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We investigate the entanglement due to geometric corrections in particle creation during inflation.
To do so, we propose a single-field inflationary scenario, nonminimally coupled to the scalar curvature
of spacetime. We require particle production to be purely geometric, setting to zero the Bogolubov
coefficients and computing the S matrix associated to spacetime perturbations, which are traced
back to inflaton fluctuations. The corresponding particle density leads to a nonzero entanglement
entropy whose effects are investigated at primordial time of Universe evolution. The possibility of
modeling our particle candidate in terms of dark matter is discussed. The classical back-reaction of
inhomogeneities on the homogeneous dynamical background degrees of freedom is also studied and
quantified in the slow-roll regime.
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I. INTRODUCTION

Throughout the Universe evolution, inflation is real-
ized at primordial epoch with the aim of healing the main
issues related to the standard Big Bang paradigm [1, 2].
It represents a phase of strong acceleration, slightly sim-
ilar to late time dark energy1 epoch [6], driven by an
inflaton field2, quite different of barotropic fluids, widely
adopted for established dark energy scenarios. The in-
flationary potential is still unknown and can be built up
using the approach of either small or large fields, with
exceptions provided by intermediate field representations
[10], or by means of couplings among more than one field,
see e.g. [11].

One of the main goals of inflation is to reproduce in-
homogeneities responsible for the formation of large-scale
structures [12]. Thus, inflation appears to be the natu-
ral landscape in which overdensities formed at primor-
dial time. For any inflationary potentials, as a conse-
quence of Einstein’s field equations, the cosmological in-
homogeneities plausibly generate particles, a mechanism
known as geometric particle production [13, 14]. Such
process is conceptually different from the well known
gravitational particle production (GPP) from vacuum,
which is typically associated to Bogolubov transforma-

∗Electronic address: alessio.belfiglio@unicam.it
†Electronic address: orlando.luongo@unicam.it
‡Electronic address: stefano.mancini@unicam.it
1 The cosmography of inflation is similar to dark energy [3, 4], but
physically quite different. Models, unifying the two scenarios,
are however object of current investigation [5].

2 The idea of considering generic scalar fields deliberately repre-
sents the simplest case, describing the inflaton. Alternatives, not
fully-excluded by observations, comprehend Higgs field, spinor
fields, etc., see e.g. [7–9].

tions for quantum fields in an expanding unperturbed
spacetime [15–20].

Indeed, assuming a homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) background3,
GPP leads to particle pairs with opposite momenta, but
including inhomogeneities, i.e., departing from a genuine
FRW, may lead to pair-creation probability depending
on local geometric quantities4. Both mechanisms were
shown to produce also entanglement entropy [22–29],
and the topic of cosmological quantum entanglement
has attracted great attention in recent years [30]. In
fact, quantum correlations arising from particle creation
may contain information about the Universe expansion
and in principle entanglement could also be extracted
directly from spacetime itself [31, 32]. At the same time,
most predictions of quantum field theory are indeed
difficult to test directly, paving then the way for some
analogue models, see e.g. [33–35].

One important motivation in studying particles from
inhomogeneities during inflation is due to the fact that
such mechanism may be responsible for dark matter pro-
duction at early times [36], under the usual assumption
that the corresponding dark matter candidate is coupled
only to gravity and not to other quantum fields5. Ac-
cordingly, if dark matter has negligible interactions with
standard matter, quantum correlations created at early

3 Along the text, we only focus on the spatially flat version of
the FRW spacetime, in agreement with current measurements
indicating it as the most accredited scenario, see e.g. [21].

4 We clearly expect geometry to depend on the details of the ex-
pansion, so that the two mechanisms are not completely inde-
pendent from each other, as we will discuss in the manuscript.

5 A similar approach for dark matter production has been recently
studied also in the context of GPP [37–42], with generalizations
to nonzero spin [43–49].
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times may still be present to some extent at late times,
since decoherence due to coupling with other fields (ex-
cept for gravity) would be excluded. So, if spacetime
geometry affects entanglement, a given perturbed FRW
background induced by inflationary dynamics is expected
to work analogously, leading to non-negligible effects.

Motivated by these considerations, we here investigate
entanglement arising from geometric particle production
in a single-field inflationary scenario6, where perturba-
tions are traced back to quantum fluctuations of the
scalar inflaton field. By assumption, the inflaton dom-
inates the energy density of the Universe during infla-
tion. Accordingly, any fluctuation in the inflaton re-
sults, through Einstein’s equations, in a perturbation of
the metric. The dynamics of these fluctuations will be
then responsible for the geometric mechanism of particle
production here studied. In addition, we consider from
a classical perspective the back-reaction effects induced
by inhomogeneities on the homogeneous dynamical back-
ground [51–53]. We start by assuming in our Lagrangian
a Yukawa-like term, i.e., a non-minimal interacting term
between the inflaton and the scalar curvature. The Uni-
verse evolution during inflation is modeled by a quasi-
de Sitter solution [54] for the scale factor, in the per-
turbed FRW background. We evaluate then the modes
and the corresponding analytical solutions for the infla-
ton field involving a chaotic potential. Once obtained
the e-folding number, the perturbation solution and the
end of inflation, we go further with particle production
up to the second geometric order, taking zero Bogolubov
coefficients at first order expansion. The corresponding
geometric particles are thus computed together with their
probabilities for positive and negative coupling constant,
ξ. We infer the amplitude element, adopting the Dyson
expansion over the S matrix and afterwards we focus on
back-reaction effects. As a final step, the entanglement
entropy is computed, showing how it increases in case of
negative coupling constant, ξ. Physical consequences on
inflationary dynamics, dark matter abundance under the
form of geometric particles and entanglement signature
are also debated.

The paper is structured as follows. In Sec. II we work
out our cosmological framework, introducing the corre-
sponding single-field description. In Sec. III, quantum
fluctuations are investigated by perturbing the field and
the FRW metric. Afterwards, in Sec. IV, inflation is
studied as one adopts a quasi-de Sitter scale factor, get-
ting rise to perturbed solutions for the field itself. Once
evaluated the e-folding number and the corresponding
inflationary end, we shift to particle production in Sec.
V, where we also compare our geometric mechanism of
production to inflationary particle production in warm

6 Multifield inflation may also lead to interesting results in the
context of geometric particle production, starting for example
from the proposal of Ref. [50]. This could be subject of future
investigations.

inflation scenarios. In Sec. VI, we investigate how classi-
cal back-reaction effects occur in the primordial Universe,
emphasizing that they slightly contribute to the overall
shift of the energy-momentum tensor, thus being negligi-
ble in our framework. Finally, entanglement due to geo-
metric production is quantified in Sec. VII. Conclusions
and perspectives are discussed in Sec. VIII7.

