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Nonreciprocal systems breaking time-reversal symmetry are essential tools in modern quantum technologies
enabling the suppression of unwanted reflected signals or extraneous noise entering through detection ports.
Here we propose a scheme enabling nonreciprocal conversion between optical and radio-frequency (rf) pho-
tons using exclusively optomechanical and electromechanical interactions. The nonreciprocal transmission is
obtained by interference of two dissipative pathways of transmission between the two electromagnetic modes
established through two distinct intermediate mechanical modes. In our protocol, we apply a bichromatic drive
to the cavity mode and a single-tone drive to the rf resonator, and use the relative phase between the drive tones
to obtain nonreciprocity. We show that perfect nonreciprocal transduction can be obtained in the limit of large
cooperativity in both directions, from optical to rf and vice versa. We also study the transducer noise and show
that mechanical thermal noise is always reflected back onto the isolated port. In the limit of large cooperativity,
the input noise is instead transmitted in an unaltered way in the allowed direction; in particular one has only
vacuum noise in the output rf port in the case of optical-to-rf conversion.

I. INTRODUCTION

Reciprocity is the two-way symmetry of transmission of
light (photon) or sound (phonon) between forward and back-
ward paths and is a common useful property exploited in a
plethora of devices. However, when the time-reversal sym-
metry or reciprocity is broken, one can have novel function-
alities that attracted considerable attention in engineered pho-
tonic systems [1–6].

In fact, nonreciprocal transmission and amplification of sig-
nals are useful in communication, signal processing and mea-
surement, because in nonreciprocal systems unwanted signals
or spurious modes can be suppressed, thereby protecting the
system from interference with extraneous noise [7]. Typically,
nonreciprocal devices require an element breaking Lorentz re-
ciprocal symmetry [8, 9] such as a d.c. magnetic field, but this
method typically require bulky elements which are hard to in-
tegrate and miniaturize. Therefore, there is a strong motiva-
tion to realize alternative and more flexible implementations
of nonreciprocity [10]. Various nonreciprocal devices were
proposed and realized including magnetic materials [11–17],
or Josephson nonlinearities [18, 19], using temporal modula-
tion [20–25], physical rotation [26], chiral atomic states [27],
and the quantum Hall effect [28].

Recently Ref. [29] showed that a general recipe for ob-
taining nonreciprocal transmission is balancing any given co-
herent interaction with a properly tuned collective dissipative
process. This insight led to propose and implement nonre-
ciprocity using optomechanical devices where these ingredi-
ents are available and controllable. Multi-mode optomechan-
ical and electromechanical schemes were proposed to achieve
nonreciprocity and directionality, with or without relying on
the direct coherent coupling between the electromagnetic in-
put and output modes [30–39]. Here, similarly to the approach
used in Refs. [30, 32, 33] which does not require any di-
rect interaction between electromagnetic modes, we consider

a four-mode optoelectromechanical system composed of an
optical cavity and an rf resonator, each coupled to two in-
termediate mechanical modes. Two distinct paths of trans-
mission between the two electromagnetic modes through the
two mechanical modes are established and their relative phase
forms the basis of nonreciprocity and directionality. Differ-
ently from Refs. [32, 33] which demonstrated the scheme in
the microwave regime, here we exploit the possibility of me-
chanical modes to couple to fields of disparate wavelength,
and we show the possibility of nonreciprocal conversion be-
tween optical and rf photons. A similar, optical-microwave,
four-modes nonreciprocal conversion scheme was proposed
in Ref. [30] which however considered a four-tone driving
scheme, in which both the optical and the microwave cavity
are bichromatically driven. Here we simplify such a scheme
and we consider an rf resonator driven by a single tone. In
an appropriate parameter regime where the rotating wave ap-
proximation (RWA) also is valid, the system effectively be-
comes nonreciprocal and the transmission between the cavity
and rf resonator is directional. In this way one can add also
the additional feature of nonreciprocity to the variety of opto-
electromechanical devices, which were proposed and demon-
strated for the transduction of rf and microwave signals to the
optical domain [40–58].

The outline of the paper is as follows. In Sec. II, the system
and its Hamiltonian are introduced. In Sec. III, the dynamics
of our model described by Langevin-Heisenberg equations is
studied, and the effective linearized model of the interacting
four bosonic modes is obtained. In Sec. IV we analyze analyt-
ically the possibility to achieve nonreciprocity with this sys-
tem, and in Sec. V we study its noise properties. Sec. VI is de-
voted to the numerical analysis where we determine the con-
ditions where nonreciprocal optical-rf conversion is achieved,
while concluding remarks are given in Sec. VII.
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II. THE SYSTEM

We consider a hybrid optoelectromechanical system com-
posed of an optical cavity coupled by radiation pressure to
a mechanical element able to sustain multiple vibrational
modes, which is in turn capacitively coupled to an rf reso-
nant LC circuit. Focusing on the case when only two nearby
vibrational modes are coupled to the optical and rf resonators,
the total Hamiltonian of the system can be written as the sum
of an optical, mechanical and electrical contribution respec-
tively,

Ĥ = Ĥopt + Ĥmech + ĤLC. (1)

In more detail

Ĥopt = ~ωc(x1, x2) â†1â1 (2)

+ ~[(E1e− i(ωL1t−φ11) + E2e− i(ωL2t− φ12))â†1 + h.c.], (3)

where we consider a specific cavity mode, described by the
photon annihilation (creation) operator â1 (â†1), with the usual
bosonic commutation relations [â1, â

†

1] = 1, and bichromati-
cally driven at two frequencies ωL1 and ωL2, with correspond-
ing driving rates given by E j =

√
2κinP j/~ωL j, with P j the j-

th tone power and κin the cavity amplitude decay rate through
the input port. The mechanical term is

Ĥmech =
∑
j=1,2

p̂2
j

2m j
+

m jω
2
j x̂

2
j

2
(4)

where each mechanical resonator has effective mass m j ( j =

1, 2), displacement operator x̂ j and conjugated momentum p̂ j,
with commutation relations [x̂i, p̂ j] = i~δi j. Finally the rf cir-
cuit term is

ĤLC =
φ̂2

2L
+

q̂2

2C(x1, x2)
− q̂VAC cos(ωXt − φX), (5)

where L is the inductance of the rf resonator, the dynamical
variables of the LC circuit are given by the total charge and
flux operators q̂ and φ̂ respectively, with commutation relation
[q̂, φ̂] = i~, and the rf resonator is driven by a single-tone drive
at frequency ωX and with voltage amplitude VAC.

