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In this paper we propose an experimentally viable scheme to enhance the sensitivity of force detection in a
hybrid optomechanical setup assisted by squeezed vacuum injection, beyond the standard quantum limit (SQL).
The scheme is based on a combination of the coherent quantum noise cancellation (CQNC) strategy with a
variational homodyne detection of the cavity output spectrum in which the phase of the local oscillator is opti-
mized. In CQNC, realizing a negative-mass oscillator in the system leads to exact cancellation of the backaction
noise from the mechanics due to destructive quantum interference. Squeezed vacuum injection enhances this
cancellation and allows sub-SQL sensitivity to be reached in a wide frequency band and at much lower input
laser powers. We show here that the adoption of variational homodyne readout enables us to enhance this noise
cancellation up to 40 dB compared to the standard case of detection of the optical output phase quadrature,
leading to a remarkable force sensitivity of the order of 10−19 N/

√
Hz, about 70% enhancement compared to

the standard case. Moreover, we show that at nonzero cavity detuning, the signal response can be amplified at a
level three to five times larger than that in the standard case without variational homodyne readout, improving
the signal-to-noise ratio. Finally, the variational readout CQNC developed in this paper may be applied to other
optomechanical-like platforms such as levitated systems and multimode optomechanical arrays or crystals as
well as Josephson-based optomechanical systems.

Keywords: Quantum Noise Cancellation, Backaction Noise, Standard Quantum Limit, Squeezed Light Injection, Quantum
Interference, Homodyne Detection

I. INTRODUCTION

Optomechanical systems (OMSs) have been exploited in
different areas of quantum technologies, such as quantum
information processing and communication [1–4], quantum
memories [5, 6], reversible microwave-to-optics converters
[7–11], microwave circulators [12, 13], quantum correlations
[14–18], and quantum squeezing [19, 20], as well as in funda-
mental physics [21–30]. Also, optomechanical-based sensors
have been recognized as an optimal candidate for the detec-
tion of minuscule forces at the quantum limit [31] such as
observation of gravitational waves [32]. In OMSs, cavity field
shot noise and radiation pressure backaction (BA) noise re-
strict the force measurement sensitivity, leading to the stan-
dard quantum limit (SQL) in force measurements [33, 34].
These two noise sources show opposite responses to the in-
put field power: As the cavity driving power grows, the shot
noise decreases, while the radiation pressure BA noise in-
creases [33]. Thus, lowering one results in strengthening the
other one. Consequently, at high input powers where quan-
tum effects are enhanced and the shot noise is negligible, the
mechanical BA noise is dominant. Therefore, any effort to
improve the measurement sensitivity requires suppression of
the BA noise.

Various strategies have been proposed for suppressing the
BA noise effects to achieve an ultrasensitive measurement us-
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ing optomechanical systems, such as utilizing a shot-noise-
limited microwave interferometer [35], degenerate paramet-
ric amplification [36], back-action evasion techniques [37–
40], variational readout of the cavity output field [41], a
measurement-based feedback technique [42], coherent quan-
tum noise cancellation (CQNC) [43], and a noise reduction
scheme in systems with a single-mode mechanical resonator
in the hybrid system [44–48] as well as in systems with multi-
mode mechanical oscillators [49–52]. Among them, CQNC
is one of the most successful approaches of noise suppres-
sion which utilizes quantum interference. The idea of CQNC,
which was first introduced by Tsang and Caves [43], is based
on the exploitation of an ancillary oscillator with an effective
negative mass to create an antinoise path to the system dynam-
ics to cancel out the BA noise of the mechanics. A scheme
based on the CQNC method in a hybrid OMS consisting of
an atomic ensemble and equipped with squeezed vacuum in-
jection has been proposed in Refs. [53–55], and it has been
recently realized experimentally [56]. By calculation of the
output cavity phase spectrum, it has been shown that under
the so-called perfect CQNC conditions, the BA noises due to
the coupling of the intracavity radiation pressure with the me-
chanical oscillator (MO) and with the atomic ensemble com-
pletely cancel each other. Furthermore, it has been demon-
strated that the cavity shot noise can be suppressed by inject-
ing a squeezed vacuum light into the cavity. These proposals
rely on measuring the phase quadrature spectrum of the output
cavity field.

Motivated by the above-mentioned investigations, we have
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been encouraged to improve the output detection method
by exploiting a variational homodyne readout [57] (see also
Refs. [41, 58]) in which the local oscillator phase is optimized
for each parameter set rather than considering the standard
quadrature phase measurement common in optomechanical
force sensing. Under perfect CQNC conditions, which refers
to zero cavity detuning (resonant case) and perfect matching
between positive- and negative-mass MO parameters, opti-
mizing the phase of the homodyne detected quadrature has no
advantage. Nevertheless, for nonzero detuning and/or in the
presence of a mismatch between mechanical and atomic pa-
rameters, properly adapting the phase of the detected quadra-
ture enables us to achieve noise reduction compared to the
standard case of Ref. [54], up to 40 dB when adjusting the op-
tomechanical parameters. Moreover, one can also amplify the
cavity output signal compared to the standard CQNC scheme
and, as a result, one can achieve simultaneous noise reduction
and output signal amplification in some cases.

The paper is organized as follows. Section II is devoted
to the description of the physical model of the system under
consideration. In Sec. III the linearized quantum Langevin
equations (QLEs) describing the system dynamics are ob-
tained. The enhancement of CQNC in the output spectrum
of a generic optical quadrature is shown and discussed under
different conditions in Sec. IV. The advantage of the varia-
tional homodyne CQNC setup in force sensitivity, the signal-
to-noise ratio (SNR), and output signal amplification are dis-
cussed in Sec. V. Conclusions are summarized in Sec. VI.

II. THE SYSTEM

As illustrated schematically in Fig. 1, we consider a hy-
brid optomechanical system consisting of an optical mode of
a Fabry-Pérot cavity with resonance frequency ωc and a MO
with an effective mass m, natural frequency ωm, and damp-
ing rate γm, coupled to the cavity field via radiation pressure
interaction and subjected to an external classical force F̃ext.
Furthermore, the system contains an ensemble of Na effective
two-level atoms trapped inside the cavity and interacting with
the cavity mode. The cavity mode is coherently driven by
a classical field of frequency ωL, input power PL, and wave-
length λL. Moreover, in the cavity it is injected into a squeezed
vacuum field, provided by the finite bandwidth output of an
optical parametric oscillator (OPO), which is assumed to be
resonant with the cavity mode. The atomic ensemble interacts
nonresonantly with the intracavity field and a classical control
field. For sufficiently large Na, the atomic ensemble behaves
effectively as a negative-mass oscillator (NMO) by assuming
that the atoms are initially prepared in the higher-energy level
[54].

After applying the bosonization procedure on the ultracold
atomic ensemble using the Holstein-Primakoff transforma-
tion, the Hamiltonian of the system in the frame rotating at
driving laser frequency ωL can be simplified as (for more de-
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FIG. 1. (Color online) Schematic description of the system under
consideration. The system consists of a Fabry-Pérot cavity, in which
a single-mode MO is coupled to the radiation pressure of the cav-
ity field. Furthermore, the cavity contains an ensemble of effective
two-level atoms with an effective transition rate ωσ = ωm that can be
controlled by a classical laser field with Rabi frequency ΩR. The
atomic ensemble behaves effectively as a negative-mass oscillator
under Faraday interaction and bosonization process [54]. An exter-
nal classical force F̃ext is exerted on the MO acting as a sensor or test
mass. The cavity is also driven by a coherent light field with power
PL and frequency ωL. A squeezed vacuum light at resonance with
the cavity mode, ωsq = ωc, is also injected into the cavity. The cavity
output field enters the homodyne detection setup in order to extract
information on the external force and imprinted in the modulated
phase of the cavity output field.

tails of the derivation of the Hamiltonian, see Ref. [54])

Ĥ =~∆c0â†â + ~ωmb̂†b̂ − ~ωmd̂†d̂ + ~g0â†â(b̂ + b̂†)

+
~

2
G(â + â†)(d̂ + d̂†) − i~EL(â − â†) + ĤF , (1)

where ∆c0 = ωc − ωL is the cavity detuning, EL =
√

PLκ/~ωL
is the pumping rate of the input laser with κ the cavity damping
rate , G denotes the collective atomic coupling with the cavity
field, and g0 = ωcxzpf/L is the single-photon optomechanical
coupling strength, where xzpf =

√
~/2mωm is the zero-point

fluctuation of the MO and L is the resting length of the cavity.
Note that we have considered only the linear radiation pres-
sure coupling between the MO and the cavity field. Further-
more, the operators â, b̂, and d̂ are the annihilation operators
of the cavity field, MO, and an effective negative-mass MO
due to the bosonization of the atomic ensemble, respectively.
The first three terms of Eq. (1) represent the free Hamiltonians
of the cavity field, the MO, and the NMO, respectively. The
fourth term of the Hamiltonian denotes the optomechanical
coupling between the cavity field and the MO, while the fifth
term refers to the coupling between the atomic ensemble and
the cavity field. The sixth term accounts for the driving field
and the last term stands for the contribution of the external
classical force exerted on the MO, which is given by

ĤF = F̃extxzpf(b̂ + b̂†). (2)
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III. DYNAMICS OF THE SYSTEM

The dynamics of the system is determined by the QLEs as

˙̂a =−(i∆c0+
κ

2
)â −ig0â(b̂+b̂†)−i

G
2

(d̂+d̂†)+EL+
√
κâin, (3a)

˙̂b = −(iωm +
γm

2
)b̂ − ig0â†â +

i
√

2m~ωm

[
η̂(t) + F̃ext

]
, (3b)

˙̂d = (iωm −
Γ

2
)d̂ − i

G
2

(â + â†) +
√

Γd̂in, (3c)

where Γ denotes the collective atomic dephasing rate. Here
we have introduced three noise processes, which include the
thermal noise acting on the MO that is represented by the
Brownian thermal noise operator η̂(t), the optical input vac-
uum noise âin, and the optical vacuum fluctuations affecting
the atomic transitions represented by the bosonic operator d̂in.
These noises are uncorrelated, and the only nonvanishing cor-
relation functions are

〈âin(t)âin(t′)†〉 = 〈d̂in(t)d̂in(t′)†〉 = δ(t − t′), (4a)
〈η̂(t)η̂(t′)〉 ' ~mγm

[
ωm(2n̄m + 1)δ(t − t′) + iδ′(t − t′)

]
, (4b)

where n̄m =
[
exp(~ωm/kBT )− 1

]−1 is the mean phonon num-
ber of a thermal bath with temperature T and δ′(t − t′) is the
time derivative of the Dirac delta function. In the derivation of
Eq. (4b), we have assumed that the mechanical quality factor
Qm = ωm/γm is very large, justifying the weak damping limit
where the Brownian noise can be treated as a Markovian noise
[59].

