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CONNECTING AND CLOSED GEODESICS

OF A KROPINA METRIC

ERASMO CAPONIO, FABIO GIANNONI, ANTONIO MASIELLO, AND STEFAN SUHR

Abstract. We prove some results about existence of connecting and closed
geodesics in a manifold endowed with a Kropina metric. These have applica-
tions to both null geodesics of spacetimes endowed with a null Killing vector
field and Zermelo’s navigation problem with critical wind.

1. Introduction

Kropina metrics are homogeneous Lagrangians defined as the ratio of a Rie-
mannian metric and a one-form, see [20]. Let S be a connected smooth manifold
of dimension at least 2, and let g0, ω be, respectively, a Riemannian metric and a
one-form on S. Let us assume that ω does not vanish at any point on S and, for
each x ∈ S, let Nx be the kernel of ωx in TxS. The Kropina metric on S associated

to g0 and ω is the Lagrangian K : TS \ N → R \ {0}, defined as K(v) := g0(v,v)
ω(v) ,

where N := ∪x∈SNx.
For our purposes, it will be convenient to define K on A = {v ∈ TS : −ω(v) > 0}

as

K(v) = −g0(v, v)

2ω(v)
(1)

in such a way that K is a positive function on A. On this domain K is a conic
Finsler metric according to [16, Definition 3.1 (iii)], i.e. at each point x ∈ S, Kx

is a Minkowski norm on Ax, in particular for all x ∈ S and for each v ∈ Ax its
fundamental tensor

gv(u,w) :=
∂2

∂t∂s

1

2
K2(v + tu+ sw)|t=s=0,

u, w ∈ TxS, is positive definite [16, Corollary 4.12]. We shall often call the couple
(S,K) a Kropina space.

Notice that for all x ∈ S, 0 6∈ Ax though it is an accumulation point of the
indicatrix Ix of K at x, i.e. the set of vectors {v ∈ Ax : K(v) = 1}. Thus, K is not
extendible by continuity at 0. We point out that {0} ∪ Ix is a compact strongly
convex hypersurface in TxS (it is an ellipsoid, see [8, Proposition 2.57]).
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The interest in the study of Kropina metrics (1) comes from some geometric and
physical models.
A first example where a Kropina space (S,K) appears is in general relativity. Let
(S,K) be a Kropina space, let us consider the product manifold S × R and let
us denote by t the natural coordinate on R and by π : S × R → S the canonical
projection. Let g be the bilinear tensor field on S × R defined by

g = π∗g0 + π∗ω ⊗ dt+ dt⊗ π∗ω. (2)

Since ω doesn’t vanish on S, we have that g is a Lorentzian metric, t is a temporal
function and −∇t is timelike (see [8, Proposition 3.3]). Hence, (S × R, g) is time-
oriented by −∇t; moreover ∂t is a lightlike Killing vector field. Observe now that
a vector (v, τ) ∈ TxS × R is future pointing and lightlike if and only if v ∈ Ax and
τ = K(v), K in (1). Analogously, (v, τ) ∈ TxS × R is past pointing and lightlike if
and only if v ∈ −Ax and τ = −K(−v).

Thus, the future (resp. past) lightlike cones of the conformal class of (S × R, g)
are described by the flow lines of ∂t and the graph of the function K on A (resp.
−A).

This correspondence has been introduced in [8] extending that one between stan-
dard stationary Lorentzian metrics and Finsler metrics of Randers type ([6, 7]).
Actually in [8], the class of spacetimes S × R considered is larger and the Killing
vector field ∂t can also be spacelike in some points (but in this case, the associated
Finsler geometry is not simply of Kropina or Randers type, see [8] for details).

A second model in which Kropina spaces appear is related to the Zermelo’s
navigation problem which consists in finding the paths between two points x0 and
x1 that minimize the travel time of a ship or an airship moving in a wind in a
Riemannian landscape (S, g0) (see [33, 9, 29, 32]). If the wind is time-independent
then it can be represented by a vector field W on S. When g0(W,W ) = 1, called
critical wind in [8], the solutions of the problem (if they exist) are the pregeodesics

of the Kropina metric K(v) := − g0(v,v)
2g0(W,v) associated to the Zermelo’s navigation

data g0 and W which are minimizer of the length functional associated to K see [8,
Corollary 6.18 -(i)]. This result and more general ones contained in [8] are strictly
connected to the causality properties of the spacetime S×R which is also associated
to Zermelo navigation data ([8, Theorem 6.15]).

Recently, Kropina metrics have also been considered in relation to the so-called
chains in a CR manifold M [10]. Indeed, these can be viewed as curves which are
non-constant projections of null geodesics for an indefinite metric on a circle bundle
over M whose action has infinitesimal generator which is a null Killing vector field.
This interpretation leads to a very interesting relation of Kropina spaces with CR
geometries and Lorentz geometry, see also [11, 18].

In [4, Question 2.5.1], the authors asked if a Kropina metric on a compact man-
ifold admits a closed geodesic (this problem was posed in [8, Remark 6.29] as well).
In the present work, we give some results in that direction plus results concerning
the existence of multiple geodesics between two points.

The paper is organized as follows. In Section 2, we introduce some notations,
and we give some preliminary results; in particular we recall Theorem 2.3 from
[8] where a connection between geodesics of a Kropina space (S,K) and lightlike
geodesics of the spacetime (S × R, g), g in (2) is established.
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In Section 3, we introduce an approximation framework of the spacetime (S ×
R, g), by a family of spacetimes (S × R, gε), ε > 0, where ∂t is a timelike Killing
field (recall that ∂t is a null Killing field for the spacetime (S × R, g)). These type
of spacetimes are called in the literature standard stationary and variational meth-
ods for their geodesics and their causal properties are nowdays well-developed (cf.
[13, 12, 22, 14, 2, 5, 23, 6, 7]). In particular, Theorem 3.1 (obtained in [6]) is the
precursor of Theorem 2.3 and together with Lemma 3.2, it plays a fundamental role
in proving existence of geodesics of the Kropina space associated to the limit space-
time. We emphasize that the same approximation has been profitably employed
in [3] to study geodesic connectedness of a globally hyperbolic spacetime endowed
with a null Killing vector field.