Such a configuration can be realized for example in
the membrane-in-the-middle (MIM) optomechanical system
case [59–63], i.e., a driven optical Fabry-Perót cavity with a
thin semitransparent membrane inside. The membrane is met-
alized [40, 44, 45, 49, 64, 65] and capacitively coupled via an
electrode to an LC resonant circuit formed by a coil and addi-
tional capacitors, see Fig. 1.

The optomechanical and electromechanical couplings arise
due to the dependence of the cavity mode frequencyωc(x1, x2)
and of the circuit capacitance C(x1, x2) respectively, upon the
displacement x j of the vibrational modes of the membrane. As
in the scheme of Fig. 1, the effective capacitance of the circuit
is the parallel of a tunable capacitor C0 with the membrane
capacitor formed by the metalized membrane and an electrode
in front of it, Cm(x̂1, x̂2),

C(x̂1, x̂2) = C0 + Cm(x̂1, x̂2). (6)

FIG. 1. (a) Scheme of the proposed optoelectromechanical system.
(b) Transmission pathways contributing to the non-reciprocal conver-
sion. The transmission from the optical input to the rf output or, vice
versa, from the rf input to the optical output are mediated by the two
mechanical resonators. These two transmission paths may interfere
destructively in one direction but not in the opposite [depending on
the phases and amplitudes of the complex interaction strengths g`, j,
see Eq. (22)], hence realizing the non-reciprocal transduction.

The system Hamiltonian of Eq. (1) can be simplified by mak-
ing two approximations: i) the two displacements x j are typi-
cally small and one can develop both the cavity frequency and
the capacitance at first order in x j; ii) one can neglect fast os-
cillating terms in the LC circuit driving. Moreover one can
rewrite Eq. (1) in a more convenient form by introducing the
phonon annihilation and creation operators b̂ j and b̂†j , j = 1, 2,
such that

x̂ j ≡ xzp f , j

(
b̂ j + b̂†j

)
, (7)

p̂ j ≡ pzp f , j

b̂ j − b̂†j
i

, (8)

where xzp f , j ≡

√
~

2m jω j
and pzp f , j ≡ mω jxzp f , j;and the LC

photon annihilation and creation operators â2 and â†2, such that

q̂ ≡ qzp f

(
â2 + â†2

)
, (9)

φ̂ ≡ φzp f
â2 − â†2

i
, (10)

(where the rf resonant frequency of the LC circuit is defined
as ω(0)

LC = 1/
√

LC(0, 0), and qzp f ≡
√

~

2 Lω(0)
LC

and φzp f ≡√
L ~ω(0)

LC
2 ). In the reference frame, for the optical mode, rotat-

ing at the frequency halfway between the two driving tones,
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FIG. 2. Frequency configuration. Above the horizontal axis the
radio-frequency scale. Below the axis the optical scale.

ωL = (ωL1 + ωL2)/2, one finally obtains

Ĥ = ~∆Lâ†1â1 + ~
∑
j=1,2

g0,1 j(b̂ j + b̂†j )â
†

1â1

+
∑
j=1,2

~ω jb̂
†

j b̂ j + ~ω(0)
LC â†2â2

− ~
∑
j=1,2

g0,2 j(b̂ j + b̂†j )(â2 + â†2)2

+ ~[(E1eiω+t + E2e−iω+t)â†1 + h.c.]

− ~
(
V ′∗ eiωX t + V ′ e−iωX t

) (
â2 + â†2

)
(11)

where we introduced the bare cavity detuning ∆L ≡ ωc(0, 0)−
ωL, ω+ ≡ ωL1−ωL = −(ωL2−ωL), the single-photon optome-
chanical coupling rates g0,1 j ≡

∂ωc
∂x j
|xi=0xzp f , j, the single-photon

electromechanical coupling rates g0,2 j ≡
ω(0)

LC
4C(0,0) xzp f , j

∂C
∂x j
|xi=0,

the rf complex driving rate V ′ ≡
(
qzp f VAC/2~

)
eiφX , and the

complex optical driving rates E1 ≡ E1eiφ11 and E2 ≡ E2eiφ12 .

III. APPROXIMATED MODEL

We now derive the quantum Langevin equations for the sys-
tem operators by supplementing the Heisenberg equations of
motion stemming from Eq. (11) with fluctuation and dissi-
pation terms describing the coupling of the two mechanical
modes and of the two electromagnetic cavity modes with their
own independent environment. We assume the ideal situation
in which the optical cavity looses photons only from the input
port with amplitude decay rate κin ≡ κ, and it is characterized
by the input noise operator â1,in. We introduce damping and
Brownian noise in a similar way for the two mechanical res-
onators, with energy decay rates γm, j and noise operators b̂ j,in,
j = 1, 2. For what concerns the LC circuit, we exploit the
quantum electrical network theory of Ref. [66] and model dis-
sipation with an RLC series circuit in which the input-output
port is represented by an infinite transmission line with purely
resistive characteristic impedance Z =

√
LT /CT , where CT

and LT are the capacitance and the inductance per unit length
along the transmission line, respectively. The input noise op-
erator entering the circuit through the transmission line is â2,in.
In an RLC series resonator the damping rate is γLC ≡ Z/L, and
the rf-circuit quality factor is given by QLC = ω(0)

LC/γLC .
All the noise operators are uncorrelated from each other

and characterized by thermal noise correlations at temper-
ature T , where the only non-zero correlation functions are
〈b̂ j,in(t)b̂†j,in(t′)〉 = 〈b̂†j,in(t)b̂ j,in(t′)〉 + δ(t − t′) =

[
1 + n̄b j

]
δ(t −

t′), and 〈â j,in(t)â†j,in(t′)〉 = 〈â†j,in(t)â j,in(t′)〉 + δ(t − t′) =[
1 + ña j

]
δ(t − t′), with the number of thermal phonons given

by n̄b j =
{
exp[~ω j/kBT ] − 1

}−1
, j = 1, 2, a similar ex-

pression for the mean thermal number of rf photons, ña 2 ={
exp[~ω(0)

LC/kBT ] − 1
}−1

, while ña 1 ' 0 because at optical fre-
quencies ~ωc � kBT .

