzantine Fault-Tolerant systems”. In: Expert Sys-
tems with Applications (2023), p. 121838. doi: 10.1016/j.eswa.2023.121838

Proceedings Papers

[Bis+22] Stefano Bistarelli et al. “Blockchain and IoT Integration for Pollutant
Emission Control”. In: Advanced Information Networking and Applications: Pro-
ceedings of the 36th International Conference on Advanced Information Network-
ing and Applications (AINA-2022), Volume 3. Springer. 2022, pp. 255–264. doi:
10.1007/978-3-030-99619-2_25

[Mar+23b] Marco Marcozzi et al. “Availability Model for Byzantine Fault-Tolerant
Systems”. In: Advanced Information Networking and Applications: Proceedings of
the 37th International Conference on Advanced Information Networking and Appli-
cations (AINA-2023), Volume 1. Springer. 2023, pp. 31–43. doi: 10.1007/978-

3-031-29056-5_4

Preprints

[MM21] Marco Marcozzi and Leonardo Mostarda. “Quantum consensus: an overview”.
In: arXiv preprint arXiv:2101.04192 (2021). doi: 10.48550/arXiv.2101.04192

iii

https://doi.org/10.1016/j.eswa.2023.121838
https://doi.org/10.1007/978-3-030-99619-2_25
https://doi.org/10.1007/978-3-031-29056-5_4
https://doi.org/10.1007/978-3-031-29056-5_4
https://doi.org/10.48550/arXiv.2101.04192

Introduction

Distributed computing covers a wide range of established and important appli-
cations, such as the Internet, local-area networks (e.g. Ethernet), e-mail ser-
vices, replicated databases, etc. The undeniable importance of this technological
paradigm alone justifies the vast amount of literature on the topic, with articles
and books published since the early development of networked computers [TS17].

Blockchains - and in particular Bitcoin [Nak08] - triggered a new golden era for
distributed systems, when Bitcoin emerged as a novel technology with a disruptive
potential and appealing background philosophy of a currency independent from
any centralized authority. However, it was with the proposal and implementation
of Ethereum that the ambition of creating a completely decentralized distributed
computer sparked [But14]. Since then, over a hundred of different Distributed
Ledger Technology (DLT) platforms - of which blockchains are the largest subclass
- have been developed and used for several scopes. Some of them have the clear
intent to be an alternative currency - a cryptocurrency - to transact tokens between
parties in exchange for real-world goods and services [Lee19], while other DLTs are
aiming to be a platform for solving transparently and securely some compelling
challenges in various sectors, such as supply chains, healthcare, Internet of Things
(IoT), manufacturing, etc.

However, DLTs suffer of low performances for real-time applications and a
widespread adoption of DLT solutions in most of daily situations is still not re-
alistic. For this, the main challenge is to increase the number of operations that
can be conducted in a determined interval (throughput) and the time needed for
a single operation to become effectively part of the ledger (transaction latency).
There are different solutions and platforms developed with the goal of increasing
throughput and to reduce the transaction latency, but, up-to-date, there is not

iv

a widely recognised solution for addressing these challenges. This is because the
“scalability trilemma” [AB18] poses a limit on three conflicting features of DLTs:
performance, decentralization, and security. In other words, any DLT can maxi-
mize two out of three features, while the third one has to be sacrificed, e.g. if a
DLT maximizes throughput and security, it has to be centralized.

The diversification in the development of DLT platforms, and the introduction
of new paradigms for consensus protocols, lead to a difficult classification process
in the area of DLTs. In distributed computing, broadly, a consensus protocol
comprehends the algorithms and processes followed, in order to achieve agreement
on the tasks to be performed by the system.

Besides the academic interest in classification and taxonomies of complex sys-
tems, the effort to compare different protocols it is actually noteworthy because
it allows a better understanding of the processes underlying consensus protocols.
Classification might be helpful in highlighting features and bottlenecks connected
with a certain type of consensus protocol, while discriminating differences and
strengths [Xia+20].

To understand peculiar features of the consensus protocol underlying a DLT
solution is critical because a performance bottleneck determined by the consensus
protocol induces disastrously affects on the performance of the whole system. For
instance, Bitcoin’s consensus protocol allows (theoretically) unlimited miners to
participate in the mining of a new block, while ensuring a high security, hence the
throughput has to be low. It becomes, therefore, of vital importance to determine
the intended features of the consensus protocol when developing a DLT solution.

Indeed, performance and characteristics of a DLT platform are connected with
the features of the underlying consensus protocol [Xia+20]. For instance, different
consensus protocols have distinct levels of security, or they can allow a restricted
number of participants in the consensus process to prevent performance bottle-
necks: e.g., a Proof of Work (PoW) system, like Bitcoin, because of its intrinsic
properties, would not be fitting an application requiring seemingly real-time re-
sponse, while a Byzantine Fault-Tolerant (BFT) consensus protocol could possibly
be a good fit. In this context, the national project HD3FLAB (in which my work
is inserted) required the implementation of a blockchain solution to act as multi-
purpose platform for different stakeholders, e.g. public entities, universities, and

v

local enterprises.
This thesis, and related published works, covers the process behind the selection

and characterization of the optimal consensus protocol, which is matching the
characteristics of the case study selected (see section 4.5), among the ones covered
by the national project. In particular, it is here reported a Multi-Criteria Decision-
Making (MCDM) framework - including a methodology and associated data -, that
has be used to rank DLT platforms according to certain criteria and constrains.
Among the best matches for the case-study, there are DLT platforms using a
BFT consensus protocol. By any means, decision-makers opted to implement the
blockchain infrastructure backed by a BFT-based consensus protocol.

After choosing a class of algorithms, it was necessary to understand the char-
acteristics and limits of this family of protocols, notably for what concerns the
performability. In this thesis, when mentioning “performability”, it is intended the
characteristic in terms of performance (e.g., throughput and latency) and availabil-
ity/reliability of the studied systems. According to the context, “performability”
might refer to a subgroup of the total metrics of interest, because, for example,
the applied methods or results lack the metrics associated with a specific quality.

To evaluate performability of a system, there are different approaches, i.e. sim-
ulations, benchmarks and analytical models. In this thesis analytical methods are
explored to assess performability for BFT-based protocols. Benchmarks were also
considered in order to evaluate some performability metrics, i.e. throughput and
transaction latency, especially as validation for the analytical models. However,
the challenging implementation of a benchmark in a geographically distributed
environment precluded the continuation of this approach. It is presented in this
thesis (see subsection 2.2.2) a benchmark of a blockchain built on a local ma-
chine, but the results obtainable by this method are limited and capped by the
demanding execution of the process.

Although, it is clear that analytical models have their own challenges. Indeed,
to evaluate the performance of consensus protocols through analytical models re-
quires the non-trivial endeavour of developing a model for each protocol of interest.
Although this conveys the impression of being utterly challenging, the study of sys-
tems performability by means of analytical models is actually a powerful method
to better understand the protocol itself and to even generalize some aspect com-

vi

mon to different protocols.

The rest of the thesis is structured as follows: chapter 1 presents informa-
tion about DLT (section 1.1), and its main schemes (subsection 1.1.1 and subsec-
tion 1.1.2), along with consensus protocols (section 1.2), in particular the three
most important consensus families, i.e. PoW (subsection 1.2.1), Proof of Stake
(PoS) (subsection 1.2.2), and BFT (subsection 1.2.3); section 1.3 gives key con-
cepts in the field of performability evaluation, with a focus on analytical modeling
(subsection 1.3.1); in chapter 2 the literature and works related to this thesis is
reviewed; chapter 3 presents the methodologies and definitions applied to carry the
researches presented in this thesis; chapter 4 reports the protocol selection frame-
work based on MCDM techniques (section 4.1), together with the criteria utilized
(section 4.2), the choice of their weights (section 4.3), and the process of data col-
lection (section 4.4); chapter 5 reports the analytical models developed to evaluate
availability (section 5.1) and performability (section 5.2) of BFT systems; results
are shown in chapter 6, along with a sensitivity analysis of the results coming from
the performability model (subsection 6.2.1); lastly, chapter 6.2.1 summarizes the
finding exposed in this thesis and possible further developments in these fields.

vii

Chapter 1

Background knowledge

In this chapter, it is presented the background knowledge necessary to attain a
basic understanding of the concepts discussed in the following chapters. The topics
considered include: the characteristics of DLT, along with the features of the two
types of DLT, blockchain and Directed Acyclic Graph (DAG); the consensus proto-
cols used in DLT and their components; the methods used to assess performability
and the introduction of the mathematical framework in which analytical models
are developed.

1.1 Distributed Ledger Technologies

A Distributed Ledger is a consistent and immutable collection of data replicated
across different networked computers, these dislocated in different geographical
places [Rau+18]. Similarly to databases, DLTs store data and make it accessible
to any client connected to the network. However, even replicated (or geograph-
ically distributed) databases are managed by a centralised entity, normally the
owner of the database. This leads to a single point-of-failure, since if the manage-
ment authority is compromised, the all system fails. For DLTs, instead, there is no
need for a central authority. A DLT relies on a consensus protocol that ensures its
consistency, liveness and safety. Assuming that the consensus protocol is well de-
signed and reliable, said distributed protocol is provably difficult to compromise,
since it is spread across different machines controlled and managed by different

1

entities. Therefore the idea that, in a very simplistic way, DLTs can be assimilated
to databases is conceptually incorrect, since this deep, crucial difference between
DLT and database [Cho+18].

There is not a solid consensus for what concerns some important aspects re-
garding DLT, e.g. protocol classification, mostly because of the relevant amount
of literature wrote on the topic and the fast-paced development of this technol-
ogy [ØUJ17; Mau+17; Suc+18; EP18; Cho+19; Sun20; Kan+20]. Undeniably,
however, there are definitions on which literature agrees, even though there is still
some confusion, especially from non-specialist sources. This is the case of the
definition of the security (or trust) levels and the grade of accessibility in DLTs.

A DLT is said to be permissionless when any entity with access to the In-
ternet can join the network, thus operating on the DLT and participating in the
management of the DLT itself.

A permissioned DLT, instead, allows only to a restricted pool of members to
act on the ledger.

In this definition, permissionless and permissioned are not stating anything
about the accessibility of data to external users, only the level of security/trust to
operate on the DLT.

In fact, the accessibility to data is related to the concepts of public, private, and
consortium DLTs. These terms intertwine with the concepts of permissioned and
permissionless environments, meaning that public, private, and consortium can be
categories for which some assumptions also on the accessibility of the network are
induced.

Public DLTs are the most transparent type of DLT. While it is possible to have
a permissioned environment, public DLTs are mostly permissionless [Pau+19].
Data in a public DLT can be accessed by anybody connected to the internet, its
transactions can be fully followed, and they guarantee pseudo-anonymity for its
users (full anonymity is not possible, since it is feasible to reconstruct the identity
of the owner of a certain wallet [KL18; And+21]).

Private DLTs, on the contrary, are closed permissioned environments, where
generally the identities and confidential information about users are handled. Since
no information should leak from the network, private DLTs have very strict access

2

policies and data is kept private [Pau+19].
Consortium DLTs are hybrid solutions between the previous two types. Par-

ticipation in consortium DLT is permissioned (access is granted by applying to
the administrators of the network), while access to data can be restricted to an
authorized subgroup, to the whole network, or data can be publicly available. In-
deed, the main requirement for a consortium DLT is to be permissioned. As an
example, this kind of DLT can be used for a network where the same service is
desired among competitors, which are willing to share data to obtain said service,
but only to a selected subgroup of members in the network [Che+20].

Lastly, the boundary between whether a platform is a consortium or a private
DLT is, in some cases, unclear. However, an effective criterion to discern between
private/consortium and public DLT is that the latter is never built on a dedicated
infrastructure, therefore if a dedicated physical network infrastructure is present,
the associated DLT can not be considered public [Che+20].

A few cases to better illustrate those concepts: Bitcoin [Nak08] and Ethereum [But14]
are public permissionless DLTs; platforms developed for companies or financial
institutes are private permissioned DLTs; Ripple [CM18] and EOS a are public
permissioned DLTs, since data is publicly accessible, but the right to write on the
blockchain is not attainable freely at any time (however those are not consortium
DLT, because the permission to be part of the consensus can be obtained through
a publicly accessible process).

1.1.1 Blockchains

Undoubtedly, among all the DLTs, blockchain is the technology that entered the
most the common knowledge and widespread interest [Zhe+18]. Of course, in
public opinion, blockchain is identified with Bitcoin, even though there are many
other platforms and more sophisticated systems, like Ethereum, just to mention
one.

By any means, as depicted schematically in Figure 1.1, a very simple definition
of blockchain may be “a DLT in which transactions (or data) is organised in blocks,
each linked to the previous one by a cryptographic hash”.

ahttps://eos.io/ [Accessed November 15, 2022]

3

https://eos.io/

Index

Data

Timestamp

Previous Hash

Hash

Index

Data

Timestamp

Previous Hash

Hash

Index

Data

Timestamp

Previous Hash

Hash

Figure 1.1: Representation of a blockchain. Each block contains an index, the timestamp, the
hash of the previous block, the hash computed for the current block, and the list of transactions.

By this interpretation, we can conclude that qualifing a DLT as a blockchain is
stating the data structure and some embedded cryptographic security of the DLT
itself.

Indeed, the main security feature of a blockchain is that it is computationally
unfeasible to modify an already added block, since an attacker would need to
tamper backwards all the blocks until the one that it wants to modify. To do so,
it needs the computational power (or somehow the control) of the majority of the
network.

However theoretically unfeasible, some attacks on blockachains took place, as
an example the emblematic attack on Ethereum leading to the hard fork that
created Ethereum and Ethereum Classic b.

1.1.2 Directed Acyclic Graphs

Beyond blockchain, there is at least one other scheme that is used to build DLT
systems.

DAG [BŽ18] is a mathematical object - a graph - composed by edges and
vertices, with each edge directed from one vertex to another, such that there is no

bhttps://www.gemini.com/cryptopedia/the-dao-hack-makerdao [Accessed November 17,
2022]

4

https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

closed loop in the graph. In other words, since vertices in a DAG can be ordered,
there is no edge from the latter vertex to the previous one.

Genesis

Included

Referenced

Referenced

Referenced

Referenced

Pending

Pending

Included

Referenced

Pending

Pending

Figure 1.2: An example of DAG based on the Tangle. “Genesis” is the first generated transaction
of the DAG, the one to which all the newly added ones will be point at, eventually. “Included”
are transactions that have been pointed to by enough other transactions, such that the random
walk from any point includes definitively the “Included” transactions. “Referenced” transactions
have been tipped from other transactions, but not enough to be considered “Included”. “Pending”
transactions have not been chosen by any transaction as reference.

The most visible difference between blockchain and DAG is that data in DAGs
is not stored in blocks of transactions (thus a DAG is not a blockchain). In a
DAG, data storage is composed of single transactions, which are incidentally the
vertices of the DAG. In the action of broadcasting a new transaction to the net-
work, the transmitting node needs to specify some previously added transactions,
as reference, to attach to. This action determines the formation of a new vertex
(the transaction) and new edges in the DAG, those that are connecting the sub-
mitted transaction and already existing ones. This means that, differently from a
blockchain - where subsequent blocks assume the form of a line of blocks chained
by cryptographic means -, DAG is evolving quite chaotically, almost resembling
a tangle of vertices and edges. From this image, derives the name of one famous
example of consensus protocol used in a DAG, the Tangle [Pop18].

In Tangle, as shown in Figure 1.2, to decide whether a vertex is considered “In-

5

cluded” (hence the associated transaction is regarded as legitimate and definitive)
a rationale based on Markov Chain Monte Carlo algorithms is used. The idea is
that, by assigning a weight to each vertex, if any weighted random walk is passing
definitively through a certain vertex, this is considered therefore “Included”. Point
is that the weight of a vertex reflects the cumulative weights of the vertices refer-
ring to it, hence if enough transactions are using as a reference a certain vertex,
this is included in the memory of a overwhelming portion of the network.

Although the intended scope of IOTA (the DLT implementing the Tangle)
is to provide a lightweight framework to enable IoT devices to take part in the
DLT economy, there are downside to this approach (which are getting addressed
in Tangle 2.0 [Mül+22]), such as: a high flow of transactions is needed to ensure
safety, and externally issued checkpoints (by the IOTA foundation) are used to
crystallize the state of the network at regular times.

1.2 Consensus protocols for DLT

In distributed computing, when dealing with concurrent processes, state machine
replication, multi-agent systems and related paradigms, the goal is to achieve an
overall system reliability, despite the presence of a number of faulty processes.
Roughly, there are two main properties that a reliable distributed system has to
satisfy: liveness (summarised as "something good will eventually occur") and safety
(summarised as "something bad will never happen").

Consensus protocols are fundamental parts of DLTs. The consensus protocol
determines and maintains the state of the distributed ledger, while ensuring safety
and liveness. Since the appearance of Bitcoin [Nak08], both academia and in-
dustry are trying to develop at a high pace more sophisticated, fast and secure
consensus protocols to implement in their DLT platforms. In this context, design-
ers and developers are facing a problem - the so called “impossible triangle” - in
which a compromise between Decentralisation, Security and Scalability has to be
made [AB18].
This trilemma was, in a different form, already known for general distributed data
stores, but the advent of Ethereum [But14; Woo14] enhanced the interest.
The problem is so important and widely discussed that there are plenty of sur-

6

veys, literature reviews, taxonomies, etc. on the topic, as well as blog threads and
social media posts [Cro+16; Cac17; AA19; Ban+19; Bou21; Xia+20; NL20; ZL20].

By any means, DLTs implementing a PoW consensus protocol (see subsec-
tion 1.2.1) - believed quite adequate for peer-to-peer payment and cryptocurrency
transfer - is instead considered slow for actual capillary applications: retail shop
payments, IoT, real-time contracting, etc.

Moreover, studies evaluating the total electric consumption to maintain the
Bitcoin network found out that the network consumes as much electric power as
for the needs of a small-medium sized state [ZKC20; GKS20]: this because of the
intensive computation needed to solve the cryptographic puzzle in PoW systems
(hence, also, the necessity of specific hardware optimized to solve such problems).

However, all the above mentioned issues opened the path to the development
of different paradigms and protocols. For example, Proof of Capacity (PoC) -
also know as Proof of Space - is a protocol related to PoW, but with a different
perspective when solving the computational puzzle [Dzi+13]. While in a PoW
protocol, miners need to compute "on the run" the hash for the block they want
to propose (hence using GPU, ASIC, etc.), in PoC a miner computes ahead a list
of possible hashes and stores them in its hard-drive. When it comes to submit
a new block, then, the miner search in its cache a suitable hash and it submits
the block. The claim of PoC developers is that their algorithm is faster and less
computationally expensive compared with PoW.

When talking about scalability for consensus protocols, the most discussed
substitute of PoW is represented by the Proof-of-Stake (PoS) [Li+17]. Generally,
in PoS (see subsection 1.2.2), any user of the network owning tokens are eligible
to participate in consensus - therefore minting a new block of transactions - if
they prove some degree of commitment to the blockchain itself (i.e. investment of
wealth). Therefore, a node tends to act honestly in such an environment, since
its wealth is at stake, so that it would be a damage to its own interest if the
network would be compromised. Because of the little amount of computation to
be performed, PoS offers an advantage respect to PoW for what concerns time
and energy consumption. Nonetheless the performance advantages, researchers
are attentive about the possible security vulnerabilities inherently connected with

7

PoS protocols, and they are concerned also about a centralisation propensity in
PoS systems, especially with regard to the process of stakes delegation.

In the framework of PoS consensus protocols, a wide amount of alternatives
exist when looking at the actual implementation of systems, but they rely mostly
on two different approaches: randomly elected sequence of block proposers and
randomly selected consensus committee/group [Che+18; Kia+17; BPS16]. In the
first case, finalisation is obtained, generally, in a way similar to the longest chain
rule, while, in the latter, finalisation is instantly achieved if a BFT protocol is
used.

Ideas similar to PoS have been developed, where at stake is not something
as “quantifiable” as tokens, but some other relevant asset. In Proof of Authority
(PoA) [HSS20], actually, it is the real identity of a validator to be at stake: the
idea is that the difficult process to become a validator, the investment of financial
resources and of personal identity, is a deterrent to misbehave as validator in the
consensus protocol.

Likewise, Proof of Importance (PoI) c uses a reputation system - in which
transacting with other users is an incentivized behaviour that increases the node’s
reputation score - alongside with a time-delayed staking process (your tokens at
stake will be vested over several days) to determine the node’s status of validator.

Proposing a completely different approach, Proof of Elapsed Time [Ril18] is a
protocol relying on a random selection rule: to each node participating in consensus
the protocol assigns a random timer, then the node for which the timer expires
first becomes the leader and, thus, it can propose a new block.

Over the years, an already established idea captured the interest of researchers
and developers: because of its resilience to crush and malicious behaviour, imple-
mentations of BFT [LSP82] protocols seemed to be suitable to develop DLT sys-
tems (see subsection 1.2.3). In particular, Practical BFT (PBFT) [CL+99] entered
the DLT scenario in a delegated form, like in Tendermint [Buc16; BKM18]. More-
over, with related concepts, Ripple Consensus Protocol/Algorithm (RCPA) [CM18]
and Stellar Consensus Protocol (SCP) [Maz16] implements the so called Feder-
ated Byzantine Agreement. Roughly, the process is split on different phases with

cNEM Whitepaper. https://whitepaper.io/document/583/nem-whitepaper [Accessed
March 30, 2023]

8

https://whitepaper.io/document/583/nem-whitepaper

interaction (i.e. voting cast) between peers (sub-groups of peers in SCP) until
consensus is reached. All the aforementioned protocols rely on a (at least weak)
synchronicity in the system. If a protocol, instead, does not assume any synchro-
nization between nodes, this is called an asynchronous protocol. Although it is
impossible, in most cases, to achieve deterministic agreement in an asynchronous
setting [FLP85], there are some proposals aiming to implement Asynchronous BFT
(ABFT).

