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Background and Purpose: Alcohol and nicotine use disorders are commonly comor-

bid. Both alcohol and nicotine can activate opioid systems in reward-related brain

regions, leading to adaptive changes in opioid signalling upon chronic exposure. The

potential role of these adaptations for comorbidity is presently unknown. Here, we

examined the contribution of μ and κ-opioid receptors to nicotine-induced escalation

of alcohol self-administration in rats.

Experimental Approach: Chronic nicotine was tested on alcohol self-administration

and motivation to obtain alcohol. We then tested the effect of the κ antagonist

CERC-501 and the preferential μ receptor antagonist naltrexone on basal and

nicotine-escalated alcohol self-administration. To probe μ or κ receptor adaptations,

receptor binding and G-protein coupling assays were performed in reward-related

brain regions. Finally, dopaminergic activity in response to alcohol was examined,

using phosphorylation of DARPP-32 in nucleus accumbens as a biomarker.

Key Results: Nicotine robustly induced escalation of alcohol self-administration and

motivation to obtain alcohol. This was blocked by naltrexone but not by CERC-501.

Escalation of alcohol self-administration was associated with decreased DAMGO-

stimulated μ receptor signalling in the ventral tegmental area (VTA) and decreased

pDARPP-32 in the nucleus accumbens shell in response to alcohol.

Conclusions and Implications: Collectively, these results suggest that nicotine con-

tributes to escalate alcohol self-administration through a dysregulation of μ receptor

activity in the VTA. These data imply that targeting μ rather than κ receptors may be

the preferred pharmacotherapeutic approach for the treatment of alcohol use disor-

der when nicotine use contributes to alcohol consumption.
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1 | INTRODUCTION

Alcohol and nicotine use disorders are two of the leading preventable

causes of death worldwide. These two conditions are commonly

comorbid, with a large majority of people with alcohol use disorder

(AUD) also being diagnosed with a comorbid addiction to nicotine

(Sussman, Lisha, & Griffiths, 2011). Cigarette smoking is associated

with drinking severity among people with alcohol use disorder (Grant,

Hasin, Chou, Stinson, & Dawson, 2004) and increases alcohol drinking

in normal subjects (Barrett, Tichauer, Leyton, & Pihl, 2006). Nicotine

use also predicts higher addiction rates, higher severity and also

poorer pharmacological treatment outcomes in alcohol use disorder

(Fucito et al., 2012).

Consistent with the human research, preclinical studies show that

exposure to nicotine increases alcohol self-administration in non-

dependent (Olausson, Ericson, Lof, Engel, & Soderpalm, 2001),

alcohol-dependent (Leao et al., 2015) and also alcohol-preferring rats

(Hauser et al., 2012). Possible biological mechanisms proposed as a

basis for this interaction mainly include the stress hormone system

and adaptations in the mesolimbic dopamine system (Doyon et al.,

2013). Nicotine–alcohol interaction has also been shown to activate

interconnected brain regions involved in stress and reward processes

such as nucleus accumbens core (AcbC) and nucleus accumbens shell

(AcbS), ventral tegmental area (VTA), prefrontal cortex (PFC) and

amygdala (AMG) (Leao et al., 2015). However, despite these advances,

it remains unclear how nicotine facilitates the transition to

excessive drinking.

Endogenous opioid systems play a pivotal role in the reinforce-

ment and motivational aspects of alcohol and nicotine addiction

(Trigo, Martin-Garcia, Berrendero, Robledo, & Maldonado, 2010).

Chronic exposure to nicotine or alcohol induces profound and specific

changes in the expression and release of β-endorphin, dynorphin and

their corresponding receptors, depending on the various stages of the

addiction process (for review, see Drews & Zimmer, 2010). Opioid

receptors and their peptide ligands are directly or indirectly affected

by drugs of abuse (Kieffer & Evans, 2009). Conversely, μ opioid

receptor antagonism reduces alcohol drinking and relapse-like behav-

iours in rodents (Dhaher et al., 2012; Stromberg, Casale, Volpicelli,

Volpicelli, & O'Brien, 1998), as well as relapse to heavy drinking and

alcohol craving in humans (Jonas et al., 2014; King et al., 2012;

O'Malley, Krishnan-Sarin, Farren, Sinha, & Kreek, 2002). Pharmacolog-

ical studies also provide evidence for μ receptor blockade to attenuate

nicotine reinforcement. For instance, the μ receptor antagonist,

glycyl-glutamine, blocks conditioned place preference to nicotine and

mecamylamine-induced nicotine withdrawal in rats (Goktalay, Cavun,

Levendusky, Hamilton, & Millington, 2006).

In contrast, interventions targeting κ opioid receptors influence

alcohol taking without influencing the reinforcing properties of nico-

tine. κ receptor agonists can reduce ethanol reinforcement in non-

dependent animals, but this is mediated through their aversive

effects (Noble, Lenoir, & Marie, 2015), which also render them

unsuitable as clinical therapeutics (Bals-Kubik, Ableitner, Herz, &

Shippenberg, 1993). More importantly, κ antagonists attenuate

alcohol reward but do not reduce the rewarding properties of nico-

tine in preclinical models. In an additional and potentially important

distinction, κ antagonism specifically attenuates escalated alcohol

self-administration but does not affect basal consumption (Kissler

et al., 2014; Walker, Valdez, McLaughlin, & Bakalkin, 2012). This

suggests that κ antagonists may have a potential as therapeutics in

alcohol use disorder, where consumption typically has escalated

beyond initial levels.

First-generation κ antagonists were unsuitable candidates for

clinical development, because of a slow onset of action and long-

lasting effects (Bruchas et al., 2007). Recently, selective, short-acting κ

antagonists with acceptable human safety and tolerability have

become available, with CERC-501 as an example of this class (Lowe

et al., 2014). Using CERC-501, we found that κ receptor antagonism

suppressed escalated drinking induced by intermittent two-bottle

choice procedure while leaving baseline consumption unaffected

(Domi et al., 2018).

Escalation of alcohol drinking is a key clinical feature in alcohol

use disorders and extensive work has been devoted by the alcohol

field to modelling this phenomenon in rodents (Becker & Ron, 2014).

Along this line, our aim here was to investigate the role of CERC-501

and the preferential μ receptor antagonist, naltrexone, in a model of

nicotine-induced escalation of alcohol self-administration and motiva-

tion to obtain alcohol (Le, Wang, Harding, Juzytsch, & Shaham, 2003).

