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Abstract We report the experimental results of a prototype balance for the Archimedes
experiment, devoted to measure the interaction between quantum vacuum energy and gravity.
The prototype is a beam balance working at room temperature which shares with the final
balance several mechanical and optical components. The balance sensitivity has been tested at
the site of the Virgo gravitational wave detector in order to benefit from its quiet environment
and control facilities. This allowed also the test of the coherence of the balance data with the
Virgo interferometer signal and with the environmental data. In the low-frequency regime,
the balance has shown a sensitivity of about 8 × 10−12Nm/

√
Hz, which is among the best

in the world, and it is very promising toward the final Archimedes measurement. In the
high-frequency region, above a few Hz, relying on the behavior of the balance as a rotational
sensor, the ground tilt has been measured in view of the next work devoted to Newtonian
noise subtraction (NNS) in Virgo. The measured ground tilt reaches a minimum of about
8 × 10−11rad/

√
Hz in the few Hz region and ranges from 10−10 to 10−9rad/

√
Hz in the

10–20 Hz region, where a very interesting coherence, at some frequencies, with the Virgo
interferometer signal is shown.

1 Introduction

In recent years, the measurement of small forces with macroscopic detectors has experienced
an enormous development, driven by the interferometeres for gravitational wave detection
[1–7] and by the improvement of instruments like torsion pendulums and beam-balance
rotational sensors [8–11]. Remarkably, torsion balances and rotational sensors, typically
working in the mHz region, have shown a considerable overlap of interests both with space-
based interferometers and with the ground-based gravitational wave detectors. In this latter
case, the control loops, which keep the interferometers on their working point, can benefit,
in the sub-Hz region, from a ground tilt signal provided by the rotational sensors [11,12].
Furthermore, the sensitivity in the low-frequency range (around 10 Hz) of the ground-based
detectors is expected to be limited by the so-called Newtonian noise in the next scientific
runs [13,14]. Rotational sensors will provide ground-motion signals useful to reconstruct the
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variation of the gravitational field and hence contribute to the subtraction of Newtonian noise
from the gravitational wave signal [15].

Within the framework of macroscopic detectors of small forces, Archimedes collaboration
recently proposed a beam balance to measure the force exerted by the gravitational field on a
rigid Casimir cavity. The force to be measured is called the Archimedes force of vacuum, as it
corresponds to the weight of the vacuum fluctuation modes that are expelled by the Casimir
cavity [16,17]. The measurement consists in detecting the weight variation of a layered type
II superconductive sample around its transition [17]. The core of the apparatus will be a
cryogenic balance whose design torque sensitivity is about τ̃ = 6 × 10−13Nm/

√
Hz in the

frequency range of tens of mHz or lower [18].
As described in this paper, the apparatus is a rotational sensor. Its characteristic features are

low moment of inertia, low restoring force and low resonant frequency in order to maximize
the sensitivity to the applied force [18]. To study the feasibility of such an extremely sensitive
balance, a prototype working at room temperature has been built. To warrant high sensitivity,
the balance readout is an interferometric system. Moreover, the final apparatus will work
in a cryogenic environment that implies a long recovery time for each intervention on the
balance. For this reason, the readout of the prototype balance has already been designed to
be particularly robust and to have a high dynamic range, in order to pledge its capability
in recovering the correct interferometer signal even in case of high deviations from the
working point. The balance has been initially assembled and tested in the Naples laboratory;
then, it has been installed at the Virgo site, which is seismically more quiet, specifically in
the North-end building. In this setup, the balance has been tested for the torque sensitivity
in the low-frequency regime, while at high frequencies it has been operated as a tiltmeter
(rotational sensor). The results of these tests suggest that the balance is presently limited
at low frequencies by actuator and sensing noises, while at high frequencies the balance is
enough sensitive to measure the ground tilts and can be used for Newtonian noise subtraction.
Interestingly, the balance signal is coherent, at some frequencies, with the output of the Virgo
interferometer. Although this coherence is not due to Newtonian noise coupling of the ground
tilt, it would help in identifying particular noise sources like, for example, diffused light from
vibrating elements excited by ground motion.

The paper is organized as follows: In Sect. 2, the mechanical and optical schemes of
the prototype balance are described. In Sect. 3, its low-frequency behavior is shown, and a
discussion on the reached sensitivity and its possible increase is presented. In Sect. 4, the
high-frequency behavior is illustrated, in particular, the use of the balance as a tiltmeter.
Finally, the next steps toward further improvements for the balance performance is outlined
in Sect. 5.

