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The autoregressive neural networks are emerging as a powerful computational tool to solve rele-
vant problems in classical and quantum mechanics. One of their appealing functionalities is that,
after they have learned a probability distribution from a dataset, they allow exact and efficient sam-
pling of typical system configurations. Here we employ a neural autoregressive distribution estimator
(NADE) to boost Markov chain Monte Carlo (MCMC) simulations of a paradigmatic classical model
of spin-glass theory, namely the two-dimensional Edwards-Anderson Hamiltonian. We show that a
NADE can be trained to accurately mimic the Boltzmann distribution using unsupervised learning
from system configurations generated using standard MCMC algorithms. The trained NADE is
then employed as smart proposal distribution for the Metropolis-Hastings algorithm. This allows
us to perform efficient MCMC simulations, which provide unbiased results even if the expectation
value corresponding to the probability distribution learned by the NADE is not exact. Notably, we
implement a sequential tempering procedure, whereby a NADE trained at a higher temperature is
iteratively employed as proposal distribution in a MCMC simulation run at a slightly lower tempera-
ture. This allows one to efficiently simulate the spin-glass model even in the low-temperature regime,
avoiding the divergent correlation times that plague MCMC simulations driven by local-update al-
gorithms. Furthermore, we show that the NADE-driven simulations quickly sample ground-state
configurations, paving the way to their future utilization to tackle binary optimization problems.

I. INTRODUCTION

Artificial neural networks are finding increasing ap-
plicability in various fields of classical and quantum
physics [1], where the generative neural networks are
turning out to be particularly useful. They can be trained
to mimic complex probability distributions, either using
unsupervised learning protocols from unlabeled datasets,
or using reinforcement learning schemes whereby a re-
ward function is optimized. Among other generative
models (e.g., the variational autoencoders [2, 3]), the
restricted Boltzmann machines [4] were already proven
successful in solving several computational tasks, includ-
ing: learning classical thermodynamics fromMonte Carlo
samples [5], accelerating classical Monte Carlo simula-
tions [6] (see also Ref. [7] for a related method), build-
ing accurate variational wave-functions [8], performing
quantum state tomography [9], simulating open quantum
systems [10–12], decoding topological codes [13], guiding
projective quantum Monte Carlo simulations [14], and
reconstructing density matrices [15]. The autoregressive
neural networks provide additional distinctive function-
alities compared to the restricted Boltzmann machines.
In particular, owing to a specific connectivity structure,
they allow writing the likelihood of any configuration
as an ordered product of chained conditional distribu-
tions. Therefore, by using ancestral sampling one can
exactly sample system configurations according to the
learned distribution. This avoids resorting to Markov
chain Monte Carlo (MCMC) algorithms, which are often

plagued by long correlations times, leading to an exces-
sive computational cost in practical applications of gen-
erative sampling. Ancestral sampling has already been
exploited in quantum physics to accelerate the optimiza-
tion of variational wave-functions [16, 17]. Recently, a
variational framework to solve rather general classical
statistical-mechanics problems using autoregressive net-
works has also been presented [18]. It has been ap-
plied to clean systems and also to a mean-field disordered
model, namely the Sherrington-Kirkpatrick spin Hamil-
tonian [19]. This model has infinite-range interactions,
and its properties are exactly predicted by Parisi’s mean-
field theory based on the replica method [20]. While the
variational framework of Ref. [18] extends well beyond
the standard mean-field theories commonly employed to
study spin glasses, it might still provide biased results,
since the probability distribution learned by the neural
network does not necessarily exactly coincide with the
Boltzmann distribution.

This bias can be eliminated with two approaches. In
the first, the autoregressive model is used for importance
sampling in a re-weighting scheme. In the second, it is
used as a smart proposal distribution for the Metropolis-
Hastings algorithm. In the field of machine learning, the
first approach has been employed to compute otherwise
intractable normalization integrals [21]. An application
of both approaches to classical statistical mechanics has
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appeared only very recently [22]1. However, the study
of Ref. [22] focused only on clean ferromagnetic models,
and it considered only the reinforcement learning scheme
to train the neural network, as in Ref. [18].

Random spin systems with frustrated interactions
display many intriguing phenomena related to glass
physics [23, 24], including: magnetic correlations, replica
symmetry breaking, hysteresis, and aging. In fact, spin
glass models with short-range interactions have chal-
lenged theoretical physicists for decades. It is unclear
whether the mean-field replica theory, which exactly de-
scribes infinite-range models, applies also to short-range
systems, even at the qualitative level (see, e.g., Refs. [25–
28]). The computational problems originate from the ex-
ceedingly long autocorrelation times that plague stan-
dard MCMC simulations driven by local-update algo-
rithms. This problem arises also when addressing binary
optimization problems — which are ubiquitous in scien-
tific research and in industry — via stochastic optimiza-
tion methods such as simulated annealing [29]. Indeed,
identifying the optimal solution is equivalent to find-
ing the lowest-energy configuration of a disordered Ising
Hamiltonian. In the last decades, relevant algorithmic
developments have occurred in the field of spin glasses. In
particular, one should mention the global-update meth-
ods such as the parallel tempering technique [30] and the
isoenergetic cluster updates [31, 32]. Still, novel and pos-
sibly more flexible MCMC methods would be extremely
useful.

