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Abstract: The extreme rainfall events of recent years in central Italy are producing an increase in
hydrogeological risk, with disastrous flooding in terms of human lives and economic losses, as well
as triggering landslide phenomena in correspondence with these events. A correct prediction of
100-year return levels could encourage better land planning, sizing works correctly according to
the expected extreme events and managing emergencies more consciously through real-time alerts.
In the recent period, it has been observed that the return levels predicted by the main forecasting
methods for extreme rainfall events have turned out to be lower than observed within a few years.
In this context, a model widely used in the literature, the generalised extreme value (GEV) with the
“block maxima” approach, was used to assess the dependence of this model on the length of the
collected precipitation time series and the possible addition of years with extreme events of great
intensity. A total of 131 rainfall time series were collected from the Adriatic slope in central Italy
comparing two periods: one characterised by 70 years of observations (1951–2020), the other by only
30 years (1991–2020). At the same time, a decision was made to analyse what the effect might be—in
terms of the 100-year return level—of introducing an additional extreme event to the 1991–2020
historical series, in this case an event that actually occurred in the area on 15 September 2022. The
results obtained were rather surprising, with a clear indication that the values of the 100-year return
level calculated by GEV vary according to the length of the historical series examined. In particular,
the shorter time series 1991–2020 provided higher return level values than those obtained from the
1951–2020 period; furthermore, the addition of the extreme event of 2022 generated even higher
return level values. It follows that, as shown by the extreme precipitation events that have occurred
in recent years, it is more appropriate to consider a rather short period because the ongoing climate
change does not allow true estimates to be obtained using longer time series, which are preferred in
the scientific literature, or possibly questioning the real reliability of the GEV model.

Keywords: GEV; block maxima; extreme precipitation; return levels

1. Introduction

Aim of the Study and State of the Art
Climate change is generating increasingly intense and frequent extreme rainfall events

in much of the world. Central Italy is no exception either; in fact, a constancy in average
precipitation amounts has been observed, but also a reduction in terms of rainy days [1].
Climate change is due to radiative forcings, which can be exogenous or endogenous, natural
or man-made, such as changes in the solar radiation, Milankovic cycles, asteroid impacts,
greenhouse gases, aerosols, land-use change and volcanic eruptions [2]. The abrupt cli-
mate change in recent years is almost exclusively due to anthropogenic causes and the
emission of pollutants, which change the earth’s energy balance, producing a warming
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measurable in W/m2 [3]. This increased energy in the atmosphere causes more intense
and less predictable extreme events, which tend to put the hydrographic network in crisis,
generating floods and generally increasing the hydrogeological risk [4,5]. In response to
this type of problem, it is essential to be able to have reliable forecasts of the maximum
precipitation values that we can expect in 100 years’ time, as this knowledge would allow us
to take the correct countermeasures without underestimating them and without excessive
economic expenditure [6]. The problem facing the institutions is knowing the maximum
expected extreme precipitation event with a return time of 100 years (usually the most
commonly used return time), since extreme events are occurring lately that have not been
predicted at levels that would have return times of even more than 500 years [7]. The
extreme value theory (EVT) deals with the study of extreme deviations from the central
portion of a probability distribution, which makes it possible to predict return values [8].
The statistical models used to predict return levels can be univariate or bivariate, the uni-
variate approach being represented by the peak-over-threshold fit to the generalised Pareto
distribution (GPD), while the bivariate approach is represented by the block maxima fit
to the generalised extreme value distribution (GEV). These two methods have different
characteristics; although both are valid and reliable for the detection of return levels, GPD
works better than GEV when the samples are small and therefore has greater indepen-
dence from the sample size [9]. The main focus here was on the block maxima technique
interpreted by means of the GEV distribution, which is widely used in the literature with
excellent results [10]. In particular, the presence of non-stationarity in the time series leads
to the use of numerical optimisation techniques, which allow the best estimation of the
return level, such as maximum likelihood, which shows good results in non-stationary
series in the literature [11]. The GEV method is used for the prediction of extreme events
for each climatic factor, such as precipitation, temperature, wind and all those climatic
factors, which could lead to hazards with their extreme manifestation [12,13]; however,
the GEV is also widely used in economics, especially aimed at predicting rather negative
economic scenarios or risks and in engineering [14,15]. In any case, the most widespread
application of the GEV method is the definition of maximum rainfall return values due
to the reliability of the forecast, although it sometimes seems to be penalised, as some
research has shown, by estimates based on short time series because they make it difficult
to estimate the shape parameter and also due to possible errors in the measurements [16]. It
is well known that measurement errors are possible both when analysing weather stations,
due to a lack of quality control, and also when using satellite data, which are not always
reliable or calibrated in the study area [17]. In this context, it has been shown that shorter
data sets using the GEV methodology compared to longer data sets show higher return
values, which sometimes seem to be more in line with the actual values that can then
be seen in the long run [18]. In the literature, we find examples of distributions such as
Gumbel’s, which underestimate extreme events, something that should not be the case with
GEV, which, on the other hand, based on three different distributions (Gumbel, Frechet,
Weibull), usually succeeds in obtaining values that are more in line with reality, using the
distribution that best fits the data set [19]. In essence, this study starts from the observation
that the dependence of the return value calculated with the GEV method from a longer
or shorter data record is not yet sufficiently researched in the scientific literature on the
subject, although it could be decisive in the choice of the length of the time series. This is
the motivation for evaluating, with the same GEV methodology, time series with different
reference periods in the same area (1991–2020 and 1951–2020), as well as for evaluating the
influence that the addition of an extreme event, which actually occurred (15 September
2022), can have on the variation of the return value estimate within a 100-year period. In
addition, it is important to assess the reliability of the estimate of the extreme precipitation
event in relation to what actually happens in order to understand whether the correctness
of the method in forecasting may be affected by the climate changes, which are leading
to increasingly frequent and more intense extreme events [20]. These are highly topical
issues and important due to the impact they have on the populations that reside in certain
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territories, as they contribute to a more accurate assessment of extreme precipitation events,
which can lead to critical issues, such as those of slope instability or flooding [21,22]. There-
fore, in order to mitigate the effects of climate change on the territory, it is advisable to know
the exact intensity of the extreme precipitation event that may occur with a given return
time, with the aim of correctly sizing the mitigation structures or those present in areas at
risk in order to ensure decisive adaptation strategies without unnecessary expenditure of
resources [23]. Furthermore, predicting the correct 100-year return levels of rainfall would
allow for a correct assessment of sustainability, both in environmental and economic terms.

