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Abstract
We study the dissipative stabilization of entangled states in arrays of quantum systems. Specifically,
we are interested in the states of qubits (spin-1/2) which may or may not interact with one or more
cavities (bosonic modes). In all cases only one element, either a cavity or a qubit, is lossy and
irreversibly coupled to a reservoir. When the lossy element is a cavity, we consider a squeezed
reservoir and only interactions which conserve the number of cavity excitations. Instead, when the
lossy element is a qubit, pure decay and a properly selected structure of XY-interactions are taken
into account. We show that in all cases, in the steady state, many pairs of distant, non-directly
interacting qubits, which cover the whole array, can get entangled in a stationary way, by means of
the interplay of dissipation and local interactions.

1. Introduction

A central, necessary ingredient of quantum technologies such as quantum computation, simulation, and
communication is the ability to control and distribute entangled resources over large arrays of quantum
systems. An attractive strategy makes use of controlled dissipative processes to steer and protect arrays of
quantum systems into entangled states [1–10]. In particular, it has been shown that, in order to drive the
whole system into non-trivial and potentially useful multipartite entangled states, it is sufficient to control
the dissipative dynamics of one or two localized elements in a quantum array [11–23]. This has been proved
for arrays of both bosonic (by using a single localized squeezed reservoir) [16–22] and fermionic (via a
correlated reservoir for two fermions) [15] modes. It has also been shown that many entangled pairs can be
realized by modulating the coupling between a central cavity and two qubits (spin-1/2) in a qubit chain [23]
and by designing a correlated reservoir of two elements in an array of qubits [11, 14, 15] and cavities
(bosonic modes) [11–13].

Here we present that, also in the case of qubits, it is sufficient to control the local environment of a single
element of an array to generate, in the steady state, many entangled qubits pairs. We demonstrate this both
for arrays of cavities and qubits, and for arrays of only qubits. In the first case a single cavity is coupled to a
squeezed reservoir (see [24] for an experimental implementation in the microwave domain and [25, 26] for
its use in the optical domain to improve the performance of gravitational wave interferometers) and all the
interactions conserve the number of excitations. In the second, instead, a single qubit can decay, and the
qubits are coupled according to a specific geometry of XY-interactions. Ideally, we assume that only one
element of the arrays is lossy. We also analyze how these dynamics are sensitive to additional noise affecting
the qubits.

We note that similar states have also been found in the ground states of certain spin Hamiltonians
[27–30], i.e. the so-called concentric singlet phase [27] and rainbow states [15, 28]. They can also be
generated in a spin chain following specific dynamics [31–33], and in this context they have been labeled
nested entangled states (or matryoshka states) [31]. Moreover, analogous states are also known as
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thermofield double states in the high-energy community [34, 35]. Differently from all these examples, here
we display that these states can be found as the unique pure steady state of a dissipative dynamics.

Finally, we mention the related results reported in [36, 37] where however the entangled steady states are
not unique, so that they are achieved only if the system is prepared in peculiar initial states.

The outline of the paper is as follows. In section 2 we describe in detail the four models of arrays
involving both qubits and cavities, and describe also the main result, that is, the possibility to generate in a
robust way a stationary state of many entangled qubit pairs. In section 3 we describe how a similar dissipative
generation of entangled qubit pairs can be obtained with effective models involving only qubits. In section 4
we verify our results through the numerical solution of the dynamics of all the models presented in the
previous sections, while section 5 is for concluding remarks.

2. Models with qubits and cavities

In this section we analyze the models which involve both qubits and cavities. We identify four models which
differ in geometries and composition of the arrays as specified below. In all cases there is a central cavity
which is coupled to a squeezed reservoir, and the corresponding stationary state is pure and factorized
between the state of the qubits |ψ⟩, and that of the cavity/ies |φ⟩c. In particular, without exception, each qubit
gets entangled to another one, such that they form many entangled pairs. In details, by using a proper
labeling, each qubit with label j gets entangled with the−jth, and the steady state of the qubits can be
expressed as

|ψ⟩=
N⊗
j=1

(√
n+ 1

2n+ 1
|−⟩j|−⟩−j −χj

√
n

2n+ 1
|+⟩j|+⟩−j

)
, (1)

where the variable j runs over all the entangled pairs, N is the number of pairs (such that the number of

qubits is 2N), |±⟩j is the eigenvalue of the Pauli operator σ(z)
j , for the qubit j, with eigenvalue±1, and n is the

number of excitations of the squeezed reservoir. Moreover, χj is a phase factor which depends on the specific
model (as specified in equation (12)). We finally note that, by increasing n, the state of each pair in
equation (1) tends to a Bell, maximally-entangled state, which is a central resource in many quantum
information protocols [38].