In this article we investigate the use of autoregres-
sive neural networks to increase the efficiency of MCMC
simulations of spin glasses. The model we focus on
is a paradigmatic short-range spin model, namely the
two-dimensional Edwards-Anderson Hamiltonian. The
nearest-neighbor couplings are sampled from a gaus-
sian distribution. The neural network we employ is a
standard autoregressive generative model, namely the
so-called neural autoregressive distribution estimator
(NADE) [33]. In this article, the network is trained in an
unsupervised learning scheme, which consists of minimiz-
ing the Kullback-Leibler divergence with respect to a set
of spin configurations sampled using MCMC simulations
driven by a standard local-update algorithm. Our analy-
sis shows that the NADE can learn to accurately mimic
the Boltzmann distribution of the spin-glass model. We
quantify this accuracy, and how it varies with the num-
ber of hidden neurons and the physical system size, by
comparing the energy expectation-value corresponding
to the NADE with the exact result corresponding to
the Boltzmann distribution. The trained NADE is then

1 A generative neural network has been used to propose updates in
a MCMC simulation also in Ref. [6], but using a restricted Boltz-
mann machine instead of an autoregressive model. This required
to run a parallel MCMC simulation, which was implemented via
alternated Gibbs sampling.

FIG. 1. Illustration of a neural autoregressive distribution
estimator. Arrows connected by blue segments correspond to
connections with shared parameters.

employed as proposal distribution for the Metropolis-
Hastings algorithm. This allows us to essentially elim-
inate the correlations that affect standard MCMC simu-
lations driven by local-update algorithms. An important
contribution of this article is the implementation of a se-
quential tempering procedure. This starts from a mod-
erately high temperature, where uncorrelated configura-
tions are easily sampled also via the local-update MCMC
algorithm. Then, it performs a sequence of MCMC sim-
ulations at successively lower temperatures, whereby the
NADE trained at the previous temperature is used to
drive the Metropolis-Hastings algorithm. This allows us
to perform efficient MCMC simulations even in the low
temperature regime, where local-update algorithms be-
come impractical due to the diverging autocorrelation
times. Finally, we analyze how efficiently the NADE-
driven simulations performed at low temperatures sample
the ground-state configurations. The obtained encourag-
ing results lead us to advocate the use of autoregressive
models to boost stochastic optimization methods such as
the simulated annealing.

The article is organized as follows: in Section II we
describe the Ising glass Hamiltonian, the NADE training
method, the local-update as well as the NADE-driven
MCMC algorithms. Section III presents the results ob-
tained by training the NADE, by running local-update
and NADE-driven MCMC simulations, and by perform-
ing the sequential tempering procedure. The possible use
of NADEs to boost stochastic optimization algorithms is
also discussed. Our conclusions and some future perspec-
tives are given in Section IV.

II. MODEL AND METHODS

The spin-glass model addressed in this article is the
two-dimensional Edwards-Anderson Hamiltonian:

H(σ) = −
∑
〈ij〉

Jijσiσj , (1)

where σi ∈ {−1, 1} are binary spin variables at the sites
labeled by the indices i, j = 1, . . . , N , σ = (σ1, . . . , σN )
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indicates the spin configuration, and Jij is the coupling
strength between the spins i and j. We consider random
couplings sampled from a gaussian distribution with zero
mean and unit variance. The sum in the above equation
runs over nearest-neighbor sites on a square lattice. Pe-
riodic boundary conditions are adopted. The thermody-
namic properties, e.g., the average energy E, are com-
puted as E = 〈H(σ)〉, where the angular brackets indi-
cate expectation values over the Boltzmann distribution
P (σ) = exp [−βH(σ)] /Z. Here, β = 1/kBT is the in-
verse temperature, kB = 1 is the Boltzmann constant,
T is the temperature, and Z =

∑
σ exp [−βH(σ)] is the

partition function. Expectation values of this kind can
be computed by implementing a stochastic Markov chain
in the configuration space driven by a transition matrix.
The entries of this matrix will be denoted as Tσ′σ. They
must satisfy the conditions Tσ′σ > 0 and

∑
σ′ Tσ′σ = 1,

for any σ, meaning that the transition matrix is stochas-
tic. Tσ′σ represents the probability to move to the config-
uration σ′ from σ. A common procedure is to decompose
the transition matrix in the proposal-acceptance form:
Tσ′σ = ωσ′σAσ′σ. The entries of the proposal distri-
bution matrix ωσ′σ represent the probability to propose
moving to σ′ from σ. This matrix must be stochastic,
and satisfy an ergodic condition, meaning that it is pos-
sible to reach any configuration from any other in a finite
number of steps. Aσ′σ is the probability to accept the
proposed update; the probability to reject it, thus iter-
ating the old configuration σ in the Markov chain, is
1 − Aσ′σ. One way to satisfy the detailed balance con-
dition — which is sufficient (although not necessary) to
ensure that the Boltzmann distribution is the station-
ary distribution of the Markov chain — is to define the
acceptance probability as:

Aσ′σ = min

(
1,
P (σ′)ωσσ′

P (σ)ωσ′σ

)
. (2)

This formula corresponds to the famous Metropolis-
Hastings algorithm [34]. Notice that, since one needs
only ratios of Boltzmann-distribution values, the nor-
malization factor Z is not needed. A common choice
is to consider a symmetric proposal distribution, i.e.
ωσσ′ = ωσ′σ. In this case the acceptance probability
simplifies to: Aσ′σ = min