The quantum Langevin equations can then be written as

˙̂a1 = −(κ + i∆L) â1 − i[E1eiω+t + E2e−iω+t]

− i
∑
j=1,2

g0,1 j(b̂ j + b̂†j )â1 +
√

2κâ1,in

˙̂a2 = −

(
γLC

2
+ iω(0)

LC

)
â2 + 2i

∑
j=1,2

g0,2 j(â2 + â†2)(b̂ j + b̂†j )

+ i(V ′∗eiωX t + V ′e−iωX t) +
√
γLC â2,in

˙̂b j = −

(γm, j

2
+ iω j

)
b̂ j − ig0,1 jâ

†

1â1 + ig0,2 j(â2 + â†2)2

+
√
γm, jb̂ j,in . (12)

Here we are interested in the dynamics of the fluctuations
δâ j = â j − α j(t) and δb̂ j = b̂ j − β j(t) about the corresponding
mean amplitudes, α j(t) =

〈
â j

〉
and β j(t) =

〈
b̂ j

〉
. In order to

study the corresponding dynamics we employ several approx-
imations as detailed below (see also App. A).

A. Linearization

First, we linearize the equations for the fluctuations by as-
suming sufficiently large mean amplitudes. In particular, we
analyze the fluctuations in interaction picture with respect to
the Hamiltonian

Ĥ0 = ~∆ δâ†1 δâ1 + ~ωLC δâ
†

2 δâ2 + ~ (ω1 + δ) δb̂†1 δb̂1

+~ (ω2 − δ) δb̂
†

2 δb̂2 , (13)

where ∆ ≡ ∆L + 2
∑

j g0,1 jRe
{
β(dc)

j

}
and ωLC ≡ ω(0)

LC −

4
∑

j g0,2 jRe
{
β(dc)

j

}
, with β(dc)

j the time-independent part of the
mean mechanical amplitude β j(t); And where δ is a small de-
tuning which is used to tune the non-reciprocity as discussed
in the following sections. In this representation, the linearized
quantum Langevin equations take the form

δ̇â1 = − [κ + i Θ1(t)] δâ1

−i
∑
j=1,2

[
G(−)

1 j (t) δb̂ j + G(+)
1 j (t) δb̂†j

]
+
√

2κ â1,in

δ̇â2 = −

[
γLC

2
+ i Θ2(t)

]
δâ2 + Γ(t) δâ†2

−i
∑
j=1,2

[
G(−)

2 j (t) δb̂ j + G(+)
2 j (t) δb̂†j

]
+
√
γLC â2,in

δ̇b̂ j = −

[γm, j

2
+ i(−1) j δ

]
δb̂ j

−i
∑
`=1,2

[
G(−)
` j (t)∗δâ` + G(+)

` j (t) δâ†
`

]
+
√
γm, j b̂ j,in (14)
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where the time dependent coefficients can be expressed in
terms of the mean field amplitudes α j(t) and β j(t) as (see
App. A)

Θ`(t) = −(−2)`
∑
j=1,2

g0,` j Re
{
β j(t) − β

(dc)
j

}
for ` ∈ {1, 2}

G(±)
1 j (t) = g0,1 j α1(t) ei [∆±(ω j−(−1) j δ)] t for j ∈ {1, 2}

G(±)
2 j (t) = −4 g0,2 j Re {α2(t)} ei [ωLC±(ω j−(−1) j δ)] t for j ∈ {1, 2}

Γ(t) = −4
∑
j=1,2

g0,2 j Re
{
β j(t)

}
eiωLC t . (15)

In particular, we remark that these parameters can be ex-
panded as a sum of many terms each oscillating at a different
frequency as

X(t) =
∑
ξ

Xξ eiω(X)
ξ t for X ∈

{
Θ`,G

(±)
`, j ,Γ

}
, (16)

where the sum is over all the possible frequency components,
ω(X)
ξ , of each parameter, and Xξ indicate the corresponding

amplitudes (specific expressions for these quantities are re-
ported in App. A, see also Ref. [67]).

B. Rotating wave approximation

Then, we neglect all the time dependent terms. To be spe-
cific, we note that when the system frequencies are selected
such that (see Fig. 2)

∆ − ω+ = ω1 + δ

∆ + ω+ = ω2 − δ

ωLC − ωX = ω1 + δ

ωLC + ωX = ω2 − δ (17)

which entail

∆ = ωLC =
ω2 + ω1

2

ω+ = ωX =
ω2 − ω1 − 2δ

2
, (18)

only the terms G(−)
` j (t) in Eq. (15) have a time independent

part. In the following we indicate the time independent part
of G(−)

1 j (t) and of G(−)
2 j (t) with the symbols g1 j and −g∗2 j respec-

tively (see App. A for details). Moreover, all the remaining
time-dependent terms can be neglected when (see App. A)∣∣∣g` j

∣∣∣ � ω1, ω2, |ω1 − ω2| . (19)

Correspondingly, the quantum Langevin equation for the fluc-
tuations reduce to the form

