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Abstract.
Geographic information is vital for organising humani-
tarian campaigns and helping those in need. The lead-
ing Humanitarian OpenStreetMap Team (HOT) organises
projects to create the necessary geographical information
and connect to the organisations that need to make de-
cisions on the ground. This work provides insights into
project management dynamics and volunteers’ interaction
with user interfaces in Volunteered Geographic Informa-
tion (VGI) in a humanitarian context. We do so by con-
ducting a process analysis of 746 completed, fully vali-
dated, and archived projects in the HOT Tasking Manager
(HOT-TM) over the past two years. The analysis encom-
passes a process discovery stage from the perspectives of
control flow, time, organisation, and outcome of the map-
ping tasks that comprise a project. The findings offer valu-
able implications for future project planning and execution
in similar contexts. Our process mining exploration of the
task states found a clear path that involves mapping and
validation operations with minor deviations. However, we
did find a major bottleneck from the mapping to the val-
idation phase, which could reflect that validation capabil-
ities are a scarce resource. Proactive notification for val-
idators, artificial intelligence adoption for task planning,
user interface redesign, and strategies for better harness-
ing the collective intelligence of volunteers could improve
the process.

Keywords. OpenStreetMap, Volunteered Geographic In-
formation, Humanitarian OpenStreetMap Team, Volunteer
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1 Introduction

The emergence of digital mapping and crowd-sourced ge-
ographic information has significantly reshaped the land-
scape of humanitarian aid and disaster response. Volun-

teered Geographic Information (VGI) is a method that
leverages the collaborative contributions of volunteers to
collect, analyse, and distribute geographic data. This ap-
proach is particularly useful in scenarios where conven-
tional data sources are neither accessible nor longer up-to-
date (Goodchild, 2007), and has been proven to be a game-
changer in managing humanitarian crises, where timely
and accurate geographic information is crucial (Neis et al.,
2010; Saganeiti et al., 2017).

The Humanitarian OpenStreetMap Team (HOT) is a lead-
ing initiative in the field of Humanitarian VGI. HOT uses
the OpenStreetMap (OSM) platform to facilitate the cre-
ation of freely editable global maps, with a particular fo-
cus on areas in urgent need of humanitarian aid1. The HOT
Tasking Manager (HOT-TM), which organises the global
volunteer network to facilitate effective and concentrated
mapping activities, is an important tool in this effort.

To leverage collaborative mapping projects effectively,
HOT must understand those dynamics that facilitate or
block mapping and validation processes. Previous efforts
have focused on understanding some of the critical success
factors of humanitarian mapping projects, such as levels
of volunteer experience (Urrea and Yoo, 2023). However,
the available literature has not delved into the fine grained
details of how the mapping process works. Nonetheless,
detailed guidelines into how HOT should design tasks or
assign resources to maximise the performance of the pro-
cess have yet to be developed.

For these reasons, the objective of this paper is to pro-
pose a methodology for making process analysis on HOT
projects. Process analysis aims at providing decision-
makers with the knowledge they need to streamline oper-
ations efficiently. In particular, we investigate how effec-
tively the mapping process occurs using a sample of 746
completed and archived projects within the HOT-TM over
the last two years. We focus on discovering this process
from four perspectives: (1) control flow, i.e. the ordering

1https://www.hotosm.org/
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of events, (2) time, i.e. the duration of processing and idle-
ness in the execution of activities, (3) organisation, i.e. the
people who execute or initiate the events, (4) outcome, i.e.
the geographical product that is finally embodied in OSM.
The final purpose is to speed up the completion of tasks,
reduce waiting times and ultimately increase overall effi-
ciency. These improvements are of great importance, es-
pecially in the context of humanitarian emergencies.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the related work. The proposed methodol-
ogy is explained in section 3. Section 4 describes the re-
sults obtained after applying the methodology for the anal-
ysis of the OSM projects. Finally, section 5 provides some
conclusions and outlines for future research work.

2 Related Works

Volunteered Geographic Information (VGI) use in disaster
management and humanitarian aid has emerged as a criti-
cal area of research, with several studies contributing to its
understanding and application.

Rey (2022) focus on the application of spatial information
in disaster risk management. Their study emphasises how
important spatial data is for improving the efficacy of dis-
aster risk reduction tactics. Xin (2022) explored anomaly
detection for VGI, using Safecast data as a case study. This
research demonstrates the potential of VGI in monitoring
and responding to environmental hazards.

Ke et al. (2023) examine intelligent management strate-
gies for emergency shelters and resilient communities dur-
ing disaster scenarios. Tzavella et al. (2022) conducted a
comprehensive review of the application of VGI in cri-
sis, emergency, and catastrophe management, highlighting
the importance of VGI in facilitating emergency decision-
making. This study highlights the evolving role of VGI in
addressing the dynamic challenges in disaster situations.