2.1. The four models
2.1.1. Chain of cavities and qubits
The first model is an extension of the chain of cavities studied in [16] where, here, each cavity but the central
one interacts also with a qubit (see figure 1(a)). In the following we indicate this model with the symbol ‘Ccq’,
where the upper case ‘C’ stands for chain and thus addresses the geometry, while ‘cq’ the composition of the
array, i.e. of cavities and qubits.

2.1.2. Star of cavities and qubits
Similarly, the second model is the extension of a star–like bosonic array analogous to that discussed in [17]
where, here, each of the external modes interacts with a qubit (see figure 1(b)). For this model we use the
symbol ‘Scq’ where now the upper case ‘S’ indicates the star geometry.

2.1.3. Chain of qubits with a central cavity
Then, we consider a chain of qubits, where the central element is in fact a cavity (or, in other terms, it is made
of two chains coupled on one end to a common cavity) (see figure 1(c)). In this case we use the symbol ‘Cq’
for chain of qubits.

2.1.4. Star of qubits with a central cavity
Finally we also study a star–like array where a central cavity is coupled to many qubits (see figure 1(d)). For
this model we use the symbol ‘Sq’.

2.2. The master equation
In every case, the system dynamics is described by a master equation of the form

ρ̇=− i

ℏ
[Hξ,ρ] +

κ

2
Lc ρ , (2)

2
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Figure 1. (a) Chain of cavities and qubits ‘Ccq’ where each cavity but the central one interacts with a qubit. The central cavity is
locally coupled to a squeezed bath. Regardless of the initial conditions, steady-state entangled pairs of qubits (pairs indicated by
the red and green thick lines) arise. (b) Star geometry with cavities and qubits ‘Scq’. (c) Chain of qubits with a central cavity ‘Cq’.
(d) Star of qubits with a central cavity ‘Sq’.

with ξ ∈ {Ccq,Scq,Cq,Sq}. The Lindblad operator Lc describes dissipation via the squeezed reservoir of the
central cavity with photonic annihilation operator b0 (see figure 1), and it reads

Lc ρ= 2 β0 ρ β
†
0 −β†

0 β0 ρ− ρ β†
0 β0 , (3)

where

β0 =
√
n+ 1 b0 −

√
n b†0 , (4)

is the squeezed annihilation operator. A squeezed reservoir can be realized by driving the system with a
broadband squeezed field [12, 17, 39]. In the microwave regime, a squeezed reservoir has been
experimentally realized, as reported in [24]. This technique has also been employed to enhance the
performance of gravitational wave interferometers in the optical domain [25, 26].

2.3. The Hamiltonians of the four models
In all instances, we take into account only Hamiltonian interactions which conserve the number of
excitations. Thus, for two interacting cavities with annihilation operators bj and bk, we consider interaction

Hamiltonians of the form Hc−c ∝ b†j bk + h.c. (where h.c. indicates the Hermitian conjugate). Moreover, the

cavity-qubit interactions are described by Jaynes–Cummings Hamiltonians Hc−q ∝ b†j σj + h.c., with

σj =
[
σ
(x)
j − iσ(y)

j

]
/2 the lowering operator for the qubit j. Finally, the interactions between two qubits are

described by an XX spin-1/2 Hamiltonian Hq−q ∝ σ
(x)
j σ

(x)
k +σ

(y)
j σ

(y)
k = 2σ†

j σk + h.c..
To be specific, the Hamiltonians corresponding to each of the four models are given by the expressions

reported in equations (5)–(8) below, which describe the system in a reference frame rotating at the frequency
of the central cavity ω0/2π. In particular—on the one hand—in the models ‘Ccq’ and ‘Scq’ with many
cavities (each interacting with a qubit), all the qubits are resonant with the central cavity, while the other
cavities are detuned by a frequency∆c,j from ω0. On the other hand, in the models ‘Cq’ and ‘Sq’, composed
of many qubits and a central cavity, the transition frequency of each qubit is detuned by∆q,j from ω0. Our
analysis relies on the assumption that ω0 is the dominant parameter in the studied systems. Consequently,
the frequencies of the cavities and qubits (ω0 +∆c,j and ω0 +∆q,j, respectively) are orders of magnitude
larger than the introduced coupling strengths, a common feature of quantum-optical systems. This key
assumption justifies our adoption of the local master equation (2) [40].

We also note that, in order to sustain the steady state of equation (1), the Hamiltonians have to fulfill
certain symmetry properties: they have to be symmetric in the interaction strengths and antisymmetric in
the detunings as discussed below. This is analogous to the chiral symmetry identified in [15] (see also [19])

3
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and which is at the basis of the emergence of steady state entangled pairs (equal to the ones studied here) in a
finite chain of qubits, when the two central qubits are coupled to a correlated reservoir.

Let us now introduce the explicit formulas for the Hamiltonians.

2.3.1. Chain of cavities and qubits: ‘Ccq’ (figure 1(a))

HCcq = ℏ
N∑
j=1

{
∆c,j

(
b†j bj − b†−j b−j

)
+
[
gj
(
b†j σj + b†−jσ−j

)
+ ηc,j

(
b†j bj−1 + b†−j b−j+1

)
+ h.c.