δ̇â1 = −κ δâ1 − i
∑
j=1,2

g1 j δb̂ j +
√

2κ â1,in

δ̇â2 = −
γLC

2
δâ2 + i

∑
j=1,2

g∗2 j δb̂ j +
√
γLC â2,in

δ̇b̂ j = −

[γm, j

2
+ i(−1) j δ

]
δb̂ j − i g∗1 j δâ1 + i g2 j δâ2

+
√
γm, j b̂ j,in . (20)

We also note that this equation can be valid only if the detun-
ing δ is not too large, that is, it should be of the same order or
smaller than the effective coupling coefficients

|δ| .
∣∣∣g` j

∣∣∣ . (21)

C. Perturbative expansion in powers of the bare couplings

Finally, we compute explicit expressions for the interaction
coefficients g` j by expanding the mean amplitudes α j(t) and
β j(t) in powers of the bare interaction coefficients g0,` j. In
particular, if the bare couplings are sufficiently small, then it is
justifiable to consider only the corresponding leading zero-th
order terms. In this way we find the following approximated
expressions

g1 j = −i g0,1 j χ1 E j

g21 = −4 g0,21 Im {χLC} V ′∗

g22 = −4 g0,22 Im {χLC} V ′ (22)

where we introduced the susceptibilities

χ1 ≡ [κ + i∆L]−1 ,

χLC ≡

[
γLC

2
+ iω(0)

LC

]−1
. (23)

Thereby we find an approximated model analogous to that
of Refs. [30, 32, 33] which demonstrate non-reciprocity in a
similar system where each mode of the electromagnetic field
is driven by two pumps. Here we demonstrate the same behav-
ior, when the low frequency mode (the rf-mode) is driven by a
single pump. This is due to the fact that, when the frequency
of the electromagnetic field is comparable to the mechanical
frequencies, also the counter rotating terms in the pump can
resonantly drive specific electromechanical processes.

IV. NONRECIPROCITY

In this section we study in detail the conditions for the non-
reciprocal conversion, which can be derived from Eq. (20),
and we report results analogous to that discussed in Ref. [32,
33]. The equations (20) can be easily solved in Fourier space,
and together with the standard input output relation â1,out =

−
√

2 κ δâ1 + â1,in and â2,out = −
√
γLC δâ2 + â2,in, it is possible

to express the output operators in terms of the input ones (see
App. B). In general, each output operator can be expanded as

â`,out(ω) =
∑
j=1,2

[
S ` j â j,in(ω) + T` j b̂ j,in(ω)

]
. (24)

Here we are interested in the coefficients S 12 and S 21, which
describe, respectively, how a radio-frequency input signal is
converted into an optical field, and conversely how an optical
signal is converted into a radio-frequency field. Nonreciproc-
ity corresponds to the situation in which one of these two co-
efficients is zero while the other is finite. In general these
quantities take the form

S ` j = −
√

2 κ γLC
F` j

D
, (25)
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FIG. 3. (a)-(c) Transmission coefficients (|S 21|
2, blue dashed lines, and |S 12|

2, red solid lines), and (d)-(f) Noise spectral density of the fields
at the output of the optical cavity (red solid line) and of the rf-resonator (blue dashed line), when Eq. (33) and (34) are true, the values of E2

and ϕ are set to fulfill Eqs.(31) and (32) for the suppression of the optical-to-rf transmission (S 21 = 0) at ω = 0, and |V ′| and δ are set to fulfill
Eqs. (38) and (39) for the maximization of S 12. In all plots ωm,1 = 2 MHz, ωm,2 = 8 MHz, γLC = 6 kHz, κ = 200 kHz, γm = 500 Hz and
g0 = 3.5Hz. In (a) and (d) E1 = 10 GHz (Γ = 1); In (b) and (e) E1 = 17.5 GHz (Γ = 3); In (c) and (f) E1 = 80 GHz (Γ = 62.6). In (d)-(f) the
temperature is 0.1 K, corresponding to n̄a2 = 2618, n̄b1 = 6545 and n̄b2 = 1636. In all the plots the other frequencies are fixed by the resonance
conditions (18).

FIG. 4. Transmission coefficients (|S 21|
2, blue dashed lines, and |S 12|

2, red solid lines) as a function of (a) the detuning δ, (b) the strength of
the first driving field E1 and (c) the phase of the first driving field φ11, for ω = 0. The other parameters are as in Fig. 3 (b). The values of the
parameters in the x-axis for which the dashed blue lines are zero are the values used in Fig. 3 (b). In (c) φ12 = φX = 0, so that φ11 = ϕ.

with

F12 = g11 χm,1 g21 + g12 χm,2 g22 (26)
F21 = g∗11 χm,1 g∗21 + g∗12 χm,2 g∗22 (27)

and

D =
(∣∣∣g2

11

∣∣∣ χm,1 +
∣∣∣g2

12

∣∣∣ χm,2 + κ − iω
)

(28)

×

(∣∣∣g2
21

∣∣∣ χm,1 +
∣∣∣g2

22

∣∣∣ χm,2 +
γLC

2
− iω

)
− F12 F21 ,

and where we introduced the mechanical susceptibility in in-
teraction picture

χm, j =

{γm, j

2
+ i

[
(−1) j δ − ω

]}−1
. (29)

Eqs. (26) and (27) indicate that each coefficient is the result
of the interference of two transmission processes mediated by

the two mechanical resonators. Here we look for situations in
which the interference is destructive in one direction but not
in the other.

We also note that S 21 is equal to the complex conjugate of
S 12 evaluated at the opposite values of ω and δ, i.e. as func-
tions of the frequency ω and of the detuning δ these coeffi-
cients fulfill the relation

S 21 (ω, δ) = S ∗12 (−ω,−δ) . (30)

This relation shows that to have nonreciprocity at ω = 0 [68],
it is necessary to have δ , 0, otherwise the transmission in the
two directions is necessarily symmetric.