Zhao et al. (2022) investigated the use of shared geospatial
data in disaster management. Their research contributes to
the understanding of data-sharing mechanisms and their
role in improving the efficiency of disaster response op-
erations. Safariallahkheili and Malek (2022) introduce a
novel approach for assessing the reliability of volunteered
geographic information during flood emergencies. The au-
thors highlight the importance of reliable VGI in facili-
tating precise and quick decision-making in flood-related
catastrophes. The study proposes a systematic approach to
validate the information provided by volunteers.

Hosseinali and Farhadpour (2020) develop a spatial so-
lution integrating VGI and genetic algorithms to improve
earthquake crisis management in Tehran, Iran. It demon-
strates how VGI can be effectively used in conjunction
with computational methods to optimise resource alloca-
tion and response strategies following an earthquake. Ara-
postathis (2020) provide a foundational understanding of
VGI in disaster management, particularly in the context of

floods. This study offers insights into the use of VGI for
flood risk assessment and response planning.

El Hatimi et al. (2020) focus on the quality assessment
of VGI in the context of risk management applications.
It addresses the challenges of verifying the accuracy and
reliability of VGI, proposing methodologies to ensure the
quality of data used in managing various risks, especially
in crisis scenarios. Hardy (2020) delves into the use of VGI
for tracking purposes in crisis management. The study dis-
cusses the potential of VGI to provide critical, up-to-date
information for tracking developments in real-time during
crises, highlighting its application in various emergency
scenarios.

Zhao et al. (2019) discuss the extraction and classifica-
tion of typhoon disaster information based on VGI sourced
from Sina Weibo, the Chinese microblogging platform.
This study underscores the utility of social media plat-
forms as sources of VGI in disaster scenarios, provid-
ing real-time, location-specific information. Haworth et al.
(2018) investigate the dual nature of VGI contributions
to community disaster resilience. It explores how VGI
can empower communities with real-time information dur-
ing disasters, while also discussing the potential pitfalls
and uncertainties associated with reliance on such data
sources.

Urrea and Yoo (2023) examine the influence of volunteers’
experience on achievement and retention rates in online
platforms. Using data from HOT-TM, the study demon-
strates that volunteer experience improves project comple-
tion rates. However, the study also finds that the impact
of volunteer experience diminishes over time and varies
depending on the urgency of the project. Additionally, it
finds that experience-based incentives initially boost vol-
unteer retention, but their influence wanes as volunteers
gain more experience.

These studies collectively illuminate the multifaceted role
of VGI in disaster management, ranging from data collec-
tion and analysis to its application in risk assessment, re-
sponse coordination, and damage estimation. The insights
gained from these works are instrumental in shaping fu-
ture strategies and approaches in the field of humanitarian
aid and disaster response.

3 Methodology

As depicted in Figure 1, the methodology proposed
to analyse the mapping process involves three distinct
phases: (1) understanding HOT-TM; (2) data collection
and pre-processing; and (3) data analysis. The following
subsections describe these phases.

3.1 Understanding HOT-TM

Before analysing raw data from mapping projects, it is es-
sential to understand the context and operation of HOT-
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Figure 1. Methodology at a glance.

TM2, the tool used by HOT to coordinate volunteer action
in humanitarian projects.

To this end, three qualitative research techniques were
used: in-depth interviews with domain experts, participant
observation, and individual expert review of the user inter-
face.

We interviewed a member of the HOT Open Mapping
Hub for Latin America and the Caribbean (LAC Hub),
and a member of the Médecins Sans Frontières (MSF) GIS
Team. Given the exploratory nature of this phase, the in-
terviews followed a semi-structured format with a guide
of possible open-ended questions prepared by the research
team.

The participatory observation involved the attendance of
three research team members in an online mapathon or-
ganised by HOT, one of the researchers already had ex-
tensive experience in humanitarian mapping missions and
OSM, and the other two were first-timers. The event was
two hours long. The experienced mapper participated in
the validation of tasks, reserved for expert contributors. In
contrast, the novices first received a 30-minute explana-
tion of HOT-TM and the iD Editor, which is an embed-
ded editor for beginner users, and started to perform basic
mapping operations afterward.

As part of the interface inspection, an expert scanned the
interface to capture interface elements associated with spe-
cific actions in the mapping and validation phases.

In HOT-TM, each project is subdivided into tasks, in a
grid pattern. Figure 3 shows a screenshot of a project page,
with a map displaying the different tasks with their current
state.

2https://github.com/hotosm/tasking-manager

Each task within the HOT-TM system can be categorised
into specific states, reflecting its current state in the map-
ping process. They are described as follows.