Behavioural pharmacology experiments were combined with an

analysis of receptor binding and G-protein coupling in brain regions

involved in drug addiction: AcbC, AcbS, dorsomedial and ventromedial

PFC (dmPFC and vmPFC), orbitofrontal cortex (OFC), basolateral

AMG (BLA), central AMG (CeA), medial AMG (MeA) and VTA.

What is already known

• Endogenous opioids regulate reinforcement and motiva-

tional aspects of alcohol and nicotine use disorders.

• μ and κ receptor antagonism reduces alcohol self-

administration in rats.

What does this study add

• Nicotine-induced escalated drinking in male rats is associ-

ated with altered VTA μ receptor activity.

• Nicotine-induced escalated drinking in male rats is atten-

uated by naltrexone treatment.

What is the clinical significance

• Targeting μ, rather than κ receptors to treat people with

AUD who are also smokers.
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Moreover, we measured phosphorylation of DARPP-32, which is reli-

ably triggered by dopamine release and D1 receptor activation, as a

biomarker to assess whether nicotine-induced escalation of drinking

involves modulation of dopaminergic activity in the nucleus

accumbens (Acb) in response to alcohol. Control behaviours, including

saccharin self-administration and locomotor activity, were evaluated

to determine the specificity of the results of nicotine-induced escala-

tion of alcohol self-administration.

2 | METHODS

2.1 | Animals

Male Wistar rats were used to enable comparison of the current

results with prior literature on models of escalated alcohol self-

administration induced by nicotine (Le et al., 2003).

A total of 175 male Wistar rats (Charles River), weighing

250–300 g (7–9 weeks) at the beginning of the experiments, were

pair-housed with free access to tap water and food pellets. Rats were

maintained in a temperature- and humidity-controlled vivarium on a

12-h light/dark cycle (lights off at 7:00 a.m.). Behavioural experiments

were conducted during the dark phase. Rats were handled three times

before each experiment. All animal care and experiments were con-

ducted in accordance with the Swedish National Committee for ani-

mal research, and the protocol was approved by the Local Ethics

Committee for Animal Care and Use at Linkoping University. Animal

studies are reported in compliance with the ARRIVE guidelines

(Kilkenny, Browne, Cuthill, Emerson, & Altman, 2010) and the editorial

on reporting animal studies (McGrath & Lilley, 2015) with the recom-

mendations made by the British Journal of Pharmacology.

2.2 | Alcohol self-administration

Operant training and testing were performed in the operant chambers

(Med Associates Inc., St Albans, VT, USA; 30.5 × 29.2 × 24.1 cm)

housed in sound-attenuating cubicles. Each operant chamber was

equipped with two retractable levers positioned laterally to a liquid

cup receptacle. Animals were trained to self-administer 20% (v/v)

alcohol without sucrose/saccharin fading as described (Augier et al.,

2014; Augier, Dulman, Singley, & Heilig, 2017; Simms, Bito-Onon,

Chatterjee, & Bartlett, 2010). Rats were initially trained to lever press

on a fixed ratio 1 (FR1) 5-s time-out (TO) schedule to self-administer

20% alcohol during 30-min sessions. Two levers were extended to

mark the onset of the session and to signal alcohol availability. Press-

ing once on the lever associated with alcohol (active) was reinforced

by the delivery of 100 μl of 20% alcohol in water in the adjacent

drinking well and initiated a concomitant 5-s time-out period signalled

by the illumination of the cue light above the lever. Responses on the

inactive lever and during the time-out period were recorded but had

no programmed consequences. Sessions were conducted 5 days

a week until performance stabilized (defined as a minimum of

15 sessions and no change greater than 15% in the total number of

reinforcers earned during the last three sessions). Once a stable self-

administration baseline was reached, the sessions were conducted

under a fixed ratio 2 (FR2) until a stable baseline of lever pressing was

achieved (defined as for fixed ratio1). After establishing a baseline of

fixed ratio 2, rats were treated with either saline or nicotine 0.8 mg

kg−1 solution s.c. 20 min prior to the session, for 14 consecutive days

as previously described (Le et al., 2003; Leao et al., 2015). Animals

that did not acquire the self-administration procedure or earned less

than 10 reinforcers during the 30 min session at the baseline were

excluded from the study. Motivation of the animals to obtain alcohol

was measured using a progressive ratio schedule (Hodos, 1961) under

the same experimental conditions as those used in the fixed ratio

schedule, except that the response requirement or cost was increased

within session after each reinforcer earned, according to the following

formula: 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32 …. The progressive

ratio session terminated after 30 min had elapsed without a reward.

The break point was defined as the last completed response require-

ment during the progressive ratio session.

2.3 | Saccharin self-administration

Saccharin self-administration was performed under the same condi-

tions as for alcohol self-administration. Briefly, rats were trained to

self-administer 0.2% saccharin in 30-min sessions under an fixed

ratio2 5-s time-out schedule of reinforcement. Once a stable self-

administration baseline was reached (a total of 15 fixed ratio2 ses-

sions), rats were assigned to nicotine or saline treatments based on

their baseline response and further tested for 14 additional sessions.

2.4 | Locomotor activity

The distance travelled (cm) was determined in the operant chambers

using MED-PC IV (Med Associates, St. Albans, VT, USA). During the

self-administration session, each time a rat broke the infared beams

localized at each side of the operant box represented an event

recorded automatically by the program. For every movement from

one beam to another, one move of 18.1 cm (the distance between the

two infared beams) was counted. Every event occurring at the same

times (two at the same second, either from the same infared or from

two different) was considered duplicate and removed from the total

count. The effect of naltrexone on locomotor activity was examined

for 30 min (to match the duration of the alcohol self-administration

sessions) in sound-attenuated chambers equipped with an open field

(43 × 43 cm) containing infared beam detectors MED-PC IV (Med

Associates). The automated system analysed total distance (horizontal

locomotor activity) in the arena as a locomotion index across every

5-min bin. After each trial, the field was cleaned with water and dried

using paper towels.
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2.5 | Blood alcohol concentration

Blood samples (100 μl) taken from the rat tail vein were spun down

in a centrifuge (15 min, 2,000 g), and the plasma samples were

stored at −20�C until determination of blood alcohol concentrations

(BACs). Alcohol content was then assayed in duplicates, from 5 μl

plasma aliquots using an oxygenate alcohol analyser (Analox

Instruments, Street Stourbridge, England). Data are expressed

as mg dl−1.