We are interested in the regime where the cavity field and
the atomic ensemble are strongly driven and the system is in
the weak optomechanical coupling limit. Under these condi-
tions, we can linearize the dynamics of quantum fluctuations
around the semiclassical steady state by considering system
operators as Â → 〈Â〉 + δÂ so that the higher orders of quan-
tum fluctuation can be neglected with respect to the mean field
〈Â〉 in the system dynamics. By introducing the amplitude
and phase quadratures of the three modes of the system as
X̂A = (Â + Â†)/

√
2 and P̂A = (Â − Â†)/i

√
2, respectively,

with A = a, b, and d, the linearized QLEs for the quantum
fluctuations are obtained as

δ ˙̂Xa = ∆cδP̂a −
κ

2
δX̂a +

√
κX̂in

a , (5a)

δ ˙̂Pa = −∆cδX̂a − gδX̂b −GδX̂d −
κ

2
δP̂a +

√
κP̂in

a , (5b)

δ ˙̂Xb = ωmδP̂b, (5c)

δ ˙̂Pb = −ωmδX̂b − γmδP̂b − gδX̂a +
√
γm( f̂ + Fext), (5d)

δ ˙̂Xd = −ωmδP̂d −
Γ

2
δX̂d +

√
ΓX̂in

d , (5e)

δ ˙̂Pd = ωmδX̂d −GδX̂a −
Γ

2
δP̂d +

√
ΓP̂in

d , (5f)

where g = 2g0αs is the enhanced optomechanical coupling,
∆c = ∆c0 − 2g2

0|αs|
2/ωm is the effective cavity detuning, and

αs is the steady-state solution of the QLE for the cavity field
which can always be considered as a real number without any

loss of generality. We have also defined the scaled mechanical
thermal noise and external forces as f̂ (t) = η̂(t)/

√
~mωmγm

and Fext = F̃ext/
√
~mωmγm, respectively.

We mention that modeling the system dynamics with the
linearized quantum Langevin equations is valid in the strong
drive (ncav � 1 or g/g0 � 1) and weak single-photon op-
tomechanical coupling regime (g0 � ωm, κ). Typically, with
103 intracavity photons, linearization works already well and
optomechanical force sensing is used just in this linearized
regime.

In the next section, we will study the homodyne detection
of a generic quadrature of the cavity output field aiming at
force detection in the presence of the CQNC condition and
squeezed vacuum injection.

IV. ENHANCEMENT OF CQNC IN THE CASE OF THE
HOMODYNE MEASUREMENT OF A GENERIC OPTICAL

QUADRATURE

An external force acting on the MO shifts its position and
changes the cavity effective length, which is directly reflected
in the phase of the cavity output field. Consequently, we have
to measure the quadratures of the cavity output field to extract
the signal associated with the external force. The quadrature
of the cavity output field relates to that of the intracavity field
via the well-known input-output relation âout =

√
κδâ − âin.

In order to choose an appropriate quadrature, we define the
generalized quadrature of the cavity output field using a linear
combination of both amplitude and phase as

P̂out
a,θ = cos θP̂out

a − sin θX̂out
a , (6)

where θ represents the phase angle of the local oscillator (LO)
of the homodyne detector, which should be optimized so that
the added noise imprinted to the output field spectrum is mini-
mized. We recall that the optomechanical interaction imprints
the optical amplitude quadrature noise on the mechanical res-
onator, which is then mapped onto the phase quadrature of
the optical output field, a process which is also at the origin
of ponderomotive squeezing. The resulting noise correlations
between the optical amplitude and phase quadratures allow
the measurement of unwanted noises to be reduced for an ap-
propriate choice of homodyne phase angle and these correla-
tions are those at the basis of the success of the variational
readout method. Recently, variational homodyne readout has
been employed in an ultracoherent optomechanical system,
and off-resonant force and displacement sensitivity reaching
1.5 dB below the SQL have been demonstrated [58].

Now, by solving Eqs. (5) for δX̂a and δP̂a in the frequency
domain and using the input-output relation, we obtain the gen-
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eralized quadrature P̂out
a,θ as

P̂out
a,θ (ω) =

√
κχ′auθ

{
− g
√
γmχm( f̂ + Fext)

+
√
κ
[(

1 −
1
κχ′a

)
P̂in

a − χa∆cX̂in
a

]
−G
√

Γχd

[
P̂in

d −
Γ/2 + iω
ωm

X̂in
d

]
+
√
κχa(g2χm + G2χd)X̂in

a

}
− χa∆c sin θP̂in

a − (κχa − 1) sin θX̂in
a , (7)

in which we have defined uθ = cos θ − χa∆c sin θ, and also
introduced the susceptibilities of the cavity field, the MO, and
the atomic ensemble, respectively as

χa(ω) =
1

κ/2 + iω
, (8a)

χm(ω) =
ωm

(ω2
m − ω

2) + iωγm
, (8b)

χd(ω) =
−ωm

(ω2
m − ω

2 + Γ2/4) + iωΓ
, (8c)

and the modified cavity mode susceptibility as

1
χ′a(ω)

=
1

χa(ω)
− χa(ω)∆c

[
g2χm(ω) + G2χd(ω) − ∆c

]
. (9)

Equation (7) denotes the experimental signal which has to be
measured to estimate the external force Fext. We define the
generalized estimated external force as

F̂est
ext,θ ≡

−1
g
√
κγmχ′aχmuθ

P̂out
a,θ ≡ Fext + F̂N,θ, (10)

in which F̂N,θ is the generalized added force noise, given by

F̂N,θ = f̂ −
√

κ

γm

1
gχm

[(
1 −

1
κχ′a

)
P̂in

a − χa∆cX̂in
a

]
+

√
Γ

γm

Gχd

gχm

[
P̂in

d −
Γ/2 + iω
ωm

X̂in
d

]
−

√
κ

γm

g2χm + G2χd

gχm
χaX̂in

a

+
B

g
√
κγmχ′aχm

[
χa∆cP̂in

a +
(
κχa − 1

)
X̂in

a
]
. (11)

Here, we have defined B = sin θ/uθ. According to Eq. (11),
there are five different contributions to the added force noise.
The first term corresponds to the thermal noise of the MO.
The second term refers to the shot noise contribution associ-
ated with the cavity field, which is significant especially at low
driving power, and it is modified by the squeezed injection, as
demonstrated in [54]. The third term represents the atomic
noise originating from the interaction between the atomic en-
semble and the cavity field. The fourth term denotes the back-
action noise due to the radiation pressure coupling of the cav-
ity field with the MO and the atomic ensemble, which grows

by increasing the strength of the cavity field. The last term
represents the contribution to the added force noise arising
from the phase of the homodyne detection of the cavity out-
put field. Only a moment’s thought is needed to conclude that
this term vanishes for θ = 0.

A. Generalized force noise power spectral density

To quantify the sensitivity of the force measurement, we
define the generalized force noise power spectral density as

S F,θ(ω)δ(ω − ω′) =
1
2
[
〈F̂N,θ(ω)F̂N,θ(−ω′)〉 + c.c.

]
. (12)

In the steady state, κ � ω, and in the presence of the
squeezed vacuum injection, the generalized spectral density
of the added force noise is given by (see Appendix A)

S F,θ(ω) =S th(ω) + S f (ω) + S at(ω) + S b(ω) + S h(ω)
+ S f b(ω) + S f h(ω) + S bh(ω), (13)

where the first five terms correspond to the noise contributions
of the Brownian motion of the MO, the cavity field, the atomic
ensemble, the BA, and the homodyne phase, respectively:

S th(ω) = kBT/~ωm, (14)

S f (ω) =
κ

g2γm|χm(ω)|2

{
∆cIm

[
Z(ω)(1 − 2iImM)

]
+

(
1 +

1
κ2|χ′a(ω)|2

−
2Reχ′a(ω)
κ|χ′a(ω)|2

)(
N +

1
2
− ReM

)
+

4∆2
c

κ2

(
N +

1
2

+ ReM
)}
, (15)

S at(ω) =
|A(ω)|2

2

(
1 +

ω2 + Γ2/4
ω2

m

)
, (16)

S b(ω) =
4g2

κγm

∣∣∣∣∣1 +
G2

g2 R(ω)
∣∣∣∣∣2(N +

1
2

+ ReM
)
, (17)

S h(ω) =
2B2

g2κγm|χ′a(ω)|2|χm(ω)|2

{(1
2

+
2∆2

c

κ2

)(
N +

1
2

)
+

(1
2
−

2∆2
c

κ2

)
ReM +

2∆c

κ
ImM

}
. (18)

Furthermore, the last three terms of Eq. (13) refer to the quan-
tum interferences associated with the joint action of the dif-
ferent modes of the system. The term S f b(ω) relates to the
quantum interference between the cavity field and the atomic
ensemble, S f h(ω) originates from the quantum interference
between the cavity field and the homodyne phase contribution,
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and S bh(ω) corresponds to the backaction-homodyne phase
interference:

S f b(ω) =
κ

γm
Im

[
(2iImM − 1)

Z(ω)
χm(−ω)

(
1 +

G2

g2 R(ω)
)]

−
8∆c

κγm
Re

[
1 + (G2/g2)R(ω)

χm(−ω)

](
N +

1
2

+ ReM
)
,

(19)

S f h(ω) = −
B

g2γm|χm(ω)|2

{
2∆cRe

[ Z(ω)
χ′a(−ω)

](
N +

1
2
− ReM

)
− 2∆cRe

[
χa(ω)
χ′a(−ω)

](
N +

1
2

+ ReM
)

− Im
[
(2iImM + 1)

(4∆2
c/κ

2

χ′a(ω)
+

1 − κZ(−ω)
χ′a(−ω)

−
1

κ|χ′a(ω)|2

)]}
, (20)

S bh(ω) = −
2B
κγm

{
2∆c

κ
Im

[
(2iImM + 1)

1 + (G2/g2)R(ω)
χm(ω)χ′a(ω)

]
+ 2Re

[
1 + (G2/g2)R(ω)
χm(ω)χ′a(ω)

](
N +

1
2

+ ReM
)}
, (21)

where

Z(ω) = χa(ω)
(
1 −

1
κχ′a(−ω)

)
, (22a)

R(ω) =
χd(ω)
χm(ω)

, (22b)

A(ω) =
G
g

√
Γ

γm
R(ω). (22c)

Note that in the derivation of the power spectral density given
by Eq. (13), we used the fact that in the limit of ω/κ � 1
(resolved-sideband regime), the optical susceptibility can be
approximated as χa ' 2/κ (see Appendix C). Moreover, the
squeezing parameters M and N relate to the effective second-
order nonlinearity ε and cavity decay rate γ of the OPO as
M = (εγ/2)(1/b2

x + 1/b2
y) and N = (|ε|γ/2)(1/b2

x − 1/b2
y) with

bx = γ/2 − |ε| and by = γ/2 + |ε| (see Appendix D for exper-
imental constraints on the squeezing parameter N to consider
its maximum value in the following graphs in figures). We
recall that with the chosen units, the noise spectral density is
dimensionless and in order to convert it to N2 Hz−1 units we
have to multiply by the scale factor ~mωmγm.

B. CQNC Conditions

The CQNC effect, which refers to the perfect cancellation
of the backaction noise at all frequencies, leads to significant
noise suppression in force detection. According to the fourth
term of Eq. (11), for g = G and χd = −χm, the mechani-
cal backaction and the atomic backaction contributions to the

added force noise cancel each other at all frequencies and
hence they offer noise and antinoise paths to the signal force.
Strictly speaking, the CQNC refers to the perfect matching of
(i) the mirror-field with the atom-field couplings, i.e., g = G,
(ii) the mechanical dissipation rate with the dephasing rate of
the atoms, i.e., Γ = γm, and (iii) the mechanical susceptibility
χm with the atomic susceptibility χd, which is realized when
the MO has a high quality factor.

One can easily conclude that in the presence of the perfect
CQNC conditions we have 1 + (G2/g2)R(ω) = 0 and hence,
S b(ω) = S f b(ω) = S bh(ω) = 0. As a consequence, under
perfect CQNC conditions, the generalized spectral density of
the added force given by Eq. (13) reduces to

S F,θ(ω) =
kBT
~ωm

+
1
2

(
1 +

ω2 + γ2
m/4

ω2
m

)
+

κ

g2γm|χm(ω)|2

[1
2
µ2

+ + Σ(N,M, y) + Θ(N,M, y, θ)
]
,

(23)

where we have introduced the normalized detuning as y ≡
∆c/κ and µ± ≡

1
2 ± 2y2. The functions Σ and Θ represent

the contributions of the injected squeezing and the homodyne
phase to the optomechanical shot noise, respectively, and are
given by

Σ(N,M, y) = µ2
+N + (8y2 − µ2

+)ReM − 4yµ−ImM, (24a)

Θ(N,M, y, θ) = 2B2
[
µ3

+

(
N +

1
2

)
+ µ−µ

2
+ReM + 2yµ2

+ImM
]

+ B

[
4yµ2

+

(
N +

1
2

)
+ 4yµ+(µ− + 1)ReM

− 2µ+(µ− − 4y2)ImM
]
. (24b)

Note that with the chosen units, the spectral density of the
added force noise is dimensionless, and it should be multi-
plied by the scale factor ~mωmγm in order to convert it to
N2 Hz−1 units. According to Eq. (23), the homodyne phase
contribution to the noise spectrum can be considered as a shot-
noise-like term and consequently we expect that it decreases
by increasing the strength of the cavity field.

We have to compare the noise spectrum in our scheme with
that of a bare optomechanical setup, which serves as a stan-
dard system formed by an optical cavity coupled to a MO. The
SQL for stationary force detection comes from the minimiza-
tion of the force spectrum of the standard system at a given
frequency over the driving power, which is given by [54]

S SQL(ω) =
1

γm|χm(ω)|
. (25)

As mentioned in [54], by considering M = |M| exp(iφ),
in the absence of the homodyne detection (θ = 0), the opti-
mized parameters for the injected squeezing in order to sup-
press the shot noise contributions as much as possible are
|M| =

√
N(N + 1) (pure squeezing) and

φopt(y) =
4yµ−

µ2
+ − 8y2

, (26)
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which can be obtained by minimizing the noise spectrum
given by Eq. (23) over the phase of the squeezing parame-
ter φ for θ = 0. Since we want to make a proper comparison
between the cases of θ = 0 and θ , 0, we have assumed that
the phase of the squeezing parameter in our scheme, even for
θ , 0, is given by Eq. (26).

The appropriate quadrature of the cavity output field is de-
termined by minimizing the noise spectrum over the homo-
dyne phase angle θ, which under the perfect CQNC condi-
tions, yields

tan θopt = −
K/2L

1 − y(K/L)
, (27)

where

K = 4yµ2
+

(
N +

1
2

)
+ 4yµ+(µ− + 1)ReM − 2µ+(µ− − 4y2)ImM,

(28a)

L = 2µ3
+

(
N +

1
2

)
+ 2µ−µ2

+ReM + 4yµ2
+ImM. (28b)

By substituting Eqs. (28) in Eq. (23), the minimized noise
spectrum in the presence of the perfect CQNC is obtained as

S min
F,θopt

(ω) =
kBT
~ωm

+
1
2

(
1 +

ω2 + γ2
m/4

ω2
m

)
+

κ

g2γm|χm(ω)|2

[1
2
µ2

+ + Σ(N,M, y) −
K2

4L

]
. (29)

In the case when the cavity is driven at resonance, i.e., y = 0,
one can easily conclude that φopt = 0, K = 0, and hence,
θopt = 0. Consequently, in this case, the homodyne phase con-
tribution to the shot noise vanishes and does not improve the
sensitivity of the force detection. This means that under per-
fect CQNC conditions and at cavity resonance (∆c = 0), the
phase quadrature P̂out

a is the optimal output quadrature which
has to be measured to extract the external force signal. In the
case of off-resonance cavity driving, i.e., y , 0, as demon-
strated in Eq. (29), in the regime where the function L given
by Eq. (28) becomes positive, the homodyne phase contribu-
tion to the shot noise leads to the reduction of the noise spec-
trum, which results in the improvement of the force detection
sensitivity. Note that the advantage of our scheme against the
simple phase detection scheme in Ref. [54] is given by

δS CQNC ≡ S min
F,θopt

(ω) − S F,θ=0(ω)

= −
κ

4g2γm|χm(ω)|2

(K2

L

)
, (30)

where δS CQNC refers to a noise reduction advantage, which
can be redefined in decibel scale as

δS CQNC =10 log
( S min

F,θopt
(ω)

S F,θ=0(ω)

)
. (31)

Let us now illustrate how the contribution of the rotated
quadrature defined by Eq. (6), which is equivalent to the effect
of the homodyne phase, together with the squeezed vacuum
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FIG. 2. (Color online) Force noise spectral density versus ω/ωm,
with an optimized squeezed injected light, i.e., |M| =

√
N(N + 1)

with N = 10, and φ = φopt. The results are plotted for the case of
off-resonance cavity driving, with y = 1/2 (red dashed line for θ = 0
and purple dotted line for θ = θopt) and y = 1 (blue dash-dotted line
for θ = 0 and orange dash–double-dotted line for θ = θopt). The
black solid line corresponds to the SQL. The other parameters are
ωm/2π = 300 kHz, γm/2π = 30 mHz, g0/2π = 300 Hz, λL = 780 nm,
PL = 24 µW (i.e., g/g0 = 4.91 × 103), and κ/2π = 10 MHz.
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FIG. 3. (Color online) Noise reduction advantage δS ICQNC in decibel
scale versus ω/ωm, with an optimized squeezed injected light, i.e.,
|M| =

√
N(N + 1) with N = 10, and φ = φopt. Different curves

correspond to y = 0 (back dotted line), y = 0.5 (blue solid line), and
y = 1 (red dashed line). The other parameter values are the same as
those in Fig. 2.

field injection into the cavity under the CQNC conditions, af-
fects the noise cancellation. We consider the experimentally
feasible system parameters [54] ωm/2π = 300 kHz, γm/2π =

30 mHz, g0/2π = 300 Hz, λL = 780 nm, PL = 24 µW
(i.e., g/g0 = 2αs = 2

√
n̄cav = 2

√
PL/~ωLκ = 4.91 × 103),

κ/2π = 10MHz, and effective mass m = 1 ng.
Since under perfect CQNC conditions and resonant cavity

driving (∆ = 0) the optimized quadrature is the phase quadra-
ture, which has been investigated in Ref. [54], in Sec. IV B we
focus our attention on the nonzero detuning case in the perfect
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FIG. 4. (Color online) Noise reduction advantage in decibel scale
versus ω/ωm. Here we set the normalized detuning y = 1

2 and con-
sider different values for the squeezing parameter: N = 0 (purple
dotted line), N = 5 (blue dashed line), N = 15 (red dash-dotted line),
and N = 25 (black solid line). The other parameter values are the
same as those in Fig. 2.
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FIG. 5. (Color online) Force noise spectral density versus (g/g0)2, at
the frequency ω = ωm + 4γm. Here we set the normalized detuning
y = 1

2 , and consider different values for the squeezing parameter:
N = 0 (green solid line for θ = θopt and brown dotted line for θ = 0),
N = 5 (blue dashed line for θ = θopt and orange densely dashed line
for θ = 0), N = 15 (red dash–triple-dotted line for θ = θopt and
yellow dash-dotted line for θ = 0), and N = 25 (gray dash–double-
dotted line for θ = θopt and black densely dash–double-dotted line for
θ = 0). The other parameter values are the same as those in Fig. 2.