II. COSMOLOGICAL SETUP OF
INFLATIONARY DYNAMICS

We start from the usual Lagrangian density for the
inflaton ϕ, introducing a finite coupling ξ between the
field itself and the scalar curvature R,

L =
1

2

[
gµνϕ,µϕ,ν − ξRϕ2

]
− V (ϕ). (1)

The potential V (ϕ) is left unspecified for the moment,
whereas the FRW line element, in cosmic time t, reads

ds2 = dt2 − a2(t)dx2 . (2)

Thus, we take the variation of the action for Eq. (1) with
respect to ϕ, obtaining the equation of motion

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+ 6ξ

(
Ḣ + 2H2

)
ϕ+ V,ϕ = 0, (3)

corresponding to the inflaton dynamics, when the FRW
background is not perturbed. Here, dot indicates deriva-
tive with respect to t. In Eq. (3) the curvature R
is function of the Hubble parameter H = ȧ(t)/a and
V,ϕ ≡ ∂V (ϕ)/∂ϕ. Notice that here the inflaton is still
depending on the event xµ ≡ (t, x), instead of time coor-
dinate only. In the next section we will split the field ϕ
in a background homogeneous contribution and quantum
fluctuations associated with it.
The dynamics of the inflaton field is more easily eval-

uated in conformal time, i.e., τ =
∫
dt/a(t), where the

unperturbed metric tensor becomes

gµν = a2(τ)ηµν , (4)

namely proportional to the Minkowski metric tensor, ηµν .
The zero-order equation of motion for the inflaton is then
[54, 55]

1√
−g

∂µ
(√

−ggµν∂νϕ
)
+

6ξ a′′

a3
ϕ+ V,ϕ = 0, (5)

where the prime denotes derivatives with respect to con-
formal time and we made explicit the zero-order scalar

7 Throughout the paper, we adopt natural units, i.e., ℏ = c = 1,
while the metric tensor is taken with signature (+−−−).
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curvature [14]. Introducing the effective potential for a
generic scalar curvature R,

V eff(ϕ,R) ≡ V (ϕ) +
1

2
ξRϕ2 , (6)

that corresponds to an interacting term, non-minimally
coupled to curvature, we can therefore rewrite Eq. (5) as

1√
−g

∂µ
(√

−ggµν∂νϕ
)
+ V eff

,ϕ = 0 , (7)

that holds for any metric tensor gµν .

III. QUANTUM FLUCTUATIONS DURING
INFLATION

We here introduce perturbations in the aforementioned
framework. To do so, we first split the inflaton field as
a homogeneous background contribution, say ϕ0, plus a
term associated to its quantum fluctuations, namely

ϕ(x, t) = ϕ0(t) + δϕ(x, t). (8)

Second, we employ metric perturbations, whose most
general expression for the line element, describing scalar
degrees of freedom, is [9, 54]

ds2 = a2(τ)
[
(1 + 2Φ)dτ2 − 2 ∂iB dτdxi

− ((1− 2Ψ)δij +DijE) dxidxj
]
, (9)

where Φ, Ψ, B and E are scalar quantities which depend
on space and time coordinates and Dij ≡ ∂i∂j − 1

3δij∇
2.

Now, the variation of Eq. (7) consists in the sum of
four different contributions, corresponding to the varia-
tions of 1√

−g
,
√
−g, gµν and ϕ. By adopting the well-

known identity

δg = ggµνδgµν , (10)

and recalling the zero-th order equation of motion for the
field8

ϕ′′ + 2
a′

a
ϕ′ = −V eff

,ϕ a2, (11)

one arrives at the first-order perturbed equation

δϕ′′ + 2Hδϕ′ − ∂i∂
iδϕ− Φ′ϕ′ − 3Ψ′ϕ′ − ∂i∂

iB ϕ′

= −ξδR ϕ a2 −
(
V eff
,ϕϕδϕ + 2ΦV eff

,ϕ

)
a2, (12)

8 From now on, for simplicity we neglect the subscript 0 for all
background quantities, so that we will regard ϕ as ϕ0.

where H ≡ a′/a and the variation of the scalar curvature
is [54]

δR =
1

a2

(
− 6H ∂i∂

iB − 2∂i∂
iB′ − 2∂i∂

iΦ− 6Ψ′′ − 6HΦ′

− 18HΨ′ − 12
a′′

a
Φ+ 4∂i∂

iΨ+ ∂k∂
iDk

i E

)
.

(13)

When perturbations are generated by a single scalar
field, it can be shown that the perturbation potentials are
equal, i.e., Φ = Ψ. Moreover, choosing the longitudinal
gauge9, namely E = B = 0, and assuming plane-wave
perturbations [54, 56], i.e., adopting the following ansatz:

δϕ(x, τ) = δϕk(τ) e
ik·x, Ψ(x, τ) = Ψk(τ) e

ik·x, (14)

it is straightforward to get from Eq. (12)

δϕ′′k + 2H δϕ′k + k2δϕk − 4Ψ′
kϕ

′
k

= −ξ
(
2k2Ψk − 6Ψ′′

k − 24HΨ′
k − 12

a′′

a
Ψk − 4k2Ψk

)
ϕ

−
(
V eff
,ϕϕ δϕk + 2ΨkV

eff
,ϕ

)
a2, (15)

that turns out to be a complicated version of the equa-
tions of motion for ϕ at a perturbative level. Once the
δϕk modes are obtained, the full expansion for quantum
fluctuations of the inflaton field reads [13]

δϕ̂(x, τ) =
1

(2π)3/2

∫
d3k
(
âkδϕk(τ)e

ik·x

+ â†kδϕ
∗
k(τ)e

−ik·x), (16)

where the ladder operators satisfy canonical commuta-
tion relations

[âk, â
†
k′ ] = δ(3)(k− k′). (17)

We will discuss normalization of the inflaton modes later
on. In order to solve analytically Eq. (15), one has to ar-
gue particular energy conditions, corresponding to given
lengthscales for the inflaton fluctuations.

A. Super-Hubble scales

To leading order, each Fourier mode in Eq. (16) evolves
independently. The comoving Hubble radius during in-
flation,

rH(τ) =
1

a(τ)HI
, (18)

9 Geometric particle production can be also studied in the syn-
chronous gauge, specified by the condition h0ν = 0 [14]. In Ap-
pendix A we discuss scalar perturbations in this gauge, starting
from the potential Ψ derived here.
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plays a key role in determining the mode dynamics:
on sub-Hubble scales (k ≥ aHI) the inflaton fluctua-
tions typically oscillates, while they are nearly time-
independent on super-Hubble scales (k < aHI), as we
will see.

Formally, one can define an Hilbert space associated
to fluctuation modes, which naturally divides into a sub-
Hubble subspace and a super-Hubble one [57]. Note
that the comoving Hubble radius decreases as function
of time during the inflationary period: this means that
the boundary between the two subspaces depend on time,
i.e., the more inflation goes on the more modes get off the
horizon. This is a specific feature of systems on a dynam-
ically expanding background.

It has been shown [58–60] that some mixing may arise
between sub- and super-Hubble modes, leading to deco-
herence of the reduced density matrix for both subsys-
tems. However, these effects typically derive from inter-
action terms which are cubic in the perturbation vari-
ables [57], i.e., of higher order with respect to the field-
geometry coupling studied here. For this reason, deco-
herence effects will be neglected in this work but will be
subject of future investigations.