2.6 | Tissue preparation

Rats (N = 32) after alcohol (n = 16) or saccharin self-administration

(n = 16) received chronic treatment with saline (n = 8) or nicotine (n =

8) for 14 days as described above and were used for the receptor

autoradiography and GTPγS assays at the end of the behavioural

procedure. Rats were anesthetized by isoflurane 20 min after the last

nicotine injection (i.e. at the time the escalated self-administration

session would have started, no alcohol was self-administered that

day, to avoid confounding short-term effects of differential alcohol

self-administration) and killed by decapitation. Brains were quickly

removed, flash frozen in isopentane at −40�C, and stored at −80�C

until further usage. Coronal brain sections were taken from the PFC

(cingulate cortex [Cg]; prelimbic cortex [PrL]; infralimbic cortex [IL];

OFC, bregma levels: +2.7/+3.7); caudate putamen (CPu), AcbC, AcbS,

bregma levels: +1.2/+2.2, BLA, CeA, MeA, bregma levels: −2.8/−3.3;

and VTA bregma levels: −5.2/−5.6 according to the rat brain atlas

(Paxinos & Watson, 2005). The sections were obtained with a cryostat

(Leica CM1950) with a thickness of 12 μm and mounted onto gelatin-

coated glass slides.

μ and κ receptor autoradiographies and DAMGO-stimulated μ

receptor GTPγS assay were performed as previously described (Bjork

et al., 2013; Hermann et al., 2017). For details, see Supporting

Information.

2.7 | U50,488H-stimulated κ receptor G-protein
coupling (GTPγS assay)

Slides were rinsed in preincubation buffer (50-mM Tris-HCl; 3-mM

MgCl2; 0.2-mM EGTA; 100-mM NaCl; pH = 7.4) for 10 min at room

temperature. To stop the reaction, slides were dipped in ice-cold pre-

incubation buffer. Afterwards, they were placed into a humidified

chamber. Slides were then covered with 1.3 GDP (1.3 mM GDP;

50 mM Tris-HCl; 3 mM MgCl2; 0.2 mM EGTA; 100 mM NaCl; pH =

7.4) for pretreatment. This was stopped by dipping the slides in ice-

cold preparation buffer. Next, slides were incubated with [35S]-GTPγS

(40 pM [35S]-GTPγS; 1.3-mM GDP; 50 mM Tris-HCl; 3 mM MgCl2;

0.2 mM EGTA; 100 mM NaCl; pH = 7.4) for 2 h at room temperature,

where two slides per animal were incubated with the κ receptor-

specific agonist U50,488H (10 μM) and one slide per animal with the

specific agonist and additional antagonist nor-BNI (1 μM). Slides were

dipped in ice-cold washing buffer (50 mM Tris-HCl) to stop the reac-

tion. They were then washed twice in ice-cold washing buffer for

2 min and dipped in ice-cold water. Finally, slides were dried under an

air stream in 4�C.

2.8 | Image analysis

After completing receptor autoradiographies or [35S]-GTPγS assays,

Fujifilm BAS imaging plates (Fujifilm, Tokyo, Japan) were exposed to

the sections. Imaging plates were scanned with a phosphoimager

(Typhoon FLA 700, GE Healthcare, Germany). The mean grey values

were measured using the MCID software (MCID Image Analysis

Software Solutions for Life Sciences). For receptor-binding studies,

non-specific binding (residual binding in the presence of saturating

concentrations of cold antagonist) was subtracted from total binding

to obtain specific binding. For the activity assays, mean grey values

were measured of the [35S]-GTPγS binding under basal and stimu-

lated conditions. The percentage of stimulation was calculated for

every region and animal. Autoradiography and GTPγS data were

plotted to a [3H]- and [14C]-standard, respectively. Density values of

the receptor autoradiographs in (fmol mg−1) was calculated based

on the specific activity of the radioligand and the saturation binding

equation (B = Bmax*[R]/(Kd + [R]), solving for Bmax, Bmax = maximal

bound receptor, Kd = receptor affinity, nM). Data were expressed as

fmol mg−1 protein (mean ± SEM) (Bjork et al., 2013; Hermann et al.,

2017; Hirth et al., 2016; Sommer, Costa, & Hansson, 2014). Density

values of the [35S]-GTPγS assays were presented in nCi g−1 (mean ±

SEM) (Bjork et al., 2013). Measurements could only be taken when

regions of interest were clearly visualized; when the group size was

lower than n = 5, the data are considered as preliminary and were

not analysed. Because of the individual differences, stimulated

GTPγS values are presented as % stimulation and not as raw stimu-

lated values in Tables S2 and S4. Raw values and statistical analysis

of μ receptor, κ receptor binding, basal levels and DAMGO-

stimulated μ receptor, or U50,488H-stimulated κ receptor GTPγS

binding in CG, OFC, PrL, IL, CPu, AcbC, AcbS, BLA, MeA, CeA, and

VTA are provided in Table S4.

2.9 | Immunofluorescence

The immuno-related procedures used comply with the recommenda-

tions made by the British Journal of Pharmacology (Alexander et al.,

2018). Rats (N = 18) were deeply anesthetized with isoflurane and

transcardially perfused with 0.9% saline followed by 4% paraformalde-

hyde (PFA). Brains were removed and postfixed in 4% PFA for 2 h and

then transferred into 30% sucrose solution till sinking. Coronal brain

sections (20 μm) were processed in a cryostat microtome and stored

in cryoprotectant.

Floating brain sections were washed in PBS 3 × 10 min and then

blocked in a solution of 4% BSA and 0.2% Triton X-100 dissolved in

PBS for 1 h at room temperature. For labelling pDARPP-32 and
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DARPP-32, a monoclonal rabbit anti-pDARPP-32 (Cell Signaling Tech-

nology Cat# 12438, RRID:AB_2797914, 1:200 dilution) and a poly-

clonal rabbit anti-DARPP-32 (Cell Signaling Technology Cat# 2306,

RRID:AB_823479, 1:200 dilution) were used as the primary anti-

bodies. Sections were incubated in primary antibodies separately for

24 h at 4�C. After rinsing in PBS three times, the sections were incu-

bated with Alexa Fluor 555-labelled donkey anti-rabbit secondary

antibody (Thermo Fisher Scientific Cat# A-31572, RRID:AB_162543,

1:200 dilution) for 2 h at room temperature. Sections were rinsed in

PBS three times, mounted on slides and coverslipped with prolonged

diamond antifade mountant with DAPI (P36962, Invitrogen). All

images were acquired through a Zeiss LSM 780 upright confocal

microscope (20× magnification). Quantification of pDARPP-32 and

DARPP-32 was carried out with ImageJ 1.48 software (ImageJ, RRID:

SCR_003070). Images of AcbS and AcbC (1,024 × 1,024 μm) were

taken unilaterally from a minimum of three sections across two slides

from each animal at levels corresponding to 1.2–1.70 mm anterior to

bregma (Paxinos & Watson, 2005). Cell counts were averaged across

sections for each animal. Individual cells were identified based

on DAPI staining of the nuclei. The percentage of cells expressing

pDARPP-32 or DARPP-32 was determined by dividing the number

of positive cells by the total number of DAPI-labelled nuclei in the

same image.