]}
, (5)

where j= 0 indicates the central cavity, while the positive and negative values of j indicate the elements
respectively on the right and on the left of the central cavity, with the value of |j|measuring the distance from
the central cavity. Here we see that cavities at the same distance on the right and on the left have opposite
detuning, while all the interactions are symmetric.

In such a situation (and also in the following), both qubits and cavities form many entangled pairs. The
dynamics of the cavities is the same as that discussed in [16] (which specializes [22]). Here we demonstrate
how the entanglement of these bosonic modes is transferred to the qubits, similarly to [11, 41].

2.3.2. Star of cavities and qubits: ‘Scq’ (figure 1(b))

HScq = ℏ
N∑
j=1

{
∆c,j

(
b†j bj − b†−j b−j

)
+
[
gj
(
b†j σj + b†−jσ−j

)
+ ηc,j b

†
0

(
bj + b−j

)
+ h.c.

]}
. (6)

In this regard the index j does not indicate the distance from the central cavity, but it is still used to label the
elements which are entangled in the steady state. In other words, the elements (both cavities and qubits) with
indices j and−j form entangled pairs. This model shares various features with the previous one. First, the
cavities are entangled in the steady state and follow a dynamics similar to that discussed in [22] (see also
[17]) and this induces entanglement in the qubits as in the previous case [11, 41]. Second, the cavities in each
pair have opposite detuning, while their interaction coefficients are equal.

2.3.3. Chain of qubits with a central cavity: ‘Cq’ (figure 1(c))

HCq = ℏ
N∑
j=1

∆q,j

2

[
σ
(z)
j −σ

(z)
−j

]
+ ℏ

g1 b†0 (σ1 +σ−1)+
N∑
j=2

ηq,j

(
σ†
j σj−1 +σ†

−jσ−j+1

)
+ h.c.

 , (7)

where, similar to the ‘Ccq’ model, the positive and negative values of j indicate, respectively, the qubits on the
right and on the left of the central cavity. A qubit on the right chain has a detuning which is opposite to that
of the corresponding qubit on the left chain, while the corresponding couplings are identical. As described
earlier, pairs of qubits at the same distance on the right and on the left of the cavity are entangled in the
stationary state.

2.3.4. Star of qubits with a central cavity: ‘Sq’ (figure 1(d))

HSq = ℏ
N∑
j=1

{
∆q,j

2

[
σ
(z)
j −σ

(z)
−j

]
+
[
gj b

†
0

(
σj +σ−j

)
+ h.c.

]}
. (8)

As in the ‘Scq’ case, the index j does not indicate the distance from the central cavity, but it is used to label the
elements which are entangled in the steady state, that is, the qubits with indices j and−j form entangled pairs.

2.4. The steady state
Let us now analyze in detail the steady state of the models defined above. When gj = 0 (indicating no
interaction with the qubits), the squeezed reservoir drives the central cavity towards a squeezed state.
Correspondingly, as shown in [16, 17, 22], the other cavities (in the models ‘Ccq’ and ‘Scq’) approach a pure
entangled state constituted of many two-mode squeezed states. It can be expressed as

|φ⟩c = Uc|0⟩c, (9)

4
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where |0⟩c is the vacuum and Uc the unitary which generates the steady state. In detail, for the models of
cavities and qubits (‘Ccq’ and ‘Scq’), Uc is the product of a squeezing operator on the central cavity mode,
and many two-mode squeezing operators for the modes with opposite indices

Uc = e
r
2

(
b†0

2−b20

) N⊗
j=1

eχj r(b†j b
†
−j−bj b−j) , for Ccq and Scq , (10)

where tanh(r) =
√

n/(n+ 1). Instead, for the models ‘Cq’ and ‘Sq’, Uc is the single mode squeezing operator

Uc = e
r
2

(
b†0

2−b20

)
, for Cq and Sq . (11)

In particular the factor χj, which appears in equations (1) and (10), is given by

χj =


(−1)j , for Ccq
(−1)j+1 , for Cq ,
−1 , for Scq ,
1 , for Sq ,

(12)

for j ̸= 0 . We also note that these operators (equations (10) and (11)) realize the Bogoliubov transformation

U†
c bj Uc =

√
n+ 1 bj +χj

√
n b†−j , (13)

for all j, also for j= 0 with χ0 = 1.
Now, one can check that, in general, the product state

|Ψ⟩= |φ⟩c |ψ⟩ , (14)

between the state of the qubits given by equation (1), and that of the cavity/ies given by equation (9), with Uc

and χj defined in equations (10)–(12), is a steady state for the four models. In other words, one finds that
− i

ℏ [Hξ, |Ψ⟩⟨Ψ|] + κ
2 Lc |Ψ⟩⟨Ψ|= 0.