In Section 4, we obtain some results about the existence of geodesics between two
given points of a Kropina space (see Proposition 4.1, Corollary 4.3, Theorem 4.4 and
Corollary 4.5). In particular, Corollary 4.5 implies that the Zermelo’s navigation
problem associated to the data (S, g0) and W , g0(W,W ) = 1, has always a solution
in each connected component of the space of curves between two points x0, x1 ∈ S
(see Corollary 4.6).

Section 5 is devoted to the closed geodesic problem. Existence results are given
in Theorem 5.1, Corollary 5.2, Theorem 5.3. In Examples 5.4 and 5.5, we apply
Theorem 5.3 to prove the existence of a closed geodesic in some particular type of
compact Kropina space (in particular, Example 5.4 for an odd-dimensional sphere
can be considered as the Kropina limit of a family of Finsler metrics of the type
in Katok’s example (see [34]). A couple of results for a compact manifold endowed
with a periodic Killing vector field Y and a one-form invariant by the flow of Y
are further given in Theorems 5.6 and 5.8. We notice that the latter holds for
any compact Lie group endowed with a bi-invariant Riemannian metric and a left-
invariant one-form (Corollary 5.9).

Finally, we point out that a fundamental and natural assumption for the ex-
istence of connecting or closed geodesics in a Kropina manifold is that the space
of paths considered, according to the boundary conditions that the geodesics have
to satisfy, must contain at least one admissible path, i.e. a curve γ such that
ω(γ̇(s)) < 0 everywhere (under the point of view of the Zermelo’s navigation prob-
lem, we can say that there must be a “navigable region”). The problem of the
existence of such an admissible path is related to the existence of horizontal paths
for the distribution of hyperplanes pointwise representing the kernel of ω and, in-
deed, a non integrability condition for it ensures that there do exist admissible paths
(see Corollaries 4.5 and 5.2). Nevertheless, when there exist points in S which are
not reachable from a given point by an admissible path, we show in the Appendix
that the boundary of the set of reachable points is a smooth hypersurface in S.

2. Some notations and known results

The set of continuous and piecewise smooth, admissible curves from x0 to x1

will be denoted by Ωx0x1
(A), i.e.

Ωx0x1
(A) := {γ : [0, 1] → S : γ(0) = x0, γ(1) = x1,

γ̇−(s), γ̇+(s) ∈ A, ∀s ∈ [0, 1]}
(here γ̇−(s) and γ̇+(s) denote respectively the left and the right derivative of γ at
the point s). A geodesic of (S,K) connecting a point x0 ∈ S to x1 ∈ S is a critical
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point of the energy functional

E(γ) =
1

2

∫ 1

0

K2(γ̇)ds, (3)

defined on Ωx0x1
(A). Notice that, as A is an open subset of TS, variational vector

fields along a curve γ ∈ Ωx0x1
(A) are well-defined and then it makes sense to

define geodesics as critical points of E. Moreover since the fundamental tensor of
K is positive definite on A, it can be proved that the Legendre transform of K is
injective (see [8, Proposition 2.51]) and then a critical point γ of E is smooth and
parametrized with K(γ̇) = const. (see also [8, Lemma 2.52]).

Analogously, a closed geodesic is a critical point of E defined on the set

Ω(A) = {γ : [0, 1] → S : γ(0) = γ(1), γ̇−(s), γ̇+(s) ∈ A, ∀s ∈ [0, 1]},
Remark 2.1. We observe that, also in the simplest cases, a Kropina space can be
not geodesically connected. This essentially may happen because the set Ωx0x1

(A)
is empty. For example, consider a constant one-form ω on Rn endowed with the

Euclidean metric 〈·, ·〉. It can be easily seen that the geodesic of
(

Rn, 〈·,·〉
ω(·)

)

are the

straight lines which don’t lie on the hyperplanes parallel to the kernel of ω. Hence,
there is no geodesic (and no admissible curve) connecting two points belonging to
one of such hyperplanes.

Remark 2.2. Notice also that since K(−v) = −K(v), if γ : [0, 1] → S is a geodesic
of (S,K) (hence, according to the above definition, γ̇([0, 1]) ⊂ A) the reverse curve
γ̃(s) = γ(1− s) is a geodesic of (S,−K) with −K viewed as a conic Finsler metric
on −A.

Geodesics of a Kropina space (S,K) are related to lightlike geodesics of the
product spacetime (S × R, g), g as in (2). We recall that, since the coefficients of
the metric g do not depend on the variable t, the vector field ∂t ≡ (0, 1) is a Killing
vector field for (S×R, g), hence if z = z(s) = (γ(s), t(s)) is a geodesic of (S×R, g)
then g(∂t, ż) = ω(ẋ) must be constant. Then the following theorem can be proved

Theorem 2.3 ([8], Corollary 5.6 (i)). Let γ be a piecewise smooth admissible curve
in (S,K). Then γ is a pregeodesic of the Kropina space (S,K) such that ω(γ̇) =
const < 0 if and only if the curve z defined by z(s) =

(

γ(s), t(s) = t0+
∫ s

0 K(γ̇)dr
)

,
t0 ∈ R, is a future pointing lightlike geodesic of (S × R, g) with non-constant com-
ponent γ.

Observe that for a given t0 ∈ R, z : [a, b] → S × R connects the points (γ(a), t0)
and (γ(b), t0 + L(γ)), where L(γ) is the Kropina length of γ, i.e.