CQNC condition. In Sec. IV C we investigate both zero and
nonzero detuning in the imperfect CQNC condition.

In Fig. 2 the spectral density of the force noise optimized
over the squeezing parameters [M =

√
N(N + 1) and φopt]

is plotted versus the normalized frequency ω/ωm. This plot
clearly shows the advantage of the homodyne detection with
an optimized phase angle θopt in reducing the noises present in
the force spectrum. In Fig. 3 we plot the spectrum of the noise
reduction advantage δS ICQNC given by Eq. (31) for different
detunings. This illustrates that in the close vicinity of mechan-
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FIG. 6. (Color online) Noise reduction advantage in decibel scale
versus (g/g0)2, at the frequency ω = ωm + 4γm. Here we set the
normalized detuning y = 1

2 , and consider different values for the
squeezing parameter: N = 0 (purple dotted line), N = 5 (blue dashed
line), N = 15 (red dash-dotted line), and N = 25 (black solid line).
The other parameter values are the same as those in Fig. 2.

ical resonance frequency ωm, the noise reduction advantage is
greater for larger values of cavity detuning, while it vanishes
when the cavity drives resonantly, as expected. The spectrum
of the noise reduction advantage δS CQNC for different values
of squeezing parameter N is plotted in Fig. 4. This figure
reveals that the noise reduction advantage increases at all fre-
quencies as the squeezing parameter N grows. The effect of
the cavity driving power, which is proportional to (g/g0)2, on
the force noise spectrum is illustrated in Fig. 5. This figure
shows that the variational homodyne CQNC reduces the force
noise spectrum, notably at low driving powers. In fact, homo-
dyne detection at the optimized phase angle θopt leads to the
third term in the second line of Eq. (29), which is shot-noise-
like, i.e., proportional to 1/g2, and negative, hence reducing
the total shot-noise contribution to the force noise spectrum
compared to the standard case when θ = 0 [see Eqs. (29) and
(30)].

This result can also be observed in Fig. 6, which illustrates
the effect of the cavity driving power on the noise reduction
advantage. As it is evident, the noise reduction advantage di-
minishes as the cavity driving power increases. Moreover, in-
creasing the squeezing parameter N leads to an increase of
the noise reduction advantage, which, interestingly, rises up
to 40 dB for N = 25.

C. Imperfect CQNC Conditions

1. Resonant case (∆c = 0)

Perfect backaction noise cancellation requires that the me-
chanical parameters match perfectly to the atomic ones. As
discussed in [54], one can make the resonance frequency
of the collective atomic mode equal to the mechanical reso-
nance frequency ωm by tuning the magnetic field exerted on
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the atomic ensemble. Moreover, by adjusting the cavity and
atomic driving rates, one can match the field-atom coupling
G to the field-mirror coupling g, and also match the two de-
cay rates Γ and γm. However, in practice, matching the two
latter parameters is more involved and therefore it is relevant
to investigate if variational homodyne detection can be use-
ful in the absence of perfect matching of the coupling and
decay rates. First, we consider the zero detuning case, i.e.,
∆c = 0. Here we still consider the optimum values for the
squeezing parameters obtained earlier under the CQNC con-
ditions, i.e., optimized pure squeezing with |M| =

√
N(N + 1)

and φ = φopt(0) = 0. Minimizing the generalized spectral den-
sity of the force noise given by Eq. (13) over the homodyne
phase angle θ yields

tan θopt =
4g2

κ
|χm(ω)|2Re

[
1 + (G2/g2)R(ω)

χm(ω)

]
(32)

for the optimum homodyne phase. By substituting Eq. (32) in
Eq. (13), one can obtain the optimized force noise spectrum
as

S min
F,θopt

(ω) =
kBT
~ωm

+
Γ

2γm

G2

g2 R(ω)
(
1 +

ω2 + Γ2/4
ω2

m

)
+

κ

g2γm|χm(ω)|2

(
N +

1
2
−

√
N(N + 1)

)
+

4g2

κγm

∣∣∣∣∣1 +
G2

g2 R(ω)
∣∣∣∣∣2(N +

1
2

+
√

N(N + 1)
)

−
4g2

κγm

[
Re

(1 + (G2/g2)R(ω)
χm(ω)

)]2
|χm(ω)|2

N + 1
2 +
√

N(N + 1)
.

(33)

Here the last term corresponds to the subtraction associated
with the choice of the optimal homodyne phase θopt. It is
proportional to the squared optomechanical coupling g2 and
therefore, in the situation considered here, it can be treated
as a back-action-like term. Here we also have to take into
account that stability conditions imply that the squeezing pa-
rameter N cannot be too small, that is, one has to impose
that N > Nmin, and, in fact, for N < Nmin, the total force
noise spectrum of Eq. (33) becomes negative. Therefore, force
noise reduction is maximum close to the stability threshold,
close N = Nmin, which generally depends upon G/g, Γ/γm,
and also ω. For example, considering (G − g)/g = 10−3,
(Γ − γm)/γm = 10−2, and ω = ωm + 4γm, the numerical so-
lution of the nonlinear algebraic equation S F,θopt (ω) = 0 for
Nmin leads to Nmin = 0.168 403. According to Eq. (33), in the
case of imperfect CQNC and the resonant cavity driving, the
noise reduction brought by the homodyne phase optimization
is

δS ICQNC = −
4g2

κγm

[
Re

(
1 + (G/g)2R(ω)

χm(ω)

)]2

×
|χm(ω)|2

N + 1/2 +
√

N(N + 1)
, (34)

which can be rewritten in decibel scale.
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FIG. 7. (Color online) Spectral density of the force noise versus
ω/ωm, in the case of the resonant cavity driving ∆c = 0, with an
optimized squeezed injected light with φ = φopt(0) = 0, |M| =√

N(N + 1), and N = 0.2. We choose the mismatches between the
MO and the effective NMO parameters as (G − g)/g = 10−3 and
(Γ − γm)/γm = −0.2 (blue dash-dotted line for θ = 0 and red dashed
line for θ = θopt). The green dotted line and black solid line corre-
spond to the perfect CQNC and SQL, respectively. The other param-
eter values are the same as those in Fig. 2.

Figure 7 explicitly shows the force noise reduction associ-
ated with the optimization over the phase of the homodyne
detected quadrature: We have plotted the spectral density of
the force noise versus the frequency and compared the results
with the SQL of the force measurement and also with the case
of perfect CQNC. This figure shows that although the noise
spectrum under imperfect CQNC exceeds that under perfect
CQNC conditions, it still remains below the SQL in a broad
band around the resonance peak. Furthermore, it demon-
strates that for (G − g)/g = 10−3 and (Γ − γm)/γm = −0.2,
the variational readout of the cavity output field obviously
reduces the force noise spectrum around the resonance fre-
quency ω = ωm. The impact of coupling and decay rate mis-
matches on the noise reduction advantage is explicitly shown
in Fig. 8. This figure shows that the noise reduction advan-
tage is more sensitive to the coupling rate mismatch than to
the decay rate mismatch. For instance, when the coupling rate
mismatch is about 0.5% (G/g ' 0.995), a 2.0% variation of
the decay rate mismatch (from Γ/γm = 1.02 to Γ/γm = 1.04)
leads to a nearly 4 dB change in the noise reduction advan-
tage, while a 2% variation of the coupling rate mismatch, at
any decay rate mismatch, is equivalent to at least a 12 dB
change in the noise reduction advantage. Furthermore, this
figure demonstrates that when the coupling rates are perfectly
matched (G = g), the noise reduction advantage is negligi-
ble. This is due to the fact that for G = g, by considering
the system parameters as in Fig. 7, we can conclude that (see
Appendix B)

δS ICQNC ≈ −
4g2

κγm

(1 − Γ/γm)2

N + 1/2 +
√

N(N + 1)
, (35)

which is negligible for any values of Γ/γm within the inter-



9

0.98 0.99 1.00 1.01 1.02
G/g

0.850

0.925

1.000

1.075

1.150
/

m

0
3
6
9
12
15
18
21
24

S
ICQ

N
C  (dB)

FIG. 8. (Color online) Noise reduction advantage (in decibels), at
off-resonance frequency ω = ωm − 4γm versus the coupling mis-
match G/g (horizontal axis) and decay rate mismatch Γ/γm (vertical
axis). Here we consider an optimized squeezed injected light with
φ = φopt(0) = 0, |M| =

√
N(N + 1), and N = 0.126. In addition,

we assume that the cavity is driven at resonance ∆c = 0. The other
parameters are the same as those in Fig. 2.

