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Abstract. We compute the red and blue shifts for astrophysical and cosmological sources. In particular, we
consider low, intermediate and high gravitational energy domains. Thereby, we handle the binary system
Earth - Mars as low energy landscape whereas white dwarfs and neutron stars as higher energy sources.
To this end, we take into account a spherical Schwarzschild - de Sitter spacetime and an axially symmetric
Zipoy - Voorhees metric to model all the aforementioned systems. Feasible outcomes come from modelling
neutron stars and white dwarfs with the Zipoy - Voorhees metric, where quadrupole effects are relevant,
and framing solar system objects using a Schwarzschild - de Sitter spacetime. In the first case, large δ
parameters seem to be favorite, leading to acceptable bounds mainly for neutron stars. In the second
case, we demonstrate incompatible red and blue shifts with respect to lunar and satellite laser ranging
expectations, once the cosmological constant is taken to Planck satellite’s best fit. To heal this issue, we
suggest coarse-grained experimental setups and propose Phobos for working out satellite laser ranging in
order to get more suitable red and blue shift intervals, possibly more compatible than current experimental
bounds. Implications to cosmological tensions are also debated.

PACS. 04.20.-q Red and blue shifts. Spherical and axially - symmetric spacetimes. Compact objects.
Cosmological constant. – 04.80.Cc Laser Ranging.

1 Introduction

Reconciling low with high gravitational energy scales re-
mains a subtle issue that is so far not fully-explored by
merely looking at current astrophysical data [1]. Thereby,
probing general relativity at both short and large distances
with arbitrary accuracy is seemly for guaranteeing the va-
lidity of general relativity at different energy scales [2,3].
For instance, at primordial times the increase of gravi-
tational energy could break down general relativity pre-
dictability, requiring the existence of quantum gravity [4,
5,6]. No conclusive approaches to quantum gravity exist,
challenging the standard puzzle of unifying fundamental
forces into a single scheme [7,8,9,10]. On the other hand,
at infrared energy domains unknown ingredients, namely
dark energy and dark matter, dominate over the other
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species, possibly suggesting Einstein’s gravity extensions1

[12,13,14]. Again, this poses new unexpected caveats jeop-
ardizing Einstein’s gravity, likely requiring new physics
behind general relativity. These two energy domains are
somewhat not fully-matched to each other and as a possi-
ble signature of such a problem could be attributed to the
recently-stressed convoluted cosmic tensions [15,16]. Cer-
tainly, the fact that measurements are poorly constrained
due to the small number of data points severely limits our
matching [17,18,19]. Though data catalogs are not large
enough, constraining Einstein’s gravity at different scales
may culminate in groundbreaking discoveries and so sev-
eral examples can be used to combine small and high red
shift measures [20,21,22,23]. In this respect, as a possi-
ble example of technique that could be used for both low
and high energy domains, we face the red and blue shift,
based on local position invariance and precision test, along
which red and blue shift measures between two identical

1 For instance, the Planck satellite has not excluded
Starobinsky’s inflation, built up in terms of a second order
curvature correction to Hilbert-Einstein’s action [11].

ar
X

iv
:2

20
6.

14
04

3v
1 

 [
gr

-q
c]

  2
8 

Ju
n 

20
22
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clocks, regardless the clock structures, plays a crucial role
in bounding how time intervals change in presence of grav-
ity [24]. In this work, we consider the red and blue shift
in three distinct contexts of low, intermediate and high
gravity. Thereby, we employ a Schwarzschild - de Sitter
solution, with its effective cosmological constant, and an
axially symmetric Zipoy - Voorhees metric, where we con-
strain the prolate term, δ, that enters the metric itself as
signature of spherical symmetry departure. We get feasi-
ble spacetime free parameter constraints from suitable red
and blue shift regimes and check the intervals of values
these parameters may hold within astrophysical frame-
works. To do so, we first assume Schwarzschild - de Sitter
spacetime, with Λ bound got from Planck mission [11], for
neutron stars first (high gravity), then for white dwarfs
(intermediate gravity) and finally for the Earth - Mars
system (low gravity). As expected, the overall treatment
provides red and blue shift incompatible values with those
predicted by ongoing experiments in the solar system, but
leads to slight acceptable bounds as neutron stars and
white dwarfs are used as benchmarks. In analogy, we build
up the same procedure for the Zipoy - Voorhees metric.
Here, we check possible evidence for quadrupole correc-
tions on the same astrophysical objects discussed for the
Schwarzschild - de Sitter spacetime. Last but not least, we
propose novel experimental setups to improve the quality
of our outcomes. In addition, we propose the binary sys-
tem Mars - Phobos, for working out satellite laser rang-
ing to fix refined red and blue shift constraints. Summing
up, we demonstrate the incompatibility between red and
blue shifts at astrophysical level. However, we presume our
technique to be used at a cosmological level to get exper-
imental bounds and then to compare the corresponding
expectations with respect to those measures that cause
tensions in cosmology.