This is the result of the destructive interference which takes place when these systems are endowed with
the specific symmetries described in section 2.3. To be specific, by dividing the Hamiltonians as the sum of
the term which involves only the cavity operators Hc,ξ (this is non-zero only for the models ‘Ccq’ and ‘Scq’),
the one for the qubits alone Hq,ξ (this is non-zero only for the models ‘Cq’ and ‘Sq’) and the terms which
describe the interactions between cavity/ies and qubits Hc−q,ξ , such that

Hξ =Hc,ξ +Hq,ξ +Hc−q,ξ , (15)

we find that

− i

ℏ
[
Hc,ξ, |φ⟩c⟨φ|

]
+
κ

2
Lc |φ⟩c⟨φ|= 0 , (16)

as demonstrated in [16, 19, 22], and

Hq,ξ |ψ⟩= 0 , (17)

Hc−q,ξ |Ψ⟩= 0 , (18)

because of the destructive quantum interference between transitions which involve the qubit states in the
quantum superposition of equation (1).

5
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2.5. Dynamics in the squeezed representation
In order to verify equation (18) and gain insight into the steady state dynamics, it is useful to analyze the
system in the representation in which the cavity steady state is the vacuum. Namely, we consider the master
equation for the transformed density matrix ρ̃= U†

c ρUc, which is given by

˙̃ρ=− i

ℏ

[
H̃ξ, ρ̃

]
+
κ

2
L̃c ρ̃ , (19)

with the Lindblad term which describes dissipation of the zeroth mode being

L̃c ρ̃= 2 b0 ρ̃ b
†
0 − b†0 b0 ρ̃− ρ̃ b†0 b0 . (20)

The transformed Hamiltonian in equation (19) can be written as

H̃ξ = U†
c Hξ Uc

=Hc,ξ +Hq,ξ + H̃c−q,ξ , (21)

where the Jaynes–Cummings interaction term H̃c−q,ξ = U†
c Hc−q,ξ Uc may be expressed as

H̃c−q,ξ = ℏ
N∑
j=1

gj
(
b†j τj + b†−j τ−j + h.c.

)
, for ξ ∈ {Ccq,Scq} ,

H̃c−q,Cq = ℏ g1 b
†
0 (τ1 + τ−1)+ h.c. ,

H̃c−q,Sq = ℏ
N∑
j=1

gj
[
b†0
(
τj + τ−j

)
+ h.c.

]
, (22)

with τj given by the collective qubit operator

τj =
√
n+ 1 σj +χj

√
n σ†

−j . (23)

Now it is easy to verify that the transformed state

|̃Ψ⟩= |̃φ⟩c |ψ⟩= |0⟩c |ψ⟩ , (24)

(with |̃ . . .⟩= U†
c | . . .⟩) fulfills the relation H̃c−q,ξ |̃Ψ⟩= 0 (which is equivalent to equation (18)). In fact, on

the one hand, bj |̃Ψ⟩= 0 because the cavity(-ies) is (are) in the vacuum (in this representation) and, on the
other hand,

τj |ψ⟩= 0 , ∀ j . (25)

In other terms, in this representation, all the cavities dissipate (through the central cavity) and approach the
vacuum. Correspondingly the qubits population accumulates in the entangled state of equation (1) in a way
similar to optical pumping. In fact, the state of equation (24) is the only one which does not decay and it is
decoupled from all the others, and in the meanwhile it is populated by the decay of the central cavity.

It is instructive to visualize this with a simple example, i.e. when N= 1, for the models ‘Ccq’ and ‘Scq’
which are equal. In figure 2 we report the eigenstates of the system Hamiltonian without interactions and use
arrows to connect levels which are coupled by the interaction terms. The number of cavity excitations (in the
squeezed representation) increases from left to right, and the dissipation of the central cavity is responsible
for an irreversible transfer of population from the levels on the right to those on the left. The figure shows
that the qubit state of equation (24) (i.e. the state of equation (1) with zero cavity excitations) is the only state
which is decoupled from the other levels, and at the same time it does not decay and is populated by the
cavity decay. As a consequence this state is stable in the steady state. Similar considerations hold also for the
other models.

6
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Figure 2. Low-excitations eigenlevels (black horizontal lines) corresponding to the Hamiltonian H̃Ccq

∣∣∣
ηc,j=0,gj=0

(in the squeezed

representation) without interaction terms (see equations (5), (21) and (22)) and corresponding matrix elements of the interaction
terms (red, blue, green, and orange arrows; each color marks a different coupling strength as shown in the right-bottom corner of
the figure), for the model ‘Ccq’ with N= 1 (which is equal to the model ‘Scq’ with N= 1). The purple wavy arrow illustrates the
transfer of population due to the decay of the central cavity; |ψ⟩= (