val considered in Fig. 8. Moreover, Fig. 9 shows how the
squeezing parameter N affects the noise reduction advantage.
This figure shows that δS ICQNC increases as the squeezing pa-
rameter N decreases, and eventually it reaches its maximum
value. This behavior is expected from Eq. (34), which shows
that δS ICQNC is inversely proportional to N. As it is clear
from Fig. 9, in a large parameter range the noise reduction
advantage is less than 16 dB, while, as shown in the inset,
in a very tiny region close to the instability threshold, with
0.1250 ≤ N ≤ 0.1256 and 0.0387 ≤ (Γ − γm)/γm ≤ 0.0392,
the advantage brought by the optimization over the homo-
dyne phase in reducing the backaction noise can be improved
up to 40 dB. As we have already remarked, according to
Eq. (34), the noise reduction advantage improves as the cav-
ity driving power increases. This behavior is illustrated in
Fig. 10, which compares the force noise spectrum at the op-
timal homodyne phase (θ = θopt) with that for the standard
CQNC (θ = 0) studied in Ref. [54]. In the case of perfect
coupling rate matching G = g, choosing the optimal phase
quadrature provides no advantage in reducing the force noise
spectrum compared to the standard detection with θ = 0. In
contrast, in the absence of perfect matching of the coupling
rates, Fig. 10 shows the advantage of variational homodyne
readout in reducing the backaction noise. This result is con-
firmed in Fig. 11, in which the noise reduction advantage is
plotted versus the cavity driving power. Analogous to Fig. 10,
this figure shows that the noise reduction advantage increases
as the cavity driving power grows. For instance, in the case of
(G − g)/g = (Γ − γm)/γm = 0.1, homodyne CQNC leads to
the reduction of the force noise up to 35 dB over the standard
CQNC in Ref. [54] at sufficiently high driving powers.
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FIG. 9. (Color online) Noise reduction advantage (in decibels) at
off-resonance frequency ω = ωm − 4γm versus the dissipation rate
mismatch Γ/γm (vertical axis) and the squeezing parameter N (hori-
zontal axis) in the case of resonant cavity driving ∆c = 0. The cou-
pling rate mismatch is (G − g)/g = 0.02 and an optimized squeezed
light with φ = φopt(0) = 0 and |M| =

√
N(N + 1) is considered. The

other parameter values are the same as those in Fig. 2.

10 2 10 1 100 101 102 103 104 105

(g/g0)2

100

101

102

103

104

S F
(

)

FIG. 10. (Color online) Force noise spectrum versus (g/g0)2 at off-
resonance frequency ω = ωm + 4γm in the case of resonant cavity
driving ∆c = 0. An optimized squeezed injected light with φ =

φopt(0) = 0, |M| =
√

N(N + 1) and N = 0.1245 is considered. Differ-
ent curves correspond to G = g and (Γ − γm)/γm = 0.1 (green solid
line for θ = θopt and brown dotted line for θ = 0), (G − g)/g = 0.01
and (Γ − γm)/γm = 0.1 (blue dashed line for θ = θopt and orange
densely dashed line for θ = 0), (G − g)/g = −(Γ − γm)/γm = 0.1
(red dash–double-dotted line for θ = θopt and yellow densely dash–
double-dotted line for θ = 0), (G−g)/g = 0.2 and (Γ−γm)/γm = −0.1
(purple dash-dotted line for θ = θopt and black dash–triple-dotted line
for θ = 0). The other parameter values are the same as those in Fig. 2.

2. off-resonant case (∆c , 0)

In this section we consider imperfect CQNC conditions
when the cavity is driven off-resonance (∆c , 0). We de-
rived the most general form of the force noise spectrum ear-
lier in Sec. IV A. Here we minimize the force noise spectrum
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FIG. 11. (Color online) Noise reduction advantage (in decibels) ver-
sus (g/g0)2 at off-resonance frequency ω = ωm + 4γm in the case
of resonant cavity driving ∆c = 0. An optimized squeezed injected
light with φ = φopt(0) = 0, |M| =

√
N(N + 1), and N = 0.1245

is considered here. Different curves correspond to G = g and
(Γ − γm)/γm = 0.1 (green dotted line), (G − g)/g = 0.01 and
(Γ − γm)/γm = 0.1 ( blue dashed line), (G − g)/g = 0.05 and Γ = γm

(red densely dashed line), (G − g)/g = 0.1 and Γ = γm (purple solid
line), (G − g)/g = (Γ − γm)/γm = 0.1 (orange dash-dotted line), and
(G − g)/g = 0.2 and (Γ − γm)/γm = −0.1 (black dash–double-dotted
line). The other parameter values are the same as those in Fig. 2.

S F,θ(ω) given by Eq. (13) over the parameter θ and obtain

S min
F,θopt

(ω) = S F,θ=0(ω) −
K′2

4L′
, (36)

for the minimized force noise spectrum, in which

tan θopt = −
K′/2L′

1 − y(K′/L′)
(37)

is the optimum phase of the homodyne detection, and

L′ =
2

g2κγm|χ′a(ω)|2|χm(ω)|2

{
µ+

(
N +

1
2

)
+ µ−ReM

+ 2yIm(M)
}
, (38a)

K′ =
1

g2γm|χm(ω)|2

{
4∆cRe

[
Z(ω)
χ′a(−ω)

]
ReM

+ Im
[
(2iImM + 1)

( 4y2

χ′a(ω)
−

1
κ|χ′a(ω)|2

+
1 − κZ(−ω)
χ′a(−ω)

)]}
−

2
κγm

{
2Re

[1 + (G/g)2R(ω)
χm(ω)χ′a(ω)

]
(N +

1
2

+ ReM)

+ 2yIm
[
(2iImM + 1)

1 + (G/g)2R(ω)
χm(ω)χ′a(ω)

]}
. (38b)

Similar to the previous cases, the advantage of our optimized
CQNC scheme in reducing the force noise over the standard

CQNC is determined by the noise reduction advantage

δS ICQNC = −
K′2

4L′
, (39)

which implies that our scheme is advantageous as long as
L′ is positive. In Fig. 12 we compare the force noise spec-
trum in our scheme with that considered in [54] and with
the SQL of the force measurement. According to this figure,
we see that the variational homodyne CQNC with optimized
quadrature phase mitigates the effect of imperfect matching
conditions. Our numerical calculations demonstrate that the
noise reduction advantage is more sensitive to the coupling
rate mismatch rather than to the decay rate mismatch such
that for y = 1 and the optimum parameters for squeezed
injected light such as φ = φopt(1) and |M| =

√
N(N + 1),

with N = 10, the noise reduction advantage is suddenly in-
creased by 16 dB as the coupling rate mismatch grows. Fig-
ure 13 shows that noise reduction is amplified as N increases,
such that for (Γ − γm)/γm = 0.2 and (G − g)/g > 0.015
the noise reduction advantage can be increased by 15 dB for
10 < N < 25. We also investigate how the cavity driving
power affects the noise reduction advantage in Figs. 14 and
15, which demonstrate the variation of the force noise spec-
trum and the noise reduction advantage versus the cavity driv-
ing power, respectively. According to Fig. 15, although the
noise reduction remains nearly constant in a wide range of
driving powers, i.e., (g/g0)2 < 105, it decreases as the driv-
ing power grows and eventually vanishes at a specific driving
power which is determined by solving the equation K′ = 0
[Eq. (38b)] for (g/g0)2. For example, when the cavity detun-
ing is ∆c/κ = 1, and the coupling rate and the decay rate mis-
matches are (G − g)/g = 0.1 and (Γ − γm)/γm = 0.2 , respec-
tively, the homodyne–CQNC with an optimized phase angle
θopt shows a 18 dB advantage in reduction of the force noise
over the standard CQNC.

V. SENSITIVITY, SNR, AND SIGNAL RESPONSE
AMPLIFICATION

In this section it is worthwhile to clarify the advantage of
the variational homodyne readout CQNC over the standard
CQNC in sensitivity, SNR, and also in signal-response ampli-
fication. We follow the approach introduced in Refs. [47, 53]
to obtain these quantities. Based on Eq. (10), there are two
contributions to the estimated external force obtained from the
experimental signal: The first is the external classical force
exerted on the MO, i.e., Fext, and the second one is the added
force noise F̂N,θ, given by Eq. (11), which yields the spectral
density of the added force noise S F,θ(ω) obtained in Eq. (13).
The SNR< is defined as the ratio of the signal to the variance
of the noise, i.e., the square root of the S F,θ(ω) [42], as

< ≡
|Fext(ω)|√

S F,θ(ω)
. (40)

The sensitivity of a force sensor S(ω) is defined as the mini-
mum magnitude of the force signal Fext(ω) for which the SNR
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FIG. 12. (Color online) Spectral density of the force noise S F(ω) ver-
sus the normalized frequency ω/ωm, in the case of the off-resonance
cavity driving with ∆c/κ = 1. An optimized squeezed injected light
with |M| =

√
N(N + 1) and N = 1 is considered. Different curves

correspond to (G − g)/g = 10−5 and Γ = γm (blue dashed line for
θ = 0 and red dotted line for θ = θopt);the black solid line corre-
sponds to the SQL. The other parameter values are the same as those
in Fig. 2.
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FIG. 13. (Color online) Noise reduction advantage (in decibels) ver-
sus the coupling rate mismatch (horizontal axis) and the parameter
N (vertical axis), at off-resonance frequency ω = ωm − 4γm and in
the case of off-resonant cavity driving with ∆c/κ = 1. An optimized
squeezed injected light with |M| =

√
N(N + 1) is considered here.

We also assume that the decay rate mismatch is (Γ − γm)/γm = 0.2.
The other parameter values are the same as those in Fig. 2.

of the force measurement becomes one, i.e., < = 1. From
Eq. (40), the sensitivity of the force sensor considered here is
given by

S(ω) =
√

S F,θ(ω). (41)

Let us now examine the advantage of the present scheme in
which we optimize the phase of the detected quadrature com-
pared to the standard CQNC studied in Ref. [54], in improving
the force measurement sensitivity. We compare the results at
a given frequency, in this case at ω = ωm−0.2Qmγm = 0.8ωm.
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(
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FIG. 14. (Color online) Force noise spectrum versus (g/g0)2 at off-
resonance frequency ω = ωm − 4γm and in the case of off-resonant
cavity driving ∆c/κ = 1. An optimized squeezed vacuum injected
light with φ = φopt(1), |M| =

√
N(N + 1), and N = 20 is considered.