(
1, P (σ′)

P (σ)

)
. For example, one

can randomly choose a single spin i and propose to flip
it, setting σ′i = −σi. This corresponds to the matrix
entries: ωσ′σ = 1/N if σ and σ′ differ by one spin-flip
only, and ωσ′σ = 0 otherwise. In what follows, this local
method will be referred to as single spin-flip algorithm. It
is efficient enough for rather generic models. However, in
the vicinity of phase transitions (e.g., ferromagnetic tran-
sitions in ordered Ising models) or in the glassy phases of
disordered systems, the dynamics of MCMC simulations
driven by the single spin-flip algorithm suffer a patholog-
ical slowing down, possibly leading to the breakdown of
ergodicity. This slowing down is associated to strong sta-
tistical correlations between configurations subsequently

sampled along the Markov chain. In particular, in the
case of low-temperature spin-glass models, the correla-
tion time diverges and the Markov chain is not ergodic,
meaning that not all physically relevant regions of the
configuration space are explored in the feasible compu-
tational times. For certain relevant systems, these cor-
relations can be suppressed adopting more sophisticated
(in general, non-symmetric) proposal distributions ωσ′σ.
This approach is often referred to as smart Monte Carlo
method [35]. For example, for ferromagnetic Ising mod-
els one can adopt the Swendsen-Wang or the Wolff algo-
rithms [36, 37]. These perform cluster moves instead of
single spin-flip updates. The worm algorithm is a relevant
alternative [38, 39]. MCMC methods that perform signif-
icantly better than the single spin-flip updates have been
developed also for spin glasses. Relevant examples are
the parallel tempering method [30] and the iso-energetic
cluster-update algorithms [31, 32]. However, spin glasses
still represent a computational challenge. The long cor-
relation times plague also most heuristic methods com-
monly employed to solve binary optimization problems.
In fact, identifying the optimal solution is equivalent to
finding one of the ground-state configurations of a spin-
glass model. This task constitutes a non-deterministic
polynomial hard problem when implemented on a non-
planar graph [40]. The archetypal heuristic optimization
method is simulated annealing [29]. This method ex-
ploits MCMC algorithms to explore possible solutions,
but the lack of ergodicity might prevent the dynamics
from reaching the lowest-energy configuration. Below we
report how to exploit autoregressive neural networks to
implement efficient MCMC algorithms for Ising Hamilto-
nians of the type defined in equation (1). This the central
objective of this work.

A. The neural autoregressive distribution
estimator (NADE)

An efficient proposal distribution can be constructed
using autoregressive neural networks. In this article, we
consider the use of NADEs. Like other generative neural
networks, NADEs can be trained to model complex prob-
ability distribution from sampled data. Then, they al-
low direct sampling of system instances from the learned
probability distribution. The system instances are rep-
resented by vectors of binary variables x = (x1, . . . , xD).
Here, following the convention of the machine-learning
literature, we consider the binary values xd ∈ {0, 1}, for
d = 1, . . . , D. The joint distribution of the binary vari-
ables is decomposed as a product of chained conditional
probabilities:

p(x) =

D∏
d=1

p(xod |xo<d
). (3)

In the above equation, o denotes the chosen ordering of
the binary variables, od indicates the d-th variable in
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the ordering o, and the slice subscript o<d indicates the
first d− 1 dimensions in o; therefore, xo<d

represents the
sub-vector including the indicated dimensions only. Each
conditional probability is modeled using a feed-forward
neural network, defined as:

p(xod = 1|xo<d
) = sigm(Vod,·hd + bod), (4)

where V is a weight matrix, bod is the bias, and one has
D vectors of hidden-neuron activations, computed as

hd = sigm(W·,o<d
xo<d

+ c), (5)

with the weight matrix W and the bias vector c.
The activations are computed with the logistic function
sigm(x) = 1/ [1 + exp(−x)]. We used the notation of
vectorized functions and that of slice indices also for sub-
matrices. The NADE hasD hidden layers, each including
NH neurons. An important property is that the matrix
W and the bias vector c are shared by all hidden layers.
The parameters to be optimized in the training process
are V ∈ RD×NH , b ∈ RD, W ∈ RNH×D, and c ∈ RNH .
The structure of the whole neural network is represented
in Fig. 1. By construction, the conditional probability
distribution p(xod |xo<d

) for the variable xod does not de-
pend on the subsequent variables xo>d

in the ordering
o. Therefore, after training has been performed, one
can sample configurations x from the learned distribu-
tion p(x) via ancestral sampling: following the ordering
o, each variable xod is sampled from the binary distribu-
tion p(xod |xo<d

), computed using the previously sampled
variables. This would not be possible with a closely re-
lated neural-network model such as the restricted Boltz-
mann machine. In fact, in that case one has to resort
to MCMC algorithms, usually implemented via alter-
nated Gibbs sampling of hidden neurons and visible neu-
rons [41]. This might cause problems associated to long
correlation times, leading to an excessive computational
cost in practical application of generative sampling. Fur-
thermore, with the NADE the (normalized) likelihood
of a configuration x can be efficiently computed via the
formula (3). Instead, with the restricted Boltzmann ma-
chine one has to determine the normalization integral,
namely the partition function, which is an intractable
computation already for moderately large systems.