In the context of GPP, it can be proven [20] that parti-
cle production is dominant on super-Hubble scales, with
respect to sub-Hubble ones, if one assumes a pure de
Sitter evolution during inflation. Accordingly, it seems
interesting to generalize such a framework by including
perturbations.

More precisely, the modes of interest are well inside the
horizon at the beginning of inflation, and leave it, becom-
ing super-Hubble, subsequently. This mechanism may
also affect geometric particle production, as we will see.
Moreover, the choice of such scales will naturally provide
an infrared and ultraviolet cutoff for the momenta of the
particles that will be produced.

The term Ψ′
kϕ

′
k in Eq. (15) can be neglected on super-

Hubble scales because perturbations are nearly frozen10

in this limit. In this limit we also have

Ψk ≃ ϵHδϕk
ϕ′

, (19)

where

ϵ ≡ 1− H′

H2
= 4πG

ϕ′2

H2
(20)

is the slow-roll parameter and G the gravitational con-
stant. Eq. (19) can be derived from the (0,i)-component
of perturbed Einstein’s equations [54].

10 Accordingly, a term of the form Ψ′
kϕ

′
k would be of higher order

with respect to Ψk V eff
,ϕ , since also Ψk is small [54] on these

scales. The same reasoning apply to the terms Ψ′
k and Ψ′′

k in the
curvature contribution.

Bearing the above considerations in mind, we can
rewrite Eq. (15) as

δϕ′′k + 2H δϕ′k +

[
k2 +

(
V eff
,ϕϕ + 2ϵ

H
ϕ′

V eff
,ϕ

)
a2
]
δϕk

+ ξ

(
−2k2 − 12

a′′

a

)
Ψkϕ = 0. (21)

For |ξ| ≪ 1, we can neglect the contribution arising from
the variation of the scalar curvature, since we also need
the perturbation potential to satisfy |Ψk| ≪ 1.
In the case of slow-roll approximation, we can also set

ϕ′′ ≃ 0 and thus write the derivative of the potential as
function of ϕ′ in the background equation, Eq. (11).
Performing now the usual rescaling procedure over the

field [54, 55],

δϕk → δχk = δϕka, (22)

and choosing the chaotic potential11

V (ϕ) =
1

2
m2ϕ2, (23)

where m is the mass of the field, we arrive at

δχ′′
k +

[
k2 +m2a2 − (1− 6ξ)

a′′

a
− 6ϵ

(
a′

a

)2
]
δχk = 0.

(24)

IV. INFLATION IN A QUASI-DE SITTER
SPACETIME

During inflation, the slow-roll parameters are small
and almost constant [61]. Commonly, one refers to this
assuming that a suitable solution for the scale factor
turns out to be purely de Sitter. However, this happens
only in the simplest cases, i.e., when vacuum energy dom-
inates [62]. In fact, since vacuum energy is constant, the
scale factor naturally reads as an exponential, implying a
de Sitter phase. Clearly, for a generic potential, that does
not reduce to vacuum energy during inflation, the situa-
tion is different. Indeed, one has to solve the equations
of motion for the field and, by virtue of the Friedmann
equations, arguing the exact form of a(τ) throughout in-
flation. This is clearly not easy and quite often appears
as a sole numerical investigation.

11 Chaotic potentials usually exhibit the graceful exits, byproduct of
attractor solutions as ϕ → 0. The standard forms, namely ∼ ϕ2

and ∼ ϕ4, have been recently ruled out by the Planck satellite
results [21] that, conversely, showed that they can work only if
the curvature is coupled to ϕ. We here limit ourselves to ∼ ϕ2 in
order to compute an analytic toy-model approach for entangle-
ment production during inflation. More complicated cases invoke
alternative potentials [12] and will be object of future efforts.
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Thus, during the inflationary stage one can approxi-
mate the scale factor through a quasi-de Sitter function
that appears to suitably approximate the real dynamics
and the slow-roll parameter as well. In particular, follow-
ing Ref. [54], we here propose the approximate quasi-de
Sitter solution provided by

a(τ) = − 1

HI

1

τ (1+v)
, v ≪ 1, (25)

where τ < 0 and HI is the Hubble parameter during
inflation, up to small corrections. In this respect, Planck
data impose severe upper bounds on HI , leading to [21]

HI/Mpl ≲ 2.5× 10−5, (26)

where Mpl is the Planck mass. The parameter v in Eq.
(25) essentially describes small deviations from a pure de
Sitter phase. We notice that

ϵ = 1− H′

H2
= 1− 1

1 + v
≃ v, (27)

implying that we can identify v as a small and constant
slow-roll parameter. Departures from this approximate
version of the scale factor with respect to the real solu-
tion for a(τ) are extremely small, in the slow-roll regime.
Accordingly, we set v ≡ ϵ from now on. Using now Eq.
(25) and noting that a′′/a ≃ (2+ 3ϵ)/τ2, the equation of
motion for perturbations (24) finally gives

δχ′′
k +

[
k2 − 1

τ2

(
(1− 6ξ)(2 + 3ϵ) + 6ϵ− m2

H2
I

)]
δχk = 0.

(28)
This equation can be recast in the form

δχ′′
k +

[
k2 − 1

τ2

(
ν2 − 1

4

)]
δχk = 0, (29)

where

ν2 =
1

4
+ (1− 6ξ)(2 + 3ϵ) + 6ϵ− m2

H2
I

. (30)

This result coincides with that of Ref. [54] in the case
of minimal coupling, ξ = 0, if one introduces the further
parameter η = m2/3H2

I . For small ξ, i.e., ξ ≃ (ϵ; η), it is
easy to see that12

ν ≃
√

9

4
+ 9ϵ− 3η − 12ξ ≃ 3

2
+ 3ϵ− η − 4ξ. (31)

The general solution of Eq. (29) can be written in the
form

δχk(τ) =
√
−τ
[
c1(k)H

(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)

]
,

(32)

12 More precisely, since the inflaton field is massive, the condition
|ξ| ≲ 10−3 is required during inflation, see e.g. [63, 64].

where H
(1)
ν and H

(2)
ν are Hankel functions and the con-

stants c1(k) and c2(k) can be determined by imposing
the normalized initial vacuum state.
A common choice is the Bunch-Davies vacuum [65–67],

i.e., to impose that in the ultraviolet regime k ≫ aHI

the solution for δχk matches the following plane-wave
solution:

δχk ∼ e−ikτ/
√
2k . (33)

Thus, knowing that

H(1)
ν (x≫ 1) ≃

√
2

πx
ei(x−

π
2 ν−π

4 ), (34a)

H(2)
ν (x≫ 1) ≃

√
2

πx
e−i(x−π

2 ν−π
4 ), (34b)

we can then set

c1(k) =

√
π

2
ei(ν+

1
2 )

π
2 , c2(k) = 0. (35)