2.10 | Materials

Nicotine hydrogen tartrate salt (Sigma-Aldrich, Stockholm, Sweden)

was dissolved in saline, and the dose 0.8 mg kg−1 (expressed as the

free base) was injected s.c. 20 min prior to self-administration ses-

sions. Alcohol solution (20%) was prepared volume/volume (v/v) in

tap water from 95% alcohol. Naltrexone, Kd = 3.1 ± 0.32 [nM] 1997,

(Sigma-Aldrich) was dissolved in a sterile saline solution and adminis-

tered s.c. at the volume of 1 ml kg−1 at the doses 0, 0.3, and 1 mg

kg−1. CERC-501, Kd = 0.8 ± 0.2 [nM] (Rorick-Kehn et al., 2014)

(CERECOR; Baltimore, USA), was dissolved in distilled water with the

addition of 85% lactic acid and administered p.o. at the volume of

1 ml kg−1 at the doses 0, 3, and 10 mg kg−1. CERC-501 and naltrex-

one doses were selected based on prior work (Rorick-Kehn et al.,

2014; Williams & Broadbridge, 2009). Drugs were prepared freshly on

the experimental day, and rats were habituated to the route of the

administration before the test.

For the analysis of μ and κ receptor binding and coupling assays,

we used the μ receptor agonist DAMGO ([Tyrosyl-3,5-3H(N)], Kd: 0.7

± 0.1 [nM]; Sharif & Hughes, 1989; Tocris, Bristol, UK), [3H]-DAMGO

(specific activity 50–51 Ci mmol−1; PerkinElmer, Massachusetts, USA)

and the κ agonist U50,488H (Kd: 3.8 ± 0.2 [nM]; Kim, Eun, Soh, Eun, &

Cho, 1996; Tocris), [3H]-U50,488H (specific activity 44.6 Ci mmol−1;

PerkinElmer). To determine non-specific bindings, unlabelled selective

μ receptor antagonist CTOP (Kd = 0.96 nM) and κ antagonist nor-BNI

(Kd = 0.15 ± 0.1 [nM]) were used (Tocris). [35S]-GTPγS and GDP

were obtained from PerkinElmer and Sigma-Aldrich Chemie GmbH

Germany, respectively.

To label pDARPP-32 and DARPP-32, we used a monoclonal rab-

bit anti-pDARPP-32 (Thr 34) and a polyclonal rabbit anti-DARPP-32.

As a secondary antibody, we used Alexa Fluor 555-labelled donkey

anti-rabbit.

2.11 | Blinding and randomization

The laboratory animals were assigned to the experimental groups ran-

domizing their behavioural responses, and the treatments were

assessed blindly. All samples were analysed in a blinded manner.

2.12 | Data and statistical analysis

The data and statistical analysis comply with the recommendations of

the British Journal of Pharmacology on experimental design and analy-

sis in pharmacology (Curtis et al., 2018). Statistical analysis was carried

only for groups with a group size of n ≥ 5, and the experimental groups

were designed accordingly, using randomization. The sample sizes and

animal numbers were determined by power analysis of pre-existing

data. Data were analysed to confirm normal distribution (Shapiro–Wilk

test), and the homogeneity of variance was confirmed by Levene's or

Bartlett's test. The declared group size represents the number of inde-

pendent values, on which the statistical analysis was performed.

The effects of nicotine on alcohol, saccharin self-administration,

and locomotor activity were analysed using repeated measures ANOVA

with time (sessions) as a within-subject factor and pretreatment

(nicotine vs. saline treatment) as a between-subject factor.

Drinking latency, front-loading response, blood alcohol concentrations,

DARPP-32 phosphorylation, and total DARPP in AcbC and AcbS were

analysed using unpaired Student's t-test. The effects of naltrexone and

CERC-501 on escalated alcohol self-administration and motivation to

self-administer alcohol were evaluated using factorial ANOVA with

pretreatment (CERC-501 vs. saline or naltrexone vs. saline) and treat-

ment (nicotine vs. saline) as between-subject factors. The autoradio-

graphic image analysis was carried out using factorial ANOVA with

treatment (nicotine vs. saline) and self-administration condition (alcohol

vs. saccharin) as between-subject factors. All post hoc analyses were

conducted using a Newman–Keuls test only when the F value attained

P < 0.05, and there was no significant inhomogeneity of variances. For

determining whether groups differ, the level of probability (P) was set

at P < 0.05 for constituting the threshold for statistical significance. The

data are presented as the mean ± SEM. Data were analysed using

STATISTICA, Stat Soft 13.0 (RRID:SCR_014213). Statistical details

including the degrees of freedom and F and P values are reported in

theTables S5 and S6.

2.13 | Data transformation

Agonist-stimulated GTPγS binding was calculated as per cent of

baseline value in the same region and animal. Values were expressed
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as % stimulation and statistically compared region-wise. Additional

analysis of the effects of naltrexone are presented in the Supporting

Information relatively (as % variation) to the corresponding controls.

No data were excluded.

2.14 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2019/20 (Alexander et al.,

2019).

3 | RESULTS

3.1 | Effects of the κ receptor antagonist CERC-501
on nicotine-induced escalation of alcohol self-
administration and motivation to obtain alcohol

In the absence of other treatment, nicotine (n = 30) induced a tran-

sient decrease in alcohol self-administration compared to saline (n =

29), followed by a robust escalation that lasted throughout the experi-

ment. There was a decrease in the number of reinforcers earned on

the first nicotine treatment day, followed by a robust escalation of

alcohol self-administration from day 7 that persisted until the end of

the treatment (Figure 1a).

After stable escalation was obtained in the nicotine group, rats

receiving saline and nicotine, respectively, were further divided into

three subgroups each and were treated p.o. with vehicle or CERC-501

(3 or 10 mg kg−1) 45 min prior to nicotine (n = 10 per group), or saline

injections (n = 10, 9 and 10 for 0, 3 and 10 mg kg−1, respectively).

CERC-501 had no significant effect on basal or nicotine-induced esca-

lated alcohol self-administration. Although a trend for a suppression

was present, this was primarily driven by a decrease in non-escalated

self-administration (Figure 1b). Inactive lever pressing was not signifi-

cantly affected by CERC-501 or nicotine or their interaction

(Figure 1c).