2. Study Area and Method
2.1. Study Area

The Italian peninsula is undergoing a general increase in the frequency of extreme
events; in this case, the middle Adriatic side of central Italy was considered [24]. The study
area was chosen because of an extreme event that occurred on 15 and 16 September 2022,
which disproved the return value estimates present in the area up to that time; thus, the
real reliability of the GEV method for forecasting extreme precipitation events in the area
was assessed. The chosen area, corresponding to the Marche region, has an areal extension
of 9694 km2; its territory is one-third mountainous, while the remaining two-thirds consists
of a very wide pre-Apennine hilly belt sloping down to the sea, with the few plains located
near the coast and along the low alluvial valleys of the main rivers (Figure 1). The mor-
phology of the region presents a sharp contrast between the predominantly mountainous
western part and the essentially hilly eastern part down to the Adriatic coast. From an
orographic point of view, the region is characterised by the Umbro-Marchigiano Apen-
nines in the western part with a NNE/SSW development direction, such that it assumes
an arcuate trend with convexity towards the east, whose highest peak is Monte Vettore
(2476 m a.s.l.).

Climatically, this complex morphology of the territory favours the presence of a wide
range of climates, which, following the Koppen–Geiger classification, range between Csa,
Cfa, Cfb, Cfc and Dsc on the major peaks [25]. There are four air masses, which characterise
this area, also due to its morphology:

• Continental arctic cold: It develops in northern Russia in the area of Siberia; this air
mass can affect Italy from late October to April, and it represents the coldest air mass,
which can affect the Italian territory.

• Continental polar cold: Cold, dry air mass from southern Russia originating in the
Balkan area.

• Continental tropical warm: Hot, dry mass of air originating from arid and desert areas
from the southern belt; it represents the warmest air mass affecting Italy.

• Maritime tropical warm: Air mass from the southwest in the Atlantic Ocean; in winter,
it is mild and humid, while in summer, it becomes hot and muggy.

2.2. Weather Stations

The rain gauge data were collected by Sistema Informativo Regionale Meteo-Idro-
Pluviometrico (SIRMIP), an online climate data storage system operated by the Civil
Protection’s Multi-Hazard Functional Centre. There were 131 rain gauges used for the
analysis (Figure 2), active for all or part of the period from 1951 to 2022, with 1, 3, 6, 12 and
24 h heavy rainfall data.
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Table 1. Weather stations and collected data: Code = unique code of each weather station, which can
be found in the map in Figure 2; W.S. = name of the weather station; Lifetime = period of existence of
the weather station.

Code W.S. Lifetime

1 Acqualagna 1991–2005/2007–2020
2 Acquasanta 1991–2007/2012–2020
3 Agugliano 2008–2020
4 Amandola 1991–2014/2016–2020
5 Ancona Regione 2008–2020
6 Ancona Torrette 1991–2020
7 Apecchio 2008–2020
8 Apiro 1991–2008
9 Appignano 2008–2020
10 Arcevia 1951–2020/2022
11 Arquata del Tronto 1991–2014/2016–2020
12 Ascoli Piceno 1951–2003/2006–2014
13 Baraccola 1991–2007/2010–2020
14 Barbara 1991–2020/2022
15 Barchi 1991–2007
16 Bargni 1951–1959/1961/1964–1971/1973–2007
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Table 1. Cont.