HoneyBadgerBFT [Mil+16] is the first proposed practical asynchronous BFT
protocol, leveraging on randomized agreement. Indeed, it has been proved that a
certain level or randomness in the system overcomes the need for synchronization
in the network. Similarly, BEAT [DRZ18] was proposed as an improvement of
HoneyBadgerBFT, focusing on being a flexible and versatile protocol, optimized
for latency, throughput, and network scalability (in terms of the number of servers).

While both HoneyBadgerBFT and BEAT are assuming that data is stored in
batches (or blocks), Hashgraph [BL20] is an ABFT protocol that is built on a
DAG and it does not need for blocks of transactions. Hashgraph is optimising
the throughput and latency by executing simultaneously broadcasting and voting,
without further messages exchanged. As specified in subsection 1.1.2, transaction-
based DAGs are a very peculiar type of consensus protocols [Pop18; Roc+19].
Indeed, systems implemented by using a Tx-based DAG approach actually can
be not considered blockchains, because there are no blocks of transactions. In
Tx-based DAGs, transactions are submitted to known peers creating an edge be-
tween a freshly proposed transaction and transactions already known. To finalise a
transaction, a weighted random walk is performed: when the probability of pass-
ing a thought a certain path from a specific transaction to the genesis node is
overwhelming, those transactions are accepted as valid by the participants.

There are known disadvantages in the implementations of a DAG. For example,
in the first implementation of the Tangle [Pop18], the drawback was that, to ensure
security, a very high number of transactions and participants was needed. When
this was not guaranteed, some centralised intervention was needed, i.e., checkpoints
issued by some super-validator users.

The new version of the Tangle, Tangle 2.0 [Mül+22], claims to implement a
generalization of the Nakamoto consensus, where there longest chain rule is sub-

9

stitute by the heaviest DAG and PoW with stake- or reputation-based system.
By heaviest DAG, authors mean the branch of the DAG where the weights associ-
ated with the random walk are the heaviest. Tangle 2.0 is a leaderless consensus
protocol and it does not need of validators and miners. The total ordering is
not necessary and it is not guaranteed, but this asynchronous setting requires the
implementation of a common random coin to ensure liveness and safety for the
asynchronous communication model.

1.2.1 Proof of Work

PoW is a cryptographic protocol that has gained widespread recognition for its
use in blockchain technology. The protocol was initially developed to prevent
denial-of-service attacks and spam in systems connected to the Internet [DN92;
JJ99]. As shown in Figure 1.3, PoW requires clients to solve a computationally

Bundle of
Transactions

Hash
previous Block

Index,
Timestamp

Hash

COMBINE

Nonce

Hash value >
Target value

Increment
Nonce

New Block
Generated

No

Yes

Figure 1.3: Flowchart of PoW mining process. Generated blocks, however, may be reverted or
they might not be included in the blockchain. Mined blocks need a certain amount of confirma-
tions (blocks descending from the one examined) before being considered finalized.

challenging task in order to access a service, while the service provider needs a

10

minimal amount of computational power to verify the result. With the advent of
Bitcoin, PoW has become a widely known and utilized protocol in blockchain tech-
nology. In a blockchain network using PoW, miners must solve a cryptographic
puzzle, typically a partial hash-function inversion, to add a new block to the net-
work. The finalization of a block, i.e. its definitive inclusion in the blockchain,
is achieved through the application of consensus rules. In Bitcoin, for example,
since the concurrent creation of blocks may lead to forks in the blockchain (parallel
legit chains), the Nakamoto consensus protocol’s longest-chain rule assures that,
to resolve conflicting chain forks, the accepted main chain is the one in which more
work (the largest number of blocks) has been created. Hence, discarding any other
parallel (forked) chain generated in the same time span. This process requires a
significant amount of time for a block of transactions to be considered confirmed,
due to the stringent security constraints imposed by the PoW protocol.

Nonetheless, the significance of PoW in distributed systems and networking
lies in its ability to secure and validate transactions in a decentralized manner.
An effective way to summarize the contribution of PoW to the field of consensus
protocols is to list its the benefits and drawbacks [Ger+16].

Advantages:

• Decentralization. PoW ensures that no single entity has control over the
network, as anyone with the necessary computing power can participate in
the validation process. This provides a level of transparency and fairness
that is difficult to achieve in centralized systems.

• Security. PoW requires computational effort to validate transactions and
solve complex mathematical puzzles, making it difficult for malicious actors
to compromise the network. This protects against 51% attacks and other
security threats, ensuring the integrity of the network.

Disadvantages:

• Energy consumption. PoW is computationally intensive, requiring large
amounts of energy to validate transactions. This has resulted in concerns
over the carbon footprint of PoW networks, as well as the potential for cen-
tralization of mining power.

11

• Scalability. As more users participate in the network, the validation process
becomes increasingly complex and slower. This limits the ability of PoW
networks to scale to meet growing demand, making it a challenge to support
high-volume applications.

• Cost. Participating in PoW networks requires significant computing power
and energy resources, which can be cost-prohibitive for many users. This
creates barriers to entry the consensus process and it can limit the growth
of the network.

In conclusion, PoW offers significant benefits for immutable records of transactions,
providing secure decentralized networks. However, its high energy consumption
and scalability challenges make it unsuitable for some use cases, particularly those
requiring high-volume transactions or low-cost validation.

1.2.2 Proof of Stake

Along with the scalability issues, the extensive computational demands of PoW-
based blockchains motivated researchers and developers to investigate alternative
solutions to implement DLT systems. The most well-known and widely adopted
substitutes to PoW are variations of the PoS protocol [Li+17; Ngu+19]. In PoS
(see Figure 1.4), any node can possibly participate in consensus, although stake-
holders are required to prove some sort of commitment to the network, notably
wealth (i.e. tokens) or personal identity (i.e. PoA). The premise is that a node has
a vested interest in maintaining the integrity of the blockchain, as its own wealth is
at risk. PoS has the advantage of requiring less computational effort, thus reducing
the time and energy consumption compared to PoW. However, there are known
vulnerabilities and attacks in PoS systems, such as the nothing-at-stake problem,
where a node proposes blocks on multiple competing chains, and a reduced degree
of decentralization in the network, where wealth tends to be concentrated among
the wealthiest participants. To address these challenges, various schemes have
been developed based on the PoS concept, each with unique implementation of
the consensus algorithm and methods of selecting block issuers. These variations
reflect the ongoing efforts to achieve consensus in blockchain systems.

12

Minter
Election

Stakeholders

Bob

Alice

Charlie

Token

Token
Token
Token
Token

Token
Token
Token

Elected Minter

Bob

Token
Token
Token
Token Propose

Block Validated

Minted Block
(Bob rewarded)

Discarded Block
(Bob penalised)

Yes

No

Figure 1.4: PoS flowchart. A minter is elected among the stakeholder by means of a randomized
algorithm having as input the tokens at stake for each stakeholder. The winner of the draft
(minter) is proposing a block, which is check by validators. If the block is validated, the minter
receives tokens as a reward, otherwise its tokens at stake are slashed.

Chain-based PoS

The selection of block minters in a chain-based PoS [Xia+20] system is performed
through the utilization of a pseudo-random algorithm, which assigns the right to
attempt a not-so-computationally-expensive PoW, with a probability proportional
to the stake held by the stakeholders. This approach incentivizes stakeholders to
maintain a significant stake in the system. In this model, the target hash value
for the proof-of-work process is proportional to the stake value. As a result, the
higher the stake value, the lower the attempts required to find a suitable hash.
The finalization of blocks in this PoS system is achieved through a process similar
to the Nakamoto consensus mechanism.

Committee-based PoS

In the implementation of a committee-based PoS [Xia+20] consensus mechanism, a
subset of minters is selected through a random election process, with stake serving
as a weighting factor. The committee subsequently initiates a multi-round block
generation protocol, in which block proposals are made by leaders in accordance
with a pseudo-random sequence, thus reviewed and validated by the committee
members.

13

BFT-based PoS

In alignment with other PoS protocols, a proposer is elected through a voting
round, commonly utilizing staked tokens as voting weight. This initiates the pro-
cess of generating a new block, which undergoes a multi-round BFT consensus
process. During this process, a limited number of validators exchange messages
to verify the proposed block, ultimately leading to its validation and immediate
finalization within the blockchain.

As a case in point, the Casper FFG [BG17] consensus protocol employed in
Ethereum 2.0 incorporates a BFT mechanism vote on issuing checkpoints. The
consensus process is divided into epochs and during each epoch voting on ordinary
blocks is structured as a chain-based PoS. However, on any occasion validators
can cast votes to designate a block as a checkpoint. This operation is structured
as a BFT round. All blocks on a chain falling between two established, validated
checkpoints are immediately confirmed.

Delegated PoS (DPoS)

Delegated PoS (DPoS) [SR20; Zha+22] consensus mechanism endeavors to miti-
gate the issue of wealth centralization by enabling stakeholders to delegate their
voting power (stake) to selected, wealthier delegates participating in the consensus
process. By limiting the number of active validators, DPoS aims to strike a bal-
ance between mitigating centralization and ensuring scalability. While a limited
consensus group surely provide a scalable platform in terms of processed transac-
tions, the limited size of the committee appears to be in contrast with the effort
of decentralize the network. Nonetheless, the possibility of moving votes between
delegates is the control mechanism that delegators have in order to ensure a fair
functioning of the network. For what concerns the concentration of wealth, in
this model, delegation results in the redistribution of rewards generated by block
production also among the small stakeholders, thereby reducing centralization.

It is important to note that the specific block proposal and validation method-
ology is not explicitly defined within the DPoS consensus framework. As this
aspect is not central to the fundamental concept of DPoS, any of the previously
described block production mechanisms may be employed as the implementation

14

strategy.

1.2.3 Byzantine Fault-Tolerance

The BFT paradigm, represented schematically in Figure 1.5, is a well-established
approach for finalizing tasks in computer systems, particularly in distributed sys-
tems, that addresses the issue of faulty and malicious participants [LSP82]. For

Figure 1.5: Representation of a BFT scheme with 7 nodes. The white and black nodes represent
non-Byzantine and Byzantine nodes respectively.

instance, a Byzantine fault occurs when a node is acting maliciously in the net-
work, e.g. sending contradictory messages to separate servers or being unrespon-
sive. However, a node might also not act maliciously in the network, and yet be
unresponsive due to crash or connection failures. In both cases, the system may
fail to reach consensus.

In an implementation of BFT consensus protocol with N ≥ 4 servers exchang-
ing unsigned messages (with unsigned messages, if N < 4, the problem does not
have a solution [LSP82]), quorum (the minimum amount of committing messages

15

to achieve consensus) is reached when the number of honest responsive nodes h is

h > 2N/3, (1.1)

therefore, a distributed system, in which unsigned messages are exchanged, can
handle up to f Byzantine faults, such that

f < N/3. (1.2)

Multiple implementations of the BFT paradigm have been proposed, includ-
ing PBFT [CL+99], which is commonly used to implement blockchain solutions.
In PBFT nodes serve as a consensus committee and allow for tolerance of up to
1/3 of faulty participants with high throughput and low latency. However, the
exponential increase in complexity with the number of participants can limit the
scalability of PBFT, making it suitable for only permissioned environments with
a low number of nodes. Figure 1.6 represents schematically the communication
scheme in PBFT: for each round, there are three phases (proposal, prepare, com-
mit), plus an additional round to elect a new proposer/leader. Proposal is the
phase where the proposer/leader sends the messagge to be committed to the other
validators/nodes, then, in prepare, each node verifies the correctness of the mes-
sage and eventually sends a confirmation message to all the other nodes, lastly,
if enough confirmation messages have been received, nodes send a receipt of the
committed message.

HotStuff [Yin+18], an improvement on PBFT, has been proposed and imple-
mented. Like PBFT, HotStuff is a voting-based protocol that uses a leader node
to collect and broadcast votes, but it utilizes a more efficient voting process and a
flexible leader rotation scheme to reduce communication overhead and the risk of
leader failure.

PBFT and its derived protocols operate under the assumption of eventual
synchrony among nodes, which requires each node to collect messages until a
timeout expires in order to reach agreement on a task. This assumption can pose a
limitation in scenarios where the network is prone to frequent outages, particularly
in highly overloaded networks. In contrast, Asynchronous BFT (ABFT) protocols,

16

Figure 1.6: A schematic representation of the PBFT consensus protocol’s workflow.

such as HoneyBadgerBFT [Mil+16], BEAT [DRZ18], and Hedera [BHM19], do not
require any timing assumptions. These protocols offer alternative solutions to the
Byzantine agreement problem in an asynchronous network environment, providing
a potential solution for networks that are prone to frequent outages.

1.3 Performability evaluation

Performability evaluation is a crucial aspect in the study of any system, as it
provides valuable insights into the system’s efficiency, effectiveness, and reliabil-
ity. The aim of performability evaluation is to measure and assess the behavior
of a system under different conditions, environments, and workloads. This chap-
ter provides an overview of the methodologies used for performability evaluation,
including their strengths and limitations.

• Analytical modeling. Analytical modeling involves using mathematical mod-
els and equations to predict the performability of a system. This method
is useful for systems that can be represented by well-defined mathematical
models, such as queues, networks, and computer systems. The advantage
of analytical modeling is that it provides a theoretical performability pre-

17

diction, which can be used to compare different system configurations and
to identify the bottlenecks of the system. However, this method is limited
by the accuracy of the mathematical models used and may not reflect the
actual performability of the system in real-world scenarios.

• Simulation. Simulation is a method of performability evaluation that in-
volves creating a model of the system and running it in a simulated environ-
ment. The model is subjected to different scenarios and workloads, and the
performability metrics are recorded. This method provides a more accurate
representation of the system’s behavior in real-world scenarios and allows for
the exploration of different system configurations. The main disadvantage of
simulation is that it can be time-consuming and resource-intensive, and the
accuracy of the results depends on the accuracy of the model. Simulation is
jointly related to analytical modeling, and in some literature it is considered
an analytical method itself.

• Experimental evaluation. Experimental evaluation involves measuring the
actual performability of the system in a controlled environment. This method
involves setting up a testbed, running experiments, and collecting performa-
bility data. The advantage of experimental evaluation is that it provides
accurate and precise measurements of the system’s performability. How-
ever, this method can be time-consuming and resource-intensive, and may
not reflect the actual performability of the system in real-world scenarios.
Benchmarking belongs to this class of investigation technique.

Briefly, the aim of performability evaluation is to provide a comprehensive under-
standing of the system’s behavior and to identify opportunities for improvement.
The choice of methodology depends on the characteristics of the system being eval-
uated, the resources available, and the goals of the evaluation. That said, there is
not a fit-for-all approach and it might occur than more than one methodology has
to be adopted in order to conduct a satisfactory performability evaluation of the
system, or to validate a model elaborated.

18

1.3.1 Analytical models

Analytical modeling is a widely-used tool for evaluating the performability of com-
plex systems, processes, and networks. These mathematical representations of
real-world systems allow for the prediction of performability under various condi-
tions, enabling the identification of bottlenecks and the development of strategies
to improve efficiency. The field of analytical modeling encompasses a variety of
techniques, including queuing models [Tri08], simulation models [LKK07], and
optimization models [Rao19], each with their own strengths and limitations.

Queuing models [Tri08], for example, are particularly useful in the analysis of
systems that involve waiting in line, such as call centers and computer networks.
Simulation models [LKK07], on the other hand, are well-suited to the study of
complex systems by creating virtual representations of the system and running
experiments on these models. Optimization models [Rao19], meanwhile, are par-
ticularly useful in identifying the best possible solution to a problem by finding
the optimal combination of inputs.

To ensure the accuracy and relevance of an analytical model, a thorough under-
standing of the system or process being studied is essential. This understanding
is typically obtained through the collection and analysis of data. Additionally, it
is crucial to validate the model by comparing its predictions to actual data.

The choice of method or technique is also a crucial aspect of analytical mod-
eling. For example, if the goal is to optimize the performability of a system, an
optimization model may be the best choice. However, if the goal is to study the
behavior of a system over time, a simulation model may be more appropriate.

In the field of performability evaluation, analytical modeling can be used to
study system availability. Availability is a measure of how often a system is able
to perform its intended function, and analytical models can be used to predict the
likelihood of failures and the time required to repair them.

Queuing theory

Queuing theory [Tri08], a branch of operations research, has its mathematical
foundation on the notions of Markov process and Poisson process. It studies the
behavior of systems that involve waiting in line, also known as queuing systems.

19

This theoretical framework is particularly useful in the analysis of systems such as
call centers, computer networks, and manufacturing systems. A queuing model can
be applied to performance and availability modeling by studying the behavior of
the system under different conditions, such as the number of jobs (e.g. customers),
the number of servers, and the arrival rate of jobs, as shown in Figure 1.7.

Figure 1.7: Scheme of a single queue (waiting area) with one server (service node), where λ is
the arrival rate and µ the service rate.

One of the key concepts in queuing theory is the service rate, commonly indi-
cated by µ in literature, which represents the rate at which customers are served.
This value is determined by the number of servers and the service time for each
customer. If the system allows the utilization of more than one server, the number
of servers would determine the number of customers that can be served contem-
porary at any given time, with µ, the service time, describing the amount of time
required to serve each customer. Another fundamental concept in queuing the-
ory is the arrival rate, in literature denoted with λ, which represents the rate at
which customers arrive at the system, i.e., the number of customers arriving in a
given time span. In this context, for instance, the arrival process is described as a
Poisson point process, and λ is the rate of the Poisson distribution

Pr(X = k) =
λke−λ

k!
, (1.3)

where X is a discrete random variable distributed according to the Poisson dis-
tribution, k the number of occurrences, and λ the arrival rate. Differently, the
service process can be model as the time needed to serve a client, which is dis-
tributed exponentially

Pr(X = x) = µe−µx, (1.4)

where X is a continuous random variable with value x, and µ the service rate

20

(related to the service time 1/µ).
Note that the inter-arrival time between two Poisson events is distributed ex-

ponentially, therefore the two formulations are strictly related.

The modelling of single queue can be described as a birth-death process, in
which the arrival of a customer is a “birth” and a customer leaving the queue after
service is a “death”. Indeed, given those two types of event, a continuous-time
Markov chain can be constructed, where for each the number of customers k there
is a correspondent state. State transitions rates are, therefore, prescribed by the
arrival rate λ and service rate µ.

Finally, queuing theory can be used to study the performance of a system by
predicting the average waiting time for customers, the average number of customers
in the system, and the probability of a customer having to wait. Additionally, it
can be applied to the study of system availability by predicting the likelihood of
failures and the time required to repair them.

Kendall’s notation

In the previous section, arrival and service mechanisms have been described as
Poisson or exponential processes, so that the memoryless property of Markov
chains is guaranteed (see next section). Although, there are other stochastic pro-
cesses, characterised by different probability distributions, that may be used to
study a queue [Bol+06]. As shown in the following, Kendall’s notation [Ken53] is
a simple, widely used notation, useful to describe elementary queuing systems:

A/S/c/K/D,

where A is the distribution underlying the arrival process, S the distribution per-
taining the service process, c the number of processors/nodes/servers, K the upper-
limit for the queue length (e.g. buffer size, allowed customers in line, etc.), and
D the serving discipline. More in detail, for each parameter of the set written in
Kendall’s notation, follows a description on the specific properties:

• Arrival process A and Service process S. They describe what kind of process

21

regulate the arrival and service processes, respectively. A and S may be
different from each other, with the following codes indicating their properties:

– Markovian process (M) is a Poisson process, with exponential inter-
arrival/service time;

– Degenerate distribution (D) is a deterministic fixed inter-arrival/service
time;

– Phase-type distribution (PH) is a convolution of exponential distribu-
tions;

– Even in case of a General distribution (G), some analytical results can
be obtained. In literature it is sometimes called General Independent
(GI) to specify that the processes are independent.

• Number of servers c.

• Maximum size of the queue K. When not specified, it is assumed to be
K =∞.

• Service discipline D. This is the set of rules regulating which element in the
queue is being served, it includes:

– First In First Out (FIFO), in which system is serving jobs in the order
of arrival (it is the default discipline if D is not specified);

– Last In First Out (LIFO), in which the last job arrived is served first;

– Service In Random Order (SIRO) serves jobs in random order, regard-
less to arrival order;

– Priority Queuing (PQ) sets a priority policy for serving jobs;

– in Round Robin (RR) if the servicing of a job is not completed at the
end of a time slice of specified length, the job is preempted and returns
to the queue, which is served according to FIFO. This action is repeated
until the job service is completed.

– Processor Sharing (PS) corresponds to a RR with infinitesimally small
time slices. It is as if all jobs are served simultaneously and the service
time is increased correspondingly.