• LOCKED FOR MAPPING: Tasks that are being ac-
tively worked on by mappers are locked to prevent
overlapping work. This task has an associated lock-
ing time.

• AUTO-UNLOCKED FOR MAPPING: Locked for
mapping tasks get unlocked due to timeout, usually
after 2 hours. The associated LOCKED FOR MAP-
PING task does not appear in the log.

• MAPPED: This state represents tasks where the last
mapper who locked for mapping considers the work
to be completely mapped, but is yet to be validated.

• LOCKED FOR VALIDATION: Tasks enter this state
when they are ready for validation, preventing further
mapping edits. This task has an associated locking
time.

• AUTO-UNLOCKED FOR VALIDATION: Locked for
validation tasks get unlocked due to timeout, usually
after 2 hours. The associated LOCKED FOR VALIDA-
TION task does not appear in the log.

• VALIDATED: Tasks confirmed to meet the mapping
standards are marked as validated.

• INVALIDATED: Tasks that do not meet the criteria
during validation are marked as invalidated and may
require remapping or further review.

• SPLIT: This state occurs when tasks are divided into
smaller parts for easier management or to address
complex mapping areas. When splitting a task, 4 new
tasks are created. The original task disappears from
the log and its states before the split are copied to the
new tasks. The associated LOCKED FOR MAPPING
task does not appear in the log.

• BAD IMAGERY: Tasks are given this state when the
underlying imagery is insufficient for accurate map-
ping.

Figure 2 visually explains the workflow of the mapping
process, with the different states for a task. The numbers
given in the diagram can be associated with different in-
teractions in HOT-TM, as seen in the interface screenshots
(Figures 3, 4 and 5).

The mapping process can be divided into two phases:
Mapping and Validation. In the mapping phase, users se-
lect a task that is ready to be mapped or get one assigned
randomly. An embedded editor is open inside HOT-TM
(there is also the possibility to open a desktop editor in-
stead), where users have to draw the missing elements, ac-
cording to the project description (a typical example would
be to draw buildings or roads), without drawing outside
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Figure 2. Task state diagram illustrating the mapping workflow. The numbers represent the different decisions made on the interface
and correspond to the numbers on the screenshots.
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Info sidebar Task map

61

Figure 3. Screenshot of a project tasks screen in HOT-TM. On the left sidebar, information about the project appears, with task state on
a list, instructions for completing each task, and statistics about the contributors. On the right, there is a map showing the task state in a
more visual way. Users can either select a random task to map with the bottom right button, or manually select a task on the map, after
which the button will then change to either map or validate the selected task. Source: https://tasks.hotosm.org/projects/15476/tasks/

4 of 12AGILE: GIScience Series, 5, 5, 2024 | https://doi.org/10.5194/agile-giss-5-5-2024

https://tasks.hotosm.org/projects/15476/tasks/


4

This project has received funding from the European Unionʼs Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No 955569.

2
3
4

5

iD Editor HOT-TM

Feature panel Map Action sidebar

Figure 4. Screenshot of the mapping phase in HOT-TM, using the embedded iD editor. The iD editor changes will be reflected in the
OSM database after hitting the Save button inside it. The user interaction with the action sidebar will trigger changes in the task state.
HOT-TM and the iD editor are unrelated and do not communicate between them. The user is expected to edit and save the changes on
the editor as many times as needed and then interact with the sidebar after they are done editing.
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7 8

iD Editor HOT-TM

Feature panel Map Action sidebar

Figure 5. Screenshot of the validation phase in HOT-TM, using the embedded iD editor. It is equal to the mapping phase interface, but
the action sidebar buttons change. The user interaction with the action sidebar will trigger changes in the task state. The user is expected
to navigate through the data on the editor to check its quality and edit it if needed. Then interact with the action sidebar after they are
done validating.

Figure 6. Screenshot of tasks in a project. Task A has not been
split, task B has been split once, and task C has been split twice.

the marked area. The user then has the ability to select
whether the task is, according to their criteria, completely
mapped, not completely mapped, the imagery is bad or the
task should be split (see Figure 4). Splitting a task creates
4 new tasks with a smaller area, as seen in Figure 6. This
splitting can be repeated multiple times.