Code W.S. Lifetime

17 Bettolelle 2008–2020
18 Bolognola 1991–2020
19 Bronzo 2008–2020
20 Ca’ Mazzasette 2008–2018
21 Cagli 1991–2014/2019–2020
22 Calcinelli 1991–2014
23 Camerino 1991–1996/2008–2020
24 Campodiegoli 1991–2020
25 Cantiano 1951–2020/2022
26 Capo di Colle 1991–2007
27 Capodacqua 1991–2005/2007/2009–2020
28 Carpegna 1991–2020
29 Cingoli 1991–2008/2010–2020
30 Colle 2008/2010–2020/2022
31 Colleponi 2008–2020
32 Corinaldo 1991–2020
33 Croce di Casale 1991–2014
34 Cupramontana 1991–2020
35 Diga di Carassai 1951–1965/1968/1984–2007
36 Diga di Talvacchia 1991–2007
37 Endesa 2008–2020
38 Esanatoglia convento 2008/2010–2020
39 Fabriano 1952–2009/2011/2014–2020
40 Fano 1991–2014
41 Fermo 1991–1999/2001–2020
42 Filottrano 1991–2008/2010–2012/2016–2020
43 Fiume di Fiastra 1991–2020
44 Fonte Avellana 1991–2004/2008–2020/2022
45 Force 2008–2020
46 Foresta della Cesana 1991–2006/2010–2020
47 Fossombrone 1991–2017/2019–2020
48 Gallo 2008–2020
49 Gelagna Alta 1993/1996–2015/2018–2020
50 Grottammare 2008–2020
51 Grottazzolina 2008–2020
52 Jesi 1953–1961/1963–2020
53 Lamoli 1991/1993–2007
54 Loreto 1991–2020
55 Lornano 1991–2016

56 Loro Piceno 1951–1962/1964/1966–1967/1969–1972/1991–
2020

57 Lucrezia 2008–2020
58 Macerata Montalbano 2009–2020
59 Marotta Cesano 2008–2020
60 Mercatello 1991–2010
61 Metaurilia 2008–2014/2017–2020
62 Moie 1951–2020
63 Mondolfo 1991–2007
64 Monte Bove Sud 2008–2020
65 Monte Cavallo 2008–2020
66 Monte Grimano Terme 2008–2020
67 Monte Paganuccio 2009–2020
68 Monte Prata 2008–2020
69 Montecarotto 1991–2007
70 Montecassiano 1991–2007
71 Montecchio 2011–2020
72 Montefano 2008–2020
73 Montelabbate 2008–2020
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Table 1. Cont.

Code W.S. Lifetime

74 Montemonaco 1991–2020
75 Montepolesco 2009–2020
76 Monterubbiano 1992–2007
77 Morrovalle 1998–2014
78 Mozzano 2008–2020
79 Offida 1991–2002
80 Osimo 1991–2013
81 Osimo Monteragolo 2008–2020
82 Ostra 1991/1993–2007
83 Pedaso 1951–1969/1971–2007
84 Pergola 1991–2020
85 Pesaro 1991–2001/2008–2020
86 Petriano 1991–2007
87 Piagge 1991–1994/1996–2020
88 Pianello di Cagli 1991–2020
89 Pie’ del Sasso 1991–2007
90 Pieve Bovigliana 1991–1994/1996–2020
91 Piobbico 1952–1961/1963–1973/1991–2014/2016–2020
92 Pioraco 1991–2020
93 Poggio S. Romualdo 1991–2007
94 Poggio San Vicino 2010–2020
95 Ponte Tavola 2008–2020
96 Porto S. Elpidio 1951–1964/1967–1978/1980/2020
97 Recanati 1991–2020
98 Ripatransone 1991–2020
99 Rostighello 2010–2020

100 Rotella 2008–2020
101 S. Maria Goretti 2010–2020
102 S. Maria in Arzilla 2008–2020
103 San Benedetto 2008–2020
104 San Giovanni 2008–2020
105 San Lorenzo in Campo 1991–2008/2010–2020
106 San Severino Marche 2008–2020
107 Santa Maria di Pieca 1999–2020
108 Sant’Angelo in Pontano 1999–2020
109 Sant’Angelo in Vado 1991–2020
110 Sarnano 1954–1973/1991–2007
111 Sassocorvaro 1951–1963/1965–1966/1968–1972/1991–2007
112 Sassofeltrio 2008–2016/2018–2020
113 Sassoferrato 1991–2020
114 Sassotetto 2008–2020
115 Sefro 2010–2020
116 Senigallia 1991–2020
117 Serralta 1991–2001/2008–2020
118 Serravalle di Chienti 1991–2013/2015–2020
119 Servigliano 1991–2014/2016–2020
120 Sorti 1992–2020
121 Spindoli 2010–2020
122 Spinetoli 1991–2020
123 Svarchi 2010–2020
124 Tavoleto 1991–2008/2010–2020
125 Tolentino 1991–1996/1998–2008/2010–2020
126 Umito 2008–2020
127 Urbania 1991–2016/2018–2020
128 Urbino 1991–2020
129 Ussita 2008–2020
130 Villa Fastiggi 2008–2020
131 Villa Potenza 2008–2020
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red dot.