This gives the solution

δχk(τ) =

√
π

2
ei(ν+

1
2 )

π
2

√
−τH(1)

ν (−kτ). (36)

On super-Hubble scales, since H
(1)
ν (x ≪ 1) ≃√

2/πe−iπ/2 2ν−3/2 (Γ(ν)/Γ(3/2))x−ν , the fluctuation
becomes

δχk = ei(ν−
1
2 )

π
2 2(ν−

3
2 ) Γ(ν)

Γ(3/2)

1√
2k

(−kτ) 1
2−ν . (37)

-1000 -800 -600 -400 -200

0.01800

0.01805

0.01810

0.01815

0.01820

0.01825

Time τ (GeV-1)

|δϕk|/Mpl

FIG. 1: Fluctuations of the inflaton field |δϕk(τ)|, normalized
with respect to the Planck mass. The other parameters are:
HI = 1013 GeV, ϵ = 10−3, ξ = 10−3 and k ≡ 0.001, which
corresponds to scales crossing the Hubble horizon at the be-
ginning of inflation, in our model. We also set η = 5× 10−3,
corresponding to an inflaton mass m ≃ 1.22× 1012 GeV.

Restoring now the original fluctuation δϕk, we obtain

δϕk = ei(ν−
1
2 )

π
2 2ν−

3
2

Γ(ν)

Γ(3/2)

HI√
2k3

(
k

aHI

) 3
2−ν

, (38)

which is plotted in Fig. 1 as function of conformal time.
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We remark that this result is correct only in the slow-
roll regime, where the Universe expansion can be de-
scribed by a scale factor of the form (25). The corre-
sponding perturbation can be now derived from Eq. (19),
once we solve Eq. (11) for the background field.

Hence, including the slow-roll hypothesis, this equation
gives

2

(
1 + ϵ

τ

)
ϕ′ = a2

(
m2 + 6ξ

a′′

a3

)
ϕ ≃ (39)

1

τ2
(3η + 6ξ(2 + 3ϵ))ϕ,

with solution

ϕ(τ) = c0|τ |
(
3η+6ξ(2+3ϵ)

)
/(2+2ϵ) = c0|τ |κ, (40)

where compactly

κ ≡ 3[η + 2ξ(2 + 3ϵ)]

2(1 + ϵ)
. (41)

The integration constant c0 can be determined by impos-
ing the initial value of the background field ϕ(τi), while
the coupling constant ξ is small, as previously discussed.
For ξ ≃ (ϵ; η) we can neglect second order terms and

thus write

κ ≃ 3(η + 4ξ)

2(1 + ϵ)
. (42)

The initial and final times τi, τf for the inflationary era
can be derived by selecting a given number of e-foldings
N . Commonly one takes N ≳ 60, i.e., those minimally
needed to speed the Universe up during inflation,

N =

∫
dtH(t) ≃ −

∫ τf

τi

dτ
HI

HIτ
= 60. (43)

-1000 -800 -600 -400 -200

0.0000678

0.0000680

0.0000682

0.0000684

0.0000686

0.0000688

Time τ (GeV-1)

|Ψk|

FIG. 2: Perturbation potential |Ψki(τ)|. The parameters cho-
sen are: HI = 1013 GeV, ϵ = 10−3, ξ = 10−3, η = 5 × 10−3

and ϕ(τi) = 20 Mpl.

Since we are focusing on modes exceeding the Hubble
horizon after the beginning of inflation, we set k > ki =

HIa(τi) and we further require the perturbation poten-
tial to be small with respect to the background, namely
|Ψk| ≪ 1 ,∀k.
For instance, a viable choice is τi = −103, that in

turn gives ki = 0.001. Accordingly, via Eq. (43) we can
derive the corresponding value for τf and recalling the
relation between the inflaton field value and the number
of e-foldings13 before the end of inflation

N(ϕ) ≃ ϕ2

4M2
pl

− 1

2
, (44)

we can fix ϕ(τi) and the corresponding value for c0. The
geometric perturbation, Eq. (19), on super-Hubble scales
finally takes the form

Ψk(τ) =− ϵ ei(ν−
1
2 )

π
2 2ν−

3
2

Γ(ν)

Γ(3/2)

H(
κc0|τ |κ−1

)
× HI√

2k3

(
k

aHI

) 3
2−ν

, (45)

and it is plotted in Fig. 2 as function of time, assuming
k = ki.

V. PARTICLE PRODUCTION IN
INFLATIONARY PHASE

Once the geometric perturbation has been computed,
we can quantify the amount of particles arising from the
coupling of inflaton fluctuations δϕ(x, τ) to gravity. Ac-
cording to previous findings [36], we will call geometric
particles those quasi-particles obtained when the inflaton
is coupled to the scalar curvature R.
Writing the perturbed metric in the form gµν =

a2(τ)(ηµν +hµν), we can describe at first order the inter-
action between fluctuations and spacetime perturbations
via the Lagrangian14 [13]

LI = −1

2

√
−g(0)HµνT (0)

µν , (46)

where g
(0)
µν ≡ a2(τ)ηµν , Hµν = a2(τ)hµν and T

(0)
µν is the

zero-order energy-momentum tensor associated to fluc-
tuations, which is given by

13 This equation is valid in case of chaotic potential, see [9]. Our
potential can be seen as chaotic, since the curvature is almost
constant in the quasi-de Sitter phase, resulting in an effective
mass meff =

√
m2 + ξR, see Eqs. (6) and (23). Of course,

this assumption is no longer valid as inflation ends, when the
quasi de Sitter scale factor do not describe properly the Universe
evolution.

14 An alternative approach consists in describing both inflaton
fluctuations δϕk and scalar metric perturbations Ψk via the
Mukhanov-Sasaki variable [68]. This choice turns out to be use-
ful in some particular contexts, e.g. particle production during
preheating [69].
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T (0)
µν =∂µδϕ ∂νδϕ− 1

2
g(0)µν

[
gρσ(0) ∂ρδϕ ∂σδϕ−m2(δϕ)2

]
− ξ

[
∇µ∂ν − g(0)µν ∇ρ∇ρ +R(0)

µν − 1

2
R(0)g(0)µν

]
(δϕ)2.

(47)

Since the energy-momentum tensor is quadratic in the
fluctuations, particles are produced in pairs at first per-
turbative order.

The corresponding number density of geometric parti-
cles produced at a given time τ∗ is given by

N (2)(τ∗) =
a−3(τ∗)

(2π)
3

∫
d3q d3p |⟨0|Ŝ|p, q⟩|2

×
(
1 + |βp|2 + |βq|2

)
.

(48)

where βp and βq are Bogolubov coefficients [13, 15], asso-
ciated to the field evolution with respect to the homoge-
neous background. See, for example, [36] for a deriva-
tion of Eq. (48). As discussed in the Introduction,
nonzero Bogolubov coefficients leads to gravitational (or
quantum) particle production (GPP), provided by a con-
solidate mechanism, see e.g. [15–18], and also widely-
investigated in the inflationary regime [19, 20]. In the
context of cosmological perturbations, the GPP process
due to inflationary expansion is also associated to en-
tropy generation, as the result of squeezing of fluctua-
tions modes on super-Hubble scales [70–72]. As we will
discuss later on, this mechanism differs from entangle-
ment production due to perturbations only.