If we introduce the parameters

ϕ = φ11 − φ12 − 2 φX

r =
g0,12 g0,22

g0,11 g0,21

E2

E1
(31)
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FIG. 5. (a)-(c) Transmission coefficients (|S 21|
2, blue dashed lines, and |S 12|

2, red solid lines), and (d)-(f) noise spectral density of the field at
the output of the optical cavity (red solid line) and of the rf-resonator (blue dashed line), when the values of E2 and ϕ are set to suppress the
rf-to-optical transmission (S 12 = 0) at ω = 0, and |V ′| and δ are set to maximize S 21. The other parameters are as in Fig. 3.

we find that S 21 = 0 when

e−iϕ = −

∣∣∣∣∣∣χm,1

χm,2

∣∣∣∣∣∣ χm,2

χm,1

r =

∣∣∣∣∣∣χm,1

χm,2

∣∣∣∣∣∣ =

√√√
γ2

m,2 + 4 (ω − δ)2

γ2
m,1 + 4 (ω + δ)2 . (32)

Similarly S 12 = 0 when eiϕ = −r χm,2/χm,1.
Let us now study the conditions under which S 12 achieves

its maximum value when S 21 = 0. This can be done analyti-
cally when the two mechanical dissipation rates are equal

γm, j ≡ γm for j ∈ {1, 2} (33)

and all the bare couplings g0,` j are equal, i.e.

g0,` j ≡ g0 for `, j ∈ {1, 2} . (34)

Moreover we assume the suppression of the transmission from
optical to rf (S 21 = 0) at [68]

ω = 0 . (35)

In this case r = 1 [see Eq. (32)], which entails E2 = E1 [see
Eq. (31)]. Thereby the transmission coefficient |S 12|

2 can be
written in terms of the cooperativity parameters

Γ1 =
2

∣∣∣g1 j

∣∣∣2
κ γm

Γ2 =
4

∣∣∣g2 j

∣∣∣2
γLC γm

(36)

(note that in this case both |g11| = |g12| and |g21| = |g22|) as

|S 12|
2 =

4 Γ1 Γ2 δ
2 γ4

m

(
γ2

m
4 + δ2

)
[
(1 + 2 Γ1) γ2

m
4 + δ2

]2 [
(1 + 2 Γ2) γ2

m
4 + δ2

]2 . (37)

The maximum of this expression is found for equal coopera-
tivities

Γ j ≡ Γ = 2
γ2

m
4 + δ2

γ2
m

for j ∈ {1, 2} (38)

and it is given by |S 12|
2
max = δ2/

(
γ2

m
4 + δ2

)
. The equality

of the cooperativities can be realized by properly tuning the
strength of the rf-pump |V ′| [see Eqs. (22) and (36)]; More-
over, Eq. (38) can be used to find the value of the detuning
which maximizes S 12 when S 21 = 0,

δ = ±
γm

2

√
2 Γ − 1 , (39)

and with this expression one can rewrite the maximum of the
conversion coefficient as

|S 12|
2
max = 1 −

1
2 Γ

. (40)

This expression shows that perfect conversion can be achieved
in the limit of large cooperativity Γ→ ∞.

We also note that Eq. (30) can be used to find the analo-
gous results corresponding to the suppression of S 12 and the
corresponding maximization of S 21. Finally, we point out that
when the transmission in one direction is suppressed accord-
ing to Eq. (32) and in the other direction is maximized ac-
cording to Eqs. (33)-(35), (38) and (39), then also the reflec-
tion coefficients [S 11 and S 22 in Eq. (24)] are suppressed [see
Eqs. (B11) and (B14)] [32, 33] as required by an isolator.

V. OUTPUT NOISE SPECTRAL DENSITY

So far we identified the conditions under which the trans-
mission coefficient in one direction can be suppressed while
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the transmission in the opposite direction remains finite. How-
ever, the full characterization of the capability of this system
to be used as a nonreciprocal converter requires the study of
how the noise associated to the various components (in par-
ticular the mechanical and the rf noise) is redistributed in this
system. Here we analyze the noise spectral density at the out-
put of both the optical cavity and of the rf-resonator. Differ-
ently from the results of Refs. [32, 33], here the two modes of
the electromagnetic field have very different frequencies and
the corresponding thermal noise is very different. Correspond-
ingly, as shown below, the noise properties of the system are
different when one suppresses either the rf-to-optical trans-
mission (S 12 = 0) or the optical-to-rf transmission (S 21 = 0).

The symmetrized output noise spectral density is given by

N(out)
`

(ω) =
1
2

∫ +∞

−∞

d t eiω t
〈
â`,out(t)â

†

`,out(0) + â†
`,out(0)â`,out(t)

〉
=

1
2
|S `1(ω)|2 + |S `2(ω)|2

(
ña2 +

1
2

)
+ |T`1(ω)|2

(
n̄b1 +

1
2

)
+ |T`2(ω)|2

(
n̄b2 +

1
2

)
, (41)

where S ` j and T` j were introduced in Eq. (24) (and are explic-
itly defined in App. B) and ` = 1 (` = 2) is for the noise at the
output of the optical cavity (rf-resonator).

When S 21 = 0 (suppression of optical-to-rf transmission)
and S 12 (rf-to-optical conversion) is maximized according to
Eqs. (32)-(35), (38) and (39), one finds (see App. B)

N(out)
1 (0) =

(
1 −

1
2 Γ

) (
ña2 +

1
2

)
+

1
2 Γ

(
n̄b1 + n̄b2

2
+

1
2

)
N(out)

2 (0) =
n̄b1 + n̄b2

2
+

1
2
, (42)

which show that in the limit of large cooperativity Γ→ ∞ and
around ω = 0, the rf-noise goes only into the optical output
while the mechanical noise goes only into the rf-output. This
means that when this system is used, in this configuration,
to convert a rf signal to the optical regime, the same num-
ber of thermal excitation of the rf field are also transferred to
the optical output. At the same time, the noise in the back-
ward direction is increased because of the mechanical noise.
In fact, since the frequency of the rf resonator is equal to the
average mechanical frequencies, see Eq. (18), then necessarily
(n̄b1 + n̄b2) /2 > n̄a2.