The knowledge of the amount of data available for each weather station collected is
essential information for the evaluation of the research and its reproducibility, especially
when, as in this case, there are many different existence intervals (Table 1).

In particular, three different periods were selected: the first from 1951 to 2020, the
second from 1991 to 2020, the third from 1991 to 2022. These three different periods were
chosen in order to be able to make appropriate comparisons between 100-year return levels,
between longer (1951–2020) and shorter (1991–2020) periods, as well as to assess the effect
of introducing into the data set the extreme events of September 2022, only in part of the
regional area, i.e., the area affected by the extreme event in question.

2.3. Flow Chart of the Analysis

For a better understanding of the analysis, a flow chart was created summarising the
steps needed to achieve the results obtained (Figure 3).
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Figure 3. Research flow chart.

After collecting rainfall data at hourly time steps, analyses were performed to check
the quality of the data through validation and homogenisation processes. The data were
then merged, and a maximum value for each year of analysis was obtained for the 1, 3, 6,
12, 24 h intervals. Then, the maximum values obtained were spatialised over the study
surface for both periods 1951–2020 and 1991–2020, so that we could actually understand
what maximum values occurred in the study area over the past several years. Subsequently,
an analysis of extreme precipitation events was carried out to obtain 100-year return levels
through the GEV model for each individual rainfall station. The GEV analysis was followed
by geostatistical interpolation of the study area for all periods analysed, while in the case
of the 1991–2022 period, it was spatialised only in the areas that were subjected to this
event. Finally, the difference between the interpolation of return values over the periods
1951–2020 and 1991–2020 was evaluated in order to understand the effects that period
length may have on return levels and what might be the most reliable interval to consider.

2.4. Software

The software used for the analysis of extreme events in this research consisted of R,
which made it possible to apply the GEV method through the use of the specific package
“in2extRemes”, and ArcGis 10.8, which was indispensable for the cartographic representa-
tion and interpolation of the data. The “in2extRemes” package provides general functions
for analysing extreme events; in particular, it uses extreme value analysis (EVA), which
refers to the use of the extreme value theory (EVT) for the analysis of data involving rare or
low-probability events, such as maximum annual precipitation [26]. ArcGis 10.8 is a soft-
ware, which creates, manages, analyses and maps georeferenced data and is thus necessary
in this case to enable faster understanding, and with its Geostatistical Analyst package, it
allows the interpolation of point data with deterministic or geostatistical techniques [27,28].

2.5. GEV Model and Statistical Interpolation Techniques

The extreme value theory deals with the stochasticity of natural variability by de-
scribing extreme events with respect to a probability of occurrence. GEV examines the
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distribution of block maxima (a block is defined as a fixed period of time, e.g., one year);
depending on the shape parameter, a Gumbel, Frechet or Weibull distribution will be
produced (Figure 4).
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These distributions were reformulated with the shape distribution function:

f (x) =

{
1
σ exp(−(1 + kz)−1/k(1 + kz)−1−1/k, k 6= 0

1
σ exp(−z− exp(−z)), k = 0

(1)

where z = (x−µ)
σ .

The GEV model has three parameters: a location parameter µ, a scale parameter σ and
a shape parameter k. The range of definition of GEV depends on k:(

1 + k((x−µ)
σ ) > 0 k 6= 0

−∞ < x < +∞ k = 0

)
(2)

The shape parameter k sets three types of distribution:
k = 0: Gumbel distribution;
k > 0: Frechet distribution;
k < 0: Weibull distribution.
Grouping the three extreme value distributions into a single model greatly simplifies

statistical implementations. Through inference of the shape parameter, it is the data
themselves that determine the most appropriate tail type, and consequently, there is no need
to make subjective judgments about which family of extreme values to adopt. The values of
the parameters were obtained with the “maximum likelihood estimation” method (MLE),
which allows us to calculate the probability of observing the sample as the parameter
θ changes. It follows that the likelihood function L(θ) should be seen as a function of
parameter θ only and that it allows the parameter to be estimated only after observing
the sample. Operationally, through the GEV model, the return period 1/p was obtained
by the maximum likelihood estimation of zp for a probability between 0 and 1 in the
following way:

zp = µ +
σ

k

(
[−log(1− p)]−k − 1

)
(3)

In addition, the confidence interval for each specific return time was also calculated,
again parameterising the GEV model, such that zp was one of the model parameters
as follows:

µ = zp +
σ

k

{
1− [−log(1− p)]−k

}
(4)
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The in2extRemes package generates four resulting graphs, which allow one to under-
stand how well the model fits the data distribution but also the level of return at different
time intervals (Figure 5). The quantile plot compares quantiles derived from the empirical
distribution of the observed data (empirical quantiles) against the theoretical quantiles
calculated from the estimated model (model quantiles). The arrangement of the points
along the diagonal line is indicative of a good fit of the model to the data. The empirical
quantile differs from the model quantile, in that in it, the empirical quantiles present on
the x-axis are compared with the quantiles calculated on a synthetic data set simulated by
the estimated model. The empirical quantile is generally less informative than the model
quantile and is characterised by a lower proximity of the data to the diagonal line. The
frequency histogram shows the empirical frequency distribution of the data (approximated
using a non-parametric kernel-type interpolator) against the theoretical density curve of
the model (blue line); the overlap of the two curves confirms the good fit of the model to
the data. The return period plot depicts the return levels; the solid black line represents the
return levels estimated by the model, while the dots represent the data observed arranged
according to the corresponding return time (x-axis). The bands of confidence (dashed lines
in grey) are calculated with the delta method: as the times increase the return times, the
confidence intervals become wider and wider, reflecting the greater uncertainty, which
accompanies the estimation process as the available information decreases. In the graph,
the values on the x-axis are represented on a logarithmic scale in order to show the trend of
the estimated curve.
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At the end of the GEV procedure, the return levels at 100 years were identified
for each rain gauge analysed; then, these values were used to perform an interpolation
analysis all over the study area for all the periods investigated: 1951–2020, 1991–2020
and 1991–2022 (only for a small area). Interpolation is the process of obtaining a value
for a variable of interest at a point where there is no sampling using data from locations
close to it. In this case, a geostatistical method was chosen for the spatialisation of the
data; geostatistical methods have the merit of quantifying the uncertainty associated with
the interpolated values by making estimates of the error and providing insight into the
predictive ability of the model. Geostatistical methods involve kriging, which is based
on Tobler’s first law—“everything is related to everything else, but the nearest are more
related than the distant”—and they are based on measuring the spatial autocorrelation
of the values. Kriging uses the semivariogram, which is a function of the distance and
direction separating two locations, to quantify the spatial dependence of the data with
the aim of minimising the mean square error. The semivariogram makes it possible to
examine the spatial correlation between pairs of values; the x-axis shows the planimetric
distance between pairs of stations, while the y-axis shows the difference between values.
The mathematical formula to determine the values of the y-axis is as follows:

γ
(
si, sj

)
=

1
2

var
(
Z(si)− Z

(
sj
))

(5)

Z(si)− Z
(
sj
)

= subtraction between a pair of neighbouring values.
The semivariogram is described by certain features (Figure 6):

• Range: This is the point at which the semivariogram flattens out and consequently
signals the end of autocorrelation between pairs of values.

• Nugget: This is the value of y (other than zero) when x is zero. It often indicates
measurement error or variations at distances smaller than the sampling distances.

• Sill: This is the value of the y-axis when the range flattens out.
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In addition to different types of kriging, there are also various models (circular, spheri-
cal, pentaspherical, Gaussian, etc.), which interpret the course of the semivariogram more
or less well depending on the case. In a semivariogram, the goodness of the interpolation
is assessed by means of certain statistical indices, which show the magnitude of the errors
and the accuracy of the prediction. These indices include the following:
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Mean error = the difference between the average of observed and predicted values; it
follows that a value close to zero assumes a good prediction.

∑n
i=1

[
ˆ̂Z (si)− z(si)

]
n

(6)

Ẑ(si) = measured value at location si;
z(si) = predicted value at si;
n = number of weather stations.
Root of mean square error = the square root of the ratio of the sum of the squares of the

deviations (difference between the measured value and the predicted value) to the number
of deviations. This parameter is not absolute but scale-dependent, so any comparison
is difficult. √

∑n
i=1
[
Ẑ (si)− z(si)

]2
n

(7)

Standard error = this represents the standard deviation from the mean; a value close
to zero indicates a low error in estimating the variability of the distribution.√

∑n
i=1 σ̂2(si)

n
(8)

Standardised mean error = similar to the mean error; however, it differs from it, in that
it standardises one random variable with mean x and variance σ2 to another with 0 mean
and variance equal to 1 in order to allow a comparison of variables with different orders
of magnitude.

∑n
i=1

[
ˆ̂Z (si)− z(si)

]
/σ̂(si)

n
(9)

Root of standardised mean square error = the root of the mean square error, which was
standardised with the method described in the case of the standardised mean error. A value
close to 1 is desirable, keeping in mind that a higher value indicates an underestimation of
model variability, and a lower value corresponds to an overestimation of it.