The validation phase presents validators with tasks marked
as completely mapped. An editor is opened in a similar
fashion to the mapping phase, but different buttons appear
in the action sidebar (see Figure 5). The validator then de-
cides if the task is completed (well mapped), moving the
task to the validated or invalidated state. Invalidated tasks
move back to the mapping phase for further mapping.
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3.2 Data Collection and Pre-processing

We collected data on tasks from 746 completed and
archived HOT-TM projects, created over the last two
years. Table 1 shows the distribution of projects according
to their level of difficulty and the regional centre where
they take place. Two-thirds of these projects are classi-
fied as easy, one-third as moderate, and difficult projects
are rare. Eastern and Southern Africa is the hub with the
most associated projects, followed by Latin America and
the Caribbean, West and Northern Africa, and Asia Pa-
cific. Projects in countries outside the scope of the hubs
are the least frequent. The size of the project is another
factor to be taken into account. The final number of tasks
per project reveals a wide variation (mean= 418.6, sd=
487.3, min= 8.0, Q1 = 107.3, median= 286.0, Q3 =
564.0, max= 4483.0).

1
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Difficulty nº %
Easy 501 67.2

Moderate 239 32.0

Challenging 6 0.8
Hub nº %

Eastern & Southern Africa 309 41.4

Latin America & Caribbean 194 26.0

West & Northern Africa 129 17.3

Asia Pacific 82 11.0

Other 32 4.3

Activity nº Task coverage
(n=277,745)

LOCKED_FOR_MAPPING 406,324 98.8%

LOCKED_FOR_VALIDATION 308,244 97.7%

MAPPED 284,214 97.6%

VALIDATED 284,035 97.2%

AUTO_UNLOCKED_FOR_MAPPING 20,070 5.3%

INVALIDATED 9,429 3.0%

SPLIT 7,680 2.8%

BADIMAGERY 4,502 1.5%

AUTO_UNLOCKED_FOR_VALIDATION 2,956 1.0%

EXTENDED_FOR_MAPPING 2,801 0.3%

TOTAL 1,330,255

Table 1. Distribution of projects according to difficulty and Hub.

Data was collected from two different APIs: HOT-TM and
Bunting Labs. The HOT-TM API provides detailed infor-
mation about projects, the states occurring in the projects,
and users associated with those events. Later, task grids
served as a parameter for the Bunting Labs API to return
the building datasets of each mapped task based on the
data available in OSM. The task grid and building datasets
were reprojected from geographical coordinates to UTM
before calculating their areas. Buildings are overlaid onto
the grid, to calculate the percentage of each cell covered
by buildings.

The pre-processing of the data was aimed at constructing
an event log (See table 2) that would subsequently allow
process mining techniques to be applied. In a typical event
log several key assumptions are met: a) a process consists
of cases -in this analysis the cases are specified at the task
level-; b) a case consists of events and each event refers
exclusively to one case, c) events within a case are dis-
played in order, d) events can have attributes to model the
process. The set of possible states that represent the events
are shown in Figure 2, except that the READY state is not
explicitly recorded in the log.

It is assumed that the tasks retain READY from the start
of the mapping phase until the point at which they be-
come mapped. The start and completion timestamps of

the events are available. The resource dimension is repre-
sented by the user who performed the events and its map-
ping experience. Finally, attributes about the area of the
task and its building coverage according to OSM are in-
corporated.

Data from the APIs is collected and saved into files, which
then get accessed for further steps. The collection and pre-
processing notebooks also store intermediate states in files
whenever possible, to recover from closing or failing in the
middle of execution, especially in the resource-intensive
calculations.

It is also important to note that the two-year period se-
lected for this study provides a snapshot of projects with
relatively consistent user skill levels, as we were limited to
the current user-level data. We chose this duration based
on the assumption that OSM users typically advance from
intermediate to higher skill levels within four years (Bégin
et al., 2018).

3.3 Data analysis

Once the event log was extracted, we employed process
mining methods to analyse the data. The process mining
exercise concentrated on discovering the mapping process
from four perspectives:

• CONTROL FLOW: This perspective considers the or-
dering of events. It aims to find a good characterisa-
tion of all possible pathways. The analysis included
frequency and case coverage of task states, frequent
process variants and a directly-follows graph to show
transitions between states.

• TIME: This perspective deals with the timing and fre-
quency of events. It allows the discovery of bottle-
necks, measurement of service levels, and control of
resource utilisation. The analysis included a directly-
follows graph to show the median duration of states
and transitions. The temporal analysis also distin-
guishes between processing time (the duration of all
instances of active mapping or validation states) and
idle time (the time when no instances of mapping or
validation states are active).

• ORGANISATION: This perspective focuses on the
actors present in the record (e.g. people, systems, and
roles) and how they are related. Our analysis paid par-
ticular attention to the mapping level of the contrib-
utors. For each type of state in the mapping phase,
we calculated the frequency of execution per map-
ping level. Validation events were excluded because
by default they are not enabled for beginners.