On the other hand, when S 12 = 0 (suppression of rf-
to-optical transmission) and S 21 (optical-to-rf conversion) is
maximized, one finds (see App. B)

N(out)
1 (0) =

n̄b1 + n̄b2

2
+

1
2

N(out)
2 (0) =

1
2

(
1 −

1
2 Γ

)
+

1
2 Γ

(
n̄b1 + n̄b2

2
+

1
2

)
. (43)

Interestingly, in this case the contribution of the rf-noise in the
output fields is completely suppressed around ω = 0. And, in
the limit of large cooperativity Γ → ∞, the mechanical noise
affects only the optical output such that the rf output reaches
the vacuum noise level. Thus, in this limit the system realizes
a quantum-limited optical-to-rf converter.

VI. NUMERICAL RESULTS

We verified the non-reciprocity in this system numerically.
We studied both the rf-to-optical conversion with S 21 = 0 and
the optical-to-rf conversion with S 12 = 0.

Fig. 3 corresponds to parameters for which the optical-
to-rf transmission is suppressed (S 21 = 0), and the rf-to-
optical conversion coefficient S 12 is maximized according to
Eqs. (32)-(35), (38) and (39). Plots from (a) to (c) correspond
to increasing strength of the driving fields (i.e. increasing co-
operativities). They show how, in agreement with Eq. (40), the
value of the conversion coefficient, at ω = 0 [68], increases
with the cooperativity and approaches the value of 1 for large
Γ. These results are achieved by carefully tuning the driv-
ing strengths, frequencies and phases to their optimal working
points. In fig. (4) we varied the values of the system parame-
ters so that the condition for the suppression of S 21, Eq. (32),
and for the maximization of S 21, Eq. (39), are no longer satis-
fied (they are satisfied only in the points in which the dashed
blue line is exactly zero). This figure demonstrates that the
non-reciprocal conversion is relatively robust to variation of
the system parameters around their optimal values.

The output noise spectral density corresponding to Fig. 3
(a)-(c) is reported in Fig. 3 (d)-(f). As expected from the anal-
ysis of the previous section, both the optical and the rf out-
puts show increased noise around ω = 0. Moreover, at large
frequency, the two output noise signals approach the level of
noise of the free fields. Both the double peak structure, in
the optical output, and the asymmetry of the plots are due to
the mechanical noise: The noise components associated to the
two mechanical resonators are not peaked at ω = 0 because of
the finite detuning δ, and are asymmetric because of the dif-
ferent mechanical frequencies (which correspond to different
numbers of thermal excitations). We also note that by increas-
ing the cooperativity, the width of the thermal peak increases
in the optical output, and its maximum is reduced to the level
of the rf noise.

These plots demonstrate the non-reciprocal conversion of
an electromagnetic signal from the radio-frequency to the op-
tical regime in an optoelectromechanical system which use
only three driving fields. In particular we observe that, for
sufficiently large cooperativity, the conversion is perfect with
S 12 = 1 and with a level of noise in the optical output which
is equal to the noise of the rf input. However, while at the
same time no optical signal can be transmitted to the rf-output
(hence realizing the non-reciprocal conversion), significant
mechanical noise reaches the rf-output. Thus the isolation of
the rf port is not perfect. In principle this noise can be reduced
using additional sideband cooling of the resonators [33].

The results corresponding to the suppression of the rf-to-
optical transmission (S 12 = 0), and the maximization of the
optical-to-rf conversion coefficient S 21, are reported in Figs. 5.
According to Eq. (30) these results are found by selecting the
value of δ, and correspondingly the value of ϕ [see Eq. (32)],
opposite to those used in Figs. 3 [see Figs. 4 (a) and (c)].
We observe that the curves for the transmission coefficients
in Fig. 5 are equal to those in Fig. 3 but with the exchanged
role of S 12 and S 21. Moreover, the power spectral density of
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the output fields show that the noise of the rf field close to
ω = 0 decreases with the strength of the driving fields, and
as discussed in the previous section approaches the vacuum
noise level at large cooperativity. However, at the same time,
the mechanical noise is observable in the optical output.

VII. CONCLUSIONS

In conclusion, we analyzed the possibility of achieving non-
reciprocal transmission and conversion between optical and rf
photons in an optoelectromechanical system composed of an
optical cavity, a rf LC-circuit and two mechanical resonators.

In this system the mechanical resonators mediate an indi-
rect interaction between optical cavity and LC circuit, and
the non-reciprocity relies on the interference between differ-
ent transmission processes mediated by the two mechanical
resonators and which result in different relative phases in the
forward and backward directions.

We demonstrated that non-reciprocity is achievable also
when only three fields (two optical and one rf) are used to
drive the system. This is possible because of the relatively
small frequency of the rf mode, which is comparable to the
frequencies of the mechanical resonators. In this case, counter
rotating terms of the rf driving field may play the role of the
fourth pump used in Refs. [30, 32, 33]. Moreover we showed
that, for sufficiently large cooperativity, the non-reciprocal
transduction is perfect in both directions, with the mechani-
cal noise which affects only the isolated port, and the input
noise which is perfectly transmitted in the allowed direction.
In particular, when the parameters are tuned to suppress the
rf-to-optical transmission, this system can realize a quantum-
limited optical-to-rf converter.
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Appendix A: Approximations

The average amplitude of the electromagnetic and mechan-
ical fields, α j = â j−δâ j and β j = b̂ j−δb̂ j, fulfill the equations

[see Eq. (12)]

α̇1 = −(κ + i∆L)α1 − i[E1eiω+t + E2e−iω+t] (A1)

− i
∑
j=1,2

g0,1 jα1(β j + β∗j)

α̇2 = −(
γLC

2
+ iω(0)

LC)α2 + 2i
∑
j=1,2

g0,2 j(α2 + α∗2)(β j + β∗j)

+ i
[
V ′e−iωX t + V ′∗eiωX t

]
(A2)

β̇ j = −(
γm, j

2
+ iω j)β j − ig0,1 j|α1|

2 (A3)

+ ig0,2 j(α2 + α∗2)2 .