The main disadvantage in dealing with Bogolubov
transformations on a FRW background is that they only
mix modes of the same momentum [24]. This leads, in
principle, to particle-antiparticle pair production, which
may annihilate. On the other side, geometric particle
production is not restricted to such pairs. This is due to
the presence of inhomogeneities, which break space trans-
lation symmetry so that linear momentum is no longer
conserved. In Eq. (48) we notice the presence of a purely
geometric contribution, namely the first term, but we also
notice that nonzero Bogolubov coefficients can enhance
the geometric mechanism of production here studied, re-
sulting in a larger number of particles produced. This
effect should be further investigated, especially in the at-
tempt of deducing dark matter from a geometric mech-
anism of particle production [36]. Alternative proposals
for geometric quasi-particles have also been studied, see
e.g. [37].

Before discussing particle production associated to the
inflaton fluctuations, we underline that the number den-

sity in Eq. (48) can be computed analytically only in
some special cases. For example, assuming a conformally
coupled massless scalar field (m = 0, ξ = 1/6) it can be
shown that the Bogoliubov coefficients are zero, i.e., the
background expansion does not produce particles and the
second order number density reduces to

N (2) =
1

960π

∫
d4x a4(τ)CµνρσC

µνρσ, (49)

where Cµνρσ is the Weyl tensor associated to the per-
turbed metric gµν . Other examples are discussed in [13].

The S matrix Ŝ in Eq. (48) is derived from the first-
order Dyson’s expansion, namely

Ŝ ≃ 1 + iT̂

∫
d4x LI . (50)

We remark that a proper definition of the S matrix in
curved spacetime is not straightforward [17, 73, 74]. First
of all, we need the interaction to be switched off in the
distant past and future, as for Minkowski spacetime. In
our model this assumption seems realistic, since in infla-
tionary cosmology all pre-existing classical fluctuations
can be typically neglected (see e.g. [75]), while at the
end of the slow-roll regime we expect back-reaction ef-
fects to gradually restore homogeneity, as discussed in
Sec. VI.

At the same time, we are faced with the problem of
properly defining particle states, which is a peculiar issue
of quantum field theory in curved spacetime. In a de Sit-
ter background, which clearly does not possess asymptot-
ically flat regions, a valid definition of initial no-particle
states can be given in terms of the adiabatic vacuum [17].
In particular, it can be shown that the Bunch-Davies vac-
uum introduced in Sec. IV is a local attractor in the space
of initial states for an expanding background [76].

In eternal de Sitter space one can prove that no par-
ticle production arises due to the background. However,
the Universe dynamics is clearly not described by a scale
factor of the form (25) at any time and, more subtly, a de
Sitter background still produces thermal radiation, which
can be detected by comoving observers in it [17, 77]. For
these reasons, a realistic description of spacetime evolu-
tion necessarily requires the inclusion of Bogolubov co-
efficients, as result of the transition from inflation to ra-
diation/matter domination and then late times [20]. In
turn, this also implies an increase of the total amount of
geometric particles produced, as shown by Eq. (48). We
will deepen this point in future works.

For the moment, we focus on the probability amplitude
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⟨p, q|Ŝ|0⟩ =− i

2N

∫
d4x 2a4Hµν

[
∂(µδϕ

∗
p∂ν)δϕ

∗
q −

1

2
ηµνη

ρσ∂(ρδϕ
∗
p∂σ)δϕ

∗
q +

1

2
g(0)µνm

2δϕ∗pδϕ
∗
q

− ξ

(
∇µ∂ν − g(0)µν ∇ρ∇ρ +R(0)

µν − 1

2
R(0)g(0)µν

)
δϕ∗pδϕ

∗
q

]
e−i(p+q)·x , (51)

where N is a normalization factor. Exploiting the fact
that the perturbation tensor is diagonal and writing ex-
plicitly all the curvature terms, Eq. (51) can be expressed
as

⟨p, q|Ŝ|0⟩ = − i

2N

∫
d4x 2a2

(
A0(x, τ) +A1(x, τ)

+A2(x, τ) +A3(x, τ)
)
,

(52)

where

A0(x, τ) = 2Ψ

[
∂0δϕ

∗
p ∂0δϕ

∗
q −

1

2
ηρσ∂ρδϕ

∗
p ∂σδϕ

∗
q

+
1

2
m2a2δϕ∗pδϕ

∗
q − ξ

(
∂0∂0 −

a′

a
∂0

− ηρσ∂ρ∂σ − 3

(
a′

a

)2
)
δϕ∗pδϕ

∗
q

]
e−i(p+q)·x

(53)

and

Ai(x, τ) = 2Ψ

[
∂iδϕ

∗
p ∂iδϕ

∗
q +

1

2
ηρσ∂ρδϕ

∗
p ∂σδϕ

∗
q

− 1

2
m2a2δϕ∗pδϕ

∗
q − ξ

(
∂i∂i +

3a′

a
∂0 +

2a′′

a

+ ηρσ∂ρ∂σ −
(
a′

a

)2)
δϕ∗pδϕ

∗
q

]
e−i(p+q)·x.

(54)

for i = 1, 2, 3. Recalling Eq. (14) for the perturbation
potential, the integral over space leads to a Dirac delta.
Moreover, time integration has to be performed so that
all the modes of interest are in super-Hubble form, Eq.
(38). In particular, we evaluated particle production in
the time interval τ ∈ [τ∗, τf ], with τ

∗ = τi/1000. Such a
choice ensures that all modes in the range 0.001 ≤ k < 1
lie within super-Hubble scales during this interval. In
Fig. 3 we show the probability of particle production as
function of the momentum px, assuming py = pz = 0 and
q = qx = 0.01 GeV.