√
n+ 1 | −−⟩+

√
n |++⟩)/

√
2n+ 1 is the qubit state of

equation (1) and |ψ⊥⟩= (
√

n | −−⟩−
√

n+ 1 |++⟩)/
√
2n+ 1 is its orthogonal state. The parameters nj and n≡

∑
j nj

indicate the Fock states |n−1 n0 n1⟩c of the cavities in the squeezed representation (i.e. the squeezed Fock states Uc|n−1 n0 n1⟩c in
the original representation). The values of λ tag the eigenvalues of H̃Ccq|ηc,j=0,gj=0 corresponding to the various group of levels.
The horizontal dashed gray lines divide the groups of levels associated to each eigenvalue. Levels corresponding to the same
eigenvalue (in the same group) are reported at different vertical positions in order to provide a better visualization. The state |ψ⟩
with zero excitations, n= 0, is the steady state of the system dynamics, where the population accumulates. In fact, being the only
state decoupled from all the other levels, it does not lose population but it is populated by the cavity decay.

3. Models with only qubits

A similar qubits dynamics (in the squeezed representation) is observable also if we modify our models by
replacing all the cavity modes with fresh new qubits. Namely, we may consider the master equation (19) and
replace all the bj and b†j with other lowering and rising qubits operators σc,j and σ

†
c,j (where the label c

indicates that these are the new qubits in place of the cavities of section 2 and figure 1). In this way we find
new models which consist of only qubits, with a single central lossy one. Moreover, the qubits interact with a
peculiar structure (different for each model) of XY-interactions (see figure 3).

Let us explicitly write down the equations for these models. The master equation has the form of
equation (19)

ϱ̇=− i

ℏ
[
H◦

ξ ,ϱ
]
+
κ

2
Lq ϱ , (26)

where also in this case we use the labels ξ ∈ {Ccq,Scq,Cq,Sq} to highlight the relation with the models of
figure 1, but where now the Hamiltonian and the Lindblad operator include only qubits operators, following
the substitution bj → σc,j. In other words

Lq = L̃c

∣∣∣
bj→σc,j

,

H◦
ξ = H̃ξ

∣∣∣
bj→σc,j

, (27)

7
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Figure 3. Sketch of the arrays of qubits analogous of the models of figure 1 but with the cavities replaced by additional qubits. In
each model the central qubit is lossy (described by the wavy line) and the qubits which are entangled in the steady state are
indicated by the red and green thick lines. In (a) and (b) the solid black lines connecting two qubits indicate XX- (isotropic XY-)

interactions∝ σ
(x)
j σ

(x)
k +σ

(y)
j σ

(y)
k , while the dotted black lines indicate interactions of the form∝ σ

(x)
j σ

(x)
k −σ

(y)
j σ

(y)
k .

In (c) and (d) the interactions between the central spin and the neighboring ones is of XY-type with anisotropic couplings

∝ g(x)σ
(x)
j σ

(x)
k + g(y)σ

(y)
j σ

(y)
k , while the black lines in (c) between the other spins indicate XX-interactions

∝ σ
(x)
j σ

(x)
k +σ

(y)
j σ

(y)
k .

namely

Lq ϱ= 2 σc,0 ϱ σ
†
c,0 −σ†

c,0 σc,0 ϱ− ϱ σ†
c,0 σc,0 , (28)

and

H◦
ξ =H◦

c,ξ +Hq,ξ +H◦
c−q,ξ , (29)

where, as in section 2, Hq,ξ is non-zero only for ξ ∈ {Cq,Sq} and H◦
c,ξ is non-zero only for ξ ∈ {Ccq,Scq},

with

H◦
c,Ccq = ℏ

N∑
j=1

∑
ζ=±

[
ζ∆c,j σ

(z)
c,ζj +

ηc,j
2

(
σ
(x)
c,ζjσ

(x)
c,ζ(j−1) +σ

(y)
c,ζjσ

(y)
c,ζ(j−1)

)]
,

H◦
c,Scq = ℏ

N∑
j=1

∑
ζ=±

[
ζ∆c,j σ

(z)
c,ζj +

ηc,j
2

(
σ
(x)
c,0 σ

(x)
c,ζj +σ

(y)
c,0 σ

(y)
c,ζj

)]
,

and moreover the interaction terms, derived from the Jaynes–Cummings terms of the previous section, are
given by the following expressions. Indeed, in the models ‘Ccq’ and ‘Scq’, each qubit corresponding to a cavity
of the previous model interacts with two qubits according to the Hamiltonians

H◦
c−q,ξ = ℏ

N∑
j=1

gj
2

∑
ζ=±

{
σ
(x)
c,ζj

[√
n+ 1σ(x)

ζj +χj

√
nσ(x)

−ζj

]
+σ

(y)
c,ζj

[√
n+ 1σ(y)

ζj −χj

√
nσ(y)

−ζj

]}
, for ξ ∈ {Ccq,Scq} .