L(γ) :=

∫ b

a

K(γ̇)ds. (4)

In particular, by [8, Theorem 5.5 (i)], if γ : [0, T ] → S is a non-trivial unit (i.e.
K(γ̇) = const. = 1) closed geodesic of (S,K) then z(t) = (γ(t), t) is a future
pointing lightlike pregeodesic such that its component γ is periodic with period
T = L(γ), z(0) = (γ(0), 0) and z(T ) = (γ(0), T ).

Remark 2.4. When considering lightlike geodesics connecting a point (x0, t0) to a
flow line of ∂t passing through a point different from (x0, t0), Theorem 2.3 can be
interpreted as a version, for spacetimes of the type (S × R, g), g as in (2), of the
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Fermat’s principle in general relativity, stating that lightlike geodesics connecting a
point to a timelike curve τ are the critical points of the arrival time at the curve τ
(see [19, 25]). Indeed, in the class of spacetimes we are considering, the arrival time
of a future pointing lightlike curve z(s) =

(

γ(s), t(s)
)

connecting a point (x0, t0)
to an integral curve of the field ∂t is T (γ) = t0 + L(γ). We point out that here τ ,
which is an integral line of ∂t, is not timelike but lightlike.

3. The approximation scheme with standard stationary spacetimes

In this section we fix a Kropina space (S,K) with a Riemannian metric g0 and
a never vanishing one-form ω on the manifold S. For ε > 0, let us consider the
standard stationary spacetime (S × R, gε), where

gε = π∗g0 + π∗ω ⊗ dt+ dt⊗ π∗ω − εdt2. (5)

Notice that for each ε > 0, ∂t is a timelike Killing vector field for gε. Let (x0, t0) ∈
S×R and τ(t) = (x1, t) be the integral line of ∂t passing through the point (x1, 0).
Let ∇ be the Levi-Civita connection of the Riemannian metric g0. Let us denote
by d0 the distance induced on S by g0. Moreover, let ‖ · ‖x be the norm on the
space of linear operators on TxS endowed with the norm associated to the scalar
product (g0)x, x ∈ S.

The geodesic equations for (S × R, gε) are the following
{

ω(ẋε)− εṫε = cε

∇ẋε
ẋε = ṫεΩ

♯(ẋε)− ω♯ẗε
(6)

while those of (S × R, g) are

{

ω(ẋ) = c0

∇ẋẋ = ṫΩ♯(ẋ)− ω♯ẗ
(7)

where cε, c0 ∈ R and ω♯ and Ω♯ are the vector field and the (1, 1)-tensor field
g0-metrically equivalent respectively to ω and Ω = dω.

The geodesic equations (6) for the standard stationary spacetime gǫ and (7) for
the metric g can be obtained as the Euler-Lagrange equations of the respective
energy functionals

Iǫ(x, t) =
1

2

∫ 1

0

gǫ(ż, ż)ds =
1

2

∫ 1

0

[

g0(ẋ, ẋ) + 2ω(ẋ)ṫ− ǫṫ2
]

ds,

I0(x, t) =
1

2

∫ 1

0

g(ż, ż)ds =
1

2

∫ 1

0

[

g0(ẋ, ẋ) + 2ω(ẋ)ṫ
]

ds. (8)

We point out that the constants cǫ and c0 respectively in (6) and (7) derive from
the fact that ∂t is a Killing vector field both for gǫ and g, and so it gives rise to the
conservation laws gǫ(żǫ, ∂t) = cǫ and g(ż, ∂t) = c0, where zǫ = (xǫ, tǫ) and z = (x, t)
are geodesics respectively for the metric gǫ and g.

Let us recall now the following:

Theorem 3.1 (Fermat principle in standard stationary spacetimes [6]). A curve
zε : [0, 1] → S × R, zε(s) = (xε(s), tε(s)) is a future pointing lightlike geodesic of
(S × R, gε) if and only if xε is a pregeodesic of the Randers metric on S

Fε(v) :=
1

ε

(

√

εg0(v, v) + ω2(v) + ω(v)
)

,
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parametrized with εg0(ẋε, ẋε) + ω2(ẋε) = const. and

tε(s) = t0 +

∫ s

0

Fε(ẋε(r))dr. (9)

From Theorem 3.1, for a future pointing lightlike geodesic of (S×R, gε), we have

tε(1) = t0 + Lε(xε), (10)

where Lε(xε) is the length of xε w.r.t. the Randers metric Fε,

Lε(xε) =
1

ε

∫ 1

0

(

√

εg0(ẋε, ẋε) + ω2(ẋε) + ω(ẋε)
)

dr. (11)

In the next lemma we give a condition ensuring that a family of future pointing
lightlike geodesics (xε, tε) converges uniformly to a future pointing lightlike geodesic
of (S × R, g). Let H1([0, 1],R) be the Sobolev space of absolute continuous func-
tions on [0, 1] with derivative in L2. Moreover let H1

0 ([0, 1],R) be the subspace of
H1([0, 1],R) consisting of functions τ(s) such that τ(0) = τ(1) = 0. Henceforth, we
denote by P(S) both the Sobolev manifolds Λ(S) of H1 free loops on S or Λpq(S)
of H1 paths between two points p and q (possibly equal) in S.

Lemma 3.2. Assume that the Riemannian manifold (S, g0) is complete and there
exists a point x̄ and a positive constant Cx̄ such that ‖ω‖x ≤ Cx̄(d0(x, x̄) + 1). For
each ε ∈ (0, 1), let zε = (xε, tε) : [0, 1] → S×R be a future pointing lightlike geodesic
of (S×R, gε). Let ∆ε := tε(1)−tε(0) and let us assume that ∆ := supε∈(0,1) ∆ε ∈ R.

Then there exists a sequence εn → 0 such that (xεn , tεn) uniformly converges to a
curve z = (x, t) ∈ P(S)×H1([0, 1],R) which is a future pointing lightlike geodesic
of (S × R, g).