The corresponding solutions enter into the equations for the
fluctuations, δâ and δb̂, as modulations of the interaction co-
efficients between different operators. When these rescaled
interaction coefficients are sufficiently large, it is legitimate
to linearize these equations, by neglecting non-linear terms in
the fluctuations. In this way we find the linearized quantum
Langevin equations for the fluctuations

δ̇â1 = −

κ + i

∆L + 2
∑
j=1,2

g0,1 j Re
{
β j(t)

}
 δâ1

−iα1(t)
∑
j=1,2

g0,1 j

(
δb̂ j + δb̂†j

)
+
√

2κ â1,in

δ̇â2 = −

γLC

2
+ i

ω(0)
LC − 4

∑
j=1,2

g0,2 j Re
{
β j(t)

}
 δâ2

+4 i
∑
j=1,2

g0,2 j Re
{
β j(t)

}
δâ†2

+4 i Re {α2(t)}
∑
j=1,2

g0,2 j

(
δb̂ j + δb̂†j

)
+
√
γLC â2,in

δ̇b̂ j = −

(γm, j

2
+ iω j

)
δb̂ j − ig0,1 j

[
α j(t) δâ

†

1 + α j(t)∗δâ1

]
+2 i g0,2 j Re {α2(t)}

(
â2 + â†2

)
+
√
γm, j b̂ j,in (A4)

which are equivalent to the equations in interaction picture re-
ported in the main text [see Eq. (14) and (15)]. As discussed
in the main text, we evaluated explicit expressions for the co-
efficients (15) by solving the equations for the mean ampli-
tudes (A1). This can be done recursively by expanding the
amplitudes in powers of the bare interaction coefficients g0,i j.
When the interactions coefficients g0,` j are sufficiently small
it is possible to consider only the first few terms of this expan-
sion and neglect the rest. Here we consider coefficients up to
their leading order [67], that is the zeroth order for α j and the
first order for β j. We find that in the long time limit the mean
amplitudes, α j(t) and β j(t), are composed of a sum of terms
which oscillate at multiples of the driving frequencies and at
their sums end differences.

Specifically, we obtain the following expressions for the
mean fields in the long time limit, up to the second order in
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g0,i j

α1(t) ≈ α(0)
1,+ e−iω+t + α(0)

1,− eiω+t

α2(t) ≈ α(0)
2,X e−iωX t + α(0)

2,−X eiωX t

β j(t) ≈ βdc
j + β(1)

j,+2 e−2 iω+t + β(1)
j,−2 e2 iω+t

+β(1)
j,2X e−2 iωX t + β(1)

j,−2X e2 iωX t (A5)

where the zero-th order terms are

α(0)
1,+ = −i χ1 E1 ,

α(0)
1,− = −i χ1 E2 ,

α(0)
2,X = i χLC V ′ ,

α(0)
2,−X = i χLC V ′∗ , (A6)

and the first order terms are

βdc
j = −i χ′m, j

{
g0,1 j

[
|α(0)

1,+|
2 + |α(0)

1,−|
2
]

−2g0,2 j|α
(0)
2,X + α(0)

2,−X
∗
|2
}

β(1)
j,± 2 = −i χ′m, j g0,1 j α

(0)
1,± α

(0)∗
1,∓

β(1)
j,±2X = i χ′m, j g0,2 j

[
α(0)

2,±X + α(0)
2,∓X

∗]2
. (A7)

Correspondingly we find that the time dependent coeffi-
cients (15) of the linearized quantum Langevin equations (14)
can be written as sums of many terms oscillating at different
frequencies as in Eq. (16). To be specific, we find that the
shifts of the electromagnetic frequencies can be written as

Θ`(t) =
∑
ξ∈{±}

Θ`,ξ eiω(Θ)
ξ t for ` ∈ {1, 2} (A8)

with frequencies

ω(Θ)
ξ = ξ 2ω+ for ξ ∈ {±} (A9)

and corresponding coefficients

Θ`,± = −(−2)`
∑
j=1,2

g0,` j

[
β(1)

j,±2 + β(1) ∗
j,∓2 + β(1)

j,±2X + β(1) ∗
j,∓2X

]
;

(A10)

The field enhanced interaction strengths are

G(±)
`, j (t) =

∑
ξ∈{±}

G(±)
`, j,ξ eiω(G` j±)

ξ t for `, j ∈ {1, 2} (A11)

with frequencies

ω
(G1 j±)
ξ = ∆ + ξ (ω+ − 2ωX) ± ω̃ j for ξ ∈ {±}

ω
(G2 j±)
ξ = ωLC − ξ ωX ± ω̃ j for ξ ∈ {±} (A12)

where

ω̃ j = ω j − (−1) j δ , (A13)

and corresponding coefficients

G(±)
1, j,ξ = g0,1 j α

(0)
1,ξ

G(±)
2, j,ξ = −2 g0,2 j

[
α(0)

2,ξX + α(0) ∗
2,−ξX

]
; (A14)

And finally the self interaction strength of the rf mode, Γ(t),
is zero at this order of approximation. We note that when the
resonance conditions (17) are fulfilled, the frequencies

ω(G11−)
+ = ∆ + ω+ − 2ωX − ω̃1

ω(G12−)
− = ∆ − ω+ + 2ωX − ω̃2

ω(G21−)
+ = ωLC − ωX − ω̃1

ω(G22−)
− = ωLC + ωX − ω̃2 (A15)

are zero. All the other frequencies, instead, are different form
zero. The frequencies in Eq. (A15) correspond, respectively,
to the coefficients

G(−)
1,1,+ = g0,11 α

(0)
1,+

G(−)
1,2,− = g0,12 α

(0)
1,−

G(−)
2,1,+ = −2 g0,21

[
α(0)

2,X + α(0) ∗
2,−X

]
G(−)

2,2,− = −2 g0,22

[
α(0)

2,−X + α(0) ∗
2,X

]
. (A16)

In the main text we used the symbols g` j to indicate these
coefficients, specifically, we used these definitions

g11 ≡ G(−)
1,1,+

g12 ≡ G(−)
1,2,−

g21 ≡ −G(−) ∗
2,1,+

g22 ≡ −G(−) ∗
2,2,− , (A17)

which are equal to the definitions in Eq. (22). In our numerical
simulations we have verified that all the other coefficients in
Eqs. (A8) and (A11) are much smaller than the corresponding
frequencies, i.e

∣∣∣Xξ

∣∣∣ � ω(X)
ξ , for X ∈

{
Θ`,G

(±)
j,`

}
and for all

corresponding `, j and ξ. In particular it is easy to check that
these conditions are fulfilled when the conditions in Eq. (19)
are true.