• OUTCOME: This perspective takes advantage of the
available data on the geographical product resulting
from a task. We used the percentage of area covered
by buildings as a proxy of the outcome from a HOT-
TM project because the vast majority of projects in-
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 projectId  taskId  status  start  complete  actionBy  mappingLevel  area_sqkm  buildingCoverage

 15796  70  SPLIT 2021-12-01 04:45:26  2021-12-01 04:46:29  robot8A  ADVANCED  0.24  2.55

 projectId  taskId  state  start  complete  actionBy  mappingLevel  areaSqkm  buildingCoverage

 15796  70  SPLIT 2021-12-01 04:45:26  2021-12-01 04:46:29  Redacted  ADVANCED  0.24  2.55

Table 2. Example of how a row of the generated event log looks like, after our pre-processing.

clude building mapping. A zero-inflated beta regres-
sion model was used on task data to describe the
percentage of area covered by buildings as a func-
tion of the number of times the task was locked for
mapping, whether instances of splitting, invalidation,
and bad imagery were observed (binary encoding),
and controlling for the area of the task expressed in
square metres (area_sqm), and the difficulty of the
project to which the task belongs (EASY, MODER-
ATE, CHALLENGING). Other states were excluded
because their executions were not necessarily inde-
pendent.

By examining the log it is possible to discover that when
a SPLIT occurs the logging system creates four new tasks
by replicating for each of them the events corresponding to
the initial task before the split and adding the new events
afterward. The original task is deleted. Duplication intro-
duces noise that affects the event count and makes it dif-
ficult to interpret directly-follows graphs. For this reason,
a cleaning routine was deployed to retain only the initial
task logs in the first three perspectives that require these
techniques.

Following common practice, the directly-follows graphs
shown in the control flow and time perspectives were
pruned with a trace frequency filter to facilitate the visual-
isation of the flow of states. Thus, using a cut-off threshold
of 0.95, we will select at least 95% of the cases, starting
with those that have the highest frequency. For the out-
come perspective, final tasks (i.e., the set including the
tasks resulting from the splits) are maintained.

Process discovery was performed using bupaR, a suite of
open-source R packages for business process data analy-
sis.

4 Results

To facilitate the understanding of the paper, we already
explained in section 3.1 the conceptual dynamics of the
mapping phases in HOT-TM. Therefore the first part of
the results just focuses on reporting the feedback received
by interviews and the second on data analysis with process
mining.

4.1 Understanding HOT-TM

The pair of interviews with domain experts provided valu-
able insights into the preparation, field operation, and sub-

sequent exploitation of the data resulting from a humani-
tarian mapping project.

According to the LAC Hub member, HOT-TM mapping
process relies heavily on OSM mappers from the Global
North contributing as a hobby, but they want to rely more
on local mappers by investing in their training and engage-
ment. HOT is now undergoing a transformation to em-
power contributors of the regions that need to be mapped,
with the concept of regional Hubs. Local people better
know areas in need, and can better interpret the local con-
text when mapping. Also, the hubs aim to coordinate a lo-
cal network to transform the gathered data into useful help,
by connecting to relevant organisations on the terrain.

Regarding the HOT-TM tool, data should be validated be-
fore use, and that is their current bottleneck because of a
lack of resources. They believe that data quality depends
on the individual mapper, so some critical projects have a
minimum experience level set for users to map on it. They
also stated that usability should be improved on the portal,
to make it easier for mappers, including the possibility of
mapping from a mobile phone.

The MSF member explained that OSM and HOT-TM are
relevant inputs for their operations. They contact the HOT
community and set up projects based on MSF’s necessities
on the terrain. They trust the edits made by the users but
believe that beginners may have more invalid edits, as they
are new to it. Also, the quality of the underlying imagery
used for edits matters and changes the final result. With
their experience in in-person mapathons, some users do
not read the instructions, do not map correctly, struggle to
save their progress or forget to unlock the tasks. According
to them, retention of beginner users and a balanced mix be-
tween beginner and advanced users is the key to a project
success. Another thing that they mentioned, is that they
have manual and automatic validation mechanisms set in
place, to make sure the data is usable.

4.2 Data analysis

In this section, we present the result of the analysis of the
event logs generated during the task mapping and valida-
tion from four perspectives: control flow, time, organisa-
tion, and outcome.