The NADE can be trained in an unsupervised learn-
ing scheme from a (typically large) dataset {x(n)}, where
n = 1, . . . , Nt, and Nt is the training-dataset size. The
cost function to be minimized is the average negative log-
likelihood, given by

nl(V,b,W, c) = − 1

Nt

Nt∑
n=1

log p(x(n)). (6)

It can be shown that this criterion corresponds to the
minimization of the so-called Kullback-Leibler divergence
(see, e.g., [42]), which is defined as:

KL (q || p) =
∑
x

q(x) ln (q(x)/p(x)) , (7)

where q(x) is the underlying probability distribution of
the samples {x(n)}, which is in general unknown. The op-
timization of the network parameters Θ ≡ {V,b,W, c}
is performed via the stochastic gradient descent algo-
rithm. Starting from reasonably chosen initial values
Θ0, at each step s = 0, 1, . . . one performs the update
Θs+1 = Θs − η∇Θnl(Θ)|Θs

, where the scalar η is the
learning rate. The log-likelihood gradient is computed
via the back-propagation algorithm. In the standard im-
plementation, at each step only a small mini-batch of
Nb system instances, randomly sampled from the train-
ing set, is used to compute the gradient. One learning
epoch includes bNt/Nbc steps (b c is the floor function),
and the optimization is iterated for a number of epochs
NE , till convergence is reached. In our implementation,
a large training set is considered, and in each epoch the
mini-batches are sampled from a random subset of the
total training set, as detailed in the next section. For
the specific problems addressed in this article, it appears
that regularization procedures are not strictly necessary.
All details and the pseudocode of the algorithm to com-
pute the log-likelihood and its gradient can be found in
Refs. [33, 43]. It is worth mentioning that this algorithm
exploits the NADE’s specific structure, in particular the
sharing of W and c, to enhance efficiency. Specifically,
the computational cost to compute the likelihood of a
system instance scales as NHD, instead of the NHD2

scaling corresponding to the naïve implementation that
does not exploit the NADE’s structure [33, 43].

In this article, a NADE is used to learn the proba-
bility distribution corresponding to a large dataset of
equilibrium configurations of the spin-glass model (1).
These configurations are generated using a single spin-
flip MCMC simulation. In regimes where this local algo-
rithm performs an ergodic dynamics, this simple proce-
dure is sufficient to allow the NADE to learn the Boltz-
mann distribution. To reach also the regimes where the
dynamics given by the local algorithm are not ergodic,
we implement a sequential tempering procedure. This
is described in the next section. For our purpose, the
size of the network input-layer has to be D = N . The
spins are ordered line-by-line. To switch between the
two binary-value conventions, namely σi ∈ {−1, 1} and
xi ∈ {0, 1}, the following mapping is used: xi = 1 if
σi = 1, and xi = 0 if σi = −1. Once the training has
been performed, the NADE probability distribution p(σ)
approximates the Boltzmann distribution P (σ). There-
fore, the thermodynamic properties as, e.g., the average
energy E, can be approximated by expectation values
over the NADE probability distribution:

ENADE ' 〈H(σ)〉p(σ) = lim
Ns→∞

1

Ns

Ns∑
n=1

H(σ(n)), (8)

where the Ns configurations σ(n) ∼ p(σ(n)) are effi-
ciently sampled from the NADE distribution using an-
cestral sampling. In practice, one uses a large but finite
number of configurations Ns. This procedure is expected
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to be very efficient, since the sampled configurations are
perfectly uncorrelated. As shown in the next section,
this calculation allows us to quantify how accurately the
NADE approximates the Boltzmann distribution. In gen-
eral, a NADE with a finite number of hidden neurons NH
will not exactly match the Boltzmann distribution, so the
expectation values over the NADE distribution will be bi-
ased. Note that, even if NH is very large, a bias might
also originate from an imperfect training due to a too
small training set or to a failure of the optimization algo-
rithm. Two strategies can be adopted to remove this bias.
The first one, which we employ in this article, is to com-
bine the trained NADE with a standard MCMC method,
as anticipated above. Specifically, we use the NADE as
proposal distribution for the Metropolis-Hastings algo-
rithm; that is, we set ωσ′σ = p(σ′). This procedure is
correct if p(σ) and P (σ) have the same support. For-
mally, this condition is always satisfied since the condi-
tional probabilities are computed using the logistic func-
tion, which has values σ(x) ∈ (0, 1) for any finite x. In
the next section we analyze if and when the weight of the
NADE distribution is sufficiently large, in any physically
relevant configuration, to produce an efficient simulation.
It is worth stressing that, with this choice, the proposal
distribution ωσ′σ is independent of the starting configu-
ration σ. Therefore, when the proposal is accepted, the
next configuration in the Markov process is uncorrelated
with the previous one. If p(σ) = P (σ) the acceptance
probability is Aσ′σ = 1. Therefore, statistical correla-
tions along the Markov chain only originate from the ap-
proximation in the NADE distribution, since this leads
to some rejections. Our results, shown in the next sec-
tion, indicate that NADEs can be accurate enough to
have a high acceptance rate and, therefore, enable effi-
cient MCMC simulations of the spin-glass model. One
should also note that, since the computational cost of
computing the configuration likelihood and the condi-
tional probabilities (required for ancestral sampling) is
linear in the system size, the NADE allows one to imple-
ment an efficient global-update algorithm with a linear
computational cost.