A. Geometric particle production and warm
inflation

Particle production during inflation, which we quanti-
fied in the context of cosmological perturbations, is also
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FIG. 3: Pair production probability |⟨p, q|Ŝ|0⟩|2 as function
of the momentum px, for positive and negative values of the
coupling parameter ξ. We have assumed qx = 0.01 GeV and
py = pz = 0, while the other parameters are the same as in
Fig. 2.

a peculiar property of the so-called warm inflation sce-
nario15. In this framework, one typically assumes that
the interaction between the inflaton and radiation fields
leads to dissipative effects, which can be interpreted in

15 Warm inflation represents an alternative to the more popular
cold inflation scenario. It allows for interactions between the
inflaton and other quantum fields within the slow-roll regime,
which are not present in the standard picture of inflation (de-
noted as “cold” for this reason). We will not discuss technical
aspects or models of warm inflation here: the interested reader
may consult seminal papers on this topic [78–82], while more
recent developments are summarized in the review [83] and ref-
erences therein.
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terms of particle production [84, 85]. During slow-roll,
the evolution of the background inflaton field in warm
inflation is described (in cosmic time) by [84]

(3H + Γ)ϕ̇+ V,ϕ ≃ 0, (55)

where for simplicity we have assumed no field-curvature
coupling. The coefficient Γ quantifies the effects of dis-
sipation due to interactions, i.e., the energy transferred
from the inflaton to other fields. Such term can be de-
rived assuming some specific interaction Lagrangians, by
means of thermal quantum field theory [83, 85]. How-
ever, an intuitive estimate of the dissipation rate can
be obtained following Ref. [79]: for a given interaction,
we can argue that the dissipation rate is proportional to
the probability of pair production and the correspond-
ing background temperature when such process occurs.
From Fig. 3, we notice that, in case of geometric pro-
duction, probability amplitudes are usually low, except
for modes that exit the horizon at the beginning of in-
flation. Even lower amplitudes are expected if the zero-
order energy-momentum tensor, Eq. (47), is not asso-
ciated to the inflaton fluctuations (e.g. for radiation or
other scalar/fermionic fields), as consequence of the fact
that interactions are purely gravitational in our model.
Similarly, we expect the production rate to be negligible
for sub-Hubble modes, due to the oscillatory behaviour
of the inflaton fluctuations in that regime.

This suggests that geometric particle production can-
not account for large dissipation rates Γ ≳ H during
inflation, at least in a single field scenario. However,
many successful warm inflation models propose a two-
stage mechanism, where the inflaton interacts with heavy
intermediate fields, that in turn are coupled to light fields
(either fermions or bosons) [86]. Possible extensions of
the here-proposed model to multifield inflation could then
shed further light on the dissipative effects associated to
geometric particle production.

Finally, we remark that dissipation could be also inter-
preted in terms of back-reaction of the produced particles
on the background field dynamics16. In the next section
we discuss, from a classical perspective, back-reaction
due to the inflaton fluctuations and the associated metric
perturbations.

16 The topic of back-reaction in cosmological perturbation theory
has been widely investigated in recent years, see e.g. [87] for
a review of the different techniques adopted. However, it has
been shown that in some cases [88] back-reaction from particle
production cannot be described by an interaction term of the
form Γϕ̇.

VI. BACK-REACTION EFFECTS AND
CONSEQUENCES ON THE

ENERGY-MOMENTUM TENSOR

The particle production mechanism discussed in Sec.
V is based on the so-called external field approximation,
i.e, once the geometric perturbation has been computed,
we evaluate the corresponding probability of pair produc-
tion in this fixed (perturbed) background. However, as
already noted in [13], we expect metric perturbations to
alter the background evolution of the Universe, in such
a way to reduce the particle creation rate. Accordingly,
such back-reaction effects should be taken into account in
order to properly deal with the dynamics of a perturbed
spacetime.
Back-reaction associated to density inhomogeneities

was first studied in [89, 90], focusing on its effects on
local observables, such as the expansion rate of the Uni-
verse. A further step was the formulation of the clas-
sical17 back-reaction problem in a gauge-invariant way
[51, 52]: this can be done via the introduction of an effec-
tive energy-momentum tensor (EEMT) for cosmological
perturbations.
Following the notation of [51], we start by denoting

the metric, gµν , and matter, ϕ, fields by the collective
variable qa. Accordingly, we can write

qa = qq0 + δqa, (56)

where the background field qa0 is defined as the homoge-
neous part of qa on the hypersurfaces of constant time,
while the perturbations δqa depend both on time and
spatial coordinates and satisfy |δqa| ≪ qa0 .
From Figs. 1-2 we clearly see that this assumption is

satisfied both for metric and matter perturbations in our
case. We also require

⟨δqa⟩ =
∫
V
δqa d3x∫
V
d3x

= 0, (57)

where the above describes a spatial averaging, defined
with respect to the background metric.
Denoting the Einstein equations by

Gµν − 8πGTµν := Πµν , (58)

we can expand the tensor Πµν in a functional power series
[51] in powers of δqa around the background qa0 , if we
treat Gµν and Tµν as functionals of qa.
Thus, we have

Π(qa0 ) +Π,a

∣∣
qa0
δqa +

1

2
Π,ab

∣∣
qa0
δqaδqb +O(δq3) = 0. (59)

17 As it will be clear soon, in the following we will deal with both
metric and matter perturbations at a classical level, i.e., intro-
ducing a generalized variable δq to describe inhomogeneities. For
a semiclassical treatment of back-reaction in a quasi de Sitter
spacetime, see for example [91, 92].
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Taking the spatial average of Eq. (59) we obtain the
corrected equations, which take into account the back-
reaction of small perturbations on the evolution of the
background, say

Π(qa0 ) = −1

2
⟨Π,abδq

aδqb⟩. (60)

We can require the latter expression to be gauge-
invariant. To so so, we can introduce the new variable

Q = eLX q , (61)

where LX denotes a Lie derivative and isX is constructed
as a linear combination of the perturbation variables in
Eq.(9), as shown in [51, 52]. Accordingly, we define

τµν(δQ) = − 1

16πG
⟨Πµν,abδQ

aδQb⟩ , (62)

which is the gauge-invariant EEMT for cosmological per-
turbations.

A. Back-reaction in inflationary regimes

In the inflationary Universe scenario, the EEMT sepa-
rates into two independent pieces, the first due to scalar
perturbations and the second due to tensor modes18

τµν(δQ) = τ scalarµν (δQ) + τ tensorµν (δQ). (63)

We focus on the scalar contribution and exploit gauge
invariance to move to the longitudinal gauge. As dis-
cussed in Sec. III, for a scalar field the variable Ψ en-
tirely characterizes metric perturbations, in this gauge.
Under the slow-roll assumption, when dealing with super-
Hubble perturbations the following results are obtained,
as function of cosmic time:

τ00 ≃ 1

2
V eff
,ϕϕ ⟨δϕ2⟩+ 2V eff

,ϕ ⟨Ψ δϕ⟩, (64)

τij ≃ a2δij

[
3

πG
H2(t)⟨Ψ2⟩ − 1

2
V eff
,ϕϕ ⟨δϕ2⟩+ 2V eff

,ϕ ⟨Ψδψ⟩
]
.

(65)

Moving to conformal time, the energy density associated
to back-reaction is then

ρbr ≡ τ00 ≃

(
2V eff

,ϕϕ (V eff)2

(V eff
,ϕ )2

− 4V eff

)
⟨Ψ2(τ)⟩. (66)

and similarly one finds for the pressure pbr = −1/3 τ ii ≃
−ρbr.