∑n
i=1

[
ˆ̂Z (si)− z(si)

]
/σ̂(si)

n
(10)

In the present study, various types of interpolation were tested: ordinary kriging (OK),
simple kriging (SK), co-kriging (CK) and empirical Bayesian kriging (EBK). In particular,
the best results were obtained with the EBK, as the CK did not show a sufficiently strong
relationship between the dependent variable (extreme precipitation event) and the inde-
pendent variable; in particular, altitude, distance from the sea and also latitude were used
as independent variables. EBK is an iterative method and differs from classical kriging
methods, in that it takes into account the error introduced by estimating the semivariogram
model, which is achieved by estimating and using many semivariogram models rather
than a single semivariogram. EBK consists of repeated simulations to identify the model,
which best approximates the semivariogram obtained from the data; this process creates a
spectrum of semivariograms, where each semivariogram is an estimate of the true semivari-
ogram. EBK also differs from other kriging methods by accounting for the error introduced
by estimating the underlying semivariogram; other kriging methods underestimate the
standard errors of prediction [29].

3. Results

The two periods 1991–2020 and 1951–2020 were studied in order to understand the
differences in return value between the study with only 30 years of data and the study
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with 70 years of data during the most studied time intervals, i.e., at 1, 3, 6, 12, 24 h. In
order to make this comparison, the maximum annual precipitation was analysed and spa-
tialised to assess the correspondence between the actual value measured in the last period
(1991–2020)—because this is the period where an increasing trend of extreme events is
being observed—and the 100-year return value.

3.1. Analysis of Maximum Extreme Events for the Periods 1991–2020 and 1951–2020

The data collected for the individual weather stations over the periods 1991–2020 and
1951–2020 were plotted on the map with the correct coordinates and spatialised using the
EBK method; the data chosen were the maximum precipitation data at 1, 3, 6, 12, 24 h.
This procedure generated five maps of maximum precipitation events for each period,
providing an overview, which is indispensable for comparison with return values in order
to understand the possible underestimations in the prediction of extreme events with
100-year return times.

The interpolations of the extreme maximum rainfall at 1 and 3 h show modest rainfall
peaks in the Apennine area, ranging from 50 mm for 1 h to 70 mm for 3 h; the central-
southern area appears to have more rainfall than the others in the 1 h interval, about
58–60 mm, while for the 3 h, it reaches peaks of 70 mm. The area with the greatest peak of
rainfall for both 1 h and 3 h appears to be the area to the northwest, approximately near
Fonte Avellana and Monte Catria, with 62 mm of rain in 1 h and 90 mm of rain in 3 h
(Figure 7a,b). In the 6, 12 and 24 h interpolations of extreme maximum rainfall, it can be
seen that the highest values are to be found in the central-northern hinterland, as well as in
the southern part of the region (Figure 7c–e). In particular, it is in the southern part of the
area where the highest peaks were reached, with values between 200 and 240 mm in 24 h
(Figure 7e).
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Figure 7. Maximum extreme precipitation from 1991 to 2020 at 1 h (a), at 3 h (b), at 6 h (c), at 12 h (d),
at 24 h (e).

Over the period 1951–2020, the relative spatial distribution of the areas with the most
or least extreme precipitation events is almost homogeneous for all hours, except in the case
of the 1 h map. In fact, the 1 h map of maximum precipitation events shows the highest
values in a small patch of the coastal zone in the north-central part of the study area, while
the northern part has the lowest values (Figure 8a). The other maps (Figure 8b–e), on the
other hand, show higher values in the central-southern coastal area, while the extreme
events with lower values are located in the Apennines and in the neighbouring valleys
and hills.
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3.2. 100-Year Return Levels for the Periods 1991–2020 and 1951–2020

The 100-year return level was analysed for all periods (1951–2020 and 1991–2020)
and all investigated time intervals (1, 3, 6, 12, 24), as well as for all available weather
stations, of which there were 131 in total. The GEV block maxima methodology allowed
the identification of the 100-year return level for the various stations, as shown in the graph
in Figure 9.

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 26 
 

 
(e) 

Figure 8. Maximum extreme precipitation from 1951 to 2020 at 1 h (a), at 3 h (b), at 6 h (c), at 12 h 
(d), at 24 h (e). 

3.2. 100-Year Return Levels for the Periods 1991–2020 and 1951–2020 
The 100-year return level was analysed for all periods (1951–2020 and 1991–2020) and 

all investigated time intervals (1, 3, 6, 12, 24), as well as for all available weather stations, 
of which there were 131 in total. The GEV block maxima methodology allowed the iden-
tification of the 100-year return level for the various stations, as shown in the graph in 
Figure 9. 

 
Figure 9. Example of the return level graph for the Cantiano weather station, return level plot (log 
scale) with 95% normal approximation point-wise confidence intervals, identified by two dotted 
curves, measured data are summarised by the dots. 

The 100-year return level values obtained for the hours (1, 3, 6, 12, 24) were interpo-
lated through ArcGis software using the EBK to obtain pluviometric probability maps for 
the Marche region from 1991 to 2020 (Figure 10). 