2 The balance prototype

The working prototype of Archimedes is a short-arm version of the final balance, with no
samples suspended from its ends. Its core consists of a 50-cm-long arm, attached at its center
through two thin wirelike suspensions (Fig. 1), in a configuration similar to LIGO rotation
sensor [11]. Unlike this latter, however, the balance requires a high torque-to-tilt transfer
function, which implies that momentum of inertia as well as suspension restoring force has
to be as low as possible. To fulfill these specifications, the suspended arm is hollow and made
of aluminum, leading to a momentum 0.013 kg m2 in the case of the prototype. In the final
design of the balance, instead, the momentum is 0.72 kg m2, since the arm length is 1.4 m
and superconducting samples are suspended from its ends. The restoring force is kept low

123



Eur. Phys. J. Plus         (2021) 136:335 Page 3 of 14   335 

Fig. 1 Scheme of the balance prototype including the optical readout. Notice the two lenses (in light blue),
with focal length equal to their distance from the arm. The displacement and relative tilts of the two beams
recombining at the beam splitter are of the second order with respect to the arm tilt

by using thin suspensions with a 0.5 mm × 0.1 mm section. This force, together with the
distance between the arm center of mass and its center of rotation, determines the resonance
frequency of the balance. The center of mass of the prototype has been tuned to be within
10 µm from the center of rotation, giving a resonance frequency of 25 mHz.

2.1 Optical readout: interferometer and optical lever

The balance angular motion can be monitored by two different optical readouts: a Michelson
interferometer, with higher sensitivity, and an auxiliary optical lever, with wider dynamic
range. Both the optical systems are physically bolted to the ground; hence, the arm angular
motion is measured with respect to it. The interferometer has been designed with the following
requirements: (1) minimize coupling with undesired degrees of freedom; (2) maintain good
contrast even for relatively high tilts; and (3) allow realignment by moving optical elements
not lying on the reference nor on the measurement arm.

The first condition has been obtained with the beams impinging on the mirrors perpen-
dicularly. To keep a simple optical scheme, a Michelson interferometer with unequal arm
lengths has been chosen, for a path length difference of 10 cm. In the present version of the
prototype, the length difference is not compensated and the laser frequency is not yet stabi-
lized. However, the frequency noise is not a limiting source in the present condition. Optical
path compensation and laser frequency stabilization are planned for the next improvement
of the balance.

The second condition has been fulfilled by designing the interferometer in such a way that
the angular and translation separations of the two interfering beams are of the second order
with respect to the arm tilts. This has been obtained by adding in both the beam paths a lens
with focal length L f equal to the distance between the lens itself and the mirror, so that the
beam is focused on the arm mirror (see Fig. 1). This scheme allows also the fulfillment of
the third specification. Indeed, if the arm tilt α is higher than a few mrad, the interferometer
can be realigned by translating the input beam vertically by the quantity δy = L f α. In this
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Fig. 2 Optical scheme of the interferometric readout. In figure (a), the interferometer is aligned, while the
balance arm is horizontal. An arm tilt α would misalign the interferometer (b), but the presence of lenses in
both arms permits the realignment by moving vertically the input laser beam by an amount δy (c)

condition, the beams impinge again orthogonally on the arm mirrors; then, they are reflected
on the incoming path and recombine correctly at the beam splitter, as sketched in Fig. 2.

As mentioned above, the readout is completed by an auxiliary optical lever, powered by a
superluminescent diode (SLED) and read by a quadrant photodiode. The lever is designed to
have the beam impinging perpendicularly on a mirror placed on the lower face of the balance
arm, and it is used as an initial reference position for the arm tilt.

2.2 Center of mass positioning

Beam balances and tiltmeter signals should not be induced by translation ground motion, but
only by weight variations or ground rotations, respectively. It is known [19,20] that, if the
tiltmeter center of mass does not lie on its rotation axis, a ground acceleration along the arm
direction z̈ generates a torque on the arm τ = mδz̈, where m is the arm mass and δ is the
distance from the center of mass to the rotation axis. This means that, in order to minimize
the coupling between z̈ and the arm tilt, the distance δ needs to be tuned as close as possible
to zero.

Several tests have been performed to ascertain the difficulties in setting this distance within
the limits of about 10 µm, as required by the Archimedes experiment [17]. The tuning of the
center of mass position is done by regulating a set of screws placed on the arm. With the
finest screw rotation, the center of mass can be moved by about 1 µm. Tuning operations are
performed in air, and tiny mechanical displacements can occur while going into vacuum.