Proof. By [22, Theorem 3.3.2 and Eqs. (3.5) and (3.17)], for each ε > 0, xε is a
critical point of the following functional Jε defined on P(S),

Jε(x) =
1

2

∫ 1

0

g0(ẋ, ẋ)ds+
1

2ε

∫ 1

0

ω2(ẋ)ds− ε

2

(

∆ε −
1

ε

∫ 1

0

ω(ẋ)ds

)2

and Jε(xε) = 0, for all ε > 0. Then
∫ 1

0

g0(ẋε, ẋε)ds ≤ ε∆2
ε + 2∆ε

∫ 1

0

|ω(ẋε)|ds ≤ ∆2 + 2∆

∫ 1

0

|ω(ẋε)|ds

and, as in [2, Lemma 2.6], we obtain that the family of curves (xε)ε∈(0,1) is bounded
in P(S). Moreover, from the second equation in (6), using the fact that ∆ǫ is
bounded, as in Lemma 6.2 in [3] we get that the family (ṫε)ε∈(0,1) is also bounded

in L2([0, 1],R).
Now, for each ε, zε is a critical point of the energy functional Iε of the Lorentzian

metric gε, i.e.
∫ 1

0

(

g0(ẋε,∇ẋε
ξε) + ṫεg0(∇ξεω

♯, ẋε) + ṫεg0(ω
♯,∇ẋε

ξε)
)

ds

+

∫ 1

0

ω(ẋε)τ̇ds− ε

∫ 1

0

ṫετ̇ds = 0 (12)

for any variational vector field ξε, i.e. ξε ∈ Txε
P(S), and for any H1

0 ([0, 1],R)

function τ . As (ṫε)ε∈(0,1) is bounded in L2([0, 1],R), we get ε
∫ 1

0
ṫετ̇ → 0 as ε → 0.

Then, as in [22, Lemma 3.4.1], there exists a sequence εn → 0 such that (xεn)
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strongly converges to x ∈ P(S) as n → ∞. Taking in (12) ξεn = 0, for each εn, we

get
∫ 1

0ω(ẋεn)τ̇−εn
∫ 1

0 ṫεn τ̇ds = 0 and then passing to the limit on n,
∫ 1

0ω(ẋ)τ̇ds = 0.

Therefore, ω(ẋ) is constant. Now let t be the weak limit in H1([0, 1],R) of a
sequence tεn , εn ∈ (0, 1), εn → 0 as n → +∞. Then, since xεn strongly converges
to x, the curve z(s) = (x(s), t(s)) satisfies

∫ 1

0

(

g0(ẋ,∇ẋξ) + ṫg0(∇ξω
♯, ẋ) + ṫg0(ω

♯,∇ẋξ)
)

ds = 0, (13)

for any ξ ∈ TxP(S). Therefore, z is a critical point of the energy functional I0 in
in (8) of the Lorentzian metric g defined on P(S)×

(

{t}+H1
0 ([0, 1],R)

)

.

By considering any H1 variational vector field along z with compact support in
a neighbourhood J contained in (0, 1) of any instant s0 ∈ (0, 1), and decomposing it
in its components in x∗

|J(TS) and H1(J,R), this property of z remains true locally.

Therefore, as the Lagrangian (p, v) ∈ T (S × R) 7→ gp(v, v) is regular, it can be
proved that z is smooth (see, e.g. [1, p. 609-610]) and, therefore, it is a geodesic of
(S×R, g). (Notice also that if P(S) = Λ(S), as x satisfies (13) it must be a smooth
1-periodic curve).

Since Iεn(zεn) → I0(z), as n → ∞, and Iε(zε) = 0, we have that z is lightlike.
Finally, z is future pointing if, by definition, ṫ(s) > 0 for all s ∈ [0, 1]. Notice that
ṫ(s) cannot vanish at some s ∈ [0, 1] because z is lightlike. Hence, ṫ cannot be
negative otherwise 0 > t(1)− t(0) = limn→∞

(

tεn(1)− tεn(0)
)

≥ 0. �

Remark 3.3. Notice that if P(S) = Λ(S) and the limit curve z(s) = (x(s), t(s)) has
component x which is not constant then −ω(ẋ) > 0, i.e. x is admissible. This comes
from the fact that, being zεn future pointing in (S × R, gεn), 0 > gεn(żεn , ∂t) =

ω(ẋεn) − εnṫεn =
∫ 1

0

(

ω(ẋεn) − εnṫεn)ds →
∫ 1

0 ω(ẋ)ds = ω(ẋ), as n → ∞, and the
constant ω(ẋ) cannot be 0 otherwise, as z is lightlike in (S × R, g), we would have
g0(ẋ, ẋ) = const. = 0.

4. The existence of geodesics connecting two points

We refer to [24] for standard notations and notions about causality as, e.g., the
subsets I+((x0, t0)) and J+((x0, t0)) which represent the set of points in a spacetime
(S × R, h) which can be connected to (x0, t0) by a future-pointing timelike or,
respectively, causal curve.

Proposition 4.1. Let
(

S,− g0(·,·)
2ω(·)

)

be a Kropina space and x0, x1 be two points

on S such that x0 6= x1 and Ωx0x1
(A) 6= ∅. Assume that the Riemannian manifold

(S, g0) is complete and there exists a point x̄ and a positive constant Cx̄ such that
‖ω‖x ≤ Cx̄(d0(x, x̄) + 1). Then there exists a geodesic γ of the Kropina space
connecting x0 to x1 and which is a global minimizer of the Kropina length functional
on Ωx0x1

(A).

Proof. Since g0 is complete and ‖ω‖x ≤ Cx̄(d0(x0, x) + 1), from [28, Proposition
3.1 and Corollary 3.4] the spacetimes (S × R, gε) are globally hyperbolic, for each
ε > 0, with Cauchy hypersurfaces S × {t}, t ∈ R. As for any vector w ∈ TS × R,
g(w,w) ≤ 0 implies gε(w,w) < 0, also (S×R, g) is globally hyperbolic with Cauchy
hypersurfaces S × {t}, t ∈ R.