Instead, in the models ‘Cq’ and ‘Sq’, the Jaynes–Cummings terms result in the anistrotopic XY-interaction
Hamiltonians

8
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H◦
c−q,Cq = ℏ

∑
ζ=±

[
g(x)1 σ

(x)
c,0 σ

(x)
ζ1 + g(y)1 σ

(y)
c,0 σ

(y)
ζ1

]
,

H◦
c−q,Sq = ℏ

∑
j

∑
ζ=±

[
g(x)j σ

(x)
c,0 σ

(x)
ζj + g(y)j σ

(y)
c,0 σ

(y)
ζj

]
,

with

g(x)j =
gj
2

(√
n+ 1+χj

√
n
)
,

g(y)j =
gj
2

(√
n+ 1−χj

√
n
)
, (30)

where χj is defined in equation (12).
Now it is easy to check that, as in the previous section, a steady state for these models is

|Ψ◦⟩= |−⟩c |ψ⟩ , (31)

where |−⟩c indicates the state for all the qubits with lowering operator σc,j, where each qubit is in the

eigenstate of σ(z)
c,j with eigenvalue−1.

4. Numerical results

The fact that the steady state equation (14) is in fact unique, for specific choices of the parameters∆c,j, ηc,j,
∆q,j, ηq,j, and gj, can be numerically verified. In this section we report the numerical results evaluated in the
squeezed representation for various sizes of the arrays of the four models of section 2, and by truncating the
Hilbert space of the cavities at various Fock numbers. We also include the limiting case of only two levels for
the cavity modes, which hence corresponds to the qubits models of section 3.

Additionally, we investigate the sensitivity of these dynamics to extra noise, as depicted in figures 4–7,
and examine their scaling behavior with the size of the array, as shown in figure 7. We consider equation (19)
and include phase noise on the qubits5, according to the equation ˙̃ρ= L ρ̃, where the total Liouvillian
superoperator is given by

L ρ̃=− i

ℏ

[
H̃ξ, ρ̃

]
+
κ

2
L̃c ρ̃+ γD ρ̃ , (32)

and where the additional noise on the qubits is described by the Lindblad term

D ρ̃=
N∑

j=−N
j ̸=0

σ
(z)
j ρ̃ σ

(z)
j − ρ̃ . (33)

We highlight that the structure of the Hamiltonians discussed in the previous sections is not sufficient to
guarantee that the steady state is unique. A trivial example is when, in the model ‘Sq’, all the detunings and all
the couplings are equal, such that∆q,j =∆q,j ′ and gj = gj ′ for all j, j ′ ∈ {1, . . . ,N}. In this highly symmetric
case, any partition of the qubits in pairs may be used to construct a state as that of equation (1) which is
stationary. All these possible partitions will give rise to a stationary subspace of the system dynamics.
However, the actual steady state will depend on the initial state and typically be a statistical mixture of states
in this subspace. Therefore, to obtain a unique steady state, such as the pure steady state discussed in
section 2.4 (or an approximate mixed-state version thereof in the presence of finite γ), it is necessary to avoid
these highly symmetric situations, e.g., by using different values of detunings and couplings for each pair.

Here, we characterize the steady state in terms of the concurrence [38] between pairs of qubits. In
particular, we verify numerically that, for the chosen set of parameters, only qubits with opposite indices j
and−j can get entangled in the steady state.

We compute the evolution of the system numerically with wave function Monte Carlo techniques, and
analyze the stability of the result by truncating the Hilbert space of the cavities to various Fock numbers

5 The effect of additional cavity decay on similar systems (made only of cavities) has been analyzed in detail in [16, 22], showing that the
entanglement dynamics is unaffected as far as the total additional decay rate is smaller than the coupling rate to the squeezed reservoir κ.
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Figure 4. Time evolution of the concurrence for the models: ‘Cq’ with a single qubit pair,N= 1, in (a) and (d), ‘Cq’ with N= 2 in
(b) and (e), and ‘Ccq’ with N= 1 in (c) and (f), and for various values of the dimension of the working Hilbert space of the
cavities (in the squeezed representation) as reported in the legend. In all the plots n= 1. In (b) and (e) the solid (dashed) lines
refer to the couple j = 2(1). In the first row [(a), (b), and (c)] the dephasing rate is γ = 0. In the second row [(d), (e), and (f)]
γ = 5× 10−4κ. In (a) and (d)∆q,1 ≃−0.193κ and g1 = 0.36κ. In (b) and (e)∆q,1 ≃−0.193κ,∆q,2 =∆q,1 + 0.05κ,
g1 = 0.36κ, and ηq,1 = 0.362κ. In (c) and (f), the dimensions of the Hilbert spaces of all the cavities are truncated at the same

Fock number n
(max)
0 = n

(max)
±1 , and∆c,1 ≃−0.26κ, g1 = 0.36κ. The values of the detunings are chosen in order to maximize the

decay rate of the arrays for the given choice of interaction strengths (which here are chosen for simplicity of the same order of
magnitude). This is done by maximizing the real part of the smallest non-zero value of the total Liouvillian L as a function of∆,
see figure 5(c) and figures 6(c), (f), and (d) for specific examples.