The paper is structured as follows. In Sec. 2, we describe
the main features of our method, i.e. showing how red
and blue shift are characterized. In Sec. 3, we relate our
two spacetimes with the red and blue shifts. Thus, in Sec.

4, we discuss our numerical results and new experimental
configurations then, in Sec. 5, we develop conclusions and
perspectives of our work.

2 The photon red and blue shift

Red and blue shift represent a tool that measures the
frequency modifications measured in the exchange of a
photon between two observers. This technique does not
involve the field equations but only the spacetime sym-
metries. In this section, we therefore analyze the general
method used to determine the red and blue shift, assuming
an emitted photon from a massive object, e.g. a planet, a
star, a wormhole, and so forth and received by a distant
observer. We first highlight the red and blue shift gen-
eral treatment in a rotating frame. Then, we work out the
same for a static configuration and we focus on how to use
the underlying strategy for astrophysical objects.
2.1 General treatment

Here we follow the mathematical procedure described in
[25,26] and start with the simplest metric describing a
rotating axially symmetric spacetime (in spherical coordi-
nates)

ds2 = gttdt
2 + 2gtϕdtdϕ+ gϕϕdϕ

2 + grrdr
2 + gθθdθ

2, (1)

where gµν = gµν(r, θ), in the gauge grθ = 0. Let us now
indicate with re and rd the photon’s emitter and photon’s
detector positions, respectively2 and so uµp = (utp, u

r
p, u

θ
p, u

ϕ
p )

is the four-velocity of the photon’s emitter (when p = e)
or of the photon’s detector (when p = d). Since the above
relation refers to a massive object, the following normal-
ization condition holds

uµpup,µ = −1 , (2)

which explicitly reads

[gtt(u
t)2 + grr(u

r)2 + gϕϕ(uϕ)2 + gθθ(u
θ)2 + gtϕu

tuϕ]
∣∣
r=rp

= −1 . (3)

Similarly, we indicate with kµ = (kt, kr, kθ, kϕ) the four-
velocity of the photon, albeit normalization condition is
now

kµkµ = 0 , (4)

to explicitly give

gtt(k
t)2 + grr(k

r)2 + gϕϕ(kϕ)2 +

+gθθ(k
θ)2 + gtϕk

tkϕ = 0. (5)

Metric components are independent from the variables t
and ϕ, therefore there are two commuting Killing vector

2 From now on, to simplify the notation, we will denote these
two positions with rp, where the subscript p can be e or d
depending on whether it refers to the emitter or the detector
respectively.

fields, respectively time-like and rotational ones as follow

ξµ = (1, 0, 0, 0) , (6)

ψµ = (0, 0, 0, 1) . (7)

These two Killing fields imply the existence of two con-
served quantities for the massive particle

E
.
= −gµνξµuν = −gttut − gtϕuϕ , (8)

L
.
= gµνψ

µuν = gϕϕu
ϕ + gtϕu

t , (9)

that are the total energy, E, and angular momentum, L.
We now evaluate uϕ and ut in function of the energy, E,
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and angular momentum, L, from Eqs. (8) and (9), to give

uϕ = −Egtϕ + Lgtt
g2
tϕ − gϕϕgtt

, (10)

ut =
Egϕϕ + Lgtϕ
g2
tϕ − gϕϕgtt

, (11)

and plugging the above expressions into Eq. (2), we get:

[
grr(u

r)2 + gθθ(u
θ)2 + 1− E2gϕϕ + L2gtt + 2ELgtϕ

g2
tϕ − gϕϕgtt

]∣∣∣∣
r=rp

= 0. (12)

Even though the four-vector components for velocity and
momentum do not vanish, rotating the polar coordinate
system, the metric, Eq. (1), does not change. Hence, this
intrinsic symmetry implies that we can limit to the equa-
torial plane, where θ = π/2, leading to uθ = kθ = 0.