Appendix B: The model in Fourier space

Eq. (20) can be easily solved in Fourier space [33]. To be
specific one can express the mechanical operators in terms of
the susceptibilities (29) and of the optical and rf mode opera-
tors as

δb̂1(ω) = χm,1
{
− ig∗11â1 + ig21â2 +

√
γm,1b̂1,in

}
δb̂2(ω) = χm,2

{
− ig∗12â1 + ig22â2 +

√
γm,2b̂2,in

}
. (B1)

These expressions can be replaced into the equation for the
electromagnetic fields and one obtain the following closed
equation for the vector of operators A = (δâ1(ω), δâ2(ω))T ,

−iω A = M A + L Ain + K Bin (B2)

where Ain = (â1,in(ω), â2,in(ω))T , Bin = (b̂1,in(ω), b̂2,in(ω))T ,
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M =

(
−(κ + |g11|

2χm,1 + |g12|
2χm,2) g11g21χm,1 + g12g22χm,2

g∗11g∗21χm,1 + g∗12g∗22χm,2 −( γLC
2 + |g21|

2χm,1 + |g22|
2χm,2) ,

)

L =

( √
2κ 0
0
√
γLC

)
,

and

K =

(
−ig11χm,1

√
γm,1 −ig12χm,2

√
γm,2

ig∗21χm,1
√
γm,1 ig∗22χm,2

√
γm,2

)
,

from which one finds the expressions of the modes operators
in terms of the input noise operators

A = −[iω1 + M]−1 (L Ain + K Bin) . (B3)

Finally using the input-output relations

Aout = Ain − LT A (B4)

with Aout = (â1,out(ω), â2,out(ω))T , one finds the expression for
the output fields (24)

Aout = S Ain + T Bin (B5)

with

S = 1 + LT [iω1 + M]−1 L (B6)

and

T = LT [iω1 + M]−1 K
= (S − 1) L−1 K . (B7)

Specifically we find

S = 1 −
1
D

L
(

F11 F12
F21 F22

)
L

= 1 −
1
D

(
2 κ F11

√
2 κ γLC F12√

2 κ γLC F21 γLC F22

)
(B8)

where F12, F21 and D = F11F22 − F12F21 are defined in
Eqs. (26)-(28) and

F11 =
γLC

2
− iω + |g21|

2 χm,1 + |g22|
2 χm,2

F22 = κ − iω + |g11|
2 χm,1 + |g12|

2 χm,2 , (B9)

and

T = −
1
D

L
(

F11 F12
F21 F22

)
K

=
i
D

 √
2 κ γm,1 χm,1

[
g11 F11 − g∗21 F12

] √
2 κ γm,2 χm,2

[
g12 F11 − g∗22 F12

]
√
γLC γm,1 χm,1

[
g11 F21 − g∗21 F22

] √
γLC γm,2 χm,2

[
g12 F21 − g∗22 F22

]  . (B10)

This expression shows that each coefficient of the matrix T ,
which describes the transfer of mechanical noise to the elec-
tromagnatic fields (see Eq. (B5)), is the sum of various terms
which can interfere, and as discussed in Ref. [33], in same
cases, certain terms can be suppressed. In particular, when the
parameters are chosen in order to suppress S 21 and to maxi-
mize S 12 according to Eqs. (32)-(35), (38) and (39), one finds,
for ω = 0 (see also Ref. [32, 33])

S = P

 0
√

1 − 1
2 Γ

0 0


T =

1
√

2
P

( 1
√

2 Γ

1
√

2 Γ

1 −1

)
Q (B11)

with P and Q diagonal matrices, which include additional
phases,

P = i
(

ei(φ∆+φ12+φX±φΓ) 0
0 ±1

)
Q = −i

(
ei(φX±φΓ) 0

0 e−i(φX±φΓ)

)
(B12)

where the sign ± corresponds to the sign in Eq. (39), and

ei φ∆ =
κ − i ∆
√
κ2 + ∆2

ei φΓ =

√
1 −

1
2 Γ
−

i
√

2 Γ
. (B13)

Eq. (B11) shows that in the limit of large cooperativity Γ, the
optical output is not affected by the mechanical noise [33].
Similarly, when one suppresses S 12 and maximizes S 21, one
finds

S = P̃

 0 0√
1 − 1

2 Γ
0


T =

1
√

2
P̃

(
−1 1

1
√

2 Γ

1
√

2 Γ

)
Q̃ , (B14)
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with

P̃ = −i
(
±1 0
0 e−i(φ∆+φ12+φX∓φΓ)

)
Q̃ =

(
ei(φ∆+φ12+2 φX∓φΓ) 0

0 ei(φ∆+φ12∓φΓ)

)
. (B15)

The matrix S in Eqs. (B11) and (B14) shows that the system

behaves as a perfect isolator, where the transmission in one
direction is large, and both the transmission in the other di-
rection and the reflection coefficients are suppressed [32, 33].
Eqs. (B11) and (B14) can be used to compute the noise spec-
tral density at the output of the optical and rf cavities [see
Sec. V]. In particular, we note that the phases in Eqs. (B12)
and (B15) are irrelevant for this calculation, and one finds the
expressions reported in Eqs. (42) and (43).
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