Figure 9. Example of the return level graph for the Cantiano weather station, return level plot (log
scale) with 95% normal approximation point-wise confidence intervals, identified by two dotted
curves, measured data are summarised by the dots.

The 100-year return level values obtained for the hours (1, 3, 6, 12, 24) were interpolated
through ArcGis software using the EBK to obtain pluviometric probability maps for the
Marche region from 1991 to 2020 (Figure 10).
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Figure 10. Interpolation for the period 1991–2020 of the 100-year return level at the following intervals:
1 h (a), 3 h (b), 6 h (c), 12 h (d), 24 h (e).

The 1 h return level map (Figure 10a) shows that the highest values are found in the
central part of the region, with the range of the highest values between 60 and 64 mm of
rain. The 3 h return level map (Figure 10b) shows the highest values in the south, while
the lowest values are found in the far north (70–80 mm). The 6 h return level map has
higher values in the south, which are also common for the 12 h and 24 h intervals to various
degrees (Figure 10c–e).

The same type of analysis was conducted for the interval 1951–2020, which revealed a
smoother interpolated surface and also greater homogeneity between the various zones of
the study area (Figure 11).
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Figure 11. Interpolation for the period 1951–2020 of the 100-year return level at the following intervals:
1 h (a), 3 h (b), 6 h (c), 12 h (d), 24 h (e).

The 1 h and 3 h maps are similar, showing the same areas with the highest return levels,
with the central-southern part of the region being more prone to the return of extreme
rainfall. For the 1 h map, the return values are around 68 mm, while for the 3 h map, the
values are around 100 mm. The 6, 12 and 24 h maps show the southern part of the study
area as the area with the highest values. In contrast with the 1 h and 3 h maps, the values
here are more localised in the far south (Figure 11a,b). The 6 h map assumes values around
128 mm as maximum return levels; the 12 h map values are around 200 mm, while the 24 h
map values are 270 mm (Figure 11c–e).

3.3. Analysis of the Differences between the Periods 1991–2020 and 1951–2020

The GIS software (ArcGis 10.8) makes it possible to perform operations between
rasters, which are indispensable in some cases for assessing the spatial differences that may
occur between two time series. In this case, using the maps in Figures 10 and 11, the period
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1991–2020 was subtracted from the period 1951–2020, resulting in an explanatory map of
the differences in the return value calculated using a different time interval in the series.

The 1 h and 3 h maps have the only positive values located in a narrow area to the
north, which runs from the Apennines to the coast, while negative values prevail for the
rest of the study area, indicating that the longer time series leads to slightly higher 100-year
return values than the 30-year period 1991–2020 (Figure 12a,b). The map of the differences
between the 6 h periods also shows higher values for the period 1951–2020 spread over
most of the area, with the exception of a small part of the north-central coast showing
lower values, compared to the period 1991–2020 (Figure 12c). The trend in the study area
is reversed in the comparison map between the two periods for both the 12 h and 24 h
intervals, where it becomes evident that the 1991–2020 period results in higher return
values than the 1951–2020 period everywhere, except in the extreme south of the study area.
In addition, the values of some weather stations with complete or very few data gaps for
both study periods 1951–2020 and 1991–2020 were compared in order to better understand
the quantitative differences between the two intervals.

The same weather stations for both periods show different return values; in particu-
lar, the period 1991–2020 gives rise to consistently higher return values than the period
1951–2020 (Table 2).

Table 2. Comparisons between the same active weather stations for the two periods studied
(1951–2020 and 1991–2020). Code = unique code of each weather station, which can be found
in the map in Figure 2 and Table 1; Period = period to which the data in the row refer; 1 h, 3 h, 6 h,
12 h, 24 h = values with 100-year return period.

Code Period 1 h 3 h 6 h 12 h 24 h

10 1951–2020 53.6 72 78.8 95.5 125
10 1991–2020 128.3 163.2 172.5 176.2 184.1
39 1951–2020 63.3 88.8 100 131.8 141
39 1991–2020 115.4 119.6 122.5 133.8 159
52 1951–2020 54.7 75.7 96 101.3 124.6
52 1991–2020 106.2 110 120 126.6 148
83 1951–2020 75 104.5 119.2 142.8 165.4
83 1991–2020 90 115.2 122.2 159.3 170.8
110 1951–2020 75 110 114.3 141.6 150
110 1991–2020 81.2 145.8 223.5 258.8 263.1
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3.4. Effect of the Introduction of an Extreme Event on the 100-Year Return Value Evaluated over
24 h

On 15 September 2022, part of the study area was affected by an extreme rainfall
event triggered by a V-shaped thunderstorm (Figure 13a). The flood triggered by the
event caused 12 fatalities, 1 woman missing, 50 injured, 150 displaced persons and EUR
2 billion in damage. The difference was assessed by taking into account the reference period
1991–2020 and comparing it in the area where the extreme event was most intense with the
period 1991–2022 by including the extreme event of 15 September 2022.