Further, since we hereafter on circular orbits only, we
even require ur = 0, providing Eq. (12) becomes[

1− E2gϕϕ + L2gtt + 2ELgtϕ
g2
tϕ − gϕϕgtt

]∣∣∣∣
r=rp

= 0, (13)

that reduces to
Veff(rp) = 0. (14)

The former is the energy conservation law, clearly valid
for circular orbits. In addition, these orbits require [27,28]

V ′eff(rp) = 0 , (15)

V ′′eff(rp) ≥ 0 , (16)

guaranteeing orbit stability [28] and the existence of the
potential minimum3.
Analogously, the two Killing fields, Eqs. (6) and (7), imply
the existence of two conserved quantities for the photon,
the total energy Eγ and the angular momentum Lγ

Eγ
.
= −gµνξµkν = −gttkt − gtϕkϕ, (17)

Lγ
.
= gµνψ

µkν = gϕϕk
ϕ + gtϕk

t. (18)

2.2 Evaluating the red and blue shift

Now we have all the ingredients to determine the red and
blue shift of the emitted photon. Thus, the photon fre-
quency at given point p is defined as [29]

ωp = − (kµu
µ) |p. (19)

Since we consider timelike orbits that are both circular and
equatorial, depending on whether we use Eqs. (8)-(9) or
Eqs. (17)-(18), we can rewrite ωp in two ways, respectively:

ωp =
(
Ekt − Lkϕ

)
|p, (20)

ωp =
(
Eγu

t − Lγuϕ
)
|p. (21)

3 For the sake of completeness, the equality only holds for
spherical symmetry.

In particular, the frequency of the photon at the emission
point is

ωe = − (kµu
µ) |e =

=
(
Ekt − Lkϕ

)
|e = (22)

=
(
Eγu

t − Lγuϕ
)
|e,

whereas the frequency of the photon at the detection point
is

ωd = − (kµu
µ) |d =

=
(
Ekt − Lkϕ

)
|d = (23)

=
(
Eγu

t − Lγuϕ
)
|d.

Thus, we define the frequency shift associated with the
emission and detection of photons as

1 + z =
ωe
ωd

=
(Eγu

t − Lγuϕ) |e
(Eγut − Lγuϕ) |d

=

=
(ut − buϕ) |e
(ut − buϕ) |d

, (24)

where4

b ≡ Lγ
Eγ

. (25)

It will also be convenient to introduce the red shift zc
corresponding to a photon emitted by a particle located
at the center observed by a faraway detector, i.e. b = 0:

zc =
ute
utd
− 1, (26)

since astronomical data are generally collected in terms of
the kinematic red shift, defined as

zkin
.
= z − zc =

(ute u
ϕ
d − utduϕe )b

utd(ut − buϕ)d
=

=
(uteΩd − uϕe )b

utd(1−Ωdb)
, (27)

where the angular velocity of a detector located far away
from the photons source

Ωd ≡
uϕd
utd

(28)

4 Let us observe here that b is the same both at the nu-
merator and the denominator of (24), since Eγ and Lγ are
determined by the same photon path.
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has been introduced as well. Of course, b varies with the
photon path. Then a value of b as a function of the circular
orbit of the emitting source (i.e., as a function of r) must
be determined, in such a way that its absolute value rep-
resents the observed radial distance on either side of the
observed center (b = 0) by a faraway observer. The idea
is that frequency shifts yielding maximum and minimum
values correspond to photons emitted with initial veloci-
ties collinear to the source velocity [30]. This amounts to
require kr = kθ = 0 at p = e, and therefore these photons
paths, recalling (17), (18), are such that

− Eγkte + Lγk
ϕ
e = (kµ k

µ)e = 0, (29)

that gives, using (25), two possible solutions for the so
called apparent impact parameter b:

b± = −
gtϕ ±

√
g2
tϕ − gϕϕgtt
gtt

, (30)

depending on whether the photon is emitted by a receding,
b−, or an approaching, b+, object with respect to a distant
observer. Hence, the b− and b+ solutions are related to the
red shift and the blue shift once we substitute them in Eq.
(24), respectively

Red shift zred =
ute − b−uϕe

utd (1− b−Ωd)
− 1, (31)

Blue shift zblue =
ute − b+uϕe

utd (1− b+Ωd)
− 1. (32)

Finally, given b+ and b−, from Eq. (27), we get two pos-
sible zkin values, namely z1 and z2

z1 =
(uteΩd − uϕe )b−
utd(1−Ωdb−)

, (33)

z2 =
(uteΩd − uϕe )b+
utd(1−Ωdb+)

, (34)

that correspond to the cases in which the photon is emit-
ted by a receding or an approaching source, respectively5