4.2.1 Control flow

The frequency and case coverage of the task states shown
in Table 3 suggest that LOCKED FOR MAPPING is the most
frequent states and is present in almost all cases. LOCKED
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FOR VALIDATION, MAPPED, and VALIDATED are also fre-
quent states with high case coverage. The occurrence of
the remaining types of states is relatively infrequent. Only
2.8% of the initial tasks become split, but new tasks make
up about one-tenth of the total number of tasks at the end
of mapping.
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States nº Task coverage
(n=277,745)

  LOCKED_FOR_MAPPING 406,324 98.8%

  LOCKED_FOR_VALIDATION 308,244 97.7%

  MAPPED 284,214 97.6%

  VALIDATED 284,035 97.2%

  AUTO_UNLOCKED_FOR_MAPPING 20,070 5.3%

  INVALIDATED 9,429 3.0%

  SPLIT 7,680 2.8%

  BADIMAGERY 4,502 1.5%

  AUTO_UNLOCKED_FOR_VALIDATION 2,956 1.0%

  EXTENDED_FOR_MAPPING 2,801 0.3%

  TOTAL 1,330,255

Table 3. Frequency and case coverage of task states.

Figure 7 shows an absolute frequency map, where the
nodes indicate the absolute number of state instance ex-
ecutions and the edges indicate the absolute number of
times the source and target states were executed directly
after each other. The thickness of the edges and the colour
saturation of the vertices is proportional to a higher fre-
quency. The flow reveals a main route for mapping tasks
that involves users locking the task for mapping in one
or more iterations until mapped state is reached, mapped
tasks are then locked for validation and validated on the
first attempt. This is also confirmed by the most common
variants shown in Figure 8. Only a small proportion of
tasks lead to invalidation (3%) and re-enter the mapping
cycle until validation is achieved.

4.2.2 Time

The time perspective is shown in Figure 9, where the
nodes and the edges indicate the median duration of
states and waiting times respectively. LOCKED FOR MAP-
PING, LOCKED FOR VALIDATION, AUTO-UNLOCKED
FOR MAPPING, and AUTO-UNLOCKED FOR VALIDA-
TION are the only states with duration. With median ex-
ecution times of 2.2 and 4 minutes for the first two states
and 2 hours for the remaining two. The other states are
immediate execution flags. Considering the transition fre-
quency, the main bottleneck in the process is the time a
mapped task has to wait for validation, which has a me-
dian of almost 14 days. Generally speaking, the duration
of a task consists mainly of idle time. The median propor-
tion of idle time of a task is 99.94% of its throughput time.
The actual service time spent on assignment and validation
is minuscule.

4.2.3 Organisation

Table 4 displays the profile of the mapping phase states ac-
cording to the mapping level of the contributor performing
them. The first row of the table contains the composition
of the total number of contributors of the analysed projects
according to their mapping level. The lower part of the ta-
ble shows the breakdown of state execution frequency per
mapping level. Note that the percentages correspond to the
total of each row.

The first relevant finding is that the overwhelming major-
ity of contributors to the mapping projects are beginner
users in a ratio of 9:1 to more advanced users. However,
when reviewing the output of each group in terms of oper-
ations performed during mapping, it is possible to appre-
ciate that the activity of a standard advanced or intermedi-
ate user significantly exceeds that of a standard beginner.
The result is that only half of the total volume of events is
executed by beginner users. Approximately the same pro-
portion as reported by LOCKED FOR MAPPING states. For
the remaining state types the average advanced or inter-
mediate user exceeds the execution frequency of novice
users, but the propensity varies significantly by state type.
Of the total volume of AUTO-UNLOCKED FOR MAPPING
and BAD IMAGERY transactions, a clear majority are the
product of novice user actions, while SPLIT transactions
come from advanced users.

4.2.4 Outcome

The distribution of the percentage of area covered by
buildings reveals that the vast majority of tasks have
a small coverage, with some atypically high observa-
tions (mean= 1.91%, sd= 5.57, Q1 = 0%, median=
0.06%, Q3 = 0.92%, max= 100%).

Table 5 shows the results of the zero-inflated beta regres-
sion model that was used on the task data to describe the
percentage of area covered by buildings. By examining the
magnitude and polarity of the coefficients, it is possible to
identify that the number of mapping operations and the
presence of splits, invalidations, or bad images are asso-
ciated with higher coverage. The larger the area of the re-
sulting task, the smaller the mapped area. Projects of easy
difficulty are associated with higher coverage and those of
moderate difficulty with lower coverage compared to the
challenging difficulty that served as a reference category.

Among the state variables, the SPLIT flag has the strongest
connection to higher building coverage. Figure 10 shows
the distribution of the percentage of area covered by build-
ings as a function of whether the SPLIT state was observed
during task execution or not.
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Figure 7. Frequency map of task states and transitions within the HOT-TM.

5

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No 955569.

   Advanced  Intermediate  Beginner
 Nº  % nº  % nº  % nº

Total contributors 32,991 6.7% 2,218 2.6% 852 90.7% 29,921
Avg. Avg. Avg.