The difference between 1991–2020 and 1991–2022 in the reduced area where the ex-
treme event was most intense is evident, with much higher return levels when considering
the extreme event in the reference period, with values ranging from 30 to 180 mm more
precipitation (Figure 13b).
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4. Discussion

Two periods, 1991–2020 and 1951–2020, were analysed using all the meteorological
stations available in the area in all the canonical time intervals indicated for defining
extreme events. In the literature, most research on extreme events is carried out in hourly
time intervals, whereas with regard to reference periods, there is a tendency to use methods
of evaluating extreme events by entering as much data as available, i.e., the longest data set
available [31–33]. Certainly, the use of long time series can be favourable in the absence
of climate change, with stationary extreme events not influenced by trends, while in an
opposite situation [34], it is necessary to assess whether it is really favourable for the
prediction of expected extreme events or whether it is better to use shorter data intervals,
which can take into account the more pronounced upward trends of recent years. The main
aim of the present study was precisely to understand whether a shorter interval can lead to
differences in the 100-year forecast by favouring return values, which are closer to those
occurring. In this study, first, a GEV statistical analysis was performed for each weather
station collected. Then, a spatial interpolation was carried out using EBK to obtain two
rasters (one for each reference period) for each time interval 1, 3, 6, 12, 24; the subtraction
between the rasters allowed the spatial understanding of the differences obtained in terms
of the return levels for both periods. Very often in the literature, the subtraction between
rasters created through the GEV methodology is performed in order to understand whether
there is an increasing trend in the intensity of extreme events; however, there is no evidence
of its use to verify the accuracy of the 100-year return value [35]. It is even argued in the
literature that using series that are too short with respect to return time leads to unreliable
and often non-predictive results [36]. Contrary to what has been reported in the literature
so far, in this research, a certain underestimation of the return values was highlighted,
especially for the longer period 1951–2020, in relation to events that already occurred, such
as those in 2013 in the south of the region; in the Acquasanta Terme weather station, as
much as 314 mm of precipitation fell in 24 h. In this zone, south of the study area, the period
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1951–2020 predicts about 290 mm with a 100-year return time, while the period 1991–2020
predicts more than 600 mm, showing a greater sensitivity to extreme peaks in the series,
which could, however, be appreciable in the context of an increasing trend of extreme
events. This difference in the results between the investigated periods is also appreciable in
relation to the extreme event of 2022, which reported values well above the forecasts for
both periods analysed with the GEV method, although the shorter data series 1991–2020
showed higher values than the other series. In particular, for the period 1991–2020, values
of between 150 and 210 mm were recorded in the area of the extreme event of 15 September
2022, while for the period 1951–2020, the 100-year return values were between 130 and
180 mm; the extreme precipitation event in question had values in the area of between
420 and 150 mm, so in some locations, there was twice as much rainfall as the 100-year
return value, and even the 500-year return values in the area never exceeded 350 mm.
Finally, a targeted analysis was also carried out of the area affected by the extreme event of
15 September 2015, and again, the shorter period showed results, which were higher and
more in line with what had occurred, also showing how the addition of an extreme event
of great intensity radically changed the results obtained from the GEV analysis. Thus, in
addition to questioning the real usefulness of a longer time series in the context of climate
change, one also questions the predictive capabilities of the GEV model, which was found
to be rather inadequate for the predictive purposes for which it was used.

5. Conclusions

The study of extreme precipitation events is a very important topic because of the
hydrogeological risks they can trigger. The scientific literature usually approaches this topic
in a rather canonical manner by comparing different return value calculation methodologies,
such as GDP and GEV; however, no attempt is made to assess the actual correctness of
the method and also the influence, which the length of the time series has. This study
shows that, in the case of a non-stationary time series, it is more appropriate to calculate
the return value over a period of at least 30 years, as indicated by the World Meteorological
Organisation (WMO), but not as long as possible, as is usually performed, precisely because
it would tend to reduce the return value results. Furthermore, the problematic nature of
the GEV method in correctly predicting the return value, even in the case of smaller time
series, was highlighted, showing 100-year values, which are often lower than those that
have already occurred or occurred just after the end of the reference period. It follows that,
in the case of a climate change situation, such as the current one, the GEV methodology
cannot be considered reliable for predicting extreme events, which may occur in the future.
This obviously creates problems both for sizing the engineering works aimed at containing
or mitigating the related hydrogeological risks and for the erroneous climate analysis. This
study is a preliminary to a detailed sustainability study, as avoiding economic losses due
to flood danger is increasingly crucial. The increase in the intensity of extreme events is
a consequence of climate change, which is now evident, but a long-term forecast of the
maximum intensity allows for countermeasures to be planned to improve the resilience of
territories [37]. In addition, the spatial analysis performed in this study makes it possible
to differentiate the areas at higher or lower risk from extreme events, laying the basis for
the drafting of a reliable climate change adaptation plan.
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