22

Markov Process

Markov processes, also known as Markov chains (shown in Figure 1.8 there is
a Markov chain representing a simple queue, known as birth-death process), are
mathematical models used to describe the behavior of systems over time. They are
widely used in various fields, including physics, economics, and computer science,
as a mean to predict future outcomes based on the current state of the system.
Indeed, at the core of Markov processes, there is the concept of Markov (or mem-
oryless) property, which states that the future state of a Markovian system is
dependent only on its current state and not on its past history. This property
allows for the modeling of systems in which the future state cannot be predicted
with certainty, but instead is statistically determined by the current state. The
study of Markov processes involves the analysis of transition probabilities between
states, and the computation of various statistical properties, such as the stationary
distribution and the expected time to reach a certain state. Before proceeding to

Figure 1.8: A Markov chain depicting a birth-death process. States are represented by rounds
with the state number within. Transition rates (λ0, λ1, . . . for arrival rates and µ1, µ2, . . . for
service rates) may be in principle different depending on the state, but generally an effective
arrival rate λ and service rate µ can be defined.

look more in detail the mathematical description of Markov chains, assume that,
unless differently stated, the possible values of the random variables Xi form a
countable nonempty set S, which can be finite. There are two category of Markov
chain: discrete-time Markov chains and continuous-time Markov chains (CTMC).
In a discrete-time setting, time variable is, therefore, treated as discrete, with the
process advancing in steps. The Markov property in this framework reads

P (Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = xn+1|Xn = xn),

(1.5)

23

which states that, after a series of events for the random variables X1, X2, . . . , the
conditional probability for the random variable Xn+1 to be xn+1 is conditioned
exclusively by the probability of Xn to be xn.

In continuous-time Markov chains, the transition probability from a state to
another may happen at any time t ≥ 0, with rates determined by the transition
matrix and the current state of the chain. The formulation for the Markov property
can be stated similarly to the discrete-time one, given that the set of states S is
finite. Otherwise it can be defined as a infinitesimal time step, with probabilities
computed by solving the associated first-order differential equation. In the case
of a finite set, the Markov property can be written adjusting Equation 1.5, with
indices n replaced by indexed times up to n, t0, . . . , tn, where the spacing between
times is not homogeneous.

An utterly significant contribution obtainable by the application of Markov
chains is the assessment of the steady-state probability of the studied system.
Differently from the transient analysis, which involves dealing with differential
equations and yielding a time-dependant solution, the steady-state solution of a
Markov chain requires to solve a set of homogeneous linear equations, resulting in
a solution, the steady state probabilities, being not dependent on time. Indeed,
given an irreducible recurrent, hence ergotic, CTMC, the process converges to a
probability distribution P , that is not time-dependent. This probability distribu-
tion P may be found solving the eigenvalue problem

AP = 0, (1.6)

subject to ∑
Pi = 1, (1.7)

where P is the steady-state probability row vector (this is why, being a probability,
the sum of all the elements of P must be one) and A is the transition rate matrix
(i.e. the matrix of the coefficients associated with the set of linear equations).
This is, indeed, an eigenvalue problem, because the row vector P is the (right)
eigenvector of the matrix A corresponding to the eigenvalue zero.

Refer to [Bol+06] for a complete and exhaustive exposition on Markov chains
and their application in queuing theory.

24

Chapter 2

Related Work

Here are reported and reviewed the works found in literature, which are under-
lying or are connected with the research presented in this thesis. The chapter in
separated into two main branches: consensus protocol selection and performabil-
ity evaluation. The latter, besides the literature on analytical modeling, includes
also an attempt of benchmarking, that was developed and used to characterize the
performance of a blockchain implementing two types of consensus protocols.

2.1 Consensus protocol selection

As mentioned in section 1.2, it exists a plethora of consensus protocols in the DLT
domain, each of which may have variations in their implementation, leading to
a vast array of options. In order to bring structure to the complex landscape of
consensus protocols for DLT, several researchers have attempted to classify and
categorize these protocols.

Baliga (2017) [Bal17] conducted a comparative analysis of five popular cate-
gories of consensus models using seven criteria. The authors concluded that, for
permissionless platforms, achieving consensus among a large number of untrusted
peers must be done through robust computational or memory complexity, thereby
sacrificing transaction finality and throughput. On the other hand, for permis-
sioned consortium blockchains, options with higher throughput, faster transaction
finality, and less scalability are more desirable. The authors emphasized that when

25

choosing the appropriate consensus model for a business, one must take into ac-
count the network scale, participant relations, and functional and non-functional
aspects such as performance and confidentiality.

Mingxiao et al. (2017) [Min+17] reviewed the principles and characteristics of
five consensus algorithms and analyzed their performance based on five factors.
Based on this analysis, the authors provided technical guidance on the appropri-
ate consensus protocols for three different blockchain scenarios (public, private,
and permissioned). PoW, PoS, and DPoS are commonly used as consensus mech-
anisms in public blockchains as they are completely open and decentralized. In
private blockchains, it is more crucial to handle crash faults than Byzantine faults,
making PBFT and RAFT (crash tolerant) consensus mechanisms suitable choices.
For permissioned blockchains, which are semi-closed networks built by multiple
enterprises, PBFT may be a promising option due to the potential conflicts and
possibility of malicious nodes among enterprises.

Nguyen and Kim (2018) [NK18] conducted two separate comparisons of con-
sensus protocols. First, they compared three major categories using six criteria,
and then compared vote-based and proof-based consensus protocols using eight
criteria. The authors concluded that vote-based consensus protocols have more
potential for use in consortium and private blockchains, while proof-based con-
sensus protocols are commonly used in public blockchains. The authors did not
compare specific protocols, but aggregated results from several specific protocols
to represent each category.

Alsunaidi and Alhaidari (2019) [AA19] classified consensus protocols and com-
pared six proof-based and two vote-based protocols based on 16 criteria. The
authors noted that most proposed protocols are designed for cryptocurrency sys-
tems and smart contract transactions.

Wang et al. (2019) [Wan+19] conducted an extensive literature review on the
development of decentralized consensus mechanisms in blockchain networks. The
authors compared 11 Proof-of-X (PoX) schemes for permissionless blockchains and
12 virtual mining and hybrid consensus protocols based on several criteria. They
analyzed the connection between permissionless and Byzantine agreement con-
sensus protocols, the incentive compatibility in permissionless consensuses from a
game-theoretic perspective, and the impact of consensus participants’ strategies.

26

Based on their comprehensive survey, the authors provided insights into the emerg-
ing applications of blockchain networks, with a focus on the telecommunications
field.

Bano et al. (2019) [Ban+19] carried out a systematic and comprehensive ex-
amination of blockchain consensus protocols was conducted, resulting in the de-
velopment of a framework for evaluating their performance, security, and design
properties. The analysis of three high-level design categories, including protocols
based on Proof-of-Work (PoW), Proof-of-X (PoX) protocols that replace PoW with
more energy-efficient alternatives, and hybrid protocols that are compositions or
variations of classical consensus protocols, was based on twelve criteria and data
from real blockchain systems. The authors identified research gaps and challenges
to be considered for the future development of consensus protocols to promote the
widespread adoption of blockchains.

Belotti et al. (2019) [Bel+19] conducted a comparative analysis of eight con-
sensus algorithms based on eight criteria, which showed a tendency towards the
implementation of safer and high-performance consensus protocols with low energy
impact and latency that reach a final agreement with the guarantee that validated
blocks will not be discarded.

Nijsse and Litchfield (2020) [NL20] presented a taxonomy of consensus meth-
ods applied to current blockchains and highlighted 19 consensus methods com-
pared based on seven criteria. The authors demonstrated the extensibility of the
taxonomy on four cases that were not involved in its development.

Xiao et al. (2020) [Xia+20] carried out a comprehensive survey of distributed
consensus protocols for blockchain networks, where they identified five core compo-
nents of blockchain consensus protocols and reviewed and compared 22 consensus
protocols based on nine performance metrics. This work provided new insights into
the fundamental differences of existing consensus proposals and their suitable ap-
plication scenarios, assumptions, expected fault tolerance, scalability, drawbacks,
and trade-offs.

Zhang and Lee (2020) [ZL20] compared five consensus protocols based on five
criteria and gave guidance on selecting suitable consensus protocols depending
on the blockchain type. They specified that PoW, PoS, and DPoS-type consensus
algorithms are the most reasonable choices for public blockchains, while PBFT and

27

Ripple are more suited for permissioned blockchains to ensure higher efficiency.
Fu et al. (2021) [FWS21] carried out a detailed survey of mainstream blockchain

consensus algorithms by analyzing 17 consensus protocols and providing a classi-
fication of consensus protocols based on four mode groups. The authors presented
a three-dimensional evaluation framework consisting of effectiveness, decentral-
ization, and security, and identified five common blockchain application scenario
categories and provided suggestions for selecting consensus algorithms for each
category.

In conclusion, the classification and analysis of consensus protocols in the field
of DLT is an active area of research with numerous studies providing different
methodologies and categorizations. These studies have compared different consen-
sus protocols based on various criteria such as scalability, performance, finality,
energy impact, and security. The conclusions drawn by these studies highlight
the need for further research and development in the field of consensus protocols
to overcome the current limitations in performance and scalability, and to ensure
wide-scale adoption of blockchains. Ultimately, the choice of a suitable consensus
protocol will depend on various factors such as the scale of the network, the rela-
tionship between participants, and functional and non-functional requirements.

2.2 Performability evaluation techniques

In recent years, there has been a growing interest in evaluating the performance of
DLT platforms and consensus protocols, both through empirical analysis and ana-
lytical modeling. The motivation behind this interest is twofold: to gain a deeper
understanding of the process through modeling, and to estimate the parameters of
new systems before actually developing them, saving time and resources [RHF21;
Rim+17]. Various efforts have been made to categorize methods and techniques
for performance evaluation of DLT systems [Fan+20; Sme+20a].

In the following, some formal definitions used in this thesis are presented,
followed by the literature related to benchmark and analytical modeling.

28

2.2.1 Definitions

Performability was defined by J.F. Meyer [Mey80] as “a unified performance-
reliability measure” and “It is shown that performability relates directly to system
effectiveness and is a proper generalization of both performance and reliability.”
In [CDK05; Bol+06] there can be found the definitions of the metrics that can be
computed in the context of performability.

Assuming that the distributed system under consideration exchanges messages
to achieve a desired goal, there are at any given time t ∈ [0,∞) a defined amount
of messages/jobs - j ∈ [0, J], with J ∈ [1,∞) - to be handled by the nodes
in the network. Note that, rigorously, this concept has to be extended to fit
probability theory by introducing the random variable “number of jobs”, J̃ , with
values j ∈ {0, 1, . . . , J}. However, using the formalism presented in section 1.3,
the transient of the system is not studied, instead the focus is on the asymptotic
behaviour. That is the reason why the measures, presented in the following, are
defined as average (or mean) quantities.

Blocking probability, in this framework, is the probability that the buffer of the
system, with length J , is full and it cannot accept any new message until some
slot in the buffer memory is free. Formally, it is simply

blocking_probability = Pr(J̃ = J), (2.1)

since it is important only to determine whether the system contains already J

messages/jobs.
Mean queue length is the average number of messages that are waiting to be

served by the system. The mathematical formulation descends directly from the
definition of expected value, i.e.

mean_queue_length = E[J̃] =
J∑

j=0

j Pr(J̃ = j). (2.2)

Throughput measures the average number of messages/jobs served by the sys-
tem in unit time. This can be expressed in terms of rate of incoming messages
λ and the probability that there is at least one message to be served, while the

29

system is available. This can be written as

throughput = λPr(J̃ ≥ 1∩ system available) = λPr(J̃ ≥ 1)Pr(system available),
(2.3)

where the last equivalence holds because the two events are independent. This for-
mula tells also that the throughput cannot be larger than the arrival rate λ, hence
it is irrelevant if it is used λ or µ (the service rate) to compute the throughput,
because, even in the case µ > λ, the actual throughput cannot exceed the rate of
arriving messages. In other words, the service rate µ is equal to the arrival rate λ

for a queueing system in statistical equilibrium.
Transaction latency (or simply latency) is the average time that a message

spends in the system, from its arrival until it is served. Latency can be computed
using Little’s Law [Lit61]:

latency =
mean_queue_length

throughput
. (2.4)

Lastly, for what concerns the availability, it can be defined as the ability of a
considered system to be in a state to perform an operation at any instant time
within a given time interval. In other words, it refers to failure-free operation at a
given instant of time [Tri08]. As already mentioned, however, since the transient
measurements are not of interest in this analysis, it is presented the notion of
limiting availability, A, that can be defined as

A =
MTTF

MTTF +MTTR
(2.5)

where MTTF is the Mean Time To Failure and MTTR the Mean Time To Repair.

2.2.2 Benchmarking

Benchmarking is an established and variegated set of techniques used to test sys-
tems, in order to retrieve information on, for example, the performance of said
systems [DJ03; AK08; MR13]. It provides a standardized way to measure the
performability of systems and applications under controlled conditions, enabling
accurate comparisons between different solutions and configurations [Coo+10]. Ex-

30

amples of benchmarking include the Google Cloud Storage Benchmark, which eval-
uates the performance of cloud storage systems, and the Yahoo! Cloud Serving
Benchmark, which measures the performance of NoSQL databases. Another ex-
ample is the Network File System benchmark, which measures the performance of
NFS-based network file systems.

Although benchmarking cloud storage systems and distributed database is
leveraging mostly on established tools and metrics, this not the case for what
concerns DLT, due to a scarce standardization and a lack of solutions developed
by big players (e.g. universities, multi-national companies, etc.). However, the
performance evaluation of DLT systems is crucial to ensure their scalability, reli-
ability, and suitability for various applications. In this context, benchmarking is
a powerful tool, providing an objective method of measuring various performance
metrics of DLT systems. In particular, when analysing distributed ledgers, impor-
tant metrics to consider include latency, throughput, scalability, and robustness.
The benefits of benchmarking DLT systems are numerous. First, it provides a
method of evaluating the performance of different DLT systems, allowing for ac-
curate comparisons between different solutions and configurations. Additionally,
benchmarking enables the identification of performance bottlenecks, helping to
improve the overall design and implementation of DLT systems. Nevertheless, as
already mentioned, one of the main challenges is the lack of standardization in
DLT, making it difficult to compare the results from different studies. Addition-
ally, DLT systems are highly complex and can be difficult to evaluate accurately,
making benchmarking a challenging task.

Examples of benchmarks assessing characteristics and qualities of DLT systems
include [Fan+20; SS21; De 18; HR17; Tin19] On this subject, in [Bis+22], we
presented a benchmark of a permissioned consortium blockchain implementing
two different consensus protocols, IBFT 2.0 and Clique. The work’s goal is to
assess the performance in terms of throughput (see Figure 2.1) and transaction
latency (see Figure 2.2) for a network of sensors recording data on a blockchain.
The tested blockchain is based on Hyperledger Besu a, an Ethereum client devoted
to the development of public and private networks.

More specifically, the blockchain has been deployed and tested on a single
ahttps://besu.hyperledger.org/ [Accessed February 26, 2023]

31

https://besu.hyperledger.org/

machine with the following characteristics: Operating System: Ubuntu 20.04.3
LTS, 2 CPU: Intel(R) Xeon(R) Gold 6256 CPU @ 3.60GHz, RAM: 128GB. The
version of the Besu client used for running the nodes is the 21.7.0-RC1.

(a) (b)

Figure 2.1: Average throughput using IBFT 2.0 and Clique.

(a) (b)

Figure 2.2: Average transaction latency using IBFT 2.0 and Clique.

The tests are set such that blocks are produced at constant rate (one block
every 1 second), while send rate, i.e. the number of transactions per second sent
to the system, are varied from 10 TPS to 300 TPS. Tests are performed for 10, 15,
and 20 validators present in the network.

Note that benchmarking was tested as an approach to assess the metrics of
interest in the design of a blockchain system, in the context of the project behind

32

this research. However, the technical challenges associated with the implementa-
tion of benchmarks, and the limited, not flexible environment utilized to conduct
them, pushed the choice of analytical modeling as a more suitable approach to
evaluate performability metrics for the system of interest.

2.2.3 Analytical modeling

There are examples of articles that have reviewed the use of analytical methods to
study the performance of consensus protocols in blockchains [Sme+20b; Ma+20].
This includes the employment of techniques that can be used in the task of analytic
performance evaluation, such as Stochastic Reward Net (SRN) [Suk+17], game
theory [QYJ20], and hierarchical model approach [Jia+20]. In this thesis, the
focus is on articles that apply Queuing Theory to the performability evaluation
of DLT systems [KK17; LMC18; Li+19; Ric+19; Gei+19; Fra20; WG21; Bal+21;
Bal+22; HMZ19; Men+21; MF22].

Of all the different DLT platforms available, blockchains, and in particular
Bitcoin [Nak08], have received the most attention, where the goal of many related
works is to develop a queuing model of a generalized PoW consensus protocol,
using Bitcoin as an example [KK17; LMC18; Li+19; Ric+19; Gei+19; FM19;
Fra20; WG21; Bal+21; Bal+22]. These articles focus their attention on differ-
ent aspects of bitcoin-like blockchains, e.g. time delay and mining process, thus
the implementation of specific models to describe those processes. Specifically,
in [Ric+19], it is developed a M/G/1 queueing theory model to characterize the
delay experienced by Bitcoin transactions. Authors of [FM19; Fra20] make use of
G/M/∞ and M/G/∞ queues to study the synchronization in Bitcoin network. Li
et al. [LMC18; Li+19] employ a GI/M/1 queue that can provide analysis both for
the stationary performance measures and for the sojourn time of any transaction
or block. By means of a batch Markov serving process M/MB/1, in [Bal+21] the
consolidation time of transactions in Bitcoin network is studied, with regard to
the relation between the fee offered by a transaction and its expected consolida-
tion time. A similar endeavour is the focus in [KK17], where M/GB/1 queues
are applied to study the transaction confirmation time for Bitcoin. In [WG21] it
is presented a blockchain model based on a wireless infrastructure, where to de-

33

termine its performance metrics a discrete-time M/MB/1/K queue is used. The
work in [Gei+19] aims to investigate key performance indicators and general limits
of blockchains with the aid of a discrete-time GI/GIB/1 model.

These studies have opened the way to the study of other consensus proto-
cols, such as Raft and Raft-based protocols for private [HMZ19] or consortium
blockchains [Men+21]. For instance, Huang et al. [HMZ19] model Raft using a
simple, yet effective, M/M/1 queue. The proposed model can predict the network
split time and probability this may happen. Hyperledger Fabric has been mod-
eled in [Men+21], where a PH/PH/1 queue is used to analyse the consistency
properties of consortium blockchain protocols.

In this work, the focus is on BFT-based protocols. These algorithms have been
studied in the context of performance evaluation of blockchains using queuing the-
ory models, with Ma and Fan [MF22] proposing a M/PH/1 model to evaluate the
performance of the Improved PBFT protocol and Chang et al. [Cha+22] presenting
a M ⊕M b/M b/1 model to describe dynamic PBFT systems.

The works here mentioned are both applying the matrix-geometric solution to
analyze the PBFT blockchain system. This is a standard approach to solve the
problem of the increasing complexity (and dimensionality) of the problem, exploit-
ing the repeating structure of the matrix representing the balance equations.

For what concerns the assessment of system availability, books and surveys,
e.g. [TB17], are helpful tools to have an overview of the state-of-the-art about the
topic. Along with other examples, availability models relying on Markov chains
found applications in several areas, including healthcare [SKU18; TX21], IoT sys-
tems [Eve+19; Per+21], wireless sensor networks [MG11; Sil+12; MAG15; Arj+17;
Par19], Infrastructure-as-a-Service clouds [Ata+17; Lon+11; Gho+14], distributed
storage systems [For+10], and blockchains [Mel+21].

In [SKU18], a novel approach is presented that considers two-dimensional
continuous-time Markov chains for functional states of the healthcare IoT infras-
tructure and end nodes. The study also includes a case study with a Markov model
that considers attacks on the vulnerabilities of the healthcare IoT system, along
with a state diagram for these attacks. The availability of the system is presented
as a function of the intensities of service requests flow, with the main emphasis

34

being on safety and security-related issues. Furthermore, in [TX21], the availabil-
ity of healthcare IoT systems is also studied. The study describes two groups of
structures, which are the components of the IoT system, using separate Markov
state-space models. A two-dimensional state space representation is established
and the system balance equations are solved, similar to the approach presented in
[SKU18]. The study also presents availability-related performance metrics such as
the probabilities of full service, degraded service, and system unavailability.

The availability of IoT systems is considered in various works, such as [Per+21]
and [Eve+19]. These studies examine the availability of IoT systems, with a
focus on evaluating the physical edge and fog nodes that run applications. In
particular, in [Per+21], authors present analytical availability models, compute
the MTTF and MTTR values for the systems under study, and develop a two-
dimensional Markov model to account for both failures and repairs. Similarly, work
in [Eve+19] evaluates the performance and energy consumption-related measures
of clustered IoT systems. Authors use two-dimensional models to calculate the
steady-state probabilities, which are then used to compute various availability and
performance metrics, such as the probability of being in a fully operational state
and the mean energy consumption. In addition to the availability of IoT systems,
the impact of failures on facilitating infrastructures has also been studied. For
instance, in [Kir+15], researchers model the presence of failures in facilitating
infrastructures.

The scalability of cloud systems, particularly Infrastructure as a Service (IaaS)
based ones, is a limiting factor for modeling attempts. To address this challenge,
various approaches have been proposed in the literature. In [Ata+17], the au-
thors tackle scalability-related problems in large cloud systems using approximate
Stochastic Reward Net (SRN) models combined with folding and fixed-point itera-
tion techniques. The proposed approach is capable of capturing the failure/repair
behavior of physical machines and analyzing the percentage of available physical
machines for different failure and repair rates. In [Lon+11], the authors focus on
the high availability of IaaS cloud systems. To reduce complexity and solution
time, they employ an interacting Markov chain based approach and use SRNs to
solve the Markov chains. The availability models presented in the study are used
to perform trade-off analysis of longer MTTF versus faster MTTR on system

35

availability, as well as the effect of having multiple concurrent repair facilities. In
[Eve17], the authors introduce a novel approximate solution approach that allows
the consideration of large numbers of servers for cloud-based systems. The ana-
lytical models and solutions are monolithic, but still capable of considering a large
number of facility nodes, typically up to hundreds or thousands. The study con-
siders the quality of service for cloud centers together with server availabilities,
and obtains performability measures in the presence of server failures and repairs.