123



Eur. Phys. J. Plus         (2021) 136:335 Page 5 of 14   335 

This implies that the tuning accuracy in vacuum is at best around 10 µm, which is still
compliant with the requirements. However, in the design of the final balance, the center of
mass positioning will be performed by acting remotely on the screws while the system is
already in vacuum.

During operation at the Virgo site, the decoupling from translation ground noise has been
tested with two methods. The first coarse one was to compare the balance signal with those
of nearby seismometers during a far earthquake. In this case, the arrival times of various
seismic waves are well separated: The first to occur are the primary waves (P-waves), which
are essentially translation pressure waves, hence the secondary waves (S-waves), which are
shear waves that can have tilt components depending on their polarization, and finally the
surface waves, which have tilt components. While seismometers sense the ground motion, an
ideal tiltmeter is expected to be sensitive to surface waves but not to P-waves. The behavior
of our tiltmeter during a far earthquake is shown in Fig. 3. As expected, P-waves did not
produce a signal above the noise level, while the effect of surface waves has been clearly
observed.

A second, more refined method to test the decoupling from z̈ was based on the comparison
between tiltmeter and seismometer signals at a frequency where there is mainly translation
seismic noise, that is, 0.4 Hz, around the microseismic peak frequency. At this frequency, a
seismometer, which is more sensitive to translations than to tilts, would give a signal in which
the component due to the ground tilt is negligible, unlike a tiltmeter, which is more sensitive
to tilts than to translations. It follows that at 0.4 Hz the coherence between two such signals
would be much less than 1, and this is what has been actually observed in our case, where
Coh ≈ 0.25, as shown in Fig. 4. The residual coherence is the consequence of a non-null
distance δ. Indeed, if the tiltmeter center of mass does not lie on its rotation axis (δ �= 0),
ground translations give rise to a signal, which is read as a tilt. The shift-to-tilt coupling
allows an estimate of δ. The coupling, measured as:

C = √
Coh

θ

z̈/g

results C ≈ 1.2 × 10−3, where θ is the balance signal at 0.4 Hz and g is the gravitational
acceleration. At first order, the coupling is given by

C = mg · δ

Iω2

where I and m are the momentum of inertia and the mass of the arm, respectively, and
f = ω/2π is the measurement frequency [19]. In the hypothesis that a microseism does not
produce ground tilts, the value of the coupling C = 1.2 × 10−3 corresponds to the upper
limit δ = 15 × 10−6 m, consistent with expectations.

2.3 Actuators and control loop

The beam balance is kept at the desired working point through a feedback control system.
The loop is closed with electrostatic actuators, as typically used for the control of torsion
pendulums [9,10]. In our case, they are four metallic plates placed along the two sides of
the balance arm. This latter is grounded, while the actuators are powered by a DC voltage
supplier that can reach the maximum voltage of 2000 V. The actuator torque τ = β · V 2

is quadratic in the applied voltage V, with β = 2.5 × 10−11 Nm/V2. The maximum torque
is τmax = 10−4 Nm. The control signal is linearized by performing the square root of the
correction signal before sending it to the actuators. The error signal is provided by the optical
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Fig. 3 Earthquake as read by a seismometer and by the tiltmeter. Top figure, upper plots: seismometer signal
before (blue) and during (red) the P-waves; Top figure, lower plots: balance signal during the same period. It
can be noticed that, during the earthquake, the seismometer senses the higher ground motion while the balance
does not, as expected. Bottom figure: the same signals as in Top figure but referring to quiet period (blue)
and surface waves. It can be noticed that, as expected, both the seismometer and the tiltmeter sense the higher
ground motion

readout, as described in Sect. 2.1. After obtaining a coarse positioning with the optical
lever signal, the error signal is switched to the interferometric signal, which provides a finer
reference. During the operations at the Virgo site, the error and control signals are acquired
and computed by the Virgo processing system [3]. The control loop has unity gain at 0.2 Hz.

3 Results at low frequencies

In the region of tens of mHz, the torque sensitivity reaches the value τ̃ � 8×10−12Nm/
√

Hz.
To our knowledge, this result is comparable with or even better than the currently best torque
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Fig. 4 Coherence of the tiltmeter with a combination of accelerometers at the upper stage of the Virgo
superattenuator

Fig. 5 Sensitivity and noise budget of the balance prototype compared with the expected signal (green line)

sensitivities in the world for balance systems [11]. Actuation and sensing noise are the
main limiting noise sources, as reported in Fig. 5. At frequencies below 10 mHz and above
100 mHz, the interferometer signal is indeed coherent with the laser power fluctuations read
at the input of the interferometer by an auxiliary photodiode.