18 As it is well-known, vector modes decay in an expanding Uni-
verse, so they can be neglected in our analysis.

The correlator ⟨Ψ2⟩ is given by [52]

⟨Ψ2(τ)⟩ =
∫ kf

ki

dk

k
|Ψk|2, (67)

where the modes have been computed in Eq. (45). The
integral runs over all modes with scales larger than the
Hubble radius, i.e.,

k < kf (τ) = HIa(τ), (68)

but smaller than the Hubble radius at initial time τi,

k > ki = HIa(τi), (69)

namely all the modes that exit the Hubble horizon after
the beginning of inflation (super-Hubble scales).
The effects of back-reaction can be then quantified by

considering the fractional contribution of (scalar) per-
turbations to the total energy density: ρbr/ρ0, where
ρ0 ≃ V eff is the background energy density of the scalar
field ϕ.
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FIG. 4: Ratio ρbr(τ)/ρ0 for positive and negative values of
the coupling parameter ξ, at times τ ≲ τf , i.e., close to the
end of the slow-roll regime. The other parameters are the
same as in Fig. 2. The contribution of back-reaction is very
small in both cases, so it can be neglected when dealing with
geometric particle production.

In Fig. 4, the contribution of back-reaction is plot-
ted for both positive and negative values of the coupling
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parameter ξ. As expected, ρbr < 0, so back-reaction re-
duces the total amount of geometric particles produced,
since it gives a negative contribution to the zero-order
energy-momentum tensor, Eq. (47).

However, its effects are almost negligible in the whole
slow-roll phase, so it can be safely neglected when deal-
ing with particle production during inflation. In other
words, the effects of back-reaction does not significantly
influence the net geometric particle production during
the inflationary regime.

We also remark that back-reaction effects disappear in
the limiting case of a pure de Sitter expansion, as due
to ϵ = 0. This result appears evident, since for a pure
de Sitter phase no particle production is possible at a
perturbative level. The net effect would therefore be not
to produce particles, but rather only to accelerate the
Universe.

However, the above considerations do not enable one to
ignore back-reaction at all stages of primordial Universe.
Indeed, we expect back-reaction to play a more relevant
role as the slow-roll approximation is no longer valid, i.e.,
close to the transition to reheating [52]. In that epoch,
therefore, baryon production appears to be dominant in
fulfillment of the standard picture of reheating.

VII. ENTANGLEMENT PRODUCTION AT
PRIMORDIAL TIME

We finally quantify the entanglement entropy arising
from geometric particle production at second order in the
perturbation, i.e., when a purely geometric contribution
is present. We follow the same approach introduced in
Ref. [29] and, as anticipated, we set here βp = βq = 0.
In this way we neglect the contribution due to GPP, that
is typically interpreted in term of squeezing entropy be-
tween k and −k modes. This entropy has been widely
investigated in cosmological scenarios, as discussed in the
Introduction and more specifically in Sec. V for the case
of inflaton fluctuations. Crucially, it does not depend on
the interaction, simply arising from the fact that the defi-
nition of positive and negative frequency modes typically
differs between asymptotic in and out regions. Neglect-
ing Bogolubov transformations, the S matrix (50) gives
the following final state of the system

|Φ⟩ = Ŝ|0p; 0q⟩ = N
(
|0p; 0q⟩+

1

2
S(1)
pq |1p; 1q⟩

)
, (70)

where we have introduced the shorthand notation
⟨p, q|Ŝ|0⟩ ≡ S

(1)
pq and the constant N is derived from

⟨Φ|Φ⟩ = 1.

Eq. (70) describes a bipartite pure state, whose entan-
glement entropy is quantified as usual by the von Neu-
mann entropy of the reduced state, obtained after tracing
out the p or q modes. Accordingly, the reduced density
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FIG. 5: Entanglement entropy of the reduced density operator
ρp as function of the momentum px, for positive and negative
values of the coupling parameter ξ. The other parameters are
the same as in Figs. 2-3. Entanglement generation is higher
in case of negative coupling constant, increasing at larger |ξ|.

operator for the state (70) takes the form

ρp = Trq(|Φ⟩⟨Φ|) = N 2

(
|0⟩p⟨0|+

1

4
|S(1)

pq |2 |1⟩p⟨1|
)
(71)

where the probability of pair production |S(1)
pq |2 is derived

from Eqs. (52) – (54), as discussed in Sec. V.
The corresponding von Neumann entropy S(ρp) is plot-

ted in Fig. 5 as function of the momentum px, assuming
again for simplicity that both particles are produced on
the x-axis.
In analogy with the entanglement entropy associated

to GPP [22, 24, 28], we notice that entanglement gen-
eration is higher as p → pi, where pi is defined as ki in
Sec. IV. This is due to the bosonic nature of the field,
for which modes of smaller p are more easily excited, as
expected. The main difference, as discussed above, is
that geometric particle production allows mode-mixing,
thus leading to entanglement between particle pairs with
q ̸= −p.
Another crucial point is the following: for scalar fields,

entanglement due to GPP arises as consequence of the
fact that the final state of the system is in the form
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of independent two-mode squeezed states [24]. On the
contrary, in our framework the evolution of the initial
vacuum is governed by the S matrix, that leads to the
final state (70). So, despite the mode dependence of the
entanglement entropy is similar in both scenarios, the
origin of such entropy turns out to be completely dif-
ferent. We remark that going beyond first order in Eq.
(70) would imply that particle production is not limited
to pairs, thus enriching the overall picture of geometric
cosmological entanglement. The same consideration ap-
plies if non-quadratic (e.g. quartic) potentials are chosen
to describe the inflaton dynamics in place of Eq. (23),
suggesting that the inflaton potential may significantly
affect mode dependence of geometric entropy. Since our
approach to inhomogeneities is a perturbative one, we
notice that the amount of such geometric entanglement
is typically small in our model: possible extensions to
fully inhomogeneous spacetimes may shed further light
on the properties of cosmological entanglement. We also
notice that entanglement entropy is sensitive to the sign
of the coupling constant between the field and the scalar
curvature. This may be of crucial importance in under-
standing the nature of such coupling.

In fact, changing the coupling constant in the interact-
ing potential can be interpreted as modifying the type of
interaction between the scalar field and the gravity sec-
tor. Indeed, the ξ positive sign corresponds to the attrac-
tive behavior of the Yukawa-like contribution to the effec-
tive potential. Hence, shifting from positive to negative
signs in the Yukawa contribution may lead to repulsive
gravity effects and, in such a way, we can justify the deep
difference that occurs as ξ is modified. Repulsive gravity
effects are not so rare in cosmological scenarios. For in-
stance, dark energy models and/or extended theories of
gravity seem to show similar effects [94]. Analogously, in
black holes and naked singularities often repulsive gravity
are predicted to occur [95, 96].

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we quantified the entanglement entropy
associated to geometric particle production, specializing
to the second order of perturbative expansion, i.e., as-
suming a purely geometric contribution. To do so, we
adopted a single-field inflationary scenario, where the in-
flaton fluctuations are responsible for metric perturba-
tions and also leads to back-reaction effects, studied from
a classical point of view.

We investigated the dynamics of these fluctuations,
understanding how they are responsible for the geomet-
ric mechanism of particle production, conjecturing these
particles to contribute to dark matter abundance in the
very early Universe.