Different curves correspond to (G − g)/g = 0.05 and (Γ − γm)/γm =

0.1 (green solid line for θ = θopt and brown dotted line for θ = 0),
(G−g)/g = 0.1 and (Γ−γm)/γm = 0.15 (blue dashed line for θ = θopt

and orange dash-dotted line for θ = 0), and (G − g)/g = 0.15 and
(Γ − γm)/γm = 0.2 (purple dash–double-dotted line for θ = θopt and
red dash–triple-dotted line for θ = 0). The other parameter values are
as those in Fig. 2.

As mentioned in Sec. IV, under perfect CQNC conditions and
at resonant cavity driving, the noise reduction advantage van-
ishes and therefore there is no sensitivity improvement. How-
ever, for nonzero cavity detuning, e.g., ∆c/κ = 1

2 and the
squeezing parameter N = 10 (and still perfect CQNC), the
force sensitivity with the optimized phase angle θ = θopt is
1.759× 10−19 N Hz−1/2, while for θ = 0, i.e., standard CQNC,
it is 6.194 × 10−19 N Hz−1/2, i.e., an almost 71.60% improve-
ment. In the case of imperfect CQNC conditions, such that
(G − g)/g = 0.01 and (Γ − γm)/γm = 0.1, when ∆c = 0 and
the squeezing parameter is N = 0.125, the force sensitivity
for θ = θopt is 6.126 × 10−17 N Hz−1/2, while for θ = 0 is
6.514× 10−17 N Hz−1/2, which is about a 5.95% improvement
in sensitivity. It should be noted that the squeezing parame-
ter N = 0.125 considered in this case corresponds just to the
stability threshold value Nmin for which the noise reduction
advantage is maximum (see Fig. 9). Moreover, for the case in
which the imperfect CQNC holds such that (G − g)/g = 0.01
and (Γ−γm)/γm = 0.1, when the cavity detuning is ∆c = κ and
the squeezing parameter is N = 25, the force sensing sensitiv-
ity is 3.494 × 10−16 N Hz−1/2 by considering θ = θopt, while
for θ = 0 it is 3.804 × 10−16 N Hz−1/2, which is equivalent to
an 8.13% enhancement.

We now investigate the effect of the variational homodyne
detection scheme on the signal-response amplification. From
Eq. (10), one can rewrite the cavity homodyne-output spec-
trum as

S out
Pa,θ

(ω) = Rc(ω, θ)S F,θ(ω), (42)



12

101 103 105 107

(g/g0)2

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

S I
CQ

N
C
 (d

B)

FIG. 15. (Color online) Noise reduction advantage (in decibels) ver-
sus (g/g0)2 at off-resonance frequency ω = ωm − 4γm and in the
case of off-resonant cavity driving with ∆c/κ = 1. An optimized
squeezed vacuum injected light with φ = φopt(1), |M| =

√
N(N + 1),

and N = 20 is considered. Different curves correspond to (G−g)/g =

0.05 and (Γ − γm)/γm = 0.1 (purple solid line), (G − g)/g = −0.05
and (Γ − γm)/γm = −0.1 (red dotted line), (G − g)/g = 0.1 and
(Γ − γm)/γm = 0.2 (blue dash-dotted line), (G − g)/g = −0.1 and
(Γ − γm)/γm = −0.2 (green dashed line), and (G − g)/g = 0.2 and
(Γ − γm)/γm = 0.3 (orange dash–double-dotted line). The other pa-
rameter values are the same as those in Fig. 2.

in which

Rc(ω, θ) ≡ g2κγm|χ
′
a(ω)|2|χm(ω)|2[uθ]2, (43)

is the signal-response power. The homodyne-output signal
can be amplified only if Rc(ω, θ) > 1 (signal amplification
condition) [53]. We are interested in examining the output
signal amplification in regimes where the force noise reduc-
tion occurs simultaneously. In particular, we want to investi-
gate whether the homodyne detection with an optimized phase
angle is able to simultaneously reduce the force noise and am-
plify the output signal, compared to the standard case with
θ = 0. Note that the signal-response power for this latter case
is obtained by setting θ = 0 in Eq. (43). Since uθ=0 = 1, we
conclude that in the standard case of phase detection we have
Rst

c (ω) = g2κγm|χ
′
a(ω)|2|χm(ω)|2. It is worth defining a pa-

rameter to describe the advantage of the variational detection
scheme over the standard one in amplification of the output
signal as

R ≡
Rc(ω, θ)
Rst.

c (ω)
= [uθ]2, (44)

which we call the signal improvement. It is obvious thatR > 1
(signal improvement condition) denotes the regime where the
variational homodyne detection scheme provides an improved
signal, R = 1 corresponds to the regime in which variational
homodyne detection and phase detection schemes are equiv-
alent in terms of the output signal power, and in the regime
where R < 1 the variational homodyne detection scheme at-
tenuates the signal. As described in Sec. IV, the noise reduc-
tion advantage occurs at θ = θopt. Therefore, the variational

FIG. 16. (Color online) Power of signal-response versus ω/ωm under
the (a) perfect, and (b) imperfect CQNC conditions. Different curves
in (a) correspond to ∆c = κ (red dashed line for θ = θopt and black
dotted line for θ = 0) and ∆c = 0 (blue solid line for θ = θopt and
green dash-dotted line for θ = 0). In (b) we consider (G−g)/g = 10−4

and (Γ−γm)/γm = 0.01 for coupling rate and decay rate mismatches.
Different curves in (b) refer to ∆c = 0 (blue solid line for θ = θopt and
green dash-dotted line for θ = 0) and ∆c = κ (red dashed line for θ =

θopt and black dotted line for θ = 0). In both cases, we consider an
optimized vacuum injected light with φ = φopt(y), |M| =

√
N(N + 1),

and N = 10. The other parameter values are the same as those in
Fig. 2.

homodyne CQNC scheme simultaneously shows a noise re-
duction advantage and provides an improved signal if and only
if R|θopt = [uθopt ]

2 > 1.
Figure 16 shows the signal-response power Rc(ω, θ) versus

frequency ω/ωm. We recall that under perfect CQNC con-
ditions and zero detuning (∆c = 0), the optimized quadra-
ture for which the force noise spectrum is minimized is the
phase quadrature, i.e., θopt = 0. Consequently, the varia-
tional homodyne detection scheme shows no advantage over
the standard CQNC at all frequencies in terms of the signal-
response power, i.e., Rc(ω, θopt) = Rst

c (ω). We can conclude
that under the perfect CQNC conditions and resonant cavity
driving, the variational homodyne CQNC scheme does not
provide an improved signal, i.e., R = 1. In this case, both
variational homodyne detection and phase detection schemes
show signal amplification in a narrow band around the reso-
nance frequency ω = ωm [see Fig. 16(a), blue solid and green
dash-dotted lines]. In this case, the amplification bandwidth
is Bon

CQNC = 4.86 × 103γm.
When the perfect CQNC conditions hold and the cavity

is driven off-resonantly with ∆c = κ, the variational homo-
dyne CQNC strategy provides an improved signal at all fre-
quencies so that R ' 3.638. Although signal improvement,
i.e., R > 1, occurs at all frequencies, signal amplification,
i.e., Rc(ω, θ) > 1, is only observed in a narrow band around
the mechanical resonance frequency ω ' ωm [see Fig. 16(a),
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FIG. 17. (Color online) Signal amplification advantage versus ω/ωm,
considering the imperfect CQNC conditions with (G − g)/g = 10−4

and (Γ− γm)/γm = 0.1. Different curves correspond to ∆c = 0 (green
dashed line) and ∆c = κ (blue solid line). The other parameter values
are the same as those in Fig. 16.

red dashed and black dotted lines]. The amplification band-
width BCQNC for the variational homodyne CQNC scheme
with the optimized phase θopt is Bhom,off

CQNC = 1.45 × 104γm,
while for the standard phase detection scheme with θ = 0 it
is Bst,off

CQNC = 7.64 × 103γm. Interestingly, over a region with
the bandwidth of BCQNC around the mechanical resonance
frequency ωm, our optimization strategy shows simultaneous
noise reduction advantage and signal amplification.

Under imperfect CQNC conditions, the situation is a lit-
tle more complicated. We consider (G − g)/g = 10−4 and
(Γ − γm)/γm = 0.01 for the coupling rate and decay rate
mismatch, respectively. First, in the case of on-resonance
cavity driving (∆c = 0), Fig. 16(b) illustrates that the vari-
ational homodyne detection scheme shows signal amplifica-
tion, i.e., Rc(ω, θopt.) > 1, in an extremely narrow bandwidth
of Bhom,on

ICQNC = 1.51 × 103γm around the resonance frequency
ωm (blue solid line), while in this case the amplification band-
width for the standard phase detection scheme is Bst,on

ICQNC =

4.74 × 103γm (green dash-dotted line). Figure 17 shows the
signal improvement for the case of imperfect CQNC condi-
tions with (G−g)/g = 10−5 and (Γ−γm)/γm = 0.1. According
to this figure, when the cavity is driven on-resonance (dashed
green line), the variational homodyne detection scheme nei-
ther improves nor weakens the cavity signal at all frequencies
(R = 1), except in a bandwidth of 1.78 × 104γm around the
resonance frequency ωm. Within this narrow frequency band,
the variational homodyne detection scheme provides a weaker
signal compared to the phase detection scheme, i.e., R < 1.
As a result, in the case of imperfect CQNC conditions and on-
resonance cavity driving, the variational homodyne detection
scheme proposed here shows no advantage over the standard
phase detection scheme considered in [54] in terms of signal
amplification and improvement.