Let Υ = {t ∈ (0,+∞) : (x1, t0 + t) ∈ J+((x0, t0))}. Now let γ0 ∈ Ωx0x1
(A)

and consider the curve z(s) = (γ0(s), t(s)), with t(s) = t0 +
∫ s

0 K(γ̇0)dr, which
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is lightlike and future pointing in (S × R, g). Then L(γ0) ∈ Υ, i.e Υ 6= ∅. Let
T = inf Υ. The point (x1, t0 + T ) clearly belongs to J+((x0, t0)) \ I+((x0, t0))
hence there exists a future pointing lightlike geodesic z(x) = (γ(s), t(s)) connecting
(x0, t0) to (x1, T ) (see [24, Proposition 10.46]). By Theorem 2.3, the projection γ is
a pregeodesic of (S,K) which connects x0 to x1 and minimize the Kropina length
functional. �

Remark 4.2. As a globally hyperbolic spacetime is causally simple, Proposition 4.1
can be deduced by [8, Theorem 4.9 (i)] which concerns the more general case of a
spacetime S × R where ∂t is a causal Killing vector field. For a related result see
[17, Proposition 3.22].

Following [10, Section 5], we know that the condition of the existence of an
admissible curve between two points in S is ensured provided a non integrability
condition for the kernel distribution N of ω is satisfied. Precisely, if ω ∧ dω 6= 0
in a connected, dense subset of S then there exists a smooth admissible curve
between any two points p and q in S. Hence we get the following result about
geodesic connectedness of a Kropina space that extends [10, Theorem 1.5] valid in
the compact case:

Corollary 4.3. Let (S, g0) be a complete Riemannian manifold and ω be a nowhere
vanishing one-form such that there exists a point x̄ and a positive constant Cx̄ with
‖ω‖x ≤ Cx̄(d0(x, x̄) + 1) and ω ∧ dω 6= 0 in a connected, dense subset of S. Then

the Kropina space
(

S,− g0(·,·)
2ω(·)

)

is geodesically connected.

A multiplicity result holds if the fundamental group of S is non-trivial. This
is based of the observation that the sequence of the lengths ∆ε : tε(1) − tε(0) (or
equivalently of the travel times as measured by observers at infinity in the stan-
dard stationary spacetimes (S × R, gε)), of the geodesics xε in Lemma 3.2 can be
controlled from above provided these geodesics minimize the Fε-length in some
homotopy class C ⊂ Λx0x1

(S) containing at least one admissible curve γ.

Theorem 4.4. Let
(

S,− g0(·,·)
2ω(·)

)

be a Kropina space and x0, x1 be two points on

S, x0 6= x1. Assume that the Riemannian manifold (S, g0) is complete and there
exists a point x̄ and a positive constant Cx̄ such that ‖ω‖x ≤ Cx̄(d0(x, x̄)+1). Then
for each connected component C of Λx0x1

(S) there exists a geodesic of the Kropina
space from x0 to x1, which is a minimizer of the Kropina length functional on C,
provided that there exists an admissible curve γ ∈ C. Moreover, if C corresponds
to a non-trivial element of the fundamental group of S, a geodesic loop in C exists
when x0 and x1 coincide.

Proof. Let xε be a geodesic of (S, Fǫ) with minimal Fε-length in C. From (10) we
get

∆ε := Lε(xε) ≤ Lε(γ),

for each ε > 0, where Lǫ is defined at (11). Since γ ∈ C is admissible we obtain

Lε(γ) =
1

ε

∫ 1

0

−ω(γ̇)

(
√

εg0(γ̇, γ̇)

ω2(γ̇)
+ 1− 1

)

dr ≤ 1

ε

∫ 1

0

1

2

εg0(γ̇, γ̇)

−ω(γ̇)
dr = L(γ),

(14)
for all ε > 0, where L is defined at (4). Thus, supε∈(0,1) ∆ε ∈ R. After parametrizing

xε with εg0(ẋε, ẋε)+ω2(ẋε) = const. (recall Theorem 3.1), a sequence εn → 0 exists
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such that the curves (xεn , tεn) converge to a future pointing lightlike geodesic (x, t)
of (S, g) by Lemma 3.2. Therefore, by Remark 3.3, x is admissible and then by
Theorem 2.3, it is a pregeodesic of (S,K). In order to show that it minimizes
the length in C, let us assume that there exists an admissible curve γ1 ∈ C such
that L(γ1) < L(x). From (14), Lεn(xεn) ≤ Lεn(γ1) ≤ L(γ1); as Lεn(xεn) =
tεn(1)− tεn(0) → t(1)− t(0) = L(x) we get a contradiction. �

Corollary 4.5. Under the assumption of Theorem 4.4, assume also that ω∧dω 6= 0
in a connected, dense subset of S. Then for each connected component C of Λx0x1

(S)
there exists a geodesic of the Kropina space from x0 to x1 which is a minimizer of
the Kropina length functional on C. Moreover, if C corresponds to a non-trivial
element of the fundamental group of S, a geodesic loop in C exists when x0 and x1

coincide.

Proof. By Theorem 4.4, it is enough to show that C contains an admissible curve.
In fact, if γ0 is any curve in C, by [10, Theorem 1.5 (A)], we can select a finite
number of points pj belonging to the support of γ0 and an equal finite number of
convex neighbourhood Uj (convex with respect to the metric g0) covering γ0 such
that any point in Uj can be joined to pj by an admissible smooth curve (actually
a length minimizing geodesic for the Kropina metric). In such a way we obtain a
piecewise smooth admissible curve γ belonging to the same class C of γ0. �

As a consequence, from Corollary 4.5, under the non integrability assumption for
the kernel distribution of the one-form g0-metrically equivalent to W , we get that
the Zermelo’s navigation problem on the complete Riemannian manifold (S, g0)
with critical wind W has a solution in each homotopy class of curves between x0

and x1 in S.