The second strategy to remove the bias in the NADE
expectation values is based on a re-weighting scheme.
In fact, an unbiased expectation value can be computed
as [22]

E = lim
Ns→∞

Ns∑
n=1

znH(σ(n)), (9)

where σ(n) ∼ p(σ(n)), the weights are zn = ζn/
∑Ns

n=1 ζn,
with ζn = exp[−H(σ(n))]/p(σ(n)). An analogous re-
weighting strategy has been used in Ref. [21] to compute
the partition function of a restricted Boltzmann machine.
This computation would otherwise be intractable. Very
recently, in Ref. [22] both strategies described above have
been adopted, but focusing only on the thermodynamic
properties of a clean ferromagnetic Ising model. Inter-

FIG. 2. Autocorrelation function c(τ) of the configuration
energies H obtained from single spin-flip MCMC simulations
at temperatures β = 0.1, 0.1, . . . , 1 (bottom to top). Dashed
lines represent stretched-exponential fitting functions.

estingly, Ref. [22] discusses also how to determine ex-
pectation values that explicitly depend on the partition
function, as, e.g, the entropy, including the correct for-
mula for the corresponding statistical uncertainty. In the
study of Ref. [22], the neural network has been trained
via a reinforcement learning procedure, as in Ref. [18].
This reinforcement procedure consists of minimizing a
variational ansatz for the free energy based on the gener-
ative neural network. The training batches are sampled
from the neural network distribution, rather than from
a MCMC simulation. Rather than a NADE, Ref. [22]
employed an autoregressive neural network named Pixel-
CNN [44], as in Ref. [18].

III. RESULTS

The spin-glass model defined in Eq. (1) can be simu-
lated using the single spin-flip Metropolis-Hastings algo-
rithm, as explained in the previous section. However, it
is well known that such simulations can be affected by
long autocorrelation times along the Markov chain [23],
in particular in the low-temperature regime. To illustrate
this effect and to quantify these statistical correlations,
we compute the autocorrelation function c(τ) of the con-
figuration energy. c(τ) is defined as:

c(τ) =
〈H(t+ τ)H(t)〉 − 〈H(t)〉2

〈H(t)H(t)〉 − 〈H(t)〉2
, (10)

where integers τ and t count MCMC steps, H(t) is the
energy in the spin configuration sampled at the t-th step
of the Markov chain, and the angular brackets indicate
the average over the whole Markov chain. Following
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the standard procedure, we disregard an initial segment
to account for equilibration effects. The results corre-
sponding to a typical realization of the gaussian ran-
dom couplings are shown in Fig. 2. Different realiza-
tions provide qualitatively similar results. The correla-
tion function appears to be reasonably well described
by an empirical stretched-exponential fitting function:
c(τ) = a exp[−(τ/τ∗)α]. Here, a, τ∗, and α are fitting pa-
rameters. At relatively low inverse temperatures β . 0.5,
we obtain α ' 1, corresponding to the common exponen-
tial decay, and τ∗ ≈ 50, indicating that the correlation
time is sufficiently short. Indeed, MCMC simulations
much longer than τ∗ = 50 are feasible, even with mod-
est computational resources. However, already at β ' 1,
we obtain α ' 0.3 and τ∗ ' 400. For inverse temper-
atures β > 1, computing the thermodynamic properties
with the single spin-flip updates becomes hard or ab-
solutely unfeasible due to the breakdown of ergodicity
for the feasible simulation times in the low-temperature
regime. In the early literature on spin-glasses it had been
conjectured that this freezing temperature β ' 1 was as-
sociated to a spin-glass transition (see, e.g., Ref. [45],
and also Ref. [23] for a review). However, later stud-
ies based on faster computers and on more efficient al-
gorithms have clarified that for two-dimensional Ising
Hamiltonian with nearest-neighbor interactions, a proper
spin-glass phase — identified, among other criteria, by
the Edwards-Anderson order parameters or from the dis-
tribution of overlaps among system replicas — occurs
only in the zero-temperature limit [31, 46–49].

Our main goal is to use a NADE to implement efficient

FIG. 3. Average of the negative log-likelihood (nl) as a func-
tion of the number of epochs (NE). Different curves corre-
spond to different numbers of hidden units NH , increasing
from top to bottom. The size of the two-dimensional spin
glass is N = 100 and the inverse temperature is β = 1.

FIG. 4. Average energy per spin E/N as a function of the
number of hidden units NH . The system size is N = 100
and the inverse temperature is β = 1. The black squares
correspond to the expectation value over the probability dis-
tribution learned by the NADE (see Eq. (8)). The red dots
correspond to the results of the NADE-driven MCMC simu-
lation. The horizontal blue line indicates the exact result.

MCMC simulations of the spin glass model (1), even in
the low-temperature regime. As a preliminary step, we
show that the NADE can be trained to mimic the Boltz-
mann distribution in an unsupervised learning scheme.
As an illustrative example, the case of a spin glass of size
N = 100 at β = 1 is analyzed in Fig. 3. The total train-
ing set includes 105 configurations, generated using single
spin-flip updates. Every 800-th configuration sampled by
the Markov chain is included in the training set (corre-
sponding to a total of 8 × 107 single spin-flip MCMC
steps). This allows suppressing the statistical correla-
tions among the training configurations. In each train-
ing epoch, 2× 104 configurations are randomly selected.
The total training set is considered to be representative
of the Boltzmann distribution, since at β = 1 the single
spin-flip algorithm is still sufficiently efficient to explore
all physically relevant regions of the configuration space
within the feasible simulation times. The training is per-
formed by minimizing the negative log-likelihood of the
training set via stochastic gradient descent, as explained
in the previous section. The learning rate is η = 10−3