In recent years, the use of blockchain technology has gained significant atten-
tion as a means of supporting secure and decentralized service provisioning over
cloud infrastructures. The article in [Mel+21] presents novel models for evaluating
the availability and capacity-oriented availability of cloud computing infrastruc-
tures running blockchain-based distributed applications. The authors focus on the
Ethereum blockchain platform, which has emerged as a prominent platform for
decentralized applications. The models presented in the study use the traditional
approach to represent the system’s availability as the ratio between the MTTF

and the MTTR. The authors present availability results as functions of MTTF

and MTTR for the components of the system, including the server, miner node,
and bootnodes.

In summary, related works on analytical modeling for performability evalua-
tion of DLT systems are widespread in literature, with various approaches ap-
plied to different type of environments and settings. In the reviewed literature,
both for availability evaluation and for performability analysis, the main focus in
on blockchain platforms and related consensus mechanisms, especially applied to
model bitcoin-like systems and block mining process in PoW. For instance, the lit-
erature on the modeling of BFT-based protocols is limited in quantity, even though
variegated in methods. There are some examples of Markov chain-based models
applied to BFT protocols, but none of them takes into consideration explicitly the
presence of Byzantine nodes in the network, rather they consider stop-fail errors,
even though they effectively describe and model the dynamic variation in number
of nodes during the consensus process. The analytical models reported in this
thesis (as presented in [Mar+23a; MM23]), instead, are based on CTMC to assess
the availability and performability of protocols related to PBFT, including the Im-

36

proved PBFT protocol and other variations. The main contribution in this context
is the definition of a multi-dimensional state diagram, able to give availability and
performability metrics as exact solutions of the balance equations describing the
system model, while accounting explicitly for the presence of Byzantine nodes.

37

Chapter 3

Methodology

The main focus of the research presented in this thesis is the development and
implementation of techniques aimed to assess the performability of BFT-based
consensus protocols for DLT systems. In general, consensus protocols have a vi-
tal role in the correct and secure functioning of DLT solutions [Sin+22; Bao+23],
therefore the need for analytical modeling for performability evaluation is cen-
tral, when creating a DLT platform. In this chapter, the methodology employed
to design and characterize benchmarks and analytical models for performability
evaluation is presented.

However, before outlining the methodology used in performability evaluation,
the process behind the selection of BFT protocols, as elaborated in chapter 4, is
hereby reported:

1. Problem definition.
The requirements and constrains for the desired use-case are defined, stating
the protocol selection as a MCDM problem. For instance, alternatives and
criteria are selected, then weights are assigned to each criteria. The expected
result is the ranking of the alternatives, optimized according to the MCDM
techniques.

2. Selection of alternatives.
Alternatives (DLT platforms) are selected using two rationales, i.e. they
are the most used/valuable platform in the DLT application/commercial

38

sector, or they belong to and they are the most prominent representative of
a consensus protocol family, as reported in literature.

3. Selection of criteria.
There are numerous publications on the analysis, classification, and selection
of DLT platforms in different contexts. By reviewing them, it is possible to
summarize and aggregate the most suitable criteria to fully describe a con-
sensus protocol by means of the metrics associated with its implementation.

4. Data acquisition and processing.
Data for each selected alternative and criterion is gathered from reputable
sources (e.g., academic literature and network analytics). Because of the
heterogeneous nature of data, these have to processed and standardized.

5. Criteria weighting.
MCDM experts are the primary source of knowledge to select the most ap-
propriate weighting method and, eventually, values of these weights. Addi-
tionally, recommendations provided in the peer-reviewed scientific literature
can be used as a reliable source.

6. Ranking.
The selected MCDM methods are applied to obtain the ranked alternatives
as result. The ranking is giving the most suitable DLT platforms for the
defined scenario.

Therefore, by applying the MCDM framework described above, it is possible
to select an element/family of consensus protocols to focus on. As mentioned in
the Introduction, performability evaluation techniques are applied to study BFT-
based consensus protocols used in DLT solutions. In the following there is the
methodology applied in chapter 5:

1. Research Design.
Given the nature of the research, a quantitative research design is adopted.
Analytical modeling and benchmarking are employed to assess the perfor-
mance of consensus protocols in DLT.

39

2. Data Collection.
Primary data is the results generated through analytical models and bench-
marks. The tools used include custom Python scripts, and the data collection
procedures involve running the scripts with varying parameters.

3. Variables and Measures.
Key variables include number of network nodes, amount of Byzantine nodes,
failure and repair rates, transaction throughput (referred as arrival rate and
service rate in analytical models). These variables are all functional within
the analytical models, however in benchmarking a subset is used, i.e. input
throughput and number of nodes. The measures of performability metrics
include system availability, throughput, transaction latency/response time,
transaction blocking/loss probability, mean number of transactions in the
system; from benchmarks, a subset of these metrics can be obtained, i.e.
throughput and latency/response time.

4. Data Analysis.
The analysis of the data obtained from analytical models versus data from
benchmarks may be used to validate the analytical model. For data analysis
and visualization, custom Python scripts are used.

5. Limitations and Assumptions.
Limitations include the simplifications inherent in analytical models and the
assumptions made about network conditions. The impact of these limitations
on the findings is discussed.

6. Rigor and Validity.
Rigorous validation methods, including sensitivity analyses and comparisons
with real-world data where possible, are employed to enhance the internal
validity of the findings.

The methodology here presented follows a standard approach to performability
evaluation, both for benchmarking and analytical modeling. The main strength
of this methods is that performability evaluation techniques are flexible tools to
asses important metrics of DLT systems. The main challenges are connected with

40

the difficult abstraction of the studied protocol in order to develop an analytical
model, while for benchmarks the implementation of a working system and the
tuning of parameters may happen to require a large amount of resources.

41

Chapter 4

Protocol selection framework

Earlier, in section 2.1, it has been established that there are abounding ways
to classify consensus protocols for DLT. One straightforward approach is to de-
fine whether a protocol is Proof-based either Vote-based [NK18; AA19]. Another
related way is to determine what resource is fundamental in the consensus pro-
cess, i.e. computational power (e.g. PoW), tokens (e.g. PoS), or votes (e.g.
BFT) [NL20; Ban+19]. A different method requires to establish how much the
analysed protocols suit a certain network type, i.e. public, consortium, and private
networks, according to some criteria [Bal17; ZL20; Fil+22].

This chapter presents a MCDM framework for consensus protocol selection, as
from [Fil+22]. This scheme has been proposed to aid decision makers in selecting
a suitable consensus protocol for a certain DLT application: a decision maker dis-
tinguishes, according to the project’s needs, which consensus protocols are suiting
the most in those conditions, using the ranking obtained from the MCDM method
as a guideline.

In the rationale of this thesis, the proposed method helped (see section 4.5) in
the selection of a BFT-based consensus protocol as backbone of the system to be
implemented in the context of the national project HD3FLAB. Hence, the choice
to proceed and analyze the performability properties of BFT protocols as further
step in the wider frame of the project.

42

4.1 Problem definition

The problem of ranking DLT platforms according to some criteria dictated by the
application/use-case can be formalized as a multi-criteria optimization problem,
which make use of MCDM techniques to achieve a solution.

The problem is set by letting A = {A1, A2, . . . , Am} (m ≥ 2) be the row vector
of alternatives (the DLT platforms selected to represent consensus protocols), while
the row vector of criteria is C = {C1, C2, . . . , Cn} (n ≥ 2), and the vector of their
weights is W = {w1, w2, . . . , wn}T , such that

∑n
j=1 wj = 1 (wj ∈ [0, 1]). The row

vector of alternatives and the row vector of criteria can be used to express the
decision matrix X = A⊗ C = |xij|m×n, where A⊗ C is the tensor product of the
two row vectors. Practically, each element of X, xij, is the value of the alternative
Ai respect to the criterion Cj.

At this point - in the case where all the defined criteria are benefit criteria
(so that the problem would turn into a maximization problem) and the weights
are additive - the ranking of the alternatives would require simply to reorder the
vector with the total scores for each alternative, i.e.

Ascore
i =

n∑
j=1

xijwj. (4.1)

Indeed, this straightforward algebraic calculation (Equation 4.1), also known
as Simple Additive Weighting (SAW) or Weighted Sum Model (WSM) [Mac68],
is possible only under stringent conditions: it is a maximization problem and the
weights are additive.

However, the protocol selection problem may require the optimization both of
benefit criteria and cost criteria, plus some other constraints. For instance, there
exist approaches to adapt the SAW method to discern between benefit and cost
criteria under certain constrains, as well other techniques, like Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) [Mac68] and VIseKriter-
ijumska Optimizacija I Kompromisno Resenje (VIKOR) [OT04]. Specifically, in
TOPSIS it is computed the Euclidean distance between each alternative and two
points: the positive ideal solution (that maximises the benefit criteria and mini-
mizes the cost criteria) and the negative ideal solution (that maximises the cost

43

criteria and minimizes the benefit criteria). Then, the ranking is obtained by or-
dering the alternatives according to how close to/far from the positive/negative
ideal solutions they are, i.e. the best alternative is the one that is the closest to the
positive ideal solution and farthest from the negative one. The VIKOR method is
maximizing group benefits and minimizing individual regret. The method is based
on creating a solution within the scope of alternatives and criteria closest to the
ideal solution. VIKOR determines the compromise ranking list, the compromise
solution, and the weight stability intervals for the reference stability of the com-
promise solution obtained with the given weights.

It is out of scope in this instance to discuss further the actual formalism and
implementations of each possible MCDM techniques applicable to solve the stated
problem. As a matter of fact, there are extensive and detailed works in literature
explaining different methods and their construction [MA04; Gun18]. For the re-
sults reported in this thesis and in [Fil+22], it has been used an automatic tool
that computes the solution to a MCDM problem using 14 different techniques,
including SAW, TOPSIS, and VIKOR (used in this thesis). This tool is freely
available upon request to the authors of [WR17; Wan+20].

4.2 Criteria definition

In literature, there have been studies dedicated to determine evaluation criteria for
the classification of consensus protocol performance. As a basis for structuring the
selection criteria, mainly two work have been used as references [BMB20; SAS20].

From the analysis of the literature, reported also in [Fil+22], it has been found
that those criteria can be categorized into five groups: throughput, decentraliza-
tion, incentivization, sustainability, and security. For each group the corresponding
criteria (metrics) are taken into account. Criteria to characterize consensus proto-
cols are specified according to the most known implementations for each protocol.
This choice is based on the already discussed correlation between the consensus
algorithm and DLT solution, and for data availability. Below we present our cat-
egorization and describe the corresponding criteria in more detail.

44

Throughput

This criteria group regards the transactions that a consensus protocol can handle
and its finalization, i.e., when given transaction becomes definitively part of the
ledger.

• Transactions per second (TPS). This metric reports how many transac-
tions are processed by the consensus protocol in a second. In computing this
number, theoretical limits (if available) are considered, more than real-world
implementations;

• Transaction latency. This metric measures the time needed for a transac-
tion to become part of the ledger, from submission to finalization/validation;

• Finalization. A criteria defining the finalization process of the consensus
protocol, either probabilistic, either deterministic. It establishes the presence
or absence of forks in the ledger.

Decentralization

An important aspect in evaluating a consensus protocol, and a DLT in general, is
the measure of the decentralization of the distributed system. In this group we
identified two criteria.

• Number of consensus nodes. This metric indicates the number of actors
participating in the consensus process itself;

• Number of network nodes. The number of nodes that are actually keep-
ing a copy of the ledger in their own memory.

Incentivization

In order to properly work, a DLT, especially in a public implementation, needs
to incentivize the nodes to participate in the consensus, e.g., a type of reward
awarded to nodes.

• Transaction fees. This metric gives the average price (in US$) for a client
to submit one transaction to the network;

45

• Reward. The average daily monetary reward (in US$) for all the consensus
nodes (as a whole) is calculated in this metric. Those values have been
computed in different ways - according to the reward system: the average
(or fixed) reward per block times the average number of blocks, and expected
daily return of investment times the number of recipients.

Sustainability

This criteria group determines the sustainability of participating to the network
in terms of electrical power consumption and specific hardware requirements.

• Power consumption. This criteria establishes a level of electric power
usage to maintain and run the network. It is an important metric to take
into account. Just to give an example for mining Bitcoin, there is a total
electric consumption comparable to the need of a small-medium state;

• Hardware dependency. A criteria stating if there is any advantage given
by specialized hardware (e.g., ASICs, GPUs, etc.) to participate into con-
sensus.

Security

A very critical criteria group is the one taking into account security issues, because
security level requirements are inherently different in public-consortium-private
and permissionless-permissioned DLTs.

• Fault-tolerance. This is the maximum percentage of faulty (or misleading)
nodes allowed in the network in order to securely run the consensus protocol;

• 51% attack. It measures the level of vulnerability of a consensus protocol to
the attack conduct by a powerful (in terms of resource needed to participate
into consensus) adversary;

• Double spending. In case of forks or other scenarios, a dishonest node may
attempt to spend its own currency/tokens several times by acting maliciously
in consensus process. In this metrics, it is reported if a protocol is vulnerable
to such a threat.

46

4.3 Criteria weights

There are different approaches to set the weights of criteria in a multi-objective
optimization, broadly objective weight calculation, subjective weight calculation,
and a combined approach [Odu19]. In this thesis, a subjective weight calculation
method is employed. This method relies on some decision makers (i.e. experts in
the field) to assess the pairwise importance of the selected criteria, according to a
predefined scale.

The process to determine the weights to be used in the MCDM framework is
composed of the following parts: (I) an Analytic Hierarchy Process (AHP) [SP08]
shows the relation among the goal of the decision, the criteria groups and their
metrics; (II) some preference scale has to be determined (III) to perform a pairwise
comparison of the criteria; (IV) the consistency of the choices is estimated and,
lastly, (V) weights are computed, both for criteria groups and for criteria.

(I) AHP is practically a formalization of how the subdivision of criteria in
groups is functional in lowering the number of pairwise comparisons to be per-
formed. For instance, among n criteria, there are(

n

2

)
=

n!

2!(n− 2)!
=

n(n− 1)

2
(4.2)

unique distinct pairs, leading to 66 pairs to be evaluated, if the number of criteria is
12. Instead, if the criteria are grouped in criteria groups, and pairwise comparison
of criteria is performed only among criteria belonging to the same group, the total
number of comparisons decreases: in this framework, it is reduced to 19.

(II) the scale in pairwise comparison is set to determine whether a decision
maker identify a criteria group/criterion to be more or equally important than an-
other. The scale goes from 1, when two criteria contribute equally to the objective,
to 9, when one criterion favors extremely over another, with unitary increments.

(III) there are 19 pairwise comparisons to be performed to evaluate the weights,
first among criteria groups (10 comparisons) and then among criteria in the same
group (9 pairs).

(IV) since the high amount of criteria weights to be determined, there is a
high degree of uncertainty associated. To quantify this uncertainty, a consistency

47

ratio [SP08] is computed. Simply, consistency ratio is used as measure against a
threshold value of 10%, hence if the consistency ratio is larger than 0.1, then the
subjective evaluation of the pairwise preferences has to be revised.

(V) finally, weights are computed using the AHP structure: the preference
comparison among criteria groups gives the weight of each group, then the com-
parison among criteria in the same group multiplied by the weight of the group is
the resulting weight of a criterion. An example to understand better the proce-
dure: suppose that the criteria group throughput as weight 0.306, when compared
to the other criteria groups; the three criteria in throughput, TPS, latency, and
finalization, have weights 0.428, 0.428, and 0.144; therefore, the final weights for
each criterion contributing to the objective are 0.131, 0.131, and 0.044, respectively.

Note that the process to determine subjective weights requires the intervention
of experts in the field. For this thesis, as reported in [Fil+22], the final weights
are the arithmetic mean of the evaluations coming from 6 experts.

4.4 Data acquisition

Data acquisition is a multi-step process that involves gathering information from
various online sources such as whitepapers, DLT explorers, and academic stud-
ies [Pau+19; Xia+20; NL20]. The sources were selected based on their relevance
and reliability, and the data was then compared and analyzed to ensure consis-
tency. In some cases, where data was not available from the primary sources, we
had to make estimations based on indirect information or by giving an educated
guess. The collected data was condensed and tabulated (see Table 4.3) to provide a
comprehensive understanding of DLT platforms according to their performance in
terms of throughput, decentralization, incentivization, sustainability, and security.

4.5 Consensus family selection

The case study selected in the context of the HD3FLAB was related to a DLT-
based bike renting system. While it is not relevant in this circumstances to analyze

48

deeper the process leading to the selection of these values for the criteria to be used
in the MCDM problem, the constrains and requirements necessary for the proper
functioning of the analysed case are listed in Table 4.1. The table of requirements

Criteria group Criteria Required value

Throughput Transactions per second 500 TPS
Transaction latency 10 s
Finalization Deterministic

Decentralization Number of consensus nodes 10
Number of network nodes 10

Incentivization Transaction fees 0 $
Reward 0 $

Sustainability Power consumption Low
Hardware dependency No

Security Fault-tolerance 50%
51% attack Not specified
Double spending Not specified

Table 4.1: Requirements for each criteria for the problem posed by the case study.

sets some peculiar features for the selected platform. About the throughput, the
transactions per second need to be 500 TPS, the transaction latency 10 seconds,
and a deterministic finalization. Decentralization depicts a small-sized blockchain
platform, with 10 consensus and network nodes. There is no incentivization, since
the stakeholders are assumed to participate in the network for their own interest.
Sustainability requires a low power consumption and no hardware dependency.
Lastly, fault-tolerance is 50%, with no specific requirement on other security fea-
tures.

To obtain weights to use in the MCDM process, the pairwise weights analysis is
submitted to 6 experts in the field and the taken values are the arithmetic means
of the presented evaluations, as showed in Table 4.2.

Now, by using the TOPSIS method, results can be obtained in this scenario.
The following is the ranking of consensus protocol family, with the associated DLT
platforms in parentheses, for the considered case study:

49

Criteria group Criteria Final weight

Throughput Transactions per second 0.150
0.449 Transaction latency 0.150

Finalization 0.150

Decentralization Number of consensus nodes 0.042
0.084 Number of network nodes 0.042

Incentivization Transaction fees 0.014
0.028 Reward 0.014

Sustainability Power consumption 0.117
0.233 Hardware dependency 0.117

Security Fault-tolerance 0.123
0.206 51% attack 0.041

Double spending 0.041

Table 4.2: Obtained weights combined by arithmetic mean from different experts.

1. DPoS (EOSIO)

2. PoS + BFT (Avalanche)

3. BFT (Cosmos)

4. PoI (NEM)

5. FBA (Ripple)

6. FBA (Stellar)

7. PoS (Algorand)

8. dBFT (NEO)

9. PoS (Ouroboros)

10. Tangle (IOTA)

11. PoA deterministic (POA)

12. PoS (Nxt)

50

13. PoET deterministic (Sawthoot)

14. PoA probabilistic (POA)

15. PoET probabilistic (Sawthoot)

16. PoC (Burstcoin)

17. PoW (Ethereum)

18. PoW (Bitcoin)

These results partially justifies the choice of implementing a BFT consensus pro-
tocol in the development of the infrastructure related to the national project
HD3FLAB. Indeed, the among top 3 choices there are two platforms using a BFT-
based algorithms as underlying consensus protocol.

In summary, the MCDM framework here presented was used to help the de-
cision makers to determine what consensus protocol is the most suitable in the
scenario defined by the case study of the national project HD3FLAB. The method-
ology elaborated to develop this MCDM framework includes the criteria used to
characterize the qualities of consensus protocols employed in the DLT industry.
This methodology also includes a AHP applied to evaluate the weights to be uti-
lized utilized in order to solve the multi-objective optimization problem. Finally,
the ranking of the consensus protocols for the intended scenario is obtained, re-
vealing that the choice of BFT-based consensus protocols is supported by the
application of the proposed MCDM framework, under the requirements and con-
ditions specified by the case study.

51

T
ab

le
4.

3:
T

he
co

lle
ct

ed
da

ta
se

t.
T

he
fir

st
th

re
e

co
lu

m
ns

sh
ow

th
e

na
m

e
of

th
e

pr
ot

oc
ol

,
it

s
co

ns
en

su
s

fa
m

ily
ac

co
rd

in
g

to
[N

L2
0]

,
an

d
th

e
pl

at
fo

rm
s

co
ns

id
er

ed
.

T
he

n,
th

e
fiv

e
cr

it
er

ia
w

it
h

th
ei

r
ow

n
m

et
ri

cs
ar

e
pr

es
en

te
d:

co
lu

m
ns

or
sp

ec
ifi

c
va

lu
es

re
po

rt
ed

w
it

h
a

∗
ha

ve
be

en
ca

lc
ul

at
ed

,v
al

ue
s

m
ar

ke
d

w
it

h
†

w
er

e
gu

es
se

d
or

ex
tr

ap
ol

at
ed

by
m

ea
n

of
ot

he
r

in
fo

rm
at

io
n.