Finally, nicotine markedly enhanced motivation to obtain alcohol,

measured using a progressive ratio schedule, but this was unaffected

by CERC-501 (Figure 1d).

3.2 | Effects of the μ receptor-preferring antagonist
naltrexone on nicotine-induced escalation of alcohol
self-administration and motivation to obtain alcohol

After re-establishing a baseline of alcohol self-administration, rats

treated with nicotine (n = 39) were divided into three subgroups (n =

13) and treated with naltrexone (0, 0.3, or 1.0 mg kg−1) s.c. 30 min

prior to nicotine or saline injections (n = 38; n = 13, 12, and 13 for

F IGURE 1 Effects of the κ receptor antagonist CERC-501 on
nicotine-escalated alcohol self-administration. (a) Mean reinforcers
(±SEM) earned during a 30-min fixed ratio2 self-administration
session of 20% alcohol following either chronic nicotine (n = 30) or
saline (n = 29). (b) Mean reinforcers (±SEM) earned during a 30-min
fixed ratio2 self-administration session of 20% alcohol following
saline and CERC-501 (0, 3, and 10 mg kg−1) (n = 10, 9, and 10 for
each dose) and nicotine in combination with CERC-501 (0, 3, and
10 mg kg−1) (n = 10 per group). (c) Mean of non-reinforced lever

pressings (±SEM) earned during a 30-min fixed ratio2 self-
administration session of 20% alcohol following either vehicle,
nicotine treatment, or CERC-501 (0, 3, and 10 mg kg−1). (d) Mean
break points (±SEM) reached during a progressive ratio session of
20% alcohol following either saline, nicotine, or CERC-501 (0, 3, and
10 mg kg−1); *P < 0.05 significant difference between nicotine and
saline control rats. No significant effects of CERC-501 were observed
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each dose, respectively). The number of alcohol rewards was

significantly higher in the nicotine-treated group compared to saline.

Naltrexone (0.3 and 1 mg kg−1) suppressed both basal and nicotine-

induced escalated alcohol self-administration (Figure 2a). There was

no significant effect of neither nicotine nor naltrexone treatment on

the inactive lever (Figure 2b). The effect of naltrexone was also

analysed as % decrease compared to the saline or nicotine vehicle

groups. Nicotine significantly increased the % number of reinforcers.

Naltrexone (0.3 and 1 mg kg−1) reduced % decrease from control in

both basal and nicotine-induced escalated alcohol self-administration

Figure S1a.

Naltrexone also reduced basal and nicotine-induced escalated

break points for alcohol (Figure 2c). The data expressed as % decrease

of progressive ratio responding to vehicle groups are shown in

Figure S1b.

To examine the behavioural specificity of naltrexone on alcohol

self-administration, we assessed its effect on general locomotor

behaviour (n = 18). Repeated measures ANOVA showed no significant

effect of naltrexone on locomotor activity (Figure S2).

3.3 | Effects of chronic nicotine on operant
responding for saccharin reinforcement and locomotor
activity

In a separate cohort of rats (n = 32 per group), nicotine induced an

escalation of alcohol self-administration similar to that reported

above; a transient decrease in the number of reinforcers the first day

and an escalation that became significant on day 6 and lasted

throughout the experiment (Figure 3a). We further tested whether

nicotine-induced escalation was specific to alcohol by assessing the

effects of nicotine treatment on 0.2% saccharin self-administration. In

contrast to the effects on alcohol self-administration, chronic nicotine

only induced a transient decrease of saccharin self-administration that

was not followed by an escalation. Saccharin responding decreased

the first 3 days of nicotine treatment and then returned to a level

indistinguishable from that of saline-pretreated rats (Figure 3b).

To exclude the possibility of a ceiling effect in the saccharin group

and ensure that nicotine-induced escalation was behaviourally specific

to alcohol, we also tested the effect of nicotine in a separate batch of

rats (n = 9 per group), using a lower concentration of saccharin

(0.02%) chosen to produce similar rate of responses to the ones pro-

duced with alcohol self-administration (Pucilowski, Overstreet,

Rezvani, & Janowsky, 1993). Using this solution as reinforcer, rats

reached a stable baseline of 52.6 ± 6.2 reinforcers on the fixed ratio

2 schedule of reinforcement and then underwent nicotine treatment

for 14 days. Chronic nicotine induced a transient decrease of saccha-

rin self-administration; in contrast to the effects on alcohol self-

administration, this was not followed by an escalation (Figure S3a).

Nicotine also left motivation for saccharin responding unaffected

(Figure S3b).

Drinking latency was defined as the average time to the first alco-

hol response on the last 4 days of escalated alcohol self-

administration. Nicotine significantly reduced this measure in alcohol

self-administration without affecting saccharin (Figure S4a,b).

We also analysed the patterns of self-administration for both

alcohol and saccharin sessions (depicted as mean number of rein-

forcers per 5-min bins, earned during the last four stabilized sessions

before and after escalation, n = 6 per group). Nicotine increased the

front-loading response specifically during alcohol self-administration

when compared to saline controls. During alcohol, but not saccharin

F IGURE 2 Effects of the preferential μ receptor antagonist
naltrexone on nicotine-escalated alcohol self-administration. (a) Mean
reinforcers (±SEM) earned during a 30-min fixed ratio2 self-

administration session of 20% alcohol following either saline, nicotine,
or naltrexone (0, 0.3, and 1 mg kg−1). (b) Mean of non-reinforced lever
pressings (±SEM) earned during a 30-min FR2 self-administration
session of 20% alcohol following either saline in combination with
naltrexone (0, 0.3, and 1 mg kg−1) (n = 13, 12, and 13 for each dose,
respectively) or nicotine and naltrexone (0, 0.3, and 1 mg kg−1) (n = 13
per group). (c) Mean break points (±SEM) reached during a
progressive ratio session of 20% alcohol following either saline,
nicotine, or naltrexone treatment (0, 0.3, and 1 mg kg−1); *P < 0.05
significant difference between nicotine and saline control rats;
#P < 0.05 significant difference between naltrexone and vehicle

4522 DOMI ET AL.

 14765381, 2020, 19, D
ow

nloaded from
 https://bpspubs.onlinelibrary.w

iley.com
/doi/10.1111/bph.15210 by U

niversita D
i C

am
erino, W

iley O
nline L

ibrary on [12/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sessions, the number of reinforcers earned during the first 5 min was

significantly higher in the nicotine-treated rats (Figure 3c,d). Repre-

sentative patterns for alcohol and saccharin self-administration are

shown in Figure 3e,f.