Corollary 4.6. Let (S, g0) be a complete Riemannian metric and W be a vector
field on S such that g0(W,W ) = 1. Then the Zermelo’s navigation problem (with
data g0 and W ) between two points x0, x1 ∈ S, x0 6= x1, has a solution in each
connected component C of Λx0x1

(S) provided that there exists at least one admissible
curve in C. In particular this happens if ω ∧ dω 6= 0 in a connected, dense subset
of S. Moreover, if C corresponds to a non-trivial element of the fundamental group
of S, a solution exists when x0 and x1 coincide.

Proof. It is enough to observe that the one-form metrically equivalent to W has
constant g0-norm equal to 1 and therefore the assumption on the growth of ‖ω‖x in
Theorem 4.4 holds. Thus, the curves which minimize the length functional of the

Kropina metric − g0(·,·)
2g0(W,·) are solutions of the Zermelo’s navigation problem with

data g0 and W , see [8, Proposition 2.57-(ii) and Corollary 6.18-(i)]. �

5. The existence of closed geodesics

We first consider the case when the fundamental group of S is non-trivial. It is
well known that any Finsler metric F on a compact manifold S admits a closed geo-
desic in each connected component of the free loop space Λ(S) which is a minimizer
of the energy functional of F and also of its length functional. As in the statement
of Lemma 3.2, given a closed geodesic xε in (S, Fε), we denote by ∆ε the time travel
of the corresponding future pointing lightlike pregeodesic zε(s) =

(

xε(s), tε(s)
)

in
(S × R, gε), tε = tε(s) given by (9), which also coincides with the Fε-length of xε.
Therefore, arguing as in the proof of Theorem 4.4 we obtain the following result
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that can be interpreted, by the viewpoint of Zermelo’s navigation problem, as the
possibility of round trips which minimize the navigation time if the topology of the
sea is non-trivial.

Theorem 5.1. Let S be a compact manifold having zero Euler characteristic and

non-trivial fundamental group endowed with a Kropina metric K := − g0(·,·)
2ω(·) . Then

(S,K) admits a (non-trivial) closed geodesic with minimal Kropina length in each
connected component C of Λ(S) which does not correspond to a trivial conjugacy
class of the fundamental group provided that C contains at least one admissible
closed curve.

Analogously to Corollary 4.5, the following also holds:

Corollary 5.2. Under the assumptions of Theorem 5.1, assume further that ω ∧
dω 6= 0 in a connected, dense subset of S. Then (S,K) admits a (non-trivial) closed
geodesic with minimal Kropina length in each connected component C of Λ(S) which
does not correspond to a trivial conjugacy class of the fundamental group.

We give now an existence result in a setting including possibly the cases that
S is simply connected or non-compact. We also allow ω vanishing somewhere in
S, and we denote by S0 the set of points x ∈ S where ωx = 0 (S0 being possibly
empty).

Theorem 5.3. Let (S, g0) be a Riemannian manifold and ω be a one-form on S.
Let (εn)n be an infinitesimal sequence of positive numbers and, for each n ∈ N, xεn

be a closed geodesic of the Randers metric Fεn . Assume that ∆ := supn ∆εn ∈ R

and the images of the curves xn are contained in a compact set C included in an
open subset U ⊂ S \ S0 with compact closure, such that xn are non-contractible in

U . Then the Kropina space
(

S \ S0,− g0(·,·)
2ω(·)

)

admits a (non-trivial) closed geodesic.

Proof. We can apply Lemma 3.2 to the sequence of standard stationary spacetimes
(

(S \ S0) × R, gεn
)

. As the images of xεn are contained in the compact subset

Ū we can assume both completeness of g0 and boundedness of ‖ω‖x. Hence, up
to reparametrization, the sequence of future-pointing lightlike geodesics (xεn , tεn)
converges uniformly to to a future pointing lightlike geodesic (x, t) of the spacetime
(

(S \ S0) × R, g
)

and such that x is a 1-periodic curve. Since xn → x in the

C0-topology, if x was a constant curve in C̄ then, for εn small enough, xεn would
be contractible in U . Therefore, x is a closed pregeodesic of the Kropina space
(

S \ S0,− g0(·,·)
2ω(·)

)

. �

In some cases it is possible to control from above the lengths ∆ε of the prime
closed geodesics of the Randers metrics associated to the approximating stationary
spacetimes (S × R, gε).

Example 5.4 (Kropina limit of Katok metrics). In order to show a class of examples
we need to change a bit the approximation scheme. Let us replace the one-form ω
in (5) by

√
1− εω, so that the stationary Lorentzian metric gε is now given by

gε := π∗g0 +
√
1− επ∗ω ⊗ dt+ dt⊗

√
1− επ∗ω − εdt2.

The Randers metrics

Fε(v) =
1

ε

(

√

εg0(v, v) + (1− ε)ω2(v) +
√
1− εω(v)

)
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defined by the modified gε is also associated to the Zermelo data

hε =
g0

ε+ (1− ε)‖ω‖2 and Wε = −
√
1− εω♯,

see [8, Proposition 3.6] and [26, p. 1634]. Let S = Sn, n ≥ 2 and g0 be the
round metric on Sn. Let us assume that ω♯ is a Killing vector field for g0. Then the
Randers metric Fε obtained in this case is one of the celebrated examples considered
by Katok. It is well known that the resulting Randers metrics admit at least 2m,
n = 2m or n = 2m − 1, closed geodesics which correspond to the m great circles
Ci invariant by the flow of ω♯, each of them considered twice according to the
orientation (see [34, 26]). Let us assume that ‖ω♯‖x = 1 for all x ∈ Ci and let us
parametrize the Fε-geodesics with unit velocity with respect to the metric g0. Then
the Fε length of these geodesics is given by

∆ε =
2π

ε
(1−

√

(1 − ε) =
2π

1 +
√
1− ε

if they are parametrized in the same direction of the rotation, and

∆ε =
2π

ε
(1 +

√

(1 − ε) =
2π

1−
√
1− ε

in the other case. Thus, the first family of geodesics has uniformly bounded length
and since for each i, their support is Ci, they converge to a geodesic of the Kropina

space
(

S2m−1,− g0(·,·)
2ω(·)

)

if n = 2m−1,
(

S2m \ {p, q},− g0(·,·)
2ω(·)

)

if n = 2m and p, q are

two antipodal points on the sphere where ω♯ vanishes. Thus, both these Kropina
space admits at least m distinct closed geodesics of length π and support the m
circles Ci.