Total states 722,790 44.5% 145.6 6.4% 54.1 49.1% 11.9
    Locked for Mapping 406,324 42.6% 78.3 6.7% 31.7 50.8% 6.9
    Mapped 284,214 48.7% 62.6 6.1% 20.2 45.2% 4.3
    Auto Unlocked for Mapping 20,070 19.2% 1.7 6.3% 1.5 74.4% 0.5
    Split 7,680 66.9% 2.3 5.3% 0.5 27.8% 0.1
    Bad Imagery 4,502  28.1% 0.6  3.8% 0.2  68.1% 0.1

Table 4. Breakdown of state execution according to the contributor mapping level.
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Figure 8. Top 3 process variants (% of tasks).

5 Discussion and Conclusion

This paper has presented a detailed process analysis of
746 completed and archived projects in HOT-TM over two
years. The analysis of project details, task states, user con-
tributions, and temporal aspects of participation has re-
vealed significant patterns in how volunteers engage with
tasks. These findings underscore the importance of un-
derstanding volunteer behaviour to optimise the efficiency
and impact of humanitarian mapping initiatives. Our study
contributes to the broader field of humanitarian aid and
disaster response by highlighting the critical role of VGI

1
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100

0

split_no split_yes

nº 269,775 42,033

Min. 0.00 0.00

Q1 0.00 0.00

Median 0.05 0.32

Mean 1.44 4.93

Q3 0.74 5.79

Max. 100.0 72.97

Mu Coefficients Estimate t value
(Intercept) -3.49 -509.31 ***
split_yes 0.44 57.92 ***
inval_yes 0.16 14.47 ***
bad_imagery_yes 0.27 18.51 ***
locked_for_mapping 0.02 24.13 ***
area_sqm -1.4e-08 -25.35 ***
difficultyEasy 8.7e-03 2.08 *
difficultyModerate -0.31 -44.67 ***

Single term deletions Df LRT
split_yes_no 1 3099.8 ***
inval_yes_no 1 206.8 ***
bad_imagery_yes_no 1 322.8 ***
locked_for_mapping 1 538.8 ***
area_sqm 1 786.2 ***
difficulty 2 3566.7 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

1.91 q1 0 median 0.06 q3 0.92 max 100

Table 5. Zero-inflated beta regression model for the percentage
of area covered by buildings.

and the effectiveness of platforms like HOT in coordinat-
ing these efforts.
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Figure 9. Time map of task states and transitions within the HOT-TM.
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100

0

split_no split_yes

nº 269,775 42,033

Min. 0.00 0.00

Q1 0.00 0.00

Median 0.05 0.32

Mean 1.44 4.93

Q3 0.74 5.79

Max. 100.0 72.97

Estimate t value
(Intercept) -3.49 -509.31 ***
split_yes 0.44 57.92 ***
inval_yes 0.16 14.47 ***
bad_imagery_yes 0.27 18.51 ***
locked_for_mapping 0.02 24.13 ***
area_sqm -1.4e-08 -25.35 ***
difficultyEasy 8.7e-03 2.08 *
difficultyModerate -0.31 -44.67 ***

Df LRT
split_yes_no 1 3099.8 ***
inval_yes_no 1 206.8 ***
bad_imagery_yes_no 1 322.8 ***
locked_for_mapping 1 538.8 ***
area_sqm 1 786.2 ***
difficulty 2 3566.7 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Figure 10. Distribution of the percentage of area covered by
buildings of tasks (Box plot).

Our process exploration revealed a smooth path between
mapping and validation with minor deviations. However,
we have found that the time devoted to validation tends
to be longer than the effective time devoted to mapping
tasks. This could indicate either that the editing is quite
straightforward or that validators are spending time fix-
ing wrong or incomplete edits while validating. A way to
check this would be by analysing the OSM changesets (a
group of edits to the OSM database made by a user, up-
loaded with metadata such as a brief comment explaining
the performed changes, hashtags, editor and imagery used,
and timestamps) associated to each mapping and valida-
tion states. As seen in figures 4 and 5, the editor and HOT-
TM are two unconnected pieces of software. Therefore the

association between task states and OSM changesets is not
always straightforward.

The time a mapped task has to wait to be validated -a
median duration of almost 14 days- is a major bottleneck
in the process. This finding confirms the insight received
from the LAC Hub member who indicated that validation
capabilities are a scarce resource. Possible validators may
not necessarily be aware that they can validate in a given
project as it is not shown clearly on the interface.

Advanced contributors are more active than beginners
and are more prone to decisive tasks like MAPPED and
SPLIT. While beginners are more associated with events
like AUTO-UNLOCKED FOR MAPPING. The propensity
for auto-unlocking could indicate that beginners do not
fully understand the interface and unknowingly leave the
task locked.

More instances of LOCKED FOR MAPPING and the pres-
ence of SPLIT, and INVALIDATED states are related to
higher building coverage. That may be explained by ar-
eas having a greater editing complexity. Anticipating com-
plexity could be key to having more efficient mapping and
resource allocation.