We evaluated the modes and the corresponding ana-
lytical solutions for the inflaton field. The here-involved
potential is a quadratic chaotic one, coupled to the scalar
curvature. The corresponding effective potential is inves-

tigated and we computed the number of e-foldings, em-
ploying a quasi-de Sitter scale factor for the dynamics.
We studied then particle production and back-reaction

effects. So, taking zero Bogolubov coefficients at first or-
der expansion, we showed that the corresponding geo-
metric particles and their probabilities for positive and
negative coupling constants, ξ, are not deeply influenced
by back-reaction effects. In fact, to show that, we got
the amplitude element, adopting the Dyson expansion
over the S matrix, quantifying couples of particles with
different momenta, in the limit of super-Hubble scales.
We also compared geometric production rates to realis-
tic dissipation rates in warm inflation scenarios, where
the interaction of the inflaton with other quantum fields
in the slow-roll regime leads to particle production. We
argued that tracing back such production to geometric
effects would not lead to sufficient dissipation in a single
field inflationary scenario.
Afterwards, we modeled the entropy of entanglement

as due to the mode mixing of the above-obtained expan-
sion. We showed its mode dependence and we focused
on physical consequences on inflationary dynamics.
In analogy with the entanglement entropy associated

to GPP [22, 24, 28], we noticed that entanglement gen-
eration is higher as p → pi, where pi is defined as ki,
as a consequence of the bosonic nature of the field itself,
for which modes of smaller p are more easily excited, as
expected.
However, entanglement generated by the sole expan-

sion of the Universe has a different nature, because in
this case the asymptotic out state of the system can be
written as independent two-mode squeezed states, while
inhomogeneities excite the initial vacuum only in terms
of particle pairs. Consequently, we emphasized that the
origin of such entropy turns out to be completely differ-
ent.
The presence of inhomogeneities in the early Universe

cannot be neglected, since these fluctuations are the seeds
of cosmic structure. Accordingly, a complete characteri-
zation of cosmological entanglement cannot ignore space-
time perturbations. In particular, we demonstrated that
the entropy due to geometric particle production is sen-
sitive to the details of the expansion, e.g. to the initial
value of the inflaton field and the Hubble parameter dur-
ing inflation. This means that geometric cosmological
entanglement may be useful in deducing some parame-
ters which were crucial for the Universe evolution.
The latter is true in particular if the particle candidate

in our model can be interpreted as dark matter, which
is expected to have negligible interaction with standard
matter: in this case residual quantum correlations may
have survived to present time.
In general, our perturbative approach furnished a small

correction under the form of geometric entanglement, as
a consequence of how we treated inhomogeneities. Our
model can be refined by including also the contribution
due to Bogolubov coefficients at second perturbative or-
der for particle production, which is expected to increase
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the total amount of entanglement.
Future works will also shed light on how to quantify

entanglement in non-perturbative inhomogeneous con-
texts. Moreover, we will discuss additional properties of
cosmological entanglement, changing both the effective
potential, likely considering more realistic ones, and the
spacetime, assuming inhomogeneous solutions, instead of
perturbing FRW. Finally, we will investigate more care-
fully the role played by such geometric production in
dark matter scenarios, also including back-reaction ef-
fects both from a classical and semi-classical point of
view.
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Appendix A: Particle production in the synchronous
gauge

In this appendix we discuss geometric particle pro-
duction in the synchronous gauge [13, 56], where the
most general scalar perturbation takes the form hSij =

hδij/3 + h
∥
ij . The general procedure to transform from

the longitudinal to the synchronous gauge is the following
[93]. Let us consider a general coordinate transformation
from a system xµ to another x̂µ

xµ → x̂µ = xµ + dµ(xν). (A1)

We write the time and the spatial parts separately as

x̂0 = x0 + α(x, τ) (A2a)

x̂ = x+∇β(x, τ) + ϵ(x, τ), ∇ · ϵ = 0, (A2b)

where the vector d has been divided into a longitudinal
component ∇β and a transverse component ϵ⃗. Let x̂µ

denote the synchronous coordinates and xµ the conformal
Newtonian coordinates, with x̂µ = xµ + dµ. We have

α(x, τ) = β′(x, τ), (A3a)

ϵi(x, τ) = ϵi(x), (A3b)

h
∥
ij(x, τ) = −2

(
∂i∂j −

1

3
δij∇2

)
β(x, τ), (A3c)

∂iϵj + ∂jϵi = 0. (A3d)

and

Ψ(x, τ) = −β′′(x, τ)− a′

a
β′(x, τ), (A4a)

Φ(x, τ) = +
1

6
h(x, τ) +

1

3
∇2β(x, τ) +

a′

a
β′(x, τ), (A4b)

where Φ and Ψ are the perturbation potentials in the
longitudinal gauge. Now, Eq. (A4a) gives

β′′ − 1 + ϵ

τ
β′ +Ψke

ik·x = 0. (A5)

From Eqs. (14) and (45) we see that the geometric per-
turbation Ψk is polynomial in time, i.e., it can be written
as

Ψ = Ak (−τ)
3
2−ν−κ+ 3

2 ϵ , (A6)

where

Ak = − ϵ√
2
ei(ν−

1
2 )

π
2 2ν−

3
2

Γ(ν)

Γ(3/2)

(1 + ϵ)HI

κc
k−ν (A7)
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does not depend on time, but only on the momentum k.
Accordingly, the differential equation (A5) can be solved

analytically. The corresponding solution of Eq. (A5) is
given by

β(x, τ) =

(
− 2 Ak (−τ)

7
2+

3
2 ϵ−κ−ν

(3 + ϵ− 2κ− 2ν) (7/2 + 3/2ϵ− κ− ν)
+

(−τ)2+ϵ

2 + ϵ
c1 + c2

)
eik·x. (A8)

From Eq. (A3c) we notice that h
∥
ij(x, τ) ∝ kikjβ(x, τ)

and since we are dealing with super-Hubble scales with
k ≪ 1 (see Fig. 3), this contribution can be neglected
with respect to h(x, τ), which is given by19

h(x, τ) ≡ hk(τ)e
ik·x = −6β′′(x, τ)− 12

a′

a
β′(x, τ) = −6β′′(x, τ) +

12(1 + ϵ)

τ
β′(x, τ)

=

[
(6− 6ϵ− 12κ− 12ν)Ak

3 + ϵ− 2κ− 2ν
(−τ)

3
2−ν−κ+ 3

2 ϵ + 6c1(1 + ϵ) (−τ)ϵ
]
eik·x. (A9)

We see that the value of c2 does not affect h(x, τ), which
is the physical perturbation. For this reason, we can
safely set c2 = 0. The constant c1 is in principle ar-
bitrary. However, it can be fixed by imposing that the
total number of particles produced is a gauge-invariant
quantity, i.e., exploiting the results of Sec. V.

The perturbation tensor in synchronous gauge then
reads

hSµν =

0 0 0 0
0 h/3 0 0
0 0 h/3 0
0 0 0 h/3

 , (A10)

where again we remark we are dealing with super-Hubble
scales and h is given by Eq. (A9).
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