n(max)
j (see figure 4). To ensure the uniqueness of the steady state of the simulated models, we perform

numerical analysis on the spectrum of the total Liouvillian. Our results confirm that, for the chosen
parameters, the steady state is indeed unique, as evidenced by the null space of the Liouvillian having
dimension one. Due to the numerical complexity of the problem, we only consider small arrays. In the

squeezed representation one can use a relatively low number of Fock states, with the lowest value n(max)
j = 1

corresponding to models with only qubits of section 3 and the largest values of n(max)
j which approach the

models which include the cavities of section 2. In the case of qubit-only models, we can simulate the full
Hilbert space, which allows us to unambiguously demonstrate the uniqueness of the steady state for the
chosen parameters. However, for models involving cavities, one can only simulate a finite part of the
infinite-dimensional Hilbert space, raising concerns about the effective uniqueness of the steady state for the
complete models. Nevertheless, an analysis of figure 2 suggests that there are no subspaces outside of the
simulated part that do not dissipate and are disconnected from it. This indicates that the steady state is likely
to be unique for these cases as well.

In figures 4(a)–(c) we observe that in the ideal case (γ = 0) the steady state concurrence is the same for
all the models, and independent from the dimension of the Hilbert space. This confirms the result of
equations (1) and (14), i.e. that without any additional dissipation channel the steady state of the qubits is
the same for all the models and it depends only on the amount of squeezing of the reservoir which is
determined by n̄. However, we notice that the dynamics involving cavities (corresponding to larger values of

n(max)
j ) is significantly faster than that of the models with qubits only (n(max)

j = 1). On the contrary,
dephasing reduces the final entanglement, and maximum reduction is observed for the slowest models,
namely the models with only qubits (see figures 4(d)–(f)).

Figures 5 and 6 show that, on the one hand, at zero additional noise (γ = 0) maximum entanglement is
achieved for larger values of n, as expected from equation (1), which approaches the product of many Bell,
maximally entangled states. On the other hand, when the rate γ of the additional noise is finite, maximum
entanglement is achieved at finite values of n. In fact, the larger n, the slower the dynamics, as illustrated by
these figures (see the decay rates for different values of n̄ in figure 5(d)) and, as a consequence, if γ is too
large noise and decoherence have enough time to spoil the generation of the steady state.
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Figure 5. (a) Steady state concurrence for the model ‘Cq’ with N= 1 (that is equal to ‘Sq’ with N= 1) as a function of the average
number of excitations of the squeezed reservoir n, and for various values of the dephasing rate γ. (b) Time evolution of the
concurrence for the highlighted (yellow) points in (a) corresponding to n= 0.5 (dark red), 1 (red), and 5 (salmon) with
γ = 5× 10−4κ. (c) Real part of the first two eigenvalues of L for the same points. The initial state is vacuum (in the squeezed

representation) for the cavity and the eigenstate of σ
(z)
j with eigenvalue−1 for all the qubits. The vertical black, dashed line in

(c) indicates the value of∆q,1 ≃ 0.197κ. The coupling strength is g1 = 0.36κ. The cavity Fock space is truncated at n
(max)
0 = 2 (in

the squeezed representation) to approximate a hybrid model of cavities and qubits. We have verified that similar results hold also

for models of only qubits (n
(max)
0 = 1) and for larger values of n

(max)
0 . (d) Decay rate analysis: same results of (b) where we

subtract—at each curve—its steady state value, take the modulus, and fit the result with an exponential decay. The slope of these
lines indicate the rate of decay towards the steady state. These rates are consistent with the real part of the eigenvalues of L
identified by the vertical dashed line in plot (c).

Figure 6. Results similar to those of figure 5 (a)–(c) for the models ‘Cq’ withN= 2 (a)–(c), ‘Sq’ withN= 2 (d)–(f), and ‘Ccq’ with
N= 1 (that is equal to ‘Scq’ with N= 1) (g)–(i). In (a) and (d) the solid (dashed) lines refer to the couple j = 2(1). In (a)–(c)

∆q,1 ≃−0.13κ,∆q,2 =∆q,1 + 0.05κ, g1 = 0.36κ, and ηq,1 = 0.362κ. The Fock space of the cavity is truncated at n
(max)
0 = 2. In

(d)–(f)∆q,1 ≃ 1.3κ,∆q,2 =∆q,1 + 0.05κ, g1 = 0.36κ, and g2 = 0.362κ. The Fock space of the cavity is truncated at n
(max)
0 = 2.