and the mini-batch size is Nb = 16. The results ob-
tained with reasonable variations around these values are
comparable. After Ne ' 100 learning epochs the train-
ing appears to have converged, slightly depending on the
number of hidden units NH . To verify that the NADE is
not overfitting the training data, and to quantify its gen-
eralization accuracy, we compare the energy expectation
value ENADE over the probability distribution learned by
the NADE (see Eq. (8)), with the exact result E. This
comparison is shown in Fig. 4. For small NH a sizable
bias occurs, indicating that a small NADE is not flexible
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FIG. 5. Histogram of 105 sampled configuration energies per
spin H/N . The full yellow columns correspond to a sin-
gle spin-flip MCMC simulation (8 × 107 steps, every 800-
th configuration is counted), the empty black columns to a
NADE-driven MCMC simulation (every 10-th configuration
is counted), and the empty red columns to the energies sam-
pled via ancestral sampling from the probability distribution
learned by the NADE. N = 100, β = 1, and NH = 64.

enough to accurately reproduce the Boltzmann distribu-
tion. However, with NH ≈ 100 hidden neurons the bias is
smaller than the statistical error-bars. To perform a more
stringent energy-resolved benchmarking, we compare the
histograms of the energies sampled by the NADE prob-
ability distribution with the values sampled during the
single spin-flip MCMC simulation (see Fig. 5). Excellent
agreement is found in all relevant energy regimes. This is
a remarkable finding of our work, in view of the complex
structure of the spin-glass configuration-space in this in-
termediate temperature regime. As shown if Fig. 6, the
accuracy seems to slowly decrease with the system size
N , if NH is fixed.

By combining the trained NADE with the Metropolis-
Hastings algorithm one can, on the one hand, remove
the residual bias in the NADE expectation value, and,
on the other hand, boost the efficiency of the MCMC
simulation. The trained NADE is used to define the pro-
posal distribution for the Metropolis-Hastings algorithm.
As explained in the previous section, this leads to an ef-
ficient algorithm if the acceptance rate AR, namely the
percentage of accepted updates, is high. We recall that
if the probability distribution learned by NADE exactly
matches the Boltzmann distribution, the acceptance rate
is AR = 100%. As shown in Fig. 7, for NH = 10 one

FIG. 6. Relative error (Ees −E)/|E| of the estimated energy
Ees with respect to the exact value E, as a function of the
system size N . For the red dots Ees is the expectation value
over the probability distribution learned by NADE, while for
the black squares Ees is the result of a NADE-driven MCMC
simulation. NH = 64 and β = 1.

has R ' 20%, but for NH ' 100 the acceptance rate is
as high as R ' 80%. AR appears to saturate for large
NH , possibly indicating that a larger dataset or a more
powerful optimization algorithm are needed to further
train large NADEs. Regularization methods might also
improve the results. To verify that for different realiza-
tions of the gaussian couplings one obtains comparable
results, we show in Fig. 8 the acceptance ratios for 10
instances of the spin-glass model (1). The relative vari-

FIG. 7. Percentage acceptance ratio AR in NADE-driven
MCMC simulations, as a function of hidden-neuron number
NH . N = 100 and β = 1.
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FIG. 8. Percentage acceptance ratio AR in NADE-driven
MCMC simulations for 10 instances of the spin-glass Hamil-
tonian with different realizations of the gaussian random cou-
plings. The red dashed line indicates the average value.
N = 100, β = 1, and NH = 64.

ations are smaller than 10%, indicating that the perfor-
mance of NADE does not strongly depend on the spe-
cific instance considered. Instead, the acceptance rate
slightly decreases with the system size N if the number
of hidden neurons NH = 64 is kept fixed (see Fig. 9),
reaching R ' 60% for N = 225. This suggests that
more hidden neurons or larger training sets might be re-
quired when the system size increases. Importantly, the
predictions provided by the NADE-driven MCMC sim-
ulations always agree with the exact results for the cor-

FIG. 9. Percentage acceptance ratio AR in NADE-driven
MCMC simulations as a function of the system size N . β = 1
and NH = 64.

FIG. 10. Percentage acceptance ratio AR in the NADE-driven
MCMC simulations of the sequential tempering procedure,
as a function of the inverse temperature β. N = 100 and
NH = 64.

responding systems size. The latter value is computed
via long single spin-flip MCMC simulations, including
8× 107 MCMC steps, verifying that simulations started
from different configurations agree within the statistical
uncertainties.The latter are determined by the standard
blocking method [50]. This agreement confirms that the
NADE probability distribution has a sizable weight in
all physically relevant regions of the configuration space,
allowing an ergodic MCMC simulation. For small NH
one obtains larger error-bars due to the lower acceptance
rate (see Fig. 4), which leads to longer correlation times.
The NADE-driven MCMC simulation is unbiased even
for the largest system size addressed in this work (see
Fig. 6), for which the NADE less accurately mimics the
Boltzmann distribution. The histogram of the configura-
tion energies sampled during the NADE-driven MCMC
simulation agrees with the one corresponding to a long
single-spin flip simulation (see Fig. 5), confirming that
the probability distribution learned by NADE has essen-
tially the same support as the Boltzmann distribution.