T
h
ro

u
gh

p
u
t

D
ec

en
tr

al
iz

at
io

n
In

ce
n
ti

v
iz

at
io

n
S
u
st

ai
n
ab

il
it
y

S
ec

u
ri

ty

F
am

il
y

P
ro

to
co

l
P
la

tf
or

m
T

P
S

(s
)

T
ra

n
sa

ct
io

n
la

te
n
cy

(s
)

F
in

al
it
y

C
on

se
n
su

s
n
o
d
es

N
et

w
or

k
n
o
d
es

F
ee

s
(U

S
-

D
/t

x
)

R
ew

ar
d
∗

(U
S
D

/d
ay

)
P
ow

er
co

n
-

su
m

p
ti

on
H

ar
d
w

ar
e

d
ep

en
d
en

cy
F
au

lt
-

to
le

ra
n
ce

51
%

at
ta

ck
D

ou
b
le

-
sp

en
d
in

g

P
oW

N
ak

am
ot

o
B

it
co

in
7

60
0

-
36

00
P

10
00

00
0

10
00

0
10

-
15

51
11

89
92

H
ig

h
Y
es

50
%

co
m

-
p
u
t.

p
ow

er
V
u
ln

er
ab

le
V
u
ln

er
ab

le

P
oW

N
ak

am
ot

o-
G

H
O

S
T

E
th

er
eu

m
10

-
15

10
-

60
P

>
1
0
0
0
0
0

83
59

10
-

15
36

43
52

00
H

ig
h

Y
es

50
%

co
m

-
p
u
t.

p
ow

er
V
u
ln

er
ab

le
V
u
ln

er
ab

le

P
oS

P
ro

x
im

aX
N

x
t

10
0

20
-

60
P

11
7

13
71

0.
03

-
0.

06
16

52
4

L
ow

N
o

50
%

d
e-

p
os

it
ed

st
ak

e
va

lu
e

V
u
ln

er
ab

le
D

iffi
cu

lt

P
oS

O
u
ro

b
or

os
C

ar
d
an

o
10

00
20

P
36

82
26

19
55

0.
2

-
0.

3
31

32
00

0
L
ow

N
o

50
%

to
ke

n
w

ea
lt

h
V
u
ln

er
ab

le
D

iffi
cu

lt

P
oS

A
lg

or
an

d
A

lg
or

an
d

10
00

1
-

5
D

10
0

10
0

<
0
.0
1

80
00

00
L
ow

N
o

33
%

to
ke

n
w

ea
lt

h
V
u
ln

er
ab

le
D

iffi
cu

lt

B
F
T

T
en

d
er

m
in

t
C

os
m

os
10

00
-

40
00

6
-

7
D

>
1
0
0
0
0

<
2
0

<
0
.5

81
11

64
L
ow

N
o

33
%

to
ke

n
w

ea
lt

h
V
u
ln

er
ab

le
D

iffi
cu

lt

D
P
oS

E
O

S
IO

E
O

S
40

00
-

60
00

12
6

D
86

37
1

14
0

23
10

0
L
ow

N
o

33
%

d
el

e-
ga

te
s

V
u
ln

er
ab

le
V
u
ln

er
ab

le

P
oC

P
oC

B
u
rs

tc
oi

n
10

60
-

12
0

P
>

1
0
0
0
0

97
7

<
0
.0
1

76
M

ed
iu

m
Y
es

50
%

st
or

ag
e

sp
ac

e
V
u
ln

er
ab

le
V
u
ln

er
ab

le

P
oI

P
oI

N
E
M

40
00

60
P

10
0

40
3

0.
01

5
-

0.
35

73
3

L
ow

N
o

50
%

im
p
or

-
ta

n
ce

S
af

e
S
af

e

P
oA

P
oA

P
O

A
60

5
P

12
12

†
<

0
.0
1

17
30

L
ow

Y
es

50
%

ID
s

S
af

e
V
u
ln

er
ab

le
P
oA

P
oA

P
O

A
60

5
D

12
12

†
<

0
.0
1

17
30

L
ow

Y
es

33
%

ID
s

S
af

e
S
af

e
P
oE

T
P
oE

T
H

y
p
er

le
d
ge

r
S
aw

to
ot

h
7

12
4

P
15

15
0

0
L
ow

Y
es

50
%

T
E
E
s

S
af

e
S
af

e

P
oE

T
P
oE

T
H

y
p
er

le
d
ge

r
S
aw

to
ot

h
7

12
4

D
15

15
0

0
L
ow

Y
es

33
%

T
E
E
s

S
af

e
S
af

e

d
B

F
T

d
B

F
T

N
E
O

10
00

15
-

25
D

7
<

1
0
0

0
33

60
00

L
ow

N
o

33
%

p
ar

ti
ci

-
p
an

ts
V
u
ln

er
ab

le
V
u
ln

er
ab

le

F
B

A
R

P
C

A
R

ip
p
le

15
00

3
-

5
D

>
1
0
0

88
4

<
0
.0
1

56
0

L
ow

N
o

20
%

n
o
d
es

in
ea

ch
U

N
L

S
af

e
S
af

e

F
B

A
S
C

P
S
te

ll
ar

10
00

5
D

65
44

<
0
.0
1

0
L
ow

N
o

va
ri

ab
le

(3
3%

b
es

t
ca

se
)

S
af

e
S
af

e

-
T
an

gl
e

IO
T
A

30
0

10
-

15
P

10
00

00
†

25
0

0
L
ow

N
o

50
%

co
m

-
p
u
t.

p
ow

er
S
af

e
S
af

e

P
oS

+
B

F
T

A
va

la
n
ch

e
A
va

la
n
ch

e
45

00
<

1
P

83
4

83
4†

<
0
.0
1

75
06

L
ow

N
o

33
%

p
ar

ti
ci

p
an

ts
†

S
af

e
S
af

e

52

Chapter 5

Performability evaluation of BFT
protocols

This part of the thesis is devoted to present, analyze, and discuss the proposed
models employed to assess the performability of BFT-based protocols. A sepa-
rate exposition of availability and performability model (even though the latter
includes the earlier) is due to the actual evolution of the idea behind these two
models. Indeed, the availability model was developed to effectively account for the
presence of Byzantine nodes in the system, aspect that was otherwise overlooked
in literature. This availability model is, then, used in tandem with a more famil-
iar quasi-birth-death model to describe the arrival and service of messages. The
union of these two model made possible to present a complete analytical model,
that comprises the possibility of studying and evaluating the performability of
BFT protocols.

5.1 Availability model for BFT protocols
Here it is proposed a model based on a CTMC to describe systems in which
participants achieve consensus through a BFT process. The relationship between
the number of participants, the breakdown and repair rates are investigated to
find system configurations for the optimal availability [Mar+23b].

The advantage of the analytical approach resides in the possibility of tuning
the parameters characterizing the modelled system in a straightforward and inex-
pensive way. An evident downside is the difficult beforehand development of an
analytical model suitable to describe the network. Nonetheless, some analytical
approaches, like CTMC, have been widely and successfully applied in the last few

53

decades to evaluate availability of complex systems [GL87; Bol+06].

Consider a system with N participants entrusted to work on certain tasks by
exchanging messages with each other, either in a point-to-point or in a broadcast
fashion, as shown in Figure 1.5. The model is based on a CTMC in the form of a
quasi-birth-death process. A quasi-birth-death process is a special case of CTMC,
where the parameters ξ and η are the rates at which servers break-down (“death”)
and are repaired (“birth”), as represented in Figure 5.1.

0, 0 . . .

η

ξ

0, j

η

jξ

. . .

η

(j + 1)ξ

0, f

η

fξ

...

η ξ

...

η ξ

...

η ξ

i, 0

η iξ

. . .

η

ξ

i, j

η

jξ

η iξ

. . .

η

(j + 1)ξ

i, f

η

fξ

η iξ

...

η (i+ 1)ξ

...

η (i+ 1)ξ

...

η (i+ 1)ξ

h, 0

η hξ

. . .

η

ξ

h, j

η

jξ

η hξ

. . .

η

(j + 1)ξ

h, f

η

fξ

η hξ

Figure 5.1: Availability model for a BFT consensus protocol.

In this model, it is assumed that servers can break-down independently, but
they are repaired sequentially, one at the time. Thus, the break-down rate ξ is
multiplied by a number reflecting the current number of available nodes, i.e. if
there are f nodes, the break-down rate is fξ, while if there is only one node

54

available ξ is the corresponding break-down rate. This is not the case for the
repair process, since repairs can occur only one at a time, with repair rate η.

The model in Figure 5.1 is proposed with the following assumptionsa: there
are N servers in the system, of which h ≤ N are nodes participating honestly
in network operations, and f ≤ N are nodes acting maliciously. In this context,
H : {h ∈ N0 |h ≤ N]} → {h ∈ N0 |h ≤ N]} and F : {f ∈ N0 | f ≤ N]} →
{f ∈ N0 | f ≤ N]} can be treated as random variables following an arbitrary
distribution. H and F are chosen such that their realizations sum up to N , i.e.
H(h) + F (f) = h + f = N . Therefore, since N is considered to be a constant,
H and F are dependent random variables and their outcomes can be written as
f = N −h or h = N −f . Without loss of generality, F is the independent discrete
random variable. Hence, h = N − f is a realization dependent on the value of the
discrete random variable F .

The state diagram, as depicted in Figure 5.1, is composed of (h + 1)(f + 1)
states. All the states can be eventually visited from any starting point, thus the
chain is irreducible and ergodic. These two conditions are sufficient for the chain
to admit a stationary distribution.

Therefore, given a set of parameters describing a system, the system’s limiting
availability can be computed from the stationary probability distribution associ-
ated with its CTMC. In order to compute the stationary distribution of the chain,
it is needed to establish the generating equations in the form of a system of linear
equations, where the state probabilities for given transition rates can be deter-
mined. The following equation represents the whole system of linear equations:

[(2− δi0 − δih − δjf)η + (i+ j)ξ]Pi,j+

− η [Pi,j−1(1− δj0) + Pi−1,j(1− δi0)] +

− (i+ 1)ξPi+1,j(1− δih)− (j + 1)ξPi,j+1(1− δjf) = 0, (5.1)

where δij indicates the Kronecker delta, i.e. δij = 1 if i = j and δij = 0 if i ̸= j. In
a compact form, Equation 5.1 describes all the possible equations in the system
by varying the indices i and j, where i ∈ [0, h] and j ∈ [0, f]. Thus, consistently
with number of possible states, there are (h + 1)(f + 1) equations to be solved
simultaneously. However, because the elements of P⃗ , Pi,j, are probabilities, the
additional condition

∑
i

∑
j Pi,j = 1 is imposed.

In Equation 5.1, Pi,j is the probability that the system is in state (i, j), while
the coefficients of Pi,js are the entries in a coefficient matrix, Q. Indeed, Q is the
stochastic transition matrix associated with the continuous-time Markov chain, in

aFor simplicity of exposition, it is assumed that N,h, f ∈ N0. Therefore, when dealing with
divisions, the ceiling ⌈·⌉ and floor ⌊·⌋ functions are implicitly applied accordingly.

55

which the transition rates from a state to another are embedded.
Note that, mirroring the lattice structure of the model, it seems natural to

write the elements of P⃗ using the indices i and j, although dimQ = (h + 1)(f +
1)×(h+1)(f+1), because there are (h+1)(f+1) states in the system. This means
that is not proper to use i and j while computing the elements of P⃗ . Indeed, P⃗ is
having a matrix structure when expressed as Pi,j, therefore it has to be flattened
into a vector with elements Pi, where i ∈ [0, (h+ 1)(f + 1)]. This last remark is
important, because it ensures that the dimensions of P⃗ and Q are matching, since
the matrix of coefficients Q has indices i, j ∈ [0, (h+ 1)(f + 1)].

Indeed, the simultaneous equations descending from Equation 5.1 can be straight-
forwardly written in the form QP⃗ = 0, where Q is the coefficient matrix, P⃗ the
vector of unknowns, and 0 the vector of constants (zero). Since common methods
for linear algebra, e.g. LU decomposition, can not be applied effectively (or at all)
for nearly-singular matrices, the Singular Value Decomposition (SVD) method is
used. As a matter of fact, matrix Q has at least a singular value equal to zero,
therefore Q admits a non-trivial solution to the linear simultaneous equations.

Availability Analysis

In the study originally presenting this model [Mar+23b], a stringent premise re-
garding the occurrence of Byzantine nodes was adopted. Specifically, it is assumed
that the threat level due to Byzantine nodes is either low, medium, or high, with
a different number f for each of the three levels. It is clear that, the analysis of
the availability may be influenced by the method used to describe the occurrences
of Byzantine nodes. Therefore, a new paradigm was presented in [Mar+23a], in
which the number of Byzantine nodes f is determined by the random variable F .

Note that the study of the stochastic properties associated with the distribution
of the number of Byzantine nodes in the network is not affecting the analytical
model used to describe the system. In other words, a separate layer of abstraction
is added on top of the availability model, in order to analyse the system in a more
general way. This additional abstraction can be considered as an experimental
framework, in which the experimenter/decision-maker is testing the system. Given
the system parameters (N, η, ξ) and a probability distribution Pr(F = f) = p(f),
the methodology to observe is composed by the steps reported in Algorithm 1.

The process described in Algorithm 1 requires a maximum number of nodes
to be considered Nmax ≥ 4 and rates ξ, η > 0 such that ξ/η ≪ 1. The process
starts setting the value f = 0, hence imposing h = N − f . The matrix Q is
determined using Equation 5.1, thus P⃗ can be computed through Singular Value
Decomposition. For the pair (h, f), compute the probabilities Pi,j and arrange
them in a matrix P (vector P⃗ is reshaped into P to reflect the two-dimensional

56

Algorithm 1 Pseudo-code to calculate availability with f as random variable
Require: N,Nmax ≥ 4 and ξ, η > 0 and ξ/η ≪ 1

for N ≤ Nmax do
f ← 0
while f < N/3 do

h← N − f
Q← Q(N, f, h, ξ, η)

P⃗ ← SV D(Q, 0) ▷ compute state probabilities through SVD
Ah,f ←

∑h
i>2N/3

∑f
j=0 Pi,j ▷ availability

f ← f + 1
end while
Ā←

∑
h,f p(f)Ah,f ▷ mean availability

end for

structure as in Figure 5.1). Finally, for the resulting set (N, f, h, η, ξ), availability
can be calculated. Availability is the cumulative probability that the system is
working and it can commit messages. As prescribed in Equation 1.1, the system is
available for all the states with i > 2N/3, thus the corresponding state probabilities
are summed up to calculate the availability:

Ah,f =
h∑

i> 2N
3

f∑
j=0

Pi,j. (5.2)

At each iteration, f is increased by 1. The algorithm iterates until a predefined
value of Nmax is reached. After the iterative part, there is a resulting collection of
Ai,js, one for each (N, f, h, η, ξ). Therefore, the mean value of the availability is

Ā =
∑
h,f

p(f)Ah,f . (5.3)

Essentially, the procedure described above compute the mean availability for a sys-
tem with N servers (subjected to break-down and repair processes at rate ξ and
η), where the number of Byzantine actors in the system, f , is deriving from the re-
alizations of a random variable F distributed according to an arbitrary probability
distribution (see Table 5.1 for a concise description of the probability distributions
used to determine f). This means that the procedure in Algorithm 1 can be iter-
ated over a range of several N and different probability distributions for F . In this
way, the behaviour of the system’s availability, for different distributions, can be
studied as a function of the number of servers. Similarly, to study the relationship

57

between rates ξ, η and availability, the probability distribution for Pr(F = f) can
be fixed and then it can be computed the availability of the system at the variation
of ξ and η, for different N .

A special attention should be reserved to the analysis of the Poisson distribu-
tion. The pmf of Poisson distribution is defined on the positive integers, there-
fore a truncated version of the pmf is needed to match the domain of definition
[0, N] for the occurrence of Byzantine nodes. The right-truncated Poisson distri-
bution [JKK05] is defined as

p(x;λ,N) =

λx

x!

(∑N
y=0

λy

y!

)−1

, 0 ≤ x ≤ N

0, otherwise

that is derived from the definition of Poisson distribution, in which the series rep-
resentation of the exponential is truncated to N . The mean can be computed
from the definition of expected value µ = E[X] =

∑N
x=0 x p(x) = λ N Γ(N,λ)

Γ(N+1,λ)
, where

Γ(N, λ) is the incomplete gamma function.

Distribution pmf Mean µ Variance σ2

Uniform p(x; a, b) = 1
b−a+1

b+a
2

(b−a+1)2−1
12

Right-truncated
Poisson p(x;λ, n) = λx

x!

(∑n
y=0

λy

y!

)−1

λ nΓ(n,λ)
Γ(n+1,λ)

-

Binomial p(x;n, q) =
(
n
x

)
qx(1− q)n−x nq nq(1− q)

Degenerate p(x;x0) = δxx0 x0 0

Table 5.1: A summary of the probability distributions used in this work to characterize the
occurrences of Byzantine nodes, with N ∈ [4, 128]. pmf indicates probability mass function,
µ the mean of each distribution, and σ2 the variance of the distribution. Parameters for each
distributions are specified in the next section, in correspondence of the two comparative results:
Figure 6.1 and Figure 6.2.

Regarding the proposed methodology, note that it is vital to choose appropri-
ately the parameters of the arbitrary probability function generating the random
values f . While it is out of the scope for this study to determine whether there is
an a priori restriction on which probability function to use in characterizing the
occurrences of Byzantine nodes, it is advisable to properly select the first two mo-
ments, i.e. mean and variance, of any chosen distribution. To better explain this,

58

consider the impact that the parameters of the probability distribution have: if the
mean µ is outside the interval [0, N/3) and the probability function is narrow (low
variance), several zero-valued availability numbers will be sampled; same situation
would occur if µ ∈ [0, N/3), but the variance is high; an optimal choice, instead,
is represented by the distribution not spreading excessively and µ ∈ [0, N/3).

Lastly, by applying this methodology, it is possible to recreate the results pre-
sented in the aforementioned study [Mar+23b], where a constant number f is
selected to reflect a threat level due to the ratio of Byzantine nodes in the system
(see Figure 6.3). This validates the observation that, when defining some possi-
ble threat levels of the system, the investigator is, indeed, assuming a degenerate
distribution for F , i.e. a constant value f representing the number of Byzantine
nodes in a system of N nodes.

5.2 Performability model for BFT protocols
This section presents an analytical model, referred here as PBFTPEM (PBFT Per-
formability Evaluation Model), which is based on CTMCs and it aims to compute
the performability metrics of PBFT systems using queueing theory.

As in section 5.1, a system with N ≥ 4 servers is considered - since, with un-
signed messages, if N < 4 the problem has no solution. In this setting, servers
can break-down independently and can be repaired in succession at rate ξ and
η, respectively. Jobs, in the form of messages/transactions bundled in blocks of
transactions, are handled by the system in order to agree on the validity of the
submitted transactions. Hence, once the validity of each transaction is confirmed,
the block is committed by all the honest nodes, each in their own memory. Trans-
actions in blocks that can not be served immediately (because the system is busy)
are stored in a finite memory buffer (with size J), until the memory buffer is
not saturated, i.e. there are no memory slots free. At this point, arriving jobs
would not be accepted and they will be lost. Transactions to be processed are
modelled as a Poisson process with arrival rate λ, while service/processing time is
exponentially distributed with rate µ.

Figure 5.2 exemplifies the state diagram for PBFTPEM. Nodes colored in red
represent the area in which consensus is not reached, while nodes in green are
those for which the system is available. The three indices, h, f, j, reported in each
node are indicating states that the system may occupy.

Parameters of PBFTPEM are: the total number of nodes N ≥ 4, divided in
honest h ≤ H and Byzantine nodes f ≤ F , where H ∈ [0, N] is the maximum
number of honest nodes and F ∈ [0, N] the maximum amount of Byzantine nodes,
such that H + F = N ; the buffer size J > 0 and the number of jobs j ∈ [0, J]
in the system; break-down rate ξ > 0, repair rate η > 0, arrival rate λ > 0,

59

Figure 5.2: Depiction of a PBFT state diagram with H = 5, F = 2 (hence, N = 7), and J = 7.
The states in the diagram have indices (h, f, j), where h ∈ [0, H], f ∈ [0, F], and j ∈ [0, J].

service rate µ > 0, and timeout rate µt > 0. In PBFTPEM, it is assumed that
N,H, h, F, f, J, j are positive integers. Therefore, for simplicity of exposition, when
dealing with divisions, the ceiling ⌈·⌉ and floor ⌊·⌋ functions are implicitly applied,
accordingly. Differently, all the rates - ξ, η, λ, µ, and µt - are positive real numbers.
The latter, µt, is the rate indicating the process of losing a block of transactions,
due to the internal time-out defined by the system. For instance, if a job can
not be served before the time-out occurs, it is not committed by the servers that
received it and it is lost. This possibility may happen when the mean service time
1/µ < 1/µt. There are several reasons why the system might be not able to serve

60

jobs, notably the system can commit blocks only when it is available, i.e.

h > 2N/3. (5.4)

For instance, in a BFT system, there may be present servers that are not acting
accordingly to the rules set by the protocol - called a Byzantine server - either ma-
liciously, either because of malfunctioning. Hence, given a system with N servers,
implementations of a BFT protocol tolerate up to F < N/3 Byzantine participants,
that are acting deliberately in contrast with the network or are being unrespon-
sive. In this formulation, however, unresponsive nodes are treated as broken-down
servers, and not necessarily Byzantine.

Because it is assumed that servers can break-down independently, but they are
repaired one at the time, the break-down rate ξ is multiplied by a number reflecting
the current number of available nodes, i.e. if there are h nodes, the break-down
rate is hξ, while if there is only one node available ξ is the corresponding break-
down rate. This is not the case for the repair process, since repairs occur only one
at a time, with repair rate η.