A separate cohort of rats (n = 9 per group) was used to measure

blood alcohol concentrations after nicotine-induced escalation of

alcohol self-administration. Nicotine-treated rats had higher blood

alcohol concentrations compared to saline control. Moreover, blood

alcohol concentrations showed a positive and significant correlation

with the number of alcohol reinforcers obtained during the 30-min

self-administration session (Figure S4c,d).

Chronic nicotine did not significantly affect locomotor activity

during alcohol self-administration (Figure 3g). Nicotine only transiently

affected locomotor activity during saccharin self-administration,

decreasing it during the first 2 days, while no significant differences

were present throughout the remainder of the procedure (Figure 3h).

F IGURE 3 Effects of chronic nicotine on alcohol and saccharin self-administration. (a and b) Mean reinforcers (±SEM) earned during a 30-min
fixed ratio2 self-administration session of 20% alcohol (left) and saccharin (right) following either saline (n = 32) or nicotine treatment (n = 32) for
14 days. (c and d) Mean reinforcers (±SEM) depicted per 5-min bin in fixed ratio2 20% alcohol and saccharin self-administration following nicotine
or saline treatment (n = 6 per group). (e and f) Representative self-administration patterns in a 30-min fixed ratio2 self-administration session of
20% alcohol and saccharin following either saline or nicotine treatment. (g and h) Mean distance travelled (±SEM) during a 30-min fixed ratio2
self-administration session of 0.2% saccharin following either vehicle or nicotine. *P < 0.05 significantly different from saline control rats
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3.4 | Effects of alcohol and nicotine on μ receptor
binding and signalling in the VTA

Rats exposed to alcohol (n = 16) or saccharin (n = 16) and treated with

nicotine (n = 8) or saline (n = 8) were sacrificed for the autoradio-

graphic assay after the last nicotine injection (see schematic represen-

tation in Figure S5).

μ binding in the VTA was differentially affected by alcohol and

nicotine. Alcohol self-administration decreased binding, while nicotine

increased it (Figure 4a).

DAMGO-stimulated μ receptor signalling in the VTA was

decreased in both saccharin and alcohol self-administering nicotine-

treated rats. Alcohol self-administration alone induced a similar

decrease of μ receptorsignalling when compared to the saccharin con-

trol group. In the saccharin control, stimulated binding was decreased

(34%) by nicotine treatment. The combination of alcohol and nicotine

induced a profound decrease in DAMGO-stimulated μ receptor-

GTPγS binding (50%), when compared to nicotine or alcohol alone

(Figure 4b).

3.5 | Effects of alcohol and nicotine on μ receptor
binding and signalling in the Acb and CPu

In the AcbS, alcohol self-administration, compared to saccharin,

resulted in decreased μ receptor binding irrespective of nicotine, while

nicotine produced a modest reduction in μ receptor binding in the sac-

charin group only. Alcohol self-administration significantly decreased

μ receptor binding compared to saccharin self-administration, both in

the saline and the nicotine group, while nicotine only decreased μ

receptor binding in saccharin self-administering animals (Figure 5a).

DAMGO-stimulated μ receptor signalling in the AcbS was

increased by alcohol self-administration but was unaffected by nico-

tine (Figure 5b).

Alcohol self-administration decreased μ receptor binding in the

AcbC, while nicotine did not affect it (Figure 5c).

However, DAMGO-stimulated μ receptor signalling in the AcbC

was not influenced neither by alcohol self-administration nor nicotine

(Figure 5d). In the CPu, alcohol self-administration or nicotine pre-

treatment did not affect μ receptor binding or DAMGO-stimulated μ

receptor signalling (Figure 5e,f).

Results of κ receptor binding and U50,488H-stimulated κ recep-

tor GTPγS in the VTA and AcbS are provided in Figure S6.

3.6 | Effects of chronic nicotine on alcohol-induced
phosphorylation of DARPP-32 in the AcbS

Analysis of DARPP-32 phosphorylation requires rapid tissue

processing to avoid dephosphorylations, which put practical limita-

tions on the size of DARPP-32 phosphorylation experiments. We

therefore first carried out preliminary experiments (n = 5 per group),

in which we assessed the ability of our alcohol challenge dose alone

(alcohol 20% [v/v], 0.5 g kg−1) to induce DARPP-32 compared to a

saline challenge control (Figure S7). The dose 0.5 g kg−1 was chosen

in order to match the amount of alcohol (g kg−1) self-administered

during the 30-min session in the non-escalated rats calculated based

on the number of alcohol reinforces earned and their body weight. In

F IGURE 4 μ receptor binding and DAMGO-stimulated μ receptor signalling in VTA. Schematic illustration of the VTA region analysed
(bregma −5.4 mm) and representative image of μ receptor binding and DAMGO-stimulated μ receptor signalling. (A) [3H]-DAMGO binding
(fmol mg−1) (±SEM); (B) DAMGO-stimulated μ receptor GPC (% stimulation) (±SEM). *P < 0.05 significant difference between nicotine and saline.
#P < 0.05 significant difference between alcohol and saccharin self-administration
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a separate cohort of rats (n = 9 per group), we compared pDARPP-32

following alcohol challenge between nicotine-escalated and non-

escalated rats. In AcbS, nicotine-escalated rats showed a decreased

pDARPP-32 response to alcohol (Figure 6a), and there was no effect

of escalation in AcbC (Figure 6b).

Total DARPP-32 was not affected by the escalation neither in

AcbS nor in AcbC (Figure S8a,b).

4 | DISCUSSION

We report that chronic non-contingent nicotine administration

elicited a robust escalation of alcohol self-administration and

increased the motivation to obtain alcohol in male rats. This effect

was behaviourally specific for alcohol. Nicotine did not affect locomo-

tion or saccharin reinforcement, essentially excluding the possibility

F IGURE 5 μ receptor binding and DAMGO-stimulated μ receptor signalling in Acb and CPu. Schematics of striatal regions analysed (bregma
+1.8 mm) with a representative image of μ receptor binding and DAMGO-stimulated μ receptor signalling. (a) [3H]-DAMGO-binding sites
(fmol mg−1) (±SEM) in AcbS. (b) DAMGO-stimulated μ receptor GPC (% stimulation) (±SEM) in the AcbS. (c) [3H]-DAMGO-binding sites

(fmol mg−1) (±SEM) in AcbC. (d) DAMGO-stimulated μ receptor GPC (% stimulation) (±SEM) in AcbC. (e and f) [3H]-DAMGO-binding sites
(fmol mg−1) (±SEM) and DAMGO-stimulated μ receptor GPC (% stimulation) (±SEM) binding in the CPu. *P < 0.05 significantly different from
saline control rats. #P < 0.05 significant difference between alcohol and saccharin self-administration
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that non-specific hyperactivity or globally altered hedonic behaviour

account for the observations. Escalation of alcohol self-administration

was reduced by blockade of μ but not κ receptors. The combination of

nicotine and alcohol was accompanied by μ receptor desensitization

in the VTA and a blunted dopamine-dependent response to alcohol in

AcbS. This suggests that nicotine may attenuate the reinforcing value

of alcohol and promote escalation of alcohol self-administration in

order to restore its reinforcing value.