In (g)–(i) g1 = 0.36κ and∆q,1 ≃−0.17κ. The Fock spaces of the cavities are truncated at n
(max)
0 = 2 and n

(max)
±1 = 1.
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Figure 7. (a) Time evolution of the concurrence of the jth couple for different numbers of qubit pairs N ⩽ 5, for ‘Cq’. N= 1
purple, N= 2 blue, N= 3 green, N= 4 orange, and N= 5 red. n= 1 and γ/κ= 10−5. The different qubit pairs are denoted
with different symbols. Cross: |j|= 1 pair; triangle: |j|= 2 pair; circle: |j|= 3 pair; diamond: |j|= 4 pair; square: |j|= 5 pair.
Only the results for the first pair is suitably colored, while all the others are gray-scale. The Fock space of the central cavity is

truncated to n
(max)
0 = 2. The system parameters are g1 = 0.36κ, ηq,j = g1 + 0.002κ( j− 1), and∆q,j =∆⋆ + 0.05κ( j− 1),

where the value of∆⋆ is different for each N as reported in the legend, and it has been chosen in order to maximize the
concurrence. (b) Corresponding steady state concurrence for all the pairs.

The fact that a larger n̄ corresponds to a slower dynamics is described by figures 5(b)–(d) (and the
corresponding plots in figure 6). Specifically, in figure 5(c) (and figures 6(c), (f), and (i)) we report the real
part of the eigenvalues of the total Liouvillian L (see equation (32)). The smallest (in modulus) real part
determines the rate of decay towards the steady state: a larger (in modulus) real part corresponds to a faster
dynamics. This is clearly described by figure 5(d), where we report the time evolution of the concurrence
relative to its steady state value. This quantity describes an exponential decay with rate given by the values of
the eigenvalues identified in figure 5(c). We verified this behavior also for the other models.

In figure 7 we verify numerically that the steady state remains unique even for larger number of qubit
pairs, when the values of the detuning and of the couplings are properly selected. We show the concurrence
for the model ‘Cq’ with up to 10 qubits. Both the detuning and the couplings vary linearly with the pair index
according, respectively, to the relations∆q,j =∆⋆ + 0.05κ( j− 1) and ηq,j = g1 + 0.002κ( j− 1).

In this figure, we also maximize the final concurrence as a function of∆⋆ only. Specifically, the value of
∆⋆ is chosen in order to maximize the smallest real part of the eigenvalues of L for each N (when all the
other parameters are kept fixed), which—as discussed above—determines how fast the system approaches
the steady state. These results show that the final concurrence decreases with the number of pairs and display
a behavior very similar to the entanglement obtained in chains of bosonic modes [16].

Finally, we analyze, in figures 8 and 9, the effect of random deviations of the system parameters from the
symmetric configurations identified in sections 2 and 3. The results show that, as expected, the steady state
entanglement tends to be reduced when the system is not symmetric. The reduction is more pronounced for
deviation in the values of the detunings than of the couplings, and increases with the system size.
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Figure 8. Steady state concurrence for the model ‘Cq’ of only qubits with N= 1, 2, and 3 entangled pairs, evaluated for random
variations of the system parameters from the symmetric configuration used in the previous figures. The results in the left column
are evaluated relaxing the condition of opposite detunings for qubits with opposite indices: in place of∆q,j we use

∆
(r)
q,±j =±∆q,j

(
1+ r

(∆)
±j

)
with r

(∆)
±j random variables uniformly distributed in the range [−rmax, rmax]. The results in the right

column are evaluated relaxing the condition of equal couplings for qubits with opposite indices: in place of g1 and ηj we use

g
(r)
±1 = g1

(
1+ r

(g)
±j

)
and η

(r)
±j = ηj

(
1+ r

(η)
±j

)
, respectively, with r

(g)
±1 and r

(η)
±j random variables uniformly distributed in the

range [−rmax, rmax]. In each plot, for each value of rmax, we report 200 random realizations (gray lines), the corresponding
averages (red dots), and standard deviations (red lines). The blue lines are the ideal results evaluated for the symmetric

configuration with r
(∆)
j = r

(g)
j = r

(η)
j = 0. In all plots∆j = (1.8+ 0.2 j)κ, g1 = 0.3κ, ηj = (0.45+ 0.05 j)κ, and γ = 10−5κ.

Figure 9. As in figure 8 (a) and (b) for the model ‘Ccq’ with only qubits.

5. Conclusions

We have shown that it is possible to drive a quantum array into a pure steady state featuring many entangled
qubit pairs, by controlling the dissipative dynamics of a single, central, element, either a cavity or a qubit.
The steady state is pure when dissipation acts only on the central element. When additional decoherence is
added on the other qubits, the stationary state is an entangled mixed state, and its entanglement is large and
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robust provided that the decay rate of the additional dephasing processes is much smaller than that of the
dissipative decay rate of the central element.

These models can be realized in a number of different physical situations with atomic systems [42–46]
and solid state nano-devices [47–59], allowing the realization of the chain or of the star geometry.

An interesting related question is whether these approaches can be extended to the preparation of more
complex multipartite entangled qubit states, such as the graph states which are the fundamental resource of
measurement-based quantum computers [60], in a way similar to what has been demonstrated for bosonic
modes in [22].
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