From the state diagram in Figure 5.2 the balance equations for the system are
determined. In a compact way, the balance equations can be written as

[(2− δhH − δfF)η + (h+ f)ξ]Ph,f,j+

− η [Ph−1,f,j(1− δh0) + Ph,f−1,j(1− δf0)] +

− ξ [(h+ 1)Ph+1,f,j(1− δhH)− (f + 1)Ph,f+1,j(1− δfF)] +

− λPh,f,j−1(1− δj0)− µPh,f,j+K(1− δjJ) = 0, (5.5)

where δij indicates the Kronecker delta, i.e. δij = 1 if i = j else δij = 0 if i ̸= j.
K indicates the possibility of bundling jobs in batches, hence serving all at once,
up to a number of K transactions. Hence, compactly, Equation 5.5 describes all
the (H + 1)(F + 1)(J + 1) equations needed to describe transitions in the state
diagram. Although, the condition that elements in P⃗ are probabilities imposes
that

J∑
j=0

F∑
f=0

H∑
h=0

Ph,f,j = 1. (5.6)

Using the balance equations, for instance, the stationary probability distribution
of the states in the system can be determined, hence the performability metrics.
Therefore, because the stationary distribution of state probabilities P⃗ is to be
found, the idea is to solve the matrix equation QP⃗ = 0, where Q the coefficient
matrix of the balance equations, i.e. the stochastic transition matrix associated

61

with the CTMC. As for the same reasons as in section 5.1, SVD method is applied
to compute the vector of probabilities.

However, in order to simplify the calculations and to avoid the state explosion
(thus handling a tractable problem), it can be noted that PBFTPEM may be
effectively divided into the product-form of two subsystems [CM83]. This means
that the state diagram presented in Figure 5.2 can be decomposed and represented
as two independent processes. Figure 5.1 and Figure 5.4 are the state diagrams
of the two subsystems. Here, Figure 5.3 is a single layer on the plane (h, f) of
Figure 5.2, while Figure 5.4 are chains parallel to the axis j of the same graphic.
Notice that the scheme reported in Figure 5.3 has been already presented and
analysed thoroughly in section 5.1.

Diagrams in Figure 5.4 present two distinct possibilities as serving policy: the
systems may process single transactions (Figure 5.4a), one at the time, or it can
bundle them in blocks of transactions (Figure 5.4b). While the former is a sim-
ple M/M/1 queue [Ken53], the latter is structured as a partial bulk/batch ser-
vice queue, or M/MK/1, where K is the maximum size of the batch (number of
transactions in the block). Which model to use is up to the application under
consideration and results will, in general, differ.

Performability Analysis

The process to assess the performability metrics (see Algorithm 2 for an algo-
rithmic presentation of the process) requires to define N ≥ 4, J > 0, and rates
ξ, η, λ, µ, µt > 0. According to which one is considered as a free parameter, ei-
ther H or F , the matrix Q is determined using Equation 5.5, and the solution P⃗
is computed through SVD. Elements in P⃗ are the stationary state probabilities
of the system, and using these probabilities, important metrics associated with
the system can be calculated. In this work, the following metrics can be com-
puted: system availability, blocking probability, throughput, mean queue length,
and latency. Although these metrics were introduced in subsection 2.2.1, they are
reported also in this section, so that the given definitions can be adapted to fit the
obtained probabilities Ph,f,j.

Similarly as for section 5.1, PBFTPEM allows to compute the availability of
the system as

A =
J∑

j=0

F∑
f=0

H∑
h>2N/3

Ph,f,j. (5.7)

62

0, 0 . . .

η

ξ

0, f

η

fξ

. . .

η

(f + 1)ξ

0, F

η

Fξ

...

η ξ

...

η ξ

...

η ξ

h, 0

η hξ

. . .

η

ξ

h, f

η

fξ

η hξ

. . .

η

(f + 1)ξ

h, F

η

Fξ

η hξ

...

η (h+ 1)ξ

...

η (h+ 1)ξ

...

η (h+ 1)ξ

h, 0

η Hξ

. . .

η

ξ

H, f

η

fξ

η Hξ

. . .

η

(f + 1)ξ

H, F

η

Fξ

η Hξ

Figure 5.3: One of the two components constituting PBFTPEM for PBFT consensus protocol.
This state diagram can be regarded as an availability model.

Then the blocking probability is expressed as

blocking_probability =
F∑

f=0

H∑
h=0

Ph,f,J , (5.8)

which tells that if j > J , any incoming transaction is lost because of full memory
buffer.

Throughput can be viewed as the amount of jobs being served by the system

63

0 . . .

λ

µ

j

λ

µ

. . .

λ

µ

J

λ

µ

(a) Queue with sequential service.

0 1

λ

µ
2

λ

µ

. . .

λ

µ

K

λ

µ

K + 1

λ

µ

K + 2

λ

µ

. . .

λ

J

λ

µ

(b) Queue with bulk/batch service.

Figure 5.4: One of the two components constituting PBFTPEM for PBFT consensus protocol.
These two alternative state diagrams describe the processes of jobs arrival and service.

Algorithm 2 Pseudo-code to calculate performability metrics
Require: N ≥ 4 and (H ∈ [0, N] or F ∈ [0, N]) and J > 0 and ξ, η, λ, µ, µt > 0
F ← N −H ▷ or H ← N − F
Q← Q(H,F, J, ξ, η, λ, µ, µt) ▷ generate the matrix of coefficients
P⃗ ← SV D(Q, 0) ▷ compute state probabilities through SVD
A←

∑J
j=0

∑F
f=0

∑H
h>2N/3 Ph,f,j ▷ availability

bp←
∑F

f=0

∑H
h=0 Ph,f,J ▷ blocking probability

thr ← µ
∑J

j=1

∑F
f=0

∑H
h>2N/3 Ph,f,j ▷ thoughput

mql←
∑J

j=0

∑F
f=0

∑H
h=0 j Ph,f,j ▷ mean queue length

lat← mql/thr ▷ latency

in the unit time, and computed using

throughput = µ

J∑
j=1

F∑
f=0

H∑
h>2N/3

Ph,f,j, (5.9)

where h > 2N/3 indicates that the system can serve jobs only if there are enough
available machines, i.e. their number h is greater or equal than the quorum.

The mean queue length can be determined by enumerating

mean_queue_length =
J∑

j=0

F∑
f=0

H∑
h=0

j Ph,f,j, (5.10)

64

Lastly, the latency of the system is

latency =
mean_queue_length

throughput
. (5.11)

As a last remark, note that the procedure described above (and summarised in
Algorithm 2) can be iterated over a range of Ns, such that the relation between
performability metrics and number of nodes N is explored. Similarly, this method-
ology allows the investigators to study the connection between different aspects of
the system under examination, simply by variating the parameters of interest.

65

Chapter 6

Results

This chapter shows the results obtained by applying the described methodologies
and models to evaluate the availability and performability of BFT-based protocols.
As stated in chapter 5, there is a separate presentation for the availability and per-
formability models, leading to a separate showcase of the results. Note that results
pertaining the performability model include a sensitivity analysis to evaluate the
impact of variations in the input parameters onto the resulting metrics.

6.1 Evaluation of availability for BFT protocols
In this section, results are provided to show the effects of various distributions of
the Byzantine faults on availability.

Figure 6.1 shows the effects of four different probability distributions for the
random variable F (as from Table 5.1) on mean system availability for N ∈ [4, 128]
and ξ/η = 0.015. Different lines represent a separate choice of a probability
distribution for the value of f . Parameters of the uniform distribution are a = 0
and b = N . λ = N/6 is used for the right-truncated Poisson distribution, in
which Γ(n, λ) is the incomplete gamma function. For the binomial distribution
n = N and q = 1/6, where

(
n
x

)
is the binomial coefficient. Lastly, the degenerate

distribution uses the Kronecker delta δxx0 , with x0 = N/6. In the figure, the
uniform distribution has the mean µ = N/2, while all the other distributions have
the mean µ = N/6, the center of the interval [0, N/3). The figure shows that, for
different choices of the probability distribution of F , there is a distinctive behaviour
of the mean availability. This behaviour varies between the worst-case scenario,
which can be observed when the random variable F is drawn from a uniform
distribution to the best case, where a degenerate distribution with constant value
f = N/6 is used. However, this configuration for the uniform distribution is

66

expected to give the worst-case scenario, since the mean of the distribution is
centered around the middle of the interval for the values of N , while the other
distributions are centered around N/6.

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

N

A
Mean availability @ ξ/η = 0.015

Distribution
uniform
Poisson
binomial

degenerate

Figure 6.1: Availability as a function of the number of servers and fixed ratio ξ/η.

Figure 6.2 presents the behaviour of the mean system availability for N ∈
[4, 128] and ξ/η = 0.015, when the mean of each probability distribution is µ =
N/2. In this figure, different lines represent a separate choice of probability dis-
tribution for the value of f . Parameters of the uniform distribution are a = 0 and
b = N . For the right-truncated Poisson distribution, in which Γ(n, λ) is the incom-
plete gamma function, λ = N/2 is used. The binomial distribution has n = N and
q = 1/2, where

(
n
x

)
is the binomial coefficient. As expected, the degenerate distri-

bution, when f = N/2, gives availability that is constantly zero, therefore it is not
reported. In this graph, the best case is the one in which the uniform distribution
is employed, while the worst case occurs when the binomial distribution describes
the occurrence of Byzantine nodes in the system. Differently from Figure 6.1, with
this configuration, the uniform distribution is clearly the distribution giving the
best result in Figure 6.2. This is because the probability to get a value f < N/3,
such that the quorum is reached, is higher for the uniform distribution than for
the other distributions. This is simply because, while the mean is the same for the
selected distributions, the variance of the possible values of f is larger for the uni-

67

form distribution, hence there is a higher probability to select a value f satisfying
the quorum.

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

N

A
Mean availability @ ξ/η = 0.015 and µ = N/2

Distribution
uniform
Poisson
binomial

Figure 6.2: The variation in system availability as a function of the number of servers and fixed
ratio ξ/η.

Figure 6.3 presents an example of system availability trend for different ratios
of ξ/η. Here F is distributed according to the degenerate distribution centered
around the value f = N/6. The plot shows how the availability of the system is
degrading when the ratio ξ/η is increasing.

Please note that the values of availability are not represented by a smooth
line because some numbers for N correspond to optimal configurations of BFT
systems. For instance, any N satisfying the equation (N mod 3) = 1, N ≥ 4,
produces a system with better availability than the ones generated by N − 1 and
N − 2, e.g., the value of availability when N = 16 is higher than when N = 15 or
N = 14.

In summary, this study proposes an analytical availability model which is crit-
ical for the evaluation of fault-tolerant multi-server systems. A model based on
continuous-time Markov chains is used to analyse the availability of BFT systems
due to break-downs and repairs, when malicious nodes are present. The total
number of nodes considered changes between 4 and 128, while the proportion of
malicious nodes is considered to be a random variable distributed according to a set

68

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

N

A

Average availability (degenerate distribution with f = N/6)

ξ/η
0.01
0.015
0.02

Figure 6.3: System availability as a function of the number of servers with ratio ξ/η =
0.01, 0.015, 0.02.

of probability distributions. Numerical results are presented reporting availability
as a function of the number of participants and a relative number of honest actors
in the system for different selected probability distributions. The contribution of
this work is to extend the work in [Mar+23b] on availability calculation in order
to take into account the presence of malicious nodes in a non-deterministic fash-
ion. From the model, it can be concluded that there is a non-linear relationship
between the number of servers and availability, it is inversely proportional to the
number of nodes in the system, similarly for each distribution of f tested. This
relationship is further strengthened as the ratio of break-down rate to the repair
rate increases.

6.2 Evaluation of performability for BFT protocols
In this section, results obtained by using the presented PBFTPEM method are
shown. These results evaluate the effects of distinct parameters, e.g. number of
servers and Byzantine nodes, on the performability metrics of PBFT systems.

Graphs in Figure 6.4 show how the number of servers, N ∈ [4, 127], and the
ratio of Byzantine nodes in the system are effecting the performances and avail-

69

20 40 60 80 100 120

0

50

100

N (number of nodes)

a
v
a
il
a
bi
li
ty

(%
)

Number of H
average
2N/3
5N/6

N

(a) Availability.

20 40 60 80 100 120

0

20

40

60

N (number of nodes)

bl
oc
k
in
g
_
pr
ob
a
bi
li
ty

(%
)

Number of H
average
2N/3
5N/6

N

(b) Blocking probability.

20 40 60 80 100 120

0

100

200

N (number of nodes)

th
ro
u
g
h
pu

t
(t
x
/s
)

Number of H
average
2N/3
5N/6

N

(c) Throughput.

20 40 60 80 100 120

0

2,000

4,000

N (number of nodes)

m
ea
n
_
qu

eu
e_

le
n
g
th

(t
x
)

Number of H
average
2N/3
5N/6

N

(d) Mean queue length.

20 40 60 80 100 120

0

2,000

4,000

N (number of nodes)

la
te
n
cy

(s
)

Number of H
average
2N/3
5N/6

N

(e) Transaction latency.

Figure 6.4: Performability metrics as a function of the number of servers, where J = 4096,
K = 100, ξ = 5.02 · 10−7, η = 3.47 · 10−5, λ = 250, µ = 1000, and µt = 1.

70

ability of a PBFT system. In this context, Byzantine nodes are determined by
counting the amount of honest nodes, H = N, 5N/6, 2N/3 and the average value.
Parameters used for the computation of these metrics are: J = 4096, K = 100,
ξ = 5.02 · 10−7, η = 3.47 · 10−5, λ = 250, µ = 1000, and µt = 1. This collection of
results reported in Figure 6.4 displays a characteristic behavior in the performa-
bility of the system. There is a marked reduction in performance as the number of
servers increases, with a seemingly threshold at N ≈ 60, and performance worsen
when the number of Byzantine nodes increment. As it might be expected, metrics
are related and they show similar behaviour in pairs: Figure 6.4a and Figure 6.4c;
Figure 6.4b and Figure 6.4d; Figure 6.4e is not coupled.

In addition to test the relation between number of servers and Byzantine nodes,
PBFTPEM can be applied to to study the behaviour of the performability metrics
due to an higher break-down rate to repair rate ratio (ξ/η). The results obtained
from this analysis are shown in Figure 6.5. It can be noted that the number of
servers at which the performances of the system are sharply degrading is shifted to
the left, at N ≈ 40. Besides for this shift in performance, the other considerations
made for the results in Figure 6.4 are, otherwise, applying also to Figure 6.5. Like-
wise, the results pertaining the availability metric (Figure 6.4a and Figure 6.5a)
are matching the ones obtained in section 6.1 and [Mar+23b; Mar+23a].

In Figure 6.6 there are results, which are replicating - at least in their outline
and approximate values - two studies found in literature. In particular, Figure 6.6a
reproduce the values of throughput presented in [Tan+22]. However, the analyti-
cal result (Figure 6.6a) does not have an arched shape and a reduced decrease in
the value of throughput at N ≈ 80. Similarly, Figure 6.6b is presenting results
similar to the values of transaction latency obtained in the benchmark reported
in [Liu+22]. In this case, the shape of the two graphs is matching, except from
irregularities in the plot found in literature. The parameters used to obtain these
results are: J = 4096, K = 100, ξ = 3.47 · 10−7, η = 3.47 · 10−5, λ = 2600,
µ = 10000, and µt = 1. Here, it is assumed that the number of Byzantine nodes
is F = N/3, hence the honest nodes are H = 2N/3.

Figure 6.7 presents a comparison between the benchmark of Tendermint [BKM18]
reported in [Fu+20] and the values obtained from the performability analysis. It
can be noted that, while the trend of the data is reproduced by the analytical
results, it fails to match consistently the values in the error interval given by
the published data. The parameters used to obtain the analytical results are:
J = 4096, K = 3000, ξ = 6.593 ·10−7, η = 3.47 ·10−5, µ = 0.5, and µt = 0.2. Here,
it is assumed that the number of Byzantine nodes is F = N/4, hence the honest
nodes are H = 3N/4.

71

In summary, from the results presented above, it can be concluded that all
system’s performability metrics are indeed non-linearly dependent on the number
of the servers in the network. For instance, favorable metrics (availability and
throughput) are decreasing at the increase of N , while the values of disadvanta-
geous metrics (blocking probability, mean queue length, and transaction latency)
are increasing. This tendency results strengthened when the rate of break-downs
increases over the rate of repairs, i.e. performance decrease at the increase of ξ,
or the decrease of η. Concerning the correspondence between the analytical re-
sults and data obtainable from the literature, there is indeed a certain degree of
agreement in the general trend, but analytical results fail to match consistently
benchmark data in the interval error provided.

6.2.1 Sensitivity analysis

This section of the results is devoted to the presentation of a sensitivity analysis
of PBFTPEM. The performed sensitivity analysis studies the percentage variation
of the results from a reference value by changing one parameter at the time. In
practice, for each parameter, the value from the studied case (Figure 6.7) is used
as reference, then by varying the considered parameter keeping fixed the others,
the output variation on the performability metrics can be analysed.

Ranges for each variable are taken such that the reference value is the median
of the definition interval, i.e. ξ ∈

[
0, 2 ξref

]
, η ∈

[
0, 2 ηref

]
, λ ∈

[
0, 2λref

]
, and

µ ∈
[
0, 2µref

]
. Note that the reference values for the parameters are chosen to

be reflecting the configuration used to compare the throughput from Tendermint
(Figure 6.7), since it replicates the results from a benchmark, those values for the
parameters of PBFTPEM appear to be reasonable.

The results of the sensitivity analysis shown in Figure 6.8 are depicting a pre-
dictable scenario, in which (most of) the performability metrics obtainable from
PBFTPEM are highly non-linear for small variations of the input parameters. Re-
sults also identify the correlation between parameters and which metrics they do
influence. For instance, break-down and repair rates influence all the metrics in a
highly non-linear fashion (Figure 6.8a and Figure 6.8b). Conversely, arrival rate
does not influence availability and latency, while it influences the blocking probabil-
ity in a seemingly-exponential way, and almost linearly determine the throughput
and mean queue length (Figure 6.8c). In a similar way, the service rate is not
affecting the availability of the system and its throughput (after passing the refer-
ence point), but it does respond not linearly for the other performability metrics
(Figure 6.8d).

However, the behaviour of the performability metrics in the case of arrival

72

and service rate is understandable if considering that for a system in statistical
equilibrium, if µ ≫ λ, the effective throughput coincides with the arrival rate
(Figure 6.8c), with no change in latency and other metrics having an “orderly”
trend. Otherwise, if µ ≤ λ, the system is saturated and the throughput follows
(damped) the service rate, while the other metrics (except for availability) are
non-linearly decreasing, passing from higher to lower values than the reference,
when µ≫ λ.

73

20 40 60 80 100 120

0

50

100

N (number of nodes)

a
v
a
il
a
bi
li
ty

(%
)

Number of H
average
2N/3
5N/6

N

(a) Availability.

20 40 60 80 100 120

0

20

40

60

N (number of nodes)

bl
oc
k
in
g
_
pr
ob
a
bi
li
ty

(%
)

Number of H
average
2N/3
5N/6

N

(b) Blocking probability.

20 40 60 80 100 120

0

100

200

N (number of nodes)

th
ro
u
g
h
pu

t
(t
x
/s
)

Number of H
average
2N/3
5N/6

N

(c) Throughput.

20 40 60 80 100 120

0

2,000

4,000

N (number of nodes)

m
ea
n
_
qu

eu
e_

le
n
g
th

(t
x
)

Number of H
average
2N/3
5N/6

N

(d) Mean queue length.

20 40 60 80 100 120

0

0.5

1

·107

N (number of nodes)

la
te
n
cy

(s
)

Number of H
average
2N/3
5N/6

N

(e) Transaction latency.

Figure 6.5: Performability metrics as a function of the number of servers, where J = 4096,
K = 100, ξ = 6.94 · 10−7, η = 3.47 · 10−5, λ = 250, µ = 1000, and µt = 1.

74

20 40 60 80 100

600

800

1,000

1,200

1,400

1,600

1,800

2,000

N (number of nodes)

th
ro
u
g
h
pu

t
(t
x
/s
)

Throughput

H = 2N/3

(a) Throughput.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

N (number of nodes)

la
te
n
cy

(s
)

Transaction latency

H = 2N/3

(b) Transaction latency.

Figure 6.6: Throughput and latency as a function of the number of servers, where J = 4096,
K = 100, ξ = 3.47 · 10−7, η = 3.47 · 10−5, λ = 2600, µ = 10000, and µt = 1.

5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

150

200

250

300

350

400

450

500

550

600

N (number of nodes)

th
ro
u
g
h
pu

t
(t
x
/s
)

baseline λ = 100
PBFTPEM λ = 100

baseline λ = 500
PBFTPEM λ = 500

baseline λ = 900
PBFTPEM λ = 900

Figure 6.7: Comparison between the throughout of Tendermint from literature [Fu+20] and
values of throughput obtained from the performability analysis. The parameters used in PBFT-
PEM are J = 4096, K = 3000, ξ = 6.593 · 10−7, η = 3.47 · 10−5, µ = 0.5, and µt = 0.2.

75

0 0.2 0.4 0.6 0.8 1 1.2

·10−6

−100

−50

0

50

100

ξ (break-down rate)

v
a
ri
a
ti
on

(%
)

availability
throughput

latency
mean queue len.
blocking prob.

(a)

0 2 4 6

·10−5

−100

−50

0

50

100

η (repair rate)

v
a
ri
a
ti
on

(%
)

availability
throughput

latency
mean queue len.
blocking prob.