The unsupervised learning scheme described in the pre-
vious paragraph assumes that a training dataset repre-
sentative of the Boltzmann distribution can be generated.
As explained above, with the single spin-flip algorithm
this becomes unfeasible for inverse temperatures β � 1
due to the diverging correlation times. Clearly, one
could adopt more sophisticated global-update MCMC al-
gorithms as, e.g., the isoenergetic cluster updates [31, 32],
and then use the NADE only to accelerate the computa-
tion of physical properties in a second MCMC simulation.
As we discuss in the following, a simple procedure can be
implemented to efficiently simulate the low temperature
regime, even without employing global-update methods
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to generate the training dataset. We dub this procedure
sequential tempering, in analogy with the popular par-
allel tempering method [30]. This procedure begins by
training a NADE at a relatively low inverse temperature
β0, where ergodic MCMC simulations are feasible even
with single spin-flip algorithms. Next, various NADE-
driven MCMC simulations are run at the inverse tem-
peratures βs = βs−1 + δβ, where δβ is a small incre-
ment and s = 1, 2, . . . , smax, using the NADE trained at
βs−1 as proposal distribution. In our numerical experi-
ment with an Ising glass of size N = 100 and a NADE
with NH = 64 hidden neurons, we choose β0 = 0.5,
δβ = 0.1, and smax = 15, allowing us to reach a low
temperature corresponding to βmax = 2. We emphasize
that at this final temperature even 8×107 single spin-flip
MCMC steps might not be sufficient to guarantee ergod-
icity. In each NADE-driven MCMC simulation, every
10-th configuration is stored to train the next NADE. As
discussed below, this is sufficient to suppress the resid-
ual statistical correlations. The total training-set size
is again Nt = 105. Since each NADE is employed as
proposal distributions at a different temperature com-
pared to the training temperature, one should expect a
decreased acceptance rate AR. As shown in Fig. 10, in
the first few steps of the sequence the acceptance rate is
indeed moderately low, R ≈ 40%. However, it increases
up to R ≈ 75% in the low-temperature regime. This in-
dicates that the NADE is able to closely follow the evo-
lution of the Boltzmann distribution as the temperature
decreases, identifying the regions of configuration space
where the weight is sizable. Notably, each subsequent

FIG. 11. Autocorrelation function c(τ) of the configuration
energies at β = 2. The red line corresponds to the single
spin-flip MCMC algorithm (data averaged of 25 simulations
started from different initial configurations), while the black
dashed line corresponds to the last NADE-driven MCMC sim-
ulation of the sequential tempering procedure. N = 100 and
NH = 64.

training stage can be significantly accelerated by initial-
izing the NADE parameters to the final values of the pre-
vious learning stage. It is worth emphasizing again that
with different disorder realizations the NADEs provide
comparable results. Indeed, the data shown in Fig. 10
correspond to the average of 5 instances of the random
couplings. The NADE-driven MCMC simulations are er-
godic and efficient even in the low-temperature regime.
The correlation function at β = 2 displays a sharp drop
(see Fig. 11), confirming that the correlation times are
minimal, as anticipated above. Instead, with the single
spin-flip algorithm even after t ∼ 106 MCMC steps the
statistical correlations are sizable. This important find-
ing indicates that the sequential tempering allows us to
efficiently sample the low-temperature Boltzmann distri-
bution. This statement is confirmed by the precise agree-
ment of the 5 histograms shown in Fig. 12, which corre-
spond to just as many sequences for the same instance
of the random couplings started from different configu-
rations at β0 = 0.5. In order to obtain a comparable
histogram with the single spin-flip algorithm, we have to
perform as many as 8 × 107 steps, and to average over
25 runs started from different configurations (every 800-
th sampled energy is counted). The comparison with
the sequential-tempering histogram is shown in Fig. 13.
For illustrative purposes, Fig. 13 displays also the his-
togram of the first 105 energies sampled in the initial
portion of a single spin-flip MCMC run. Clearly, this
dataset is highly biased, in particular in the low-energy
regime where the weight is negligible. This indicates that
the single spin-flip algorithm requires many more steps
to reach low-energy configurations. To shed more light
on the equilibration dynamics, it is useful to visualize
how the configuration energy H(t) evolves along the last
NADE-driven MCMC simulation of the sequential tem-
pering (see Fig. 14). The equilibration time appears to
be negligible. In particular, this simulation touches a
ground-state configuration after as few as t = 31 MCMC
steps. This ground-state energy is obtained from the
spin-glass server [51] at the University of Cologne, which
implements an exact polynomial-time algorithm for two-
dimensional lattices. This phenomenology appears to be
general: repeating 5 sequential tempering procedures for
the same instance of the random couplings but different
initial configurations at β0, or for 5 different instances of
the random couplings, we always find that the ground-
state energy is sampled within t .∼ 102 MCMC steps.
For comparison, the configuration energies obtained from
a single spin-flip MCMC simulation are also shown in
Fig. 14. In this specific case, a ground-state configuration
is reached only after t ∼ 106 MCMC steps. In fact, an
(admittedly incomplete) analysis shows that with t ∼ 107

single spin-flip steps only ∼ 50% of the times the ground-
state energy is sampled. This illustrates the well-known
difficulty in identifying ground-state configurations via
single spin-flip Metropolis-Hastings updates.
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FIG. 12. Histogram of 105 configuration energies per spin
H/N generated in the last NADE-driven MCMC simulation
of the sequential tempering procedure at βmax = 2. Every
10-th configuration is counted. The 5 datasets correspond to
just as many sequences started from different initial configu-
rations at β0 = 0.5, for the same realization of the spin-glass
model. N = 100 and NH = 64. The blue vertical dashed
line indicates the ground-state energy for this instance of the
spin-glass model, obtained from the spin-glass server [51].