Our study has several limitations due to the nature of the
used data. The HOT-TM logs and OSM datasets, and the
interfaces of HOT-TM and OSM editors are constantly
changing and developing, making conclusions applicable
to the point where the data download was made. In addi-
tion, the availability of user levels on the HOT-TM API
was limited to the moment of download, not having a his-
tory of user levels, to associate with the moment the user
contributed to each project. It could be, for example, that
an advanced or intermediate user was a beginner at the
time they participated in a given project. We tried to mit-
igate this effect by selecting data from archived projects
created in the last two years.

As another limitation, the study relies on quantitative data
from project details, task states, and user contributions. It
may overlook the qualitative aspects of volunteer experi-
ence, motivation, and challenges.

The lessons learned in this case can inform the design
of other collaborative mapping applications within the
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OSM ecosystem, whether it is to improve the perfor-
mance of existing applications (e.g. MapRoulette3, Map-
Swipe4, StreetComplete5) or to inspire the design of in-
development (e.g. fAIr6, Field Mapping Tasking Man-
ager7) and future platforms. All of these applications must
take into account the great impact that the experience of
contributors has on the quantity and quality of their inter-
actions with the system. Effective onboarding of new users
is a major challenge for the design of such interfaces. This
last observation presumably has major implications for the
design of micro-tasks in other areas beyond VGI.

As per future work, we suggest several research lines.
Firstly, we propose improvements to the validation pro-
cess, to remove the observed bottleneck. This would see
possible research in the direction of how to get higher re-
tention mechanisms for achieving an increased pool of val-
idators, how to improve the HOT-TM interface to make
validators aware of projects that need their attention, and
how to use the collective intelligence of the big pool of
beginner users to validate.

Secondly, we suggest to improve the HOT-TM interface
with user-centered design techniques, including testing.
As seen in the mapathon we participated in, the first 30
minutes of it are devoted to explaining the project and the
interface to beginners. A more intuitive interface can al-
low for less time in explanation, allowing more mapping
to happen.

Thirdly, we propose to examine the effects of the HOT-TM
and editor interfaces in the generated OSM data. HOT-TM
separates the area of a project into a grid, which could be
mapped by different users. This may be affecting the over-
all homogeneity of the data between the grid cells and at
their borders. On top of that, another study could be made
to check for differences between mappers who used iD,
JOSM, or other editors in a humanitarian context, and the
effects they could have on the generated geodata. In ad-
dition, and as said before, the HOT-TM and iD editor in-
terfaces should be integrated more and communicate be-
tween them. This could mean storing in the HOT-TM logs
the OSM changesets associated with each task state.

Lastly, the use of artificial intelligence could improve the
efficiency of the humanitarian mapping process. For in-
stance, preemptively splitting complex project areas us-
ing AI-generated building cover datasets from satellite im-
agery, to lower the invalidation rates in these areas. These
datasets are already being used in some editors like Rapid
to speed up the editing process (Rapid Editor, 2023), but
have not been used in the task creation. AI can also play an
instrumental role in coordinating the group of volunteers
suggesting tasks to users based on their level of experi-
ence.

3https://maproulette.org/
4https://mapswipe.org/
5https://streetcomplete.app/
6https://fair-dev.hotosm.org/
7https://github.com/hotosm/fmtm/

Furthermore, the insights gained from this research offer
practical implications for future project planning and exe-
cution. By understanding the nuances of volunteer engage-
ment and task management, organisations involved in hu-
manitarian mapping can better strategise their efforts, en-
suring that resources are utilised effectively and that the
generated maps are of the highest quality and relevance.
Further research on user experience design to drive volun-
teer motivation also offers great potential.

In conclusion, the patterns identified in this study not only
enhance our understanding of volunteer-driven humanitar-
ian mapping but also provide a foundation for future re-
search in this area. As the field of VGI continues to evolve,
studies like ours will be crucial in shaping strategies that
harness the full potential of crowdsourced mapping in ad-
dressing global humanitarian challenges.

6 Data and software availability

Due to privacy concerns with the user data, we have de-
cided not to publish the used data. However, a Jupyter
notebook is provided to download the data from the HOT-
TM and Bunting Labs APIs. HOT-TM data was down-
loaded between the 1st and 3rd December 2023, and
OSM data from Bunting Labs API on the 4th Decem-
ber 2023. The projects downloaded were those created
from the 1st December 2021 (two years before 1st De-
cember 2023). An R Notebook is provided for the anal-
ysis of the fetched data. The full code is available at
https://github.com/Robot8A/beh-analysis-hotosm-tm.
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