In the case of imperfect CQNC conditions and off-
resonance cavity driving with ∆c = κ, Fig. 16(b) demonstrates
that in the variational homodyne detection with θ = θopt, sig-

nal amplification, i.e., Rc(ω, θopt) > 1, does not occur at all,
except in an extremely narrow band around ω = ωm − 21.8γm
with a bandwidth of Bhom,off

ICQNC = 13.8γm. One should zoom in to
be able to observe this miniature amplification. In contrast, the
standard phase detection scheme leads to signal amplification,
i.e., Rst

c (ω) > 1, within a bandwidth of Bst,off

ICQNC = 7.61× 103γm
around the mechanical resonance frequency ωm. On the other
hand, Fig. 17 illustrates that our variational homodyne de-
tection scheme provides an improved signal, i.e., R > 1,
over the standard phase detection scheme at all frequencies,
except in an asymmetrical frequency band with the band-
width of ∆ωR<1 = 1.30 × 104γm around the mechanical res-
onance frequency ωm (blue solid line). Furthermore, accord-
ing to this figure, we observe a peak in signal improvement
at ω = 1.0014ωm with R = 5, while in other frequencies
(except in ∆ωR<1) the signal improvement is approximately
3.18. We conclude that in the case of imperfect CQNC condi-
tions and off-resonant cavity driving, the proposed strategy of
variational homodyne detection scheme provides an improved
signal at all frequencies (except in ∆ωR<1) versus the stan-
dard phase detection scheme considered in [54]. However,
we showed that the variational homodyne detection strategy
shows no signal amplification, while the standard phase de-
tection scheme results in signal amplification over a region
with the bandwidth of Bst,off

ICQNC (which is smaller than ∆ωR<1)
around ωm.

VI. SUMMARY, DISCUSSION AND OUTLOOK

In this paper we have studied the effect of the optimiza-
tion of the local phase oscillator in the homodyne detection
on the reduction of the backaction noise in force sensing based
on CQNC in a hybrid OMS consisting of an optomechanical
cavity equipped with an atomic ensemble as a NMO. We have
shown that when the parameters of the atomic ensemble are
chosen appropriately, it behaves effectively as a NMO, whose
interaction with the intracavity field creates an antinoise path
to the system dynamics, which allows the cancellation of the
backaction noise of the MO [53, 54]. We have also inves-
tigated the advantage of the proposed detection strategy in
enhancing force sensing sensitivity and amplification of the
signal-response power.

Under CQNC conditions, that is, the perfect matching of
atomic and mechanical parameters, the backaction noise of
the atomic ensemble cancels perfectly the mechanical one.
Moreover, the cavity field shot noise can be suppressed by
injecting a squeezed vacuum light into the cavity field. Un-
der these circumstances, force detection is limited only by
atomic noise, which is the price to pay for the realization of
this scheme. In this work, we demonstrated that a variational
homodyne measurement of the cavity output field where the
phase of the local oscillator is optimized allows further reduc-
tion of the force noise, and improves the force detector sen-
sitivity. We focused on two different situations, cases when
perfect CQNC conditions hold and when they do not.

When perfect CQNC conditions hold and the cavity field
is driven on-resonance (∆c = 0), no advantage is obtained in
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terms of noise reduction and signal improvement compared
to the standard case where the phase quadrature is measured.
On the other hand, in the off-resonance case (∆c , 0), one
has a remarkable reduction of the force noise in a broad band
around the mechanical resonance frequency ωm up to 40 dB
(see Fig. 4) and at the same time, an improvement of the
signal-response power by a factor of R = 3.638 occurs. In ad-
dition, the noise reduction increases with increasing squeez-
ing parameter N and with decreasing driving field strength.
Furthermore, in this case (perfect CQNC conditions and off-
resonant cavity driving), the variational homodyne CQNC
scheme broadens the frequency bandwidth over which the sig-
nal amplification occurs, i.e., Rc(ω, θopt) > 0.

Then we demonstrated that under the imperfect CQNC con-
ditions, when the cavity is resonantly driven (∆c = 0), the op-
timized homodyne measurement of the proper cavity output
field quadrature reduces the force noise in a wide frequency
range around the mechanical resonance frequency ωm. In this
case, the noise reduction is more sensitive to the coupling
rate mismatch rather than the decay rate mismatch. We also
showed that noise reduction due to the optimized homodyne
measurement is remarkable at large cavity driving powers so
that it can be increased up to 35 dB. On the other hand, we
have demonstrated that in this case, the variational homodyne
strategy reduces the signal amplification bandwidth compared
to the standard phase detection scheme. In terms of signal
improvement, homodyne detection with an optimized phase
angle θopt does not provide an improved signal compared to
the standard phase detection scheme, in the case of imperfect
CQNC conditions and on-resonance driving. In particular, in
this case, we showed that signal improvement is R = 1 at all
frequencies, except in the narrow bandwidth aroundωm within
which R < 1. Consequently, under these conditions, the varia-
tional homodyne CQNC shows simultaneous noise reduction
and signal amplification within the frequency bandwidth of
Bhom,on

ICQNC around ωm, but does not provide an improved signal
compared to the standard phase detection scheme.

In the case when the perfect CQNC conditions breaks and
the cavity is driven off-resonantly (∆c , 0), noise reduction is
again more sensitive to the coupling rate mismatch than to the
decay rate mismatch and we have found that noise reduction is
enhanced as the parameter N increases, such that for large val-
ues of N, it can reach 24 dB (see Fig. 13). We have also shown
that in the case of nonzero detuning, the variational homodyne
CQNC scheme shows almost no signal amplification, but pro-
vides an improved signal at all frequencies, except in ∆ωR<1
around ωm in which the output signal is weakened. In con-
trast, the phase detection scheme shows signal amplification
within the bandwidth of Bst,off

ICQNC around ωm. Consequently,
under the imperfect CQNC conditions and off-resonant cavity
driving, the variational homodyne detection strategy simul-
taneously reduces the force noise and provides an improved
signal at all frequencies (except in ∆ωR<1) while it does not
show signal amplification.

We have also demonstrated that the optimized homodyne
detection improves the force sensing sensitivity compared to
the standard phase detection scheme. The maximum value
of sensitivity improvement is 71.60%, obtained for the case

of perfect CQNC conditions and off-resonant cavity driving,
while the sensitivity improvement for imperfect CQNC con-
ditions reduces to less that 10%.

As an outlook, the proposed CQNC assisted by the vari-
ational readout can be extended to other optomechanical-
like platforms to enhance the performance of the measure-
ment, for example, in a levitated optomechanical-based sen-
sor [42], an ultracoherent optomechanical sensor [58], multi-
mode optomechanical arrays [49–51], a hybrid system [60],
and the ultrasensitive optomechanical gyroscope proposed in
[61] which is based on the CQNC method in dual cavity.
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Appendix A: Spectral density of the added force noise

Using Eq.(11), the power spectral density of the force noise
is written as

〈F̂N,θ(ω)F̂N,θ(−ω′)〉 = S th(ω,ω′) + S f (ω,ω′) + S at(ω,ω′)
+ S b(ω,ω′) + S h(ω,ω′) + S f b(ω,ω′) + S f h(ω,ω′)
+ S bh(ω,ω′), (A1)

where

S th(ω,ω′) = 〈 f̂ (ω) f̂ (−ω′)〉 , (A2)

S f (ω,ω′) =
κ

g2ωmχm(ω)χm(−ω′)

×

[(
1 −

1
κχ′a(ω)

)(
1 −

1
κχ′a(−ω′)

)
〈P̂in

a (ω)P̂in
a (−ω′)〉

− ∆cχa(−ω′)
(
1 −

κ

κχ′a(ω)

)
〈P̂in

a (ω)X̂in
a (−ω′)〉

− ∆cχa(ω)
(
1 −

1
κχ′a(−ω′)

)
〈X̂in

a (ω)P̂in
a (−ω′)〉

+ ∆2
cχa(ω)χa(−ω′) 〈X̂in

a (ω)X̂in
a (−ω′)〉

]
, (A3)
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S at(ω,ω′) =
G2Γχd(ω)χd(−ω′)

g2γmχm(ω)χm(−ω′)

[
〈P̂in

d (ω)P̂in
d (−ω′)〉

−
Γ/2 − iω′

ωm
〈P̂in

d (ω)X̂in
d (−ω′)〉

−
Γ/2 + iω
ωm

〈X̂in
d (ω)P̂in

d (−ω′)〉

+
(Γ/2 + iω)(Γ/2 − iω′)

ω2
m

〈X̂in
a (ω)X̂in

a (−ω′)〉
]
, (A4)

S b(ω,ω′) =
κ

g2γm

g2χm(ω) + G2χd(ω)
χm(ω)

×
g2χm(−ω′) + G2χd(−ω′)

χm(−ω′)
〈X̂in

a (ω)X̂in
a (−ω′)〉 , (A5)

S h(ω,ω′) =
B2

g2κχm(ω)χm(−ω′)χ′a(ω)χ′a(−ω′)

×
{
∆2

cχa(ω)χa(−ω′) 〈P̂in
a (ω)P̂in

a (−ω′)〉

+ ∆cχa(ω)[κχa(−ω′) − 1] 〈P̂in
a (ω)X̂in

a (−ω′)〉

+ ∆cχa(−ω′)[κχa(ω) − 1] 〈X̂in
a (ω)P̂in

a (−ω′)〉

+ [κχa(ω) − 1][κχa(−ω′) − 1] 〈X̂in
a (ω)X̂in

a (−ω′)〉
}
,

(A6)

S f h(ω,ω′) = −
B

g2γmχm(ω)χm(−ω′)χ′a(−ω′)

×

[
∆cχa(−ω′)

(
1 −

1
κχ′a(ω)

)
〈P̂in

a (ω)P̂in
a (−ω′)〉

+ [κχa(−ω′) − 1]
(
1 −

1
κχ′a(ω)

)
〈P̂in

a (ω)X̂in
a (−ω′)〉

− ∆2
cχa(ω)χa(−ω′) 〈X̂in

a (ω)P̂in
a (−ω′)〉

− ∆cχa(ω)[κχa(−ω′) − 1] 〈X̂in
a (ω)X̂in

a (−ω′)〉
]