Example 5.5. The above example can be generalized as follows. Let (S, g0) be a
compact Riemannian manifold endowed with a non-trivial periodic Killing vector
field W (i.e. all orbits of W are closed). It is well known that (S, g0) admits at
least one non-constant closed geodesic which is one of these orbits (it corresponds
to the geodesic with initial conditions p and Wp where g0(Wp,Wp) = max{x ∈ S :
g0(Wx,Wx)}). Let γ be such a geodesic. Since g0

(

Wγ(t),Wγ(t)

)

is constant along γ

we call it c2 and we consider the Killing vector field W/c. Hence, g0(W/c,W/c) ≤ 1.
Let us then consider a perturbation parameter α < 1. Then the Randers metrics on

S defined by the Zermelo navigation data g0 and
√
α

c
W , for each α ∈ (0, 1), admit

γ as a closed geodesic by [26, Theorem 2], counted twice considering as a different
geodesic the one obtained by reversing the orientation of γ. The shortest of these
two geodesics has length

∆α =
T

1− α
(1−√

α) =
T

1 +
√
α
,

where T is the g0-length of γ. As ∆α are bounded, from Theorem 5.3 by passing

to the limit as α → 1, we conclude that the Kropina metric K(v) = g0(v,v)
2g0(W,v) on

S \ S0 admits γ as closed geodesic with Kropina length T/2.

Assuming that the one-form ω is invariant by the flow of a Killing vector field
Y (i.e. the Lie derivative LY ω vanishes) and constant on it, gives a result about
existence of at least two closed geodesics even when ω is not the one-form metrically



12 E. CAPONIO, F. GIANNONI, A. MASIELLO, AND S. SUHR

associated to Y ; in this case the approximation with stationary spacetimes can be
bypassed.

Theorem 5.6. Let (S, g0) be a compact Riemannian manifold, endowed with a non-
trivial periodic Killing vector field Y , and let ω be a one-form such that ω(Y ) < 0 is
constant and LY ω = 0. Then there exist at least two closed (non-trivial) geodesics

of the Kropina metric K = − g0(·,·)
2ω(·) .

Proof. Notice that being ω(Y ) < 0, Y does not vanish at any point of S and then
its orbits are non-constant. Then the conclusion follows by observing that there are
at least two orbits, passing through a minimizer and a maximizers of the function
p ∈ S 7→ g0(Yp, Yp) which are geodesics for the Riemannian metric g0 and, under
our assumptions, they are geodesics of the Kropina metric as well. In fact, let
γ : [0, T ] → S be one of these two orbits (the period T depending on γ). Since Y
is Killing and LY ω = 0 both g0(γ̇, γ̇) and ω(γ̇) are constant along γ. Moreover,
being ω(Y ) < 0, γ is a smooth admissible curve. Then the first variation of the
length functional of K with respect to any smooth periodic vector field ξ along γ
is well-defined and given by

− 1

2

∫ T

0





2g0(γ̇,∇0
γξ)

ω(γ̇)
−

g0(γ̇, γ̇)
(

dω(ξ, γ̇) + d
ds

(

ω(ξ)
)

)

ω2(γ̇)



 ds, (15)

where ∇0
γ is the covariant derivative along γ induced by the Levi-Civita connection

of the metric g0. Hence, integrating by parts and using that dω(Y, ξ) = (LY ω)(ξ)−
ξ
(

ω(Y )
)

= 0 (recall that γ is an orbit of Y ) we get that the above integral reduces
to

∫ T

0

g0(∇0
γ γ̇, ξ)

ω(γ̇)
ds

which is 0 for all ξ. �

Remark 5.7. If Y has constant length too then
(

S,− g0(·,·)
2ω(·)

)

admits infinitely many

closed geodesics.

Nevertheless, the assumption Y has constant length can replace ω(Y ) constant.

Theorem 5.8. Let (S, g0) be a compact Riemannian manifold, endowed with a
non-trivial periodic Killing vector field Y of constant length and let ω be a one-
form such that ω(Y ) < 0 everywhere and LY ω = 0. Then there exist at least two

closed (non-trivial) geodesics of the Kropina metric K = − g0(·,·)
2ω(·) .

Proof. As in the previous proof consider the first variation (15) of the Kropina
length of an orbit γ : [0, T ] → S of Y in the direction of a periodic vector field ξ
along γ. Note that ω(γ̇) is constant and therefore can be removed from under the
integral. Then the first term vanishes since the length of Y w.r.t. g0 is constant
and therefore γ is a g0-geodesic.

Next consider the critical points of the function f := p ∈ S 7→ ωp(Yp). Since
LY ω = 0, f is constant along orbits of Y . Let then γ be an orbit whose points are
all critical for f . With the formula dω(Y, ξ) = (LY ω)(ξ) − ξ

(

ω(Y )
)

= 0 and the
periodicity of ξ, we see that the first variation of the Kropina length of γ vanishes.
As S is compact, there exist at least two critical points of f whose values are both
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negative. The orbits through these two points are the required closed geodesic of
K. �

Notice that in particular Theorem 5.8 holds with the assumptions of a strong
Kropina metric with quasi-regular Killing field of [27].