The findings discussed above indicate that the sequen-
tial tempering procedure allows one to efficiently simulate
the low-temperature regime of a short-range spin-glass
model. Furthermore, they suggest that NADEs could
be employed to boost the efficiency of stochastic opti-
mization methods for binary optimization problems. In-
deed, heuristic optimization methods like simulated an-
nealing [29] exploit MCMC algorithms to explore the so-
lution space. Generic binary optimization problems can
be mapped to disordered Ising Hamiltonians analogous
to Eq. (1). The long correlation times discussed above
also occur when tackling the optimization problem, of-
ten preventing the optimal solution from being found.
Our results point to the use of NADEs trained with a se-
quential tempering procedure as the engine for simulated-
annealing optimizations. It is also worth mentioning that
NADEs could also be trained from data produced using
physical quantum annealers, such as the devices commer-
cialized by D-Wave Systems (see, e.g, Ref. [52]). These
devices are special-purpose adiabatic quantum comput-
ers designed to solve quadratic unconstrained optimiza-
tion problems. They allow sampling low-energy config-
urations of programmable Ising Hamiltonians, with the
goal to identify the optimal solution. The trained NADE
could be employed to drive simulated-annealing opti-
mizations. This might help eliminating the effect of the
inevitable noise present in the values of the model pa-
rameters programmed on the physical device.

IV. CONCLUSIONS

We have shown how to use an autoregressive gener-
ative neural network, namely a NADE [33], to boost
the efficiency of Markov chain Monte Carlo (MCMC)
simulations of a two-dimensional Ising Hamiltonian with
nearest-neighbor gaussian couplings. This model Hamil-
tonian is an archetype of spin-glass theory. The
NADEs have been trained within an unsupervised learn-
ing scheme, which consists of minimizing the Kullback-
Leibler divergence with respect to a dataset of configu-
rations generated via standard MCMC simulations. Our
analysis quantified how accurately a NADE can mimic
the Boltzmann distribution of a spin-glass model, de-
pending on the number of hidden neurons and the num-
ber of visible spins. The trained NADEs have then
been used as proposal distributions in smart Monte Carlo
simulations based on the Metropolis-Hastings algorithm.
This allowed us to implement efficient global updates,
whose computational cost is linear in the system size.
In particular, we have implemented a sequential temper-
ing procedure. Starting from a higher temperature, the
procedure reaches the low temperature regime via a se-
quence of MCMC simulations and training stages per-
formed at successively lower temperatures. This allowed
us to run efficient MCMC simulations with very short

FIG. 13. Histogram of 105 configuration energies per spin
H/N sampled at β = 2. The empty blue columns correspond
to the single spin-flip MCMC algorithm (data averaged over
25 simulations started from different configurations, ran for
8 × 107 steps, every 800-th configuration is counted). The
gray columns correspond to the last NADE-driven MCMC
simulation of the sequential tempering procedure (every 10-
th configuration is counted). For comparison, the full red
columns indicate the first 105 configurations sampled via the
single spin-flip MCMC algorithm. The vertical dashed line
indicates the ground-state energy, obtained from the spin-
glass server [51]. N = 100 and NH = 64.
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FIG. 14. Configuration energy per spin H/N as a function
of the number of MCMC steps t, at β = 2. Dashed black
line corresponds to the last NADE-driven MCMC simulation
of the sequential tempering procedure. Solid red line corre-
sponds to the single spin-flip MCMC simulation. The hori-
zontal blue line indicates the ground-state energy, obtained
from the spin-glass server [51]. N = 100 and NH = 64.

autocorrelation times, even in regimes where comput-
ing thermodynamic properties with standard local algo-
rithms is difficult, if not totally unfeasible. Furthermore,
it has been verified that at low temperatures the NADE-
driven MCMC simulations quickly sample ground-state
configurations. This result suggests to employ autore-
gressive neural networks in combination with simulated
annealing or other stochastic methods to solve binary op-
timization problems.

Our work complements other recent investigations on
the use of autoregressive models for classical mechanics
problems [18, 22]. We described the use of an unsuper-
vised learning scheme, instead of reinforcement learning,
and we tackled a short-range spin-glass Hamiltonian in-
stead of clean systems or mean-field infinite-range disor-
dered models. It is worth stressing that the unsupervised
learning scheme could be combined with any of the so-
phisticated MCMC techniques that have been developed
over the years to simulate spin glasses. Specifically, the
global-update methods could be employed to efficiently
generate training datasets. The NADE could then be
used to speed up the computation of physical proper-
ties, including observables that explicitly depend on the
partition function [22]. The results we have presented in
this article are encouraging, and raise ambition to further
investigations, including different spin-glass models or
deeper generative neural networks such as PixelCNN [44],
variational autoencoder [53], and generative adversarial
networks [54]. It would also be important to analyze
observables other than the average energy as, e.g., the
spin-spin correlations or the Edwards-Anderson order pa-

rameter. We leave these endeavors to future studies.
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