In the intermediate region, the major contribution is given by the actuator noise. This can
be evaluated considering that presently the actuation is obtained by applying a DC voltage
control signal (i.e., not modulated). This implies that the actuation noise Ãn , at first order,
is proportional to VRMS, the RMS of the control signal: Ãn = β · VRMSṼn , where Ṽn is the
voltage output noise of the amplifier. In the best condition, the balance was operated with
tens of volts of static correction, corresponding to the noise reported in Fig. 5.

4 Sensitivity to tilts at high frequencies

Beam balances can be used as rotational sensors. In our case, in the low-frequency region,
the sensitivity is not yet sufficiently good to use the balance as tiltmeter to control the Virgo
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Fig. 6 Spectral density of the tilt amplitude in a quiet night at the Virgo site

interferometer. This is due to the choice of a very light arm, which helps in reaching a very
good sensitivity in torque, but makes more difficult its use as a tilt reference. On the contrary,
at higher frequencies, far above the resonance frequency, a light arm is not a limitation. Above
a few Hz, rotation sensors are expected to be used in future detectors as ground tilt sensors
for Newtonian noise subtraction.

The balance has been positioned at the North-end building, on the same floor where other
auxiliary systems, like seismometers and other sensors, are located. The balance has been
installed just before the start of the Virgo observation run O3 and remained on site for several
months. The data taking allowed us to measure the ground tilts and test the coherence with
seismometers and with the Virgo interferometer signal.

The results of the tilt measurement are shown in Fig. 6 for the frequency region from 2 to
20 Hz. This interval is particularly interesting for both Virgo and the future Einstein Telescope,
whose observation band will extend down to 2 Hz. At a few Hz, the measured tilt reaches
θ̃ ≈ 8 × 10−11rad/

√
Hz. Above 10 Hz, it shows a plateau of a few times 10−10rad/

√
Hz and

a series of resonances larger than 10−9rad/
√

Hz. The tilt measurement at lower frequencies,
around a few Hz, highlights the property of the Virgo site to be quiet in this range.

In the 10–20 Hz interval, the measured tilt is similar to that at the LIGO site [13]. In
particular, in the outer ranges (10–13 Hz and 18–20 Hz) the plateau is comparable, whereas
in the middle range (between 13 and 18 Hz) the noise is higher. This result is still under
investigation. Several resonances are coherent with seismometer signals, corroborating the
hypothesis that they are structural resonances of the building. Figure 7 shows the correla-
tion between the tiltmeter and the Virgo interferometer (i.e., gravitational wave) signals. At
several frequencies, the tiltmeter is partially coherent with the Virgo interferometer and with
seismometers placed in the building. On the other hand, at some frequencies, like 18.65 Hz,
the balance signal is coherent with the Virgo interferometer, but not with the seismometers.
However, in both cases, estimates of the Newtonian noise coupling is not compatible with a
direct Newtonian coupling of ground motion with tilt masses, but rather with, for instance, a
coupling mechanism through diffused light.
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Fig. 7 Coherence of the balance signal with the Virgo interferometer signal

5 Conclusions and next steps

The measurement campaign with the beam balance performed at the Virgo site provided very
encouraging results toward the definitive measurement of the weight of electromagnetic vac-
uum. Indeed, the torque sensitivity at low frequencies reaches the value 8×10−12 Nm/

√
Hz,

which is only a factor ≈ 10 higher than the torque expected in the measurement of vacuum
weight.

At present, the sensitivity is limited by the laser amplitude and actuators noises. These
can be reduced by stabilizing the laser and using voltage amplifiers with a lower noise. The
latter improvement will be possible once the balance will be moved to a more quiet site, such
as the SAR-GRAV laboratory, in Sardinia. In these seismic conditions, the force needed to
maintain the interferometer locked is expected to be at least an order of magnitude lower;
therefore, we could use amplifiers with a lower voltage and hence with a lower noise.

At high frequencies, the balance has shown a very good sensitivity to tilts, allowing us to
measure the ground tilt at the Virgo site and to show that at some frequencies the Virgo dark-
fringe signal is correlated with the tiltmeter signal. Moving the balance to the SAR-GRAV
laboratory will permit a better study of the sensitivity to lower tilts, which will allow a new
version of the balance to be used to measure ground tilts in the next Virgo run.
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