We finish this section with a result for a Kropina metric on a compact Lie group
endowed with a bi-invariant Riemannian metric.

Corollary 5.9. Let S be a compact Lie group endowed with a bi-invariant Rie-
mannian metric and a non-trivial left-invariant one-form ω. Then the Kropina

metric K = − g0(·,·)
2ω(·) on S admits at least two closed (non-trivial) geodesic.

Proof. We will construct a right-invariant periodic vector field Y such that ω(Y ) <
0 everywhere. As g0 is bi-invariant the vector field Y is a Killing vector field of g0
with constant length. It further preserves ω since the form is left-invariant. The
claim then follows from Theorem 5.8.

For the construction of Y we start with an arbitrary right-invariant vector field
X on S such that ω(X) < 0 everywhere. This is possible since ω is non-trivial
and left-invariant. Let H be closure of the subgroup generated by X . Since S is
compact H is a compact abelian group, i.e. H ∼= T k for some k. We can now
choose a compact 1-dimensional subgroup of H whose generator Ye lies arbitrary
close to Xe, especially ωe(Ye) < 0. The right-invariant vector field Y associated to
Ye is then the desired right-invariant periodic vector field. �

Appendix A. On the boundary of a reachable set

In light of the problem of existence of paths with finite Kropina length between
given points the question begs itself what can be said about the set of reachable
points. Recall from the introduction that A := {v ∈ TS| − ω(v) > 0}, and an
absolutely continuous curve γ : I → S is admissible if γ̇(t) ∈ A for almost all t ∈ I.
For x ∈ S, define then I±ω (x) to be the sets of terminal or initial points of admissible
curves with starting or ending at x. It is well known that these sets are open for all
x ∈ S and the induced relation is transitive. Under the assumption that ω∧dω 6= 0
on a dense and connected set, the Chow-Rashevsky Theorem (see [15, §1]) implies
that any pair of points is connected by an admissible curve, i.e. I±ω (x) = S for all
x ∈ S.

In analogy to spacetime geometry we will prove the following analog, see [24,
Proposition 14.25]. Note that this is related to the integrability of distributions,
see [31, 30].

Theorem A.1. Let S be connected and x ∈ S such that I+ω (x) 6= S. Then the
boundary Σ := ∂I+ω (x) is a (non-empty) smooth hypersurface which separates S.

Remark A.2. (a) The opposite set ∂I−ω (x) has the same properties under the
appropriate assumptions.

(b) By the Chow-Rashevsky Theorem we know that at every point p ∈ ∂I+ω (x)
we have ωp ∧ dωp = 0.

Proof. The result is local in nature therefore the proof is a local argument.
1st step: Σ is a topological hypersurface.

Let p ∈ Σ and let us choose coordinates φ = (φ1, . . . , φn) in a neighbourhood
U of p such that φ(p) = 0 and −ωp = (dφn)p. By restricting φ if necessary,
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we can assume that the intersections of kerωq, q ∈ U , with the double cones

{v ∈ TU : |dφn(v)| ≥ ∑n−1
i=1 |dφi(v)|} only contain the zero section. This follows

from the continuity of φ and ω. Since any neighbourhood of p contains points in
I+ω (x) we obtain that

C+ :=

{

q ∈ U

∣

∣

∣

∣

∣

φn(q) >

n−1
∑

i=1

|φi(q)|
}

⊂ I+ω (x).

Analogously it follows from the fact that every neighbourhood of p contains points

in I+ω (x)
c
that

C− :=

{

q ∈ U

∣

∣

∣

∣

∣

−φn(q) >
n−1
∑

i=1

|φi(q)|
}

⊂ I+ω (x)
c
.

So every line t 7→ (q1, . . . , qn−1, t) will pass Σ exactly once. Like in the case of
achronal surfaces (see [24, Proposition 14.25]) we see that the intersection point
depends Lipschitz continuously on (q1, . . . , qn−1). Therefore, near p the set Σ is the
graph of a Lipschitz function σ.

2nd step: Σ is a C1-hypersurface.
We claim that Σ has a tangent space everywhere and TΣq = kerωq, for all q ∈ Σ.

The claim readily implies the continuous differentiability of Σ.
Consider coordinates φ around p ∈ Σ and function σ as before. Further, let

η : (−ε, ε) → {φn = 0} be a Lipschitz curve with η(0) = q. Then t 7→ (η(t), σ ◦ η(t))
is a Lipschitz curve in Σ. If

lim sup
t→0

|σ ◦ η(t)|
|η(t)|

is positive, up to consider larger cones than the ones defined in the first step, we

conclude that (η(t), σ ◦ η(t)) ∈ I+ω (x) or (η(t), σ ◦ η(t)) ∈ I+ω (x)
c

for |t| sufficiently
small, a contradiction. Therefore we have

lim sup
t→0

|σ ◦ η(t)|
|η(t)| = 0

for every Lipschitz curve η, i.e. TΣq = ker(dφn)q = kerωq.
3rd step: Σ is smooth.
Without loosing of generality, we can assume that the codomain of the local coor-

dinates φ is the cube [−1, 1]n. Denote with πn the projection [−1, 1]n → [−1, 1]n−1

which forgets the last coordinate. Under this projection we can uniquely lift the co-

ordinate fields ∂φ
1 , . . . , ∂

φ
n−1 on [−1, 1]n−1 to sections X1, . . . , Xn−1 spanning kerω

such that dπn(Xi) = ∂φ
i . Note that the sections are smooth.

Since Σ is everywhere tangent to kerω the flow lines of any Xi starting in Σ
will remain in Σ. This implies that the flows of the Xi’s commute along Σ and can
therefore be used to parameterize the hypersurface Σ around p (see for instance
[21, chp. 19]). �
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