We found increased alcohol self-administration induced by nico-

tine, similar to what has been reported previously in preclinical (Le,

Funk, Lo, & Coen, 2014) and clinical research (Barrett et al., 2006).

Consistent with previous studies, increased alcohol self-administration

emerged after approximately 1 week of nicotine treatment (Le et al.,

2003). Developing tolerance to the chronic effects of nicotine can

lead to an escalation of alcohol self-administration (Perkins, 2002).

However, repeated nicotine administration did not result in reduced

locomotor activity during escalated drinking, showing a possible

cross-sensitization, rather than a cross-tolerance between the drugs.

The latency to initiate alcohol lever pressing was significantly reduced

by nicotine, potentially corresponding to an increased urge to drink

observed in people with alcohol use disorder who are also smokers

(Verplaetse & McKee, 2017).

Neuroadaptations within the opioid system that are induced by

chronic alcohol or nicotine, together with effects of opioid agonists

and antagonists on the rewarding properties of both drugs, have pre-

viously identified the opioid system as a potential treatment target in

alcohol and nicotine addiction (Drews & Zimmer, 2010). Antagonism

of μ and κ receptors has shown efficacy in reducing alcohol intake in

rodents (Walker & Koob, 2008). For μ antagonism, this is also the case

in people with alcohol use disorder (Jonas et al., 2014). The μ

receptor-preferring antagonist naltrexone is approved for clinical

treatment of alcohol addiction, while κ blockade prevents escalated

drinking induced by prolonged alcohol exposure or stress, without

affecting basal alcohol consumption (Walker & Koob, 2008).

Similarly, we recently reported that the selective κ antagonist,

CERC-501, reduced escalated alcohol self-administration induced by

intermittent access to alcohol 20%, while showing less of an effect on

non-escalated drinking (Domi et al., 2018). In contrast, our present

study did not find a preferential activity of CERC-501 on escalated

alcohol self-administration when escalation resulted from nicotine

treatment. Of importance, a recent study in a human laboratory model

of smoking behaviour did not support a role for CERC-501 in the

treatment of nicotine use disorder (Jones et al., 2019). Consistent with

our previous data, CERC-501 did not alter basal levels of drinking.

Moreover, a recent study reported that the irreversible κ antagonist,

nor-BNI, further increased drinking in a model of concurrent

i.v. alcohol and nicotine self-administration (Larraga, Belluzzi, & Leslie,

2017). These findings prompt caution when considering κ antagonists

F IGURE 6 The effect of chronic nicotine on alcohol-induced pDARPP-32 in AcbS. Representative tile scan (20× magnification; scale bar:
500 μm) of Acb. (a and b) pDARPP-32/DAPI expression (±SEM) in AcbS and AcbC after either saline or nicotine pretreatment (n = 8 per group).
Representative images (A, B, C, and D) of pDARPP-32 expression (red) and DAPI (blue) in AcbC and AcbS of alcohol-exposed rats pretreated with

saline or nicotine (20× magnification; scale bar: 100 μm). *P < 0.05 significantly different from saline control rats
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as a treatment option for people with alcohol use disorder who

smoke, who represent approximately 80% of the population afflicted

with alcohol use disorders (John et al., 2003).

In contrast to CERC-501, the μ receptor-preferring antagonist

naltrexone dose-dependently reduced baseline alcohol self-

administration as well as nicotine-induced escalation of alcohol self-

administration. Multiple lines of evidence support a role of μ receptors

in the reinforcing properties of alcohol and nicotine (for review, see

Berrendero, Robledo, Trigo, Martin-Garcia, & Maldonado, 2010;

Hansson et al., 2018; Nutt, 2014). μ antagonists or genetic deletion of

the receptor has been shown to abolish nicotine-induced conditioned

place preference (Walters, Cleck, Kuo, & Blendy, 2005). For naltrex-

one, approved for treatment of alcohol use disorder, mixed results

have been reported with regard to nicotine use disorder, both in pre-

clinical and clinical research (David, Lancaster, Stead, & Evins, 2006;

King & Meyer, 2000). However, naltrexone may preferentially

improve smoking quit rates in heavy drinkers and is more effective in

treating alcohol use disorder in nicotine users (King, Cao, Vanier, &

Wilcox, 2009). Recent clinical findings provided evidence for a greater

naltrexone efficacy in reducing heavy drinking in nicotine users

(Anton et al., 2018). Accordingly, our results support the notion that

people with alcohol use disorder who are also nicotine users would be

particularly likely to benefit from naltrexone treatment. Notably, alco-

hol and nicotine interactions may cause sexually dimorphic effects on

the endogenous opioid system that could result in differential effects

of naltrexone in male and female subjects; therefore, findings from

this study might not apply to females.

Several studies have investigated the effects of chronic nicotine

on the densities, affinities, and functional activities of μ and κ recep-

tors (Berrendero et al., 2010). For instance, it has been shown that

14 days of nicotine treatment induces an upregulation of μ receptors

in the striatum of female rats (Wewers, Dhatt, Snively, & Tejwani,

1999). Moreover, an uncoupling and desensitization of κ receptors in

the striatum and Acb has been observed during nicotine withdrawal

without showing altered densities of the receptors (McCarthy, Zhang,

Neff, & Hadjiconstantinou, 2011). However, no data have, to our

knowledge, been available on possible adaptations of μ and κ receptor

binding and signalling during concomitant use of alcohol and nicotine.