(b)

0 200 400 600 800 1,000
−100

−50

0

50

100

λ (arrival rate)

v
a
ri
a
ti
on

(%
)

availability
throughput

latency
mean queue len.
blocking prob.

(c)

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

µ (service rate)

v
a
ri
a
ti
on

(%
)

availability
throughput

latency
mean queue len.
blocking prob.

(d)

Figure 6.8: Sensitivity analysis, where fixed parameters are J = 4096, N = 64, H = 54,
K = 3000, and µt = 0.2; reference values for the parameters under investigations are ξref =
6.593 · 10−7, ηref = 3.47 · 10−5, λref = 500, and µref = 0.5.

76

Conclusions

Consensus protocols are essential components of any distributed network, particu-
larly DLTs. This is especially true if considering that in general DLTs are, indeed,
decentralized and each node in the network is controlled by an independent en-
tity. Hence, the correct functioning of the consensus protocol underlying a DLT
solution is fundamental, since it ensures that all participants in the network will
agree on the same messages/transactions to be committed in their own memory.
However, there may be in the network some nodes that are acting maliciously and
they could impact negatively the performance and availability of the system. For
instance, DLT solutions that have a BFT consensus protocol are indeed tolerant
to a certain level of malicious participants in the network.

This work is the compendium of the research done by the author during the
Doctoral studies in the area of distributed systems: the thesis has a focus on the
analytical evaluation of performability metrics related to DLT systems.

The two key research questions addressed are:

• Given certain properties characterizing a system (e.g. data throughput, la-
tency, energy consumption, etc.), can we understand which consensus pro-
tocol is more suitable in this scenario?

• Once selected a candidate solution, can analytical modeling effectively char-
acterize and predict the qualities of said consensus protocol?

The main contributions provided by this thesis to the field of performability
evaluation for consensus protocols in DLT are the analytical models for availability
and performability evaluation, supplemented by a MCDM framework to determine
which consensus protocol was suitable for the intended scope of the research. In-
deed, the work presented in this thesis encompasses the whole process from the
selection of a consensus protocol, to the development of analytical models to assess
the performability metrics of DLT systems using BFT-based consensus protocols
to function.

77

For instance, the MCDM framework elaborated fills the gap in the literature
concerning the ranking and selection of consensus protocols under certain con-
ditions and requirements. It allowed the decision makers to determine that a
BFT-based consensus protocol is the potentially most suitable solution for the
type of application, that the DLT system under development was intended for.
The MCDM framework consists in separate steps concerning the definition of the
problem, the selection of the DLT platform to be used as alternatives in the se-
lection, the study regarding the criteria to employ to fully describe any consensus
protocol used in DLT, followed by the actual acquisition of the data, and the as-
signment of weights to each criteria. The application of this methodology lead to
the definition of a ranking among the selected alternatives for the defined multi-
objective optimization problem, hence the selection of a suitable solution for the
first research question.

The remaining of the thesis showed how effective and adequate analytical mod-
els are in evaluating the performability of consensus protocols for distributed sys-
tems. In particular, following the results obtained from the MCDM framework,
the focus of the development of such analytical models is related to consensus pro-
tocols that are based on a BFT structure. Two analytical models are proposed for
the assessment of availability and performability in the analysis of BFT systems,
with the latter including the former model in its blueprint.

The main relevance of the availability model derives from the stochastic analysis
of the effect that Byzantine nodes have on the availability of the system. The model
is based on a bi-dimensional CTMC, in the form of a quasi-birth-death process.
From the analysis of availability, it is evident a non-linear correlation between
number of Byzantine nodes and availability, and this behaviour is correlated with
the probability distribution used to describe the occurrence of the Byzantine nodes.
This leads to the conclusion that, whether it is not possible to determine a priori
the distribution of malicious nodes, it is needed to carefully choose what stochastic
distribution has to be used in the analysis. Another important aspect of this
model is the fact that it represents one of the two components of the wider model
evaluating the performability of BFT systems.

Lastly, the performability model here reported contributes to the field by pro-
viding an analytic scheme to assess comprehensively five different performability
metrics: throughput, transaction latency, blocking probability, mean queue length,
and availability. Also this model is based on CTMCs, but in three-dimensions and,
as mentioned, it extends the availability model to include the evaluation of per-
formance metrics, making the performability model a tool to wholly assess the
performability of a BFT-based system. From the comparison between the results
obtained from the performability analysis and benchmarks found in literature,

78

it can be concludes that this analytical framework can effectively reproduce the
trend of empirical studies, however the numerical values fail to fall into the er-
ror interval defined in those studies. From the sensitivity analysis performed on
the parameters defined in the model, it is possible to determine that performabil-
ity metrics are non-linearly dependent on all the parameters involved, with high
fluctuations in the output for small variations in the input. It also confirms the
expected behaviours of the system being saturated when the arrival rate is larger
or approximately the service rate, along with the independence of the availability
from both the arrival and service rate.

79

Bibliography

[AA19] Shikah J. Alsunaidi and Fahd A. Alhaidari. “A survey of consensus
algorithms for blockchain technology”. In: 2019 International Con-
ference on Computer and Information Sciences, ICCIS 2019 (2019),
pp. 2–7. doi: 10.1109/ICCISci.2019.8716424.

[AB18] Joseph Abadi and Markus Brunnermeier. “Blockchain Economics”.
In: National Bureau of Economic Research. Available at: https: //
doi. org/ 10. 3386/ w25407 (Accessed October 10, 2022) (2018).

[AK08] Gurumurthy Anand and Rambabu Kodali. “Benchmarking the bench-
marking models”. In: Benchmarking: An international journal 15.3
(2008), pp. 257–291.

[And+21] Nitish Andola et al. “Anonymity on blockchain based e-cash proto-
cols—A survey”. In: Computer Science Review 40 (2021), p. 100394.

[Arj+17] Tom Arjannikov et al. “Using Markov chains to model sensor network
reliability”. In: Proceedings of the 12th International Conference on
Availability, Reliability and Security. 2017, pp. 1–10.

[Ata+17] Ehsan Ataie et al. “Hierarchical stochastic models for performance,
availability, and power consumption analysis of IaaS clouds”. In: IEEE
Transactions on Cloud Computing 7.4 (2017), pp. 1039–1056.

[Bal+21] Simonetta Balsamo et al. “Prediction of the consolidation delay in
blockchain-based applications”. In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering. 2021, pp. 81–
92.

80

https://doi.org/10.1109/ICCISci.2019.8716424
https://doi.org/10.3386/w25407
https://doi.org/10.3386/w25407

[Bal+22] Simonetta Balsamo et al. “Transaction confirmation in proof-of-work
blockchains: auctions, delays and droppings”. In: 2022 20th Mediter-
ranean Communication and Computer Networking Conference (Med-
ComNet). IEEE. 2022, pp. 140–149.

[Bal17] Arati Baliga. “Understanding blockchain consensus models”. In: Per-
sistent 4.1 (2017), p. 14.

[Ban+19] Shehar Bano et al. “SoK: Consensus in the Age of Blockchains”. In:
Proceedings of the 1st ACM Conference on Advances in Financial
Technologies. New York, NY, USA: ACM, 2019, pp. 183–198. doi:
10.1145/3318041.3355458.

[Bao+23] Qihao Bao et al. “A survey of blockchain consensus safety and se-
curity: State-of-the-art, challenges, and future work”. In: Journal of
Systems and Software 196 (2023), p. 111555. doi: 10.1016/j.jss.
2022.111555.

[Bel+19] Marianna Belotti et al. “A Vademecum on Blockchain Technologies:
When, Which, and How”. In: IEEE Communications Surveys & Tu-
torials 21.4 (2019), pp. 3796–3838. doi: 10 . 1109 / COMST . 2019 .

2928178.

[BG17] Vitalik Buterin and Virgil Griffith. “Casper the friendly finality gad-
get”. In: arXiv preprint arXiv:1710.09437 (2017).

[BHM19] Leemon Baird, Mance Harmon, and Paul Madsen. “Hedera: A pub-
lic hashgraph network & Governing Council”. In: Hedera Hashgraph,
LLC, White Paper 1 (2019).

[Bis+22] Stefano Bistarelli et al. “Blockchain and IoT Integration for Pollu-
tant Emission Control”. In: Advanced Information Networking and
Applications: Proceedings of the 36th International Conference on Ad-
vanced Information Networking and Applications (AINA-2022), Vol-
ume 3. Springer. 2022, pp. 255–264. doi: 10.1007/978- 3- 030-
99619-2_25.

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. “The latest gossip
on BFT consensus”. In: arXiv preprint arXiv:1807.04938 (2018).

81

https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1016/j.jss.2022.111555
https://doi.org/10.1016/j.jss.2022.111555
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1007/978-3-030-99619-2_25
https://doi.org/10.1007/978-3-030-99619-2_25

[BL20] Leemon Baird and Atul Luykx. “The Hashgraph protocol: Efficient
asynchronous BFT for high-throughput distributed ledgers”. In: 2020
International Conference on Omni-layer Intelligent Systems (COINS).
IEEE. 2020, pp. 1–7.

[BMB20] Seyed Mojtaba Hosseini Bamakan, Amirhossein Motavali, and Alireza
Babaei Bondarti. “A survey of blockchain consensus algorithms per-
formance evaluation criteria”. In: Expert Systems with Applications
154 (2020), p. 113385. doi: 10.1016/j.eswa.2020.113385.

[Bol+06] Gunter Bolch et al. Queueing networks and Markov chains: modeling
and performance evaluation with computer science applications. John
Wiley & Sons, 2006.

[Bou21] Sarah Bouraga. “A taxonomy of blockchain consensus protocols: A
survey and classification framework”. In: Expert Systems with Appli-
cations 168 (2021), p. 114384.

[BPS16] Iddo Bentov, Rafael Pass, and Elaine Shi. “Snow White: Provably
Secure Proofs of Stake”. In: Cryptology ePrint Archive. Available at:
https: // eprint. iacr. org/ 2016/ 919 (Accessed October 10,
2022) (2016).

[Buc16] Ethan Buchman. “Tendermint: Byzantine fault tolerance in the age
of blockchains”. In: Master Thesis, University of Guelph (2016).

[But14] Vitalik Buterin. “A next-generation smart contract and decentralized
application platform”. In: Available at: https: // ethereum. org/
en/ whitepaper/ (Accessed October 10, 2022) (2014).

[BŽ18] Federico Matteo Benčić and Ivana Podnar Žarko. “Distributed ledger
technology: Blockchain compared to directed acyclic graph”. In: 2018
IEEE 38th International Conference on Distributed Computing Sys-
tems (ICDCS). IEEE. 2018, pp. 1569–1570.

[Cac17] Christian Cachin. “Blockchains and consensus protocols: Snake oil
warning”. In: 2017 13th European Dependable Computing Conference
(EDCC). IEEE. 2017, pp. 1–2.

82

https://doi.org/10.1016/j.eswa.2020.113385
https://eprint.iacr.org/2016/919
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/

[CDK05] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
systems: concepts and design. pearson education, 2005.

[Cha+22] Yan-Xia Chang et al. “Dynamic Practical Byzantine Fault Tolerance
and Its Blockchain System: A Large-Scale Markov Modeling”. In:
arXiv preprint arXiv:2210.14003 (2022).

[Che+18] Jing Chen et al. “ALGORAND AGREEMENT: Super Fast and Parti-
tion Resilient Byzantine Agreement”. In: Cryptology ePrint Archive.
Available at: https: // eprint. iacr. org/ 2018/ 377 (Accessed
October 10, 2022) (2018).

[Che+20] Yaoliang Chen et al. “Decentralized data access control over consor-
tium blockchains”. In: Information Systems 94 (2020), p. 101590.

[Cho+18] Mohammad Jabed Morshed Chowdhury et al. “Blockchain versus
database: A critical analysis”. In: 2018 17th IEEE International con-
ference on trust, security and privacy in computing and communi-
cations/12th IEEE international conference on big data science and
engineering (TrustCom/BigDataSE). IEEE. 2018, pp. 1348–1353.

[Cho+19] Mohammad Jabed Morshed Chowdhury et al. “A comparative anal-
ysis of distributed ledger technology platforms”. In: IEEE Access 7
(2019), pp. 167930–167943.

[CL+99] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine Fault Tol-
erance”. In: OsDI. Vol. 99. 1999. 1999, pp. 173–186.

[CM18] Brad Chase and Ethan Macbrough. “Analysis of the XRP Ledger
Consensus Protocol”. In: Available at: https : / / doi . org / 10 .

48550/ arXiv. 1802. 07242 (Accessed October 10, 2022) (2018).

[CM83] K Mani Chandy and Alain J Martin. “A characterization of product-
form queuing networks”. In: Journal of the ACM (JACM) 30.2 (1983),
pp. 286–299.

[Coo+10] Brian F Cooper et al. “Benchmarking cloud serving systems with
YCSB”. In: Proceedings of the 1st ACM symposium on Cloud com-
puting. 2010, pp. 143–154.

83

https://eprint.iacr.org/2018/377
https://doi.org/10.48550/arXiv.1802.07242
https://doi.org/10.48550/arXiv.1802.07242

[Cro+16] Kyle Croman et al. “On Scaling Decentralized Blockchains”. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9604
LNCS. 2016, pp. 106–125. isbn: 9783662533567. doi: 10.1007/978-
3-662-53357-4_8.

[De 18] Stefano De Angelis. “Assessing security and performances of con-
sensus algorithms for permissioned blockchains”. In: arXiv preprint
arXiv:1805.03490 (2018).

[DJ03] R Dattakumar and R Jagadeesh. “A review of literature on bench-
marking”. In: Benchmarking: An International Journal 10.3 (2003),
pp. 176–209.

[DN92] Cynthia Dwork and Moni Naor. “Pricing via processing or combatting
junk mail”. In: Annual International Cryptology Conference. Springer.
1992, pp. 139–147. doi: 10.1007/3-540-48071-4_10.

[DRZ18] Sisi Duan, Michael K Reiter, and Haibin Zhang. “BEAT: Asynchronous
BFT made practical”. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. 2018, pp. 2028–
2041.

[Dzi+13] Stefan Dziembowski et al. “Proofs of Space”. In: Cryptology ePrint
Archive. Available at: https: // eprint. iacr. org/ 2013/ 796

(Accessed October 10, 2022) (2013).

[EP18] Nabil El Ioini and Claus Pahl. “A review of distributed ledger tech-
nologies”. In: OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems". Springer. 2018, pp. 277–288.

[Eve+19] Enver Ever et al. “On the performance, availability and energy con-
sumption modelling of clustered IoT systems”. In: Computing 101.12
(2019), pp. 1935–1970.

[Eve17] Enver Ever. “Performability analysis of cloud computing centers with
large numbers of servers”. In: The Journal of Supercomputing 73.5
(2017), pp. 2130–2156.

84

https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/3-540-48071-4_10
https://eprint.iacr.org/2013/796

[Fan+20] Caixiang Fan et al. “Performance Evaluation of Blockchain Systems:
A Systematic Survey”. In: IEEE Access 8 (2020), pp. 126927–126950.
doi: 10.1109/ACCESS.2020.3006078.

[Fil+22] Ernestas Filatovas et al. “A MCDM-based framework for blockchain
consensus protocol selection”. In: Expert Systems with Applications
(2022), p. 117609. doi: 10.1016/j.eswa.2022.117609.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Impos-
sibility of distributed consensus with one faulty process”. In: Journal
of the ACM (JACM) 32.2 (1985), pp. 374–382.

[FM19] Maria Frolkova and Michel Mandjes. “A Bitcoin-inspired infinite-
server model with a random fluid limit”. In: Stochastic Models 35.1
(2019), pp. 1–32.

[For+10] Daniel Ford et al. “Availability in globally distributed storage sys-
tems”. In: 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 10). 2010.

[Fra20] Brian Fralix. “On classes of Bitcoin-inspired infinite-server queueing
systems”. In: Queueing Systems 2020 95:1 95 (1 Jan. 2020), pp. 29–
52. issn: 1572-9443. doi: 10.1007/S11134-019-09643-W.

[Fu+20] Wei-Kang Fu et al. “Soteria: A provably compliant user right man-
ager using a novel two-layer blockchain technology”. In: 2020 IEEE
Infrastructure Conference. IEEE. 2020, pp. 1–10.

[FWS21] Xiang Fu, Huaimin Wang, and Peichang Shi. “A survey of Blockchain
consensus algorithms: mechanism, design and applications”. In: Sci-
ence China Information Sciences 64.2 (2021), p. 121101. doi: 10.
1007/s11432-019-2790-1.

[Gei+19] Stefan Geissler et al. “Discrete-Time Analysis of the Blockchain Dis-
tributed Ledger Technology”. In: Proceedings of the 31st International
Teletraffic Congress, ITC 2019 (Aug. 2019), pp. 130–137. doi: 10.
1109/ITC31.2019.00029.

85

https://doi.org/10.1109/ACCESS.2020.3006078
https://doi.org/10.1016/j.eswa.2022.117609
https://doi.org/10.1007/S11134-019-09643-W
https://doi.org/10.1007/s11432-019-2790-1
https://doi.org/10.1007/s11432-019-2790-1
https://doi.org/10.1109/ITC31.2019.00029
https://doi.org/10.1109/ITC31.2019.00029

[Ger+16] Arthur Gervais et al. “On the Security and Performance of Proof of
Work Blockchains”. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, Oct. 2016,
pp. 3–16. doi: 10.1145/2976749.2978341.

[Gho+14] Rahul Ghosh et al. “Scalable analytics for IaaS cloud availability”. In:
IEEE Transactions on Cloud Computing 2.1 (2014), pp. 57–70.

[GKS20] Ulrich Gallersdörfer, Lena Klaaßen, and Christian Stoll. “Energy con-
sumption of cryptocurrencies beyond bitcoin”. In: Joule 4.9 (2020),
pp. 1843–1846.

[GL87] Ambuj Goyal and Stephen S Lavenberg. “Modeling and analysis of
computer system availability”. In: IBM Journal of Research and De-
velopment 31.6 (1987), pp. 651–664.

[Gun18] Nyoman Gunantara. “A review of multi-objective optimization: Meth-
ods and its applications”. In: Cogent Engineering 5.1 (2018), p. 1502242.

[HMZ19] Dongyan Huang, Xiaoli Ma, and Shengli Zhang. “Performance anal-
ysis of the raft consensus algorithm for private blockchains”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 50.1 (2019),
pp. 172–181.

[HR17] Garrick Hileman and Michel Rauchs. “2017 global blockchain bench-
marking study”. In: Available at SSRN 3040224 (2017).

[HSS20] Zhi Huang, Sam Snyder, and Gabriel Schillinger. “Aura Protocol: A
Peer-to-Peer Blockchain Scaling Solution for Highly Interactive De-
centralized Applications”. In: Available at: https: // www. devgamma.
com/ documents/ aura_ technical_ paper. pdf (Accessed October
10, 2022) (2020).

[Jia+20] Lili Jiang et al. “Performance analysis of Hyperledger Fabric plat-
form: A hierarchical model approach”. In: Peer-to-Peer Networking
and Applications 13 (3 May 2020), pp. 1014–1025. issn: 19366450.
doi: 10.1007/S12083-019-00850-Z/FIGURES/10.

86

https://doi.org/10.1145/2976749.2978341
https://www.devgamma.com/documents/aura_technical_paper.pdf
https://www.devgamma.com/documents/aura_technical_paper.pdf
https://doi.org/10.1007/S12083-019-00850-Z/FIGURES/10

[JJ99] Markus Jakobsson and Ari Juels. “Proofs of work and bread pudding
protocols”. In: Secure Information Networks: Communications and
Multimedia Security IFIP TC6/TC11 Joint Working Conference on
Communications and Multimedia Security (CMS’99) September 20–
21, 1999, Leuven, Belgium. Springer. 1999, pp. 258–272.

[JKK05] Norman L Johnson, Adrienne W Kemp, and Samuel Kotz. Univariate
discrete distributions. Vol. 444. John Wiley & Sons, 2005.

[Kan+20] Niclas Kannengießer et al. “Trade-offs between distributed ledger
technology characteristics”. In: ACM Computing Surveys (CSUR)
53.2 (2020), pp. 1–37.

[Ken53] David G Kendall. “Stochastic processes occurring in the theory of
queues and their analysis by the method of the imbedded Markov
chain”. In: The Annals of Mathematical Statistics (1953), pp. 338–
354.

[Kia+17] Aggelos Kiayias et al. “Ouroboros: A provably secure proof-of-stake
blockchain protocol”. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 10401 LNCS (2017), pp. 357–388. issn:
16113349. doi: 10.1007/978-3-319-63688-7_12.

[Kir+15] Yonal Kirsal et al. “Modelling and analysis of vertical handover in
highly mobile environments”. In: The Journal of Supercomputing 71.12
(2015), pp. 4352–4380.

[KK17] Yoshiaki Kawase and Shoji Kasahara. “Transaction-Confirmation time
for Bitcoin: A Queueing Analytical Approach to Blockchain Mecha-
nism”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 10591 LNCS (2017), pp. 75–88. issn: 16113349. doi: 10.
1007/978-3-319-68520-5_5.

[KL18] Merve Can Kus Khalilov and Albert Levi. “A survey on anonymity
and privacy in bitcoin-like digital cash systems”. In: IEEE Commu-
nications Surveys & Tutorials 20.3 (2018), pp. 2543–2585.

87

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-68520-5_5
https://doi.org/10.1007/978-3-319-68520-5_5

[Lee19] Jei Young Lee. “A decentralized token economy: How blockchain
and cryptocurrency can revolutionize business”. In: Business Hori-
zons 62.6 (2019), pp. 773–784.