−
B

g2γmχm(ω)χm(−ω′)χ′a(ω)

×

[
∆cχa(ω)

(
1 −

1
κχ′a(−ω′)

)
〈P̂in

a (ω)P̂in
a (−ω′)〉

− ∆2
cχa(ω)χa(−ω′) 〈P̂in

a (ω)X̂in
a (−ω′)〉

+ [κχa(ω) − 1]
(
1 −

1
κχ′a(−ω′)

)
〈X̂in

a (ω)P̂in
a (−ω′)〉

− ∆cχa(−ω′)[κχa(ω) − 1] 〈X̂in
a (ω)X̂in

a (−ω′)〉
]
, (A7)

S f b(ω,ω′) =
κ

g2γm

g2χm(−ω′) + G2χd(−ω′)
χm(ω)χm(−ω′)

χa(−ω′)

×

[(
1 −

1
κχ′a(ω)

)
〈P̂in

a (ω)X̂in
a (−ω′)〉

− ∆cχa(ω) 〈X̂in
a (ω)X̂in

a (−ω′)〉
]

+
κ

g2γm

g2χm(ω) + G2χd(ω)
χm(ω)χm(−ω′)

χa(ω)

×

[(
1 −

1
κχ′a(−ω′)

)
〈X̂in

a (ω)P̂in
a (−ω′)〉

− ∆cχa(−ω′) 〈X̂in
a (ω)X̂in

a (−ω′)〉
]
, (A8)

S bh(ω,ω′) = −
B

g2γm

g2χm(ω) + G2χd(ω)
χm(ω)χm(−ω′)χ′a(−ω′)

χa(ω)

×
{
∆cχa(−ω′) 〈X̂in

a (ω)P̂in
a (−ω′)〉

+ [κχa(−ω′) − 1] 〈X̂in
a (ω)P̂in

a (−ω′)〉
}

−
B

g2γm

g2χm(−ω′) + G2χd(−ω′)
χm(ω)χm(−ω′)χ′a(ω)

χa(−ω′)

×
{
∆cχa(ω) 〈P̂in

a (ω)X̂in
a (−ω′)〉

+ [κχa(ω) − 1] 〈X̂in
a (ω)X̂in

a (−ω′)〉
}
. (A9)

The correlation functions appearing in Eqs. (A2)–(A9) in the
Fourier space are given by

〈 f̂ (ω) f̂ (−ω′)〉 = (n̄m +
1
2

)δ(ω − ω′) '
kBT
~ωm

δ(ω − ω′),

(A10a)

〈X̂in
a (ω)X̂in

a (−ω′)〉 =

(
N +

1
2

+ ReM
)
δ(ω − ω′), (A10b)

〈P̂in
a (ω)P̂in

a (−ω′)〉 =

(
N +

1
2
− ReM

)
δ(ω − ω′), (A10c)

〈X̂in
a (ω)P̂in

a (−ω′)〉 =
i
2

(1 − 2iImM)δ(ω − ω′), (A10d)

〈P̂in
a (ω)X̂in

a (−ω′)〉 = −
i
2

(1 + 2iImM)δ(ω − ω′), (A10e)

〈X̂in
d (ω)X̂in

d (−ω′)〉 = 〈P̂in
d (ω)P̂in

d (−ω′)〉 =
1
2
δ(ω − ω′),

(A10f)

〈P̂in
d (ω)X̂in

d (−ω′)〉 = − 〈X̂in
d (ω)P̂in

d (−ω′)〉 =
i
2
δ(ω − ω′).

(A10g)

Using these expressions, one finally gets the generalized spec-
tral density of added force noise, Eq. (13).

Appendix B: Estimation of the noise reduction in the case of
imperfect CQNC and G = g

According to Eq. (34), the amount of noise reduction ∆S
due to homodyne detection with optimum phase angle θopt is
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FIG. 18. (Color online) Optical susceptibility χa(ω) versus the scaled
frequency ω/κ. Different curves correspond to Re[χa(ω)] (red solid
line), Im[χa(ω)] (blue dashed line), and χa(ω) ∼ 2/κ (black dash-
dotted line).

proportional to[
Re

(1 + (G/g)2R(ω)
χm(ω)

)]2

|χm(ω)|2. (B1)

In the Markovian limit, κ � ωm, we keep only the zeroth order
of ω/κ and we therefore have

Re
(1 + (G/g)2R(ω)

χm(ω)
)
'ωm

(
1 −

ω2

ω2
m

)2(
1 +

G2

g2 Rr

)
+
ωγm

ωm

G2

g2 Ri, (B2)

where

Rr = −1 −
ω2Γ(γm − Γ)

(ω2
m − ω

2)2 + ω2Γ2 , (B3a)

Ri =
ω(γm − Γ)(ω2

m − ω
2)

(ω2
m − ω

2)2 + ω2Γ2 . (B3b)

By considering the same parameters as those used in Fig. 8,
we conclude that[

Re
(1 + (G/g)2R(ω)

χm(ω)
)]2

|χm(ω)|2
∣∣∣∣∣
ω=ωm+4γm

'

(
1−

Γ

γm

)2
. (B4)

This result shows that in the case of imperfect CQNC and G =

g, the amount of noise reduction is

∆S
∣∣∣
ω=ωm+4γm

∝

(
1 −

Γ

γm

)2
. (B5)

Appendix C: Estimation of the optical susceptibility χa(ω)

According to Eq. (8a), the optical susceptibility χa(ω) can
be written as

χa(ω) = Re[χa(ω)] + iIm[χa(ω)], (C1)

with

Re[χa(ω)] =
κ/2

κ2/4 + ω2 (C2)

Im[χa(ω)] = −
ω

κ2/4 + ω2 . (C3)

From these equations one can see that by decreasing the ratio
ω/κ, the imaginary part of χa(ω) decreases. In Fig. 18 we il-
lustrate the optical susceptibility versus the scaled frequency
ω/κ. This figure shows that if the ratio ω/κ is less than 0.070,
approximating the optical susceptibility as χa ∼ 2/κ intro-
duces lower than 1% error in the value of |χa(ω)|, while for
ω/κ = 0.03 the error is 0.1%. Throughout the paper, we
choose the frequency ω of the order of the mechanical res-
onance frequency ωm and we choose the parameters so that
ωm/κ = 0.03 to satisfy the resolved sideband regime. As a re-
sult, approximating the optical susceptibility as χa(ω) ∼ 2/κ
does not introduce a substantial error to the calculations.
However, for ωm/κ = 0.3 it causes 17% error.

In the case of perfect CQNC conditions and off-resonant
cavity driving, the noise reduction advantage given by
Eq. (30) is proportional to (ωm/κ)−1 and therefore the smaller
the value of ωm/κ, the greater the noise reduction advantage.

In the case of imperfect CQNC conditions, a completely
different behavior is obtained. Based on Eq. (34), when the
imperfect CQNC conditions hold and the cavity is driven reso-
nantly, the noise reduction advantage is proportional to ωm/κ.
Therefore, lowering the ratio ωm/κ leads to the noise reduc-
tion advantage which shows the advantage of the variational
homodyne detection over the phase detection scheme versus
the frequency. This means that the advantage of the variational
homodyne detection disappears for small values of ωm/κ, i.e.,
the strong resolved-sideband regime.

Appendix D: Estimation of the squeezing parameter N

The quantum description of the electromagnetic field pre-
dicts a class of states for which the variances in the field
quadrature operators X̂1 = (â†+ â)/

√
2 and X̂2 = (â†− â)/i

√
2,

with â (â†) the annihilation (creation) operator of the light
field, are limited by

σX1σX2 = 1/4, (D1)

in which σXi =

√
〈X̂2

i 〉 − 〈X̂i〉
2, with i = 1, 2. Coherent light,

for which the variances of the two quadratures are equal, be-
longs to this class. Reducing the uncertainty in one quadra-
ture below this state refers to squeezing. Equation (D1) dic-
tates that squeezing of one quadrature must increase the un-
certainty in the orthogonal quadrature, an effect known as an-
tisqueezing. A detailed description of quantum squeezing can
be found in standard textbooks of quantum optics [62]. In the
following, we introduce a brief review on such states.

Theoretically, the squeezed state of light is obtained by op-
erating the squeezing operator on the vacuum state of light.
The squeezing operator is defined by

Ŝ = exp
[1
2
ξ∗â2 −

1
2
ξ(â†)2

]
, (D2)
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where ξ = reiΦ, with r and Φ the squeezing strength and
phase, respectively. It is straightforward to show that the vari-
ances of the squeezed state of light are given by σ2

X1
= e−2r/4

and σ2
X2

= e2r/4. It is obvious that the squeezing is char-
acterized by e−2r. Consequently, it is useful to define an ex-
perimental quantity as the squeezing level which is defined as
V− = e−2r [63]. As mentioned in [54], one can represent the
squeezing parameter N in terms of the squeezing strength r as
N = sinh2(r). Combining these expressions, one can rewrite
the squeezing parameter in terms of the squeezing level as

N =
1
4

(V−1/2
− − V1/2

− )2. (D3)

Experimental realization of squeezed states is based on

the nonlinear optical phenomena [62]. The most efficient
method of squeezed state generation utilizes a subthreshold
optical parametric oscillator (OPO), in which a nonlinear crys-
tal, for example β barium borate (BBO), periodically poled
lithium niobate (PPLN), or periodically poled titanyl phos-
phate (PPKTP) (for more details see Refs. [64–69] and refer-
ences therein), is used as a nonlinear medium in the OPO. By
utilizing the PPKTP crystal, Takeno et. al. obtained a squeez-
ing level of −9 dB [70], which is equivalent to the squeezing
parameter of N = 3.0349, while in 2022, Dwyer et al. demon-
strated a squeezing level of approximately −20 dB [71], which
is equivalent to the squeezing parameter of N ' 24.37 and the
highest squeezing level reported to date. That is why we have
considered Nmax = 25 in the present paper.
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