In the present study, the main changes in alcohol-escalated rats

occurred within the mesolimbic system, where the drug combination

affected the binding and signalling of both μ and κ receptors. Opioid

receptors are present in areas of the brain involved in reward

processing, such as VTA, Acb, PFC and extended AMG (Mansour, Fox,

Burke, Akil, & Watson, 1995). These brain areas have also shown

increased activity in a model of transition to compulsive alcohol drink-

ing mediated by chronic nicotine exposure (Leao et al., 2015). Our

data suggest that following chronic nicotine treatment during alcohol

self-administration, μ receptors in the VTA may undergo desensitiza-

tion through decreased G-protein coupling. Chronic nicotine and alco-

hol both reduced DAMGO-stimulated μ receptor [35S]-GTPγS binding

and this reduction was additive. Our observation that decreased sig-

nalling was accompanied by increased μ receptor binding sites sug-

gests that receptor binding sites may be up-regulated to compensate

for the possible desensitization but that this compensation is only par-

tial, as the net effect is nevertheless down-regulated signalling. A pos-

sible desensitization or constitutive signalling of the receptor may

occur through uncoupling of μ receptors from G proteins. Chronic nic-

otine may also cause a down-regulation of the G-protein-coupled

receptor kinase 2 and thereby significantly impede the ability of

DAMGO to promote μ receptor endocytosis (He & Whistler, 2011).

The lack of correlation between changes in the signalling and density

of μ receptors supports the generally accepted notion that in different

brain areas, the kinetics of desensitization might not overlap with

binding, and this might be due to receptor uncoupling (Luttrell &

Lefkowitz, 2002).

We found that alcohol alone, but not nicotine, increased μ recep-

tor coupling and decreased binding specifically in AcbS; there were no

receptor changes in the core. Contrary to μ, κ receptor coupling in the

shell was reduced by alcohol alone. Furthermore, alcohol alone

increased U50,488H-stimulated κ receptor G-protein coupling in the

AcbC, which was attenuated by chronic nicotine. It is, however, in our

view unlikely that this adaptation is involved in escalation of alcohol

self-administration, since the κ antagonist CERC-501 did not affect

nicotine-induced escalation of drinking. There were no changes in nei-

ther κ receptor binding nor signalling within the VTA and there were

no changes of and κ receptors in the CPu.

The neuroadaptations of μ and κ receptor systems in alcohol

dependence remain debated. An influential PET study using the selec-

tive μ receptor ligand [11C]-carfentanil reported stable elevations of μ

receptors in the striatum of people with alcohol use disorder following

initiation of abstinence and these elevations correlated with self-

reports of alcohol craving (Heinz et al., 2005). It has since been argued

that measures of [11C]-carfentanil binding to assess receptor densities

in PET studies may in part also be influenced by changes in endoge-

nous opioid release. In contrast to the PET data, decreased rather than

increased μ receptor binding was found in striatal post-mortem brain

tissue in both the ventral striatum and caudate of alcohol-dependent

patients, while κ receptors were not affected by disease state in that

analysis (Hermann et al., 2017).

Binding capacity remains an important metric, but the functional

consequences of neuroadaptations encompassing opioid receptors

are ultimately determined by the magnitude of intracellular signals

transduced in response to ligand-mediated receptor activation. In the

present study, we used [35S]-GTPγS binding, a classical measure of G-

protein coupling and signalling (Harrison & Traynor, 2003). A limita-

tion of our analysis is that it was only carried out under saturated con-

ditions, thus precluding us from detecting any potential effects that

might result from changes in ligand binding affinity. At these saturated

conditions, however, we found that a profound down-regulation of

DAMGO-stimulated μ receptor [35S]-GTPγS binding was induced by

alcohol and nicotine in the VTA of escalated rats. This suggests that

maximal μ receptor responses to both nicotine and alcohol could be

desensitized in the VTA, potentially contributing to a tolerance for the

rewarding potential of both drugs. This decreased signalling can in

turn be hypothesized to promote alcohol use as an attempt to main-

tain hedonic state. Interestingly, a recent PET study shows a blunted
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dexamphetamine-induced opioid release in the putamen of alcohol-

dependent subjects, suggesting that an “opioid deficit” may contribute

to vulnerability to develop alcohol use disorder (Turton et al., 2018).

Moreover, an elevated μ receptor availability in the VTA could support

the efficacy of naltrexone treatment.

Both alcohol and nicotine influence the activity of dopamine VTA

neurons (Nestler, 2005). Studies in rodents have shown that nicotine-

induced dopamine release in the Acb is modulated by the activation

of μ receptors in the VTA (Tanda & Di Chiara, 1998), where μ recep-

tors are largely expressed in presynaptic GABA neurons. μ receptor

activation here leads to an inhibition of the GABA interneurons, ulti-

mately resulting in a disinhibition of the dopamine containing cells

(Johnson & North, 1992), a classical mechanism through which opioids

modulate mesolimbic dopamine transmission and reward. We there-

fore predicted that a reduction of μ receptor signalling in the VTA

would reduce opioid inhibition of GABAergic neurons in this struc-

ture, ultimately increasing their inhibitory tone onto the dopamine

neurons and resulting in decreased dopamine release in the Acb. To

examine this hypothesis, we exposed rats to the combination of nico-

tine and alcohol, challenged them with a standard dose of alcohol, and

assessed DARPP-32 phosphorylation, a D1-dependent intracellular

signalling response to dopamine (Svenningsson, Nairn, & Greengard,

2005). In the AcbS, this biomarker of dopamine activity was attenu-

ated by prior exposure to nicotine and alcohol, indicating a down-

regulated dopamine response to alcohol.

Increased dopamine transmission has been suggested to increase

the incentive salience of drug-associated stimuli and results in an

increased risk of developing addiction. The role of dopamine transmis-

sion seems, however, to change over time as addiction develops. For

instance, alcohol increases dopamine release in the Acb of healthy

subjects, presumably promoting its reinforcing properties and initia-

tion of an addictive process (Volkow, Fowler, Wang, & Swanson,

2004). In contrast, once an alcohol use disorder develops, there is a

blunted DA release (Diana, 2011). Although nicotine alone has been

shown to acutely increase DA release in AcbS, its chronic administra-

tion attenuates dopamine release both in the core and shell subre-

gions (Nisell, Marcus, Nomikos, & Svensson, 1997). A blunted

dopamine transmission has been associated with increased suscepti-

bility to drug and alcohol abuse (Martinez et al., 2005). Data in agree-

ment with this notion and with our present results have been

provided by Doyon et al. (2013). Using a similar escalation model, they

found that nicotine pretreatment decreased alcohol-induced dopa-

mine transmission (Doyon et al., 2013).

In the present study, we show that nicotine-induced changes in

AcbS dopamine responses to alcohol might depend on the functional

state of the endogenous opioid system within the mesolimbic path-

way. Future dynamic measurements of dopamine in the Acb at base-

line and stimulated conditions might provide better insights for

understanding the dopamine changes in nicotine-induced escalation

of alcohol drinking. Of clinical relevance, targeting μ receptors, rather

than κ receptors, may be the preferred pharmacotherapeutic approach

for the treatment of alcohol use disorder patients who are also

smokers.
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