[Li+17] Wenting Li et al. “Securing proof-of-stake blockchain protocols”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 10436
LNCS (Sept. 2017), pp. 297–315. issn: 16113349. doi: 10.1007/978-
3-319-67816-0_17.

[Li+19] Quan Lin Li et al. “Markov processes in blockchain systems”. In: Com-
putational Social Networks 6 (1 Dec. 2019), pp. 1–28. issn: 21974314.
doi: 10.1186/S40649-019-0066-1/FIGURES/4.

[Lit61] John DC Little. “A proof for the queuing formula: L= λ W”. In:
Operations research 9.3 (1961), pp. 383–387.

[Liu+22] Wei Liu et al. “Optimization of PBFT algorithm based on QoS-aware
trust service evaluation”. In: Sensors 22.12 (2022), p. 4590.

[LKK07] Averill M Law, W David Kelton, and W David Kelton. Simulation
modeling and analysis. Vol. 3. Mcgraw-hill New York, 2007.

[LMC18] Quan Lin Li, Jing Yu Ma, and Yan Xia Chang. “Blockchain Queue
Theory”. In: Lecture Notes in Computer Science 11280 LNCS (2018),
pp. 25–40. issn: 16113349. doi: 10.1007/978-3-030-04648-4_3.

[Lon+11] Francesco Longo et al. “A scalable availability model for infrastructure-
as-a-service cloud”. In: 2011 IEEE/IFIP 41st International Confer-
ence on Dependable Systems & Networks (DSN). IEEE. 2011, pp. 335–
346.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzan-
tine Generals Problem”. In: ACM Transactions on Programming Lan-
guages and Systems 4.3 (1982), pp. 382–401.

[Ma+20] Zhanyou Ma et al. “Performance Analysis of Blockchain Consensus
System with Interference Factors and Sleep Stage”. In: IEEE Access
8 (2020), pp. 119010–119019. issn: 21693536. doi: 10.1109/ACCESS.
2020.3005919.

88

https://doi.org/10.1007/978-3-319-67816-0_17
https://doi.org/10.1007/978-3-319-67816-0_17
https://doi.org/10.1186/S40649-019-0066-1/FIGURES/4
https://doi.org/10.1007/978-3-030-04648-4_3
https://doi.org/10.1109/ACCESS.2020.3005919
https://doi.org/10.1109/ACCESS.2020.3005919

[MA04] R Timothy Marler and Jasbir S Arora. “Survey of multi-objective
optimization methods for engineering”. In: Structural and multidisci-
plinary optimization 26 (2004), pp. 369–395.

[Mac68] Kenneth R MacCrimmon. Decisionmaking among multiple-attribute
alternatives: a survey and consolidated approach. Rand Corporation
Santa Monica, 1968.

[MAG15] Arslan Munir, Joseph Antoon, and Ann Gordon-Ross. “Modeling
and analysis of fault detection and fault tolerance in wireless sensor
networks”. In: ACM Transactions on Embedded Computing Systems
(TECS) 14.1 (2015), pp. 1–43.

[Mar+23a] Marco Marcozzi et al. “Availability evaluation of IoT systems with
Byzantine fault-tolerance for mission-critical applications”. In: Inter-
net of Things 23 (2023), p. 100889. doi: 10.1016/j.iot.2023.
100889.

[Mar+23b] Marco Marcozzi et al. “Availability Model for Byzantine Fault-Tolerant
Systems”. In: Advanced Information Networking and Applications:
Proceedings of the 37th International Conference on Advanced Infor-
mation Networking and Applications (AINA-2023), Volume 1. Springer.
2023, pp. 31–43. doi: 10.1007/978-3-031-29056-5_4.

[Mau+17] Roger Maull et al. “Distributed ledger technology: Applications and
implications”. In: Strategic Change 26.5 (2017), pp. 481–489.

[Maz16] David Mazières. “The Stellar Consensus Protocol: A Federated Model
for Internet-level Consensus”. In: Available at: https: // www. stellar.
org/ papers/ stellar-consensus-protocol (Accessed October 10,
2022) (2016).

[Mel+21] Carlos Melo et al. “Distributed application provisioning over Ethereum-
based private and permissioned blockchain: availability modeling, ca-
pacity, and costs planning”. In: The Journal of Supercomputing 77.9
(2021), pp. 9615–9641.

89

https://doi.org/10.1016/j.iot.2023.100889
https://doi.org/10.1016/j.iot.2023.100889
https://doi.org/10.1007/978-3-031-29056-5_4
https://www.stellar.org/papers/stellar-consensus-protocol
https://www.stellar.org/papers/stellar-consensus-protocol

[Men+21] Tianhui Meng et al. “On Consortium Blockchain Consistency: A
Queueing Network Model Approach”. In: IEEE Transactions on Par-
allel and Distributed Systems 32 (6 June 2021), pp. 1369–1382. issn:
15582183. doi: 10.1109/TPDS.2021.3049915.

[Mey80] Meyer. “On evaluating the performability of degradable computing
systems”. In: IEEE Transactions on computers 100.8 (1980), pp. 720–
731.

[MF22] Fan Qi Ma and Rui Na Fan. “Queuing Theory of Improved Practical
Byzantine Fault Tolerant Consensus”. In: Mathematics 2022, Vol. 10,
Page 182 10 (2 Jan. 2022), p. 182. issn: 2227-7390. doi: 10.3390/
MATH10020182.

[MG11] Arslan Munir and Ann Gordon-Ross. “Markov modeling of fault-
tolerant wireless sensor networks”. In: 2011 Proceedings of 20th In-
ternational Conference on Computer Communications and Networks
(ICCCN). IEEE. 2011, pp. 1–6.

[Mil+16] Andrew Miller et al. “The honey badger of BFT protocols”. In: Pro-
ceedings of the 2016 ACM SIGSAC conference on computer and com-
munications security. 2016, pp. 31–42.

[Min+17] Du Mingxiao et al. “A review on consensus algorithm of blockchain”.
In: 2017 IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC). Vol. 2017-Janua. IEEE, 2017, pp. 2567–2572. doi:
10.1109/SMC.2017.8123011.

[MM21] Marco Marcozzi and Leonardo Mostarda. “Quantum consensus: an
overview”. In: arXiv preprint arXiv:2101.04192 (2021). doi: 10.48550/
arXiv.2101.04192.

[MM23] Marco Marcozzi and Leonardo Mostarda. “Analytical model for per-
formability evaluation of Practical Byzantine Fault-Tolerant systems”.
In: Expert Systems with Applications (2023), p. 121838. doi: 10.

1016/j.eswa.2023.121838.

90

https://doi.org/10.1109/TPDS.2021.3049915
https://doi.org/10.3390/MATH10020182
https://doi.org/10.3390/MATH10020182
https://doi.org/10.1109/SMC.2017.8123011
https://doi.org/10.48550/arXiv.2101.04192
https://doi.org/10.48550/arXiv.2101.04192
https://doi.org/10.1016/j.eswa.2023.121838
https://doi.org/10.1016/j.eswa.2023.121838

[MMC22] Marco Marcozzi, Leonardo Mostarda, and Diletta Cacciagrano. “Off-
chain trading for micro grid systems”. In: Frontiers in Blockchain 5
(2022). doi: 10.3389/fbloc.2022.956621.

[MR13] Ignacio J. Martinez-Moyano and George P. Richardson. “Best prac-
tices in system dynamics modeling”. In: System Dynamics Review
29.2 (2013), pp. 102–123. doi: https://doi.org/10.1002/sdr.
1495. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/sdr.1495. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/sdr.1495.

[Mül+22] Sebastian Müller et al. “Tangle 2.0 leaderless Nakamoto consensus on
the heaviest DAG”. In: IEEE Access 10 (2022), pp. 105807–105842.

[Nak08] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”.
In: Decentralized Business Review (2008).

[Ngu+19] Cong T Nguyen et al. “Proof-of-stake consensus mechanisms for fu-
ture blockchain networks: Fundamentals, applications and opportu-
nities”. In: IEEE Access 7 (2019), pp. 85727–85745.

[NK18] Giang Truong Nguyen and Kyungbaek Kim. “A survey about con-
sensus algorithms used in Blockchain”. In: Journal of Information
Processing Systems 14.1 (2018). doi: 10.3745/JIPS.01.0024.

[NL20] Jeff Nijsse and Alan Litchfield. “A Taxonomy of Blockchain Consen-
sus Methods”. In: Cryptography 4.4 (2020), p. 32. doi: 10.3390/

cryptography4040032.

[Odu19] GO Odu. “Weighting methods for multi-criteria decision making tech-
nique”. In: Journal of Applied Sciences and Environmental Manage-
ment 23.8 (2019), pp. 1449–1457. doi: 10.4314/jasem.v23i8.7.

[OT04] Serafim Opricovic and Gwo-Hshiung Tzeng. “Compromise solution by
MCDM methods: A comparative analysis of VIKOR and TOPSIS”.
In: European journal of operational research 156.2 (2004), pp. 445–
455.

91

https://doi.org/10.3389/fbloc.2022.956621
https://doi.org/https://doi.org/10.1002/sdr.1495
https://doi.org/https://doi.org/10.1002/sdr.1495
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sdr.1495
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sdr.1495
https://onlinelibrary.wiley.com/doi/abs/10.1002/sdr.1495
https://onlinelibrary.wiley.com/doi/abs/10.1002/sdr.1495
https://doi.org/10.3745/JIPS.01.0024
https://doi.org/10.3390/cryptography4040032
https://doi.org/10.3390/cryptography4040032
https://doi.org/10.4314/jasem.v23i8.7

[ØUJ17] Svein Ølnes, Jolien Ubacht, and Marijn Janssen. “Blockchain in gov-
ernment: Benefits and implications of distributed ledger technology
for information sharing”. In: Government Information Quarterly 34.3
(2017), pp. 355–364.

[Par19] Pangun Park. “Markov chain model of fault-tolerant wireless net-
worked control systems”. In: Wireless Networks 25.5 (2019), pp. 2291–
2303.

[Pau+19] Remigijus Paulavičius et al. “A Decade of Blockchain: Review of the
Current Status, Challenges, and Future Directions”. In: Informatica
30.4 (2019), pp. 729–748. doi: 10.15388/Informatica.2019.227.

[Per+21] Paulo Pereira et al. “Analytical models for availability evaluation of
edge and fog computing nodes”. In: The Journal of Supercomputing
77.9 (2021), pp. 9905–9933.

[Pop18] Serguei Popov. “The Tangle”. In: Available at: https: // api. semanticscholar.
org/ CorpusID: 4958428 (Accessed October 10, 2022) (2018).

[QYJ20] Jiaxing Qi, Jing Yu, and Shunfu Jin. “Nash Equilibrium and So-
cial Optimization of Transactions in Blockchain System Based on
Discrete-Time Queue”. In: IEEE Access 8 (2020), pp. 73614–73622.
issn: 21693536. doi: 10.1109/ACCESS.2020.2986084.

[Rao19] Singiresu S Rao. Engineering optimization: theory and practice. John
Wiley & Sons, 2019.

[Rau+18] Michel Rauchs et al. “Distributed ledger technology systems: A con-
ceptual framework”. In: Available at SSRN 3230013 (2018). doi: 10.
2139/ssrn.3230013.

[RHF21] Mohammadreza Rasolroveicy, Wejdene Haouari, and Marios Fokaefs.
“Public or private? a techno-economic analysis of blockchain”. In: Pro-
ceedings of the 31st Annual International Conference on Computer
Science and Software Engineering. 2021, pp. 83–92.

92

https://doi.org/10.15388/Informatica.2019.227
https://api.semanticscholar.org/CorpusID:4958428
https://api.semanticscholar.org/CorpusID:4958428
https://doi.org/10.1109/ACCESS.2020.2986084
https://doi.org/10.2139/ssrn.3230013
https://doi.org/10.2139/ssrn.3230013

[Ric+19] Saulo Ricci et al. “Learning Blockchain Delays: A Queueing The-
ory Approach”. In: ACM SIGMETRICS Performance Evaluation Re-
view 46 (3 Jan. 2019), pp. 122–125. issn: 01635999. doi: 10.1145/
3308897.3308952.

[Ril18] Kynan Rilee. “Understanding Hyperledger Sawtooth — Proof of Elapsed
Time”. In: Available at: https: // medium. com/ kokster/ understanding-
hyperledger-sawtooth-proof-of-elapsed-time-e0c303577ec1

(Accessed October 10, 2022) (2018).

[Rim+17] Paul Rimba et al. “Comparing blockchain and cloud services for busi-
ness process execution”. In: 2017 IEEE international conference on
software architecture (ICSA). IEEE. 2017, pp. 257–260.

[Roc+19] Team Rocket et al. “Scalable and probabilistic leaderless BFT con-
sensus through metastability”. In: arXiv preprint arXiv:1906.08936
(2019).

[SAS20] Rishi Kumar Srivastav, Devendra Agrawal, and Anurag Shrivastava.
“A Survey on Vulnerabilities and Performance Evaluation Criteria in
Blockchain Technology”. In: ADCAIJ: Advances in Distributed Com-
puting and Artificial Intelligence Journal 9 (2 June 2020), pp. 91–
105. issn: 2255-2863. doi: 10.14201/adcaij20209291105.

[Sil+12] Ivanovitch Silva et al. “Reliability and availability evaluation of wire-
less sensor networks for industrial applications”. In: Sensors 12.1
(2012), pp. 806–838.

[Sin+22] Arshdeep Singh et al. “A survey and taxonomy of consensus proto-
cols for blockchains”. In: Journal of Systems Architecture 127 (2022),
p. 102503. doi: 10.1016/10.1016/j.sysarc.2022.102503.

[SKU18] Anastasiia Strielkina, Vyacheslav Kharchenko, and Dmytro Uzun.
“Availability models for healthcare IoT systems: Classification and
research considering attacks on vulnerabilities”. In: 2018 IEEE 9th
international conference on dependable systems, services and tech-
nologies (DESSERT). IEEE. 2018, pp. 58–62.

93

https://doi.org/10.1145/3308897.3308952
https://doi.org/10.1145/3308897.3308952
https://medium.com/kokster/understanding-hyperledger-sawtooth-proof-of-elapsed-time-e0c303577ec1
https://medium.com/kokster/understanding-hyperledger-sawtooth-proof-of-elapsed-time-e0c303577ec1
https://doi.org/10.14201/adcaij20209291105
https://doi.org/10.1016/10.1016/j.sysarc.2022.102503

[Sme+20a] Sergey Smetanin et al. “Blockchain Evaluation Approaches: State-
of-the-Art and Future Perspective”. In: Sensors (Basel, Switzerland)
20.12 (2020), pp. 1–20. doi: 10.3390/s20123358.

[Sme+20b] Sergey Smetanin et al. “Modeling of Distributed Ledgers: Challenges
and Future Perspectives”. In: Proceedings - 2020 IEEE 22nd Confer-
ence on Business Informatics, CBI 2020 1 (June 2020), pp. 162–171.
doi: 10.1109/CBI49978.2020.00025.

[SP08] T.L. Saaty and K. Peniwati. Group Decision Making: Drawing Out
and Reconciling Differences. RWS Publications, 2008. isbn: 9781888603088.
url: https://books.google.lt/books?id=phLWKwAACAAJ.

[SR20] Sheikh Munir Skh Saad and Raja Zahilah Raja Mohd Radzi. “Com-
parative review of the blockchain consensus algorithm between proof
of stake (PoS) and delegated proof of stake (DPoS)”. In: International
Journal of Innovative Computing 10.2 (2020).

[SS21] Jignasha Shah and Deepak Sharma. “Performance benchmarking frame-
works for distributed ledger technologies”. In: 2021 IEEE Interna-
tional Conference on Electronics, Computing and Communication
Technologies (CONECCT). IEEE. 2021, pp. 1–5.

[Suc+18] George Suciu et al. “Comparative analysis of distributed ledger tech-
nologies”. In: 2018 Global Wireless Summit (GWS). IEEE. 2018, pp. 370–
373.

[Suk+17] Harish Sukhwani et al. “Performance modeling of PBFT consen-
sus process for permissioned blockchain network (Hyperledger Fab-
ric)”. In: 2017 IEEE 36th Symposium on Reliable Distributed Systems
(SRDS). IEEE. 2017, pp. 253–255.

[Sun20] Ali Sunyaev. “Distributed ledger technology”. In: Internet Computing.
Springer, 2020, pp. 265–299.

[Tan+22] Song Tang et al. “Improved PBFT algorithm for high-frequency trad-
ing scenarios of alliance blockchain”. In: Scientific Reports 12.1 (2022),
p. 4426.

94

https://doi.org/10.3390/s20123358
https://doi.org/10.1109/CBI49978.2020.00025
https://books.google.lt/books?id=phLWKwAACAAJ

[TB17] Kishor S Trivedi and Andrea Bobbio. Reliability and availability engi-
neering: modeling, analysis, and applications. Cambridge University
Press, 2017.

[Tin19] Julien Tinguely. “Benchmarking of Distributed Ledger Technology”.
In: Bachelor’s Thesis at ETH Zürich (2019).

[Tri08] Kishor S Trivedi. Probability & statistics with reliability, queuing and
computer science applications. John Wiley & Sons, 2008.

[TS17] A.S. Tanenbaum and M. van Steen. Distributed Systems. CreateSpace
Independent Publishing Platform, 2017. isbn: 9781543057386. url:
https://books.google.lt/books?id=c77GAQAACAAJ.

[TX21] Shensheng Tang and Yi Xie. “Availability modeling and performance
improving of a healthcare internet of things (IoT) system”. In: IoT
2.2 (2021), pp. 310–325.

[Wan+19] Xinying Wang et al. “BlockLite: A Lightweight Emulator for Pub-
lic Blockchains”. In: arXiv e-prints, arXiv:1905.02157 (May 2019),
arXiv:1905.02157. arXiv: 1905.02157 [cs.DB].

[Wan+20] Zhiyuan Wang et al. “Analysis of weighting and selection methods
for Pareto-optimal solutions of multiobjective optimization in chemi-
cal engineering applications”. In: Industrial & Engineering Chemistry
Research 59.33 (2020), pp. 14850–14867.

[WG21] Francesc Wilhelmi and Lorenza Giupponi. “Discrete-Time Analysis
of Wireless Blockchain Networks”. In: IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications, PIMRC 2021-
September (Sept. 2021), pp. 1011–1017. doi: 10.1109/PIMRC50174.
2021.9569253.

[Woo14] Daniel Davis Wood. “Ethereum: A secure decentralised generalised
transaction ledger”. In: Available at: https: // api. semanticscholar.
org/ CorpusID: 4836820 (Accessed October 10, 2022) (2014).

95

https://books.google.lt/books?id=c77GAQAACAAJ
https://arxiv.org/abs/1905.02157
https://doi.org/10.1109/PIMRC50174.2021.9569253
https://doi.org/10.1109/PIMRC50174.2021.9569253
https://api.semanticscholar.org/CorpusID:4836820
https://api.semanticscholar.org/CorpusID:4836820

[WR17] Zhiyuan Wang and Gade Pandu Rangaiah. “Application and analysis
of methods for selecting an optimal solution from the Pareto-optimal
front obtained by multiobjective optimization”. In: Industrial & En-
gineering Chemistry Research 56.2 (2017), pp. 560–574.

[Xia+20] Yang Xiao et al. “A Survey of Distributed Consensus Protocols for
Blockchain Networks”. In: IEEE Communications Surveys & Tutori-
als 22.2 (2020), pp. 1432–1465. doi: 10.1109/COMST.2020.2969706.

[Yin+18] Maofan Yin et al. “HotStuff: BFT consensus in the lens of blockchain”.
In: arXiv preprint arXiv:1803.05069 (2018).

[Zha+22] Kaifeng Zhang et al. “Research and Improvement of Blockchain DPoS
Consensus Mechanism”. In: International Conference on Computer
Engineering and Networks. Springer. 2022, pp. 1284–1292.

[Zhe+18] Zibin Zheng et al. “Blockchain challenges and opportunities: a sur-
vey”. In: International Journal of Web and Grid Services 14.4 (2018),
p. 352. doi: 10.1504/IJWGS.2018.095647.

[ZKC20] Rong Zhang, Wai Kin, and Victor Chan. “Evaluation of Energy Con-
sumption in Block-Chains with Proof of Work and Proof of Stake”.
In: Journal of Physics: Conference Series 1584 (2020), p. 12023. doi:
10.1088/1742-6596/1584/1/012023.

[ZL20] Shijie Zhang and Jong-Hyouk Lee. “Analysis of the main consensus
protocols of blockchain”. In: ICT Express 6.2 (2020), pp. 93–97. doi:
10.1016/j.icte.2019.08.001.

96

https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1504/IJWGS.2018.095647
https://doi.org/10.1088/1742-6596/1584/1/012023
https://doi.org/10.1016/j.icte.2019.08.001

	Abstract
	Introduction
	Background knowledge
	Distributed Ledger Technologies
	Blockchains
	Directed Acyclic Graphs

	Consensus protocols for DLT
	Proof of Work
	Proof of Stake
	Byzantine Fault-Tolerance

	Performability evaluation
	Analytical models

	Related Work
	Consensus protocol selection
	Performability evaluation techniques
	Definitions
	Benchmarking
	Analytical modeling

	Methodology
	Protocol selection framework
	Problem definition
	Criteria definition
	Criteria weights
	Data acquisition
	Consensus family selection

	Performability evaluation of BFT protocols
	Availability model for BFT protocols
	Performability model for BFT protocols

	Results
	Evaluation of availability for BFT protocols
	Evaluation of performability for BFT protocols
	Sensitivity analysis

	Conclusions
	Bibliography