2.3 Non rotating spacetime

As special case, we limit to non rotating spacetimes, i.e.
the ones for which gtϕ = 0. This will be the case of
Schwarzschild - de Sitter and Zipoy - Voorhees metrics
that we analyze in the next sections. Thus, Eq. (1) simply
reduces to

ds2 = gttdt
2 + gϕϕdϕ

2 + grrdr
2 + gθθdθ

2, (37)

5 It is remarkable to underline the relation between zred, or
zblue, and zkin. In particular, from Eq. (27), it reads

zred = (zkin + zc)|b=b− , (35)

zblue = (zkin + zc)|b=b+ . (36)

with gauge condition, grθ = 0. Clearly, all the previous
equations before determined are accordingly simplified and
so the conserved quantities associated to the massive par-
ticles (observes) now become

E = −gttut, (38)

L = gϕϕu
ϕ, (39)

and so the velocities are ut = − E
gtt
, uϕ = L

gϕϕ
, while the

equation Veff(rp) = 0 for the effective potential becomes[
1 +

E2gϕϕ + L2gtt
gϕϕgtt

]∣∣∣∣
r=rp

= 0. (40)

Similarly, the conserved quantities associated to the pho-
ton are

Eγ = −gttkt, (41)

Lγ = gϕϕk
ϕ, (42)

from which kt = −Eγgtt , k
ϕ =

Lγ
gϕϕ

, so that the apparent

impact parameter finally reads

b± = ∓
√
−gϕϕ
gtt

. (43)

The functional forms of z1 and z2 are identical to Eqs.
(103) and (104) since assuming gtϕ = 0 modifies only the
apparent impact parameters rather than zkin. We here
observe that b+ = −b−, implying z1 = −z2. With the
above recipe in our hand we are now in condition to handle
spacetime symmetries to model astrophysical landscapes.
We therefore report below the two metrics involved in our
computation.

3 Spacetime solutions

Our purpose is to assess astrophysical frameworks by means
of given spacetimes. Thereby, we first handle the simplest
axisymmetric spacetime based on the Zipoy - Voorhees
metric. We aim at modelling astrophysical objects, such as
neutron stars and white dwarfs by means of such a metric.
Afterwards, we switch to the spherical symmetry based on
the Schwarzschild - de Sitter metric. In such a case, dif-
ferently of the astrophysical case, we intend to work out
cosmological scenarios and to compute red and blue shifts
by fixing the cosmological constant from Planck’s mea-
surements [11]. Clearly, these two regimes, based on two
different spacetime symmetries, are profoundly different
from each other and, as above stated, we are therefore
considering two distinct energy domains. The first is a
regime of high gravity, since it deals with neutron stars
and white dwarfs. The second is purely cosmological, in-
volving infrared scales of energy. Below we first summarize
each metric formalism and then we argue bounds over the
free coefficients.
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3.1 The Zipoy - Voorhees metric

The strategy of getting red and blue shift is here applied to
the Zipoy - Voorhees metric [31]. The metric, in spherical
coordinates, reads

ds2 = −Fdt2 +
1

F

[
Gdr2 +Hdθ2 + (r2 − 2kr) sin2 θdϕ2

]
,

(44)
where

F =

(
1− 2k

r

)δ
, (45)

G =

(
r2 − 2kr

r2 − 2kr + k2 sin2 θ

)δ2−1

, (46)

H =

(
r2 − 2kr

)δ2(
r2 − 2kr + k2 sin2 θ

)δ2−1
. (47)

Here, δ is a free parameter which can vary into three pos-
sible ranges

– δ > 1: tidal forces diverge at the singularity, particles
are crushed;

– 1
2 < δ < 1: the singularity is mild, i.e. particles reach
it with zero velocity;

– δ < 1
2 : the singularity is repulsive, particles are ejected.

It is remarkable to notice the limiting case δ → 1 provides
the Schwarzschild metric, whereas δ → 1/2 could show
likely critical effects. For example, in Ref. [32] the authors
worked out naked singularity configuration to get regions
of repulsive gravity, using eigenvalue method [33,34] and
showing this interval as critical. However, we here focus
on regular objects, such as NS, WD and/or solar system
configurations, and so we do not expect any critical region
over δ and/or red or blue shifts, as we effectively get later.
Furthermore, k = m/δ is the ratio between the mass m of
the gravitational field and the δ parameter. As underlined
in Sec. 2.1, we are limiting to the equatorial plane, i.e.,
θ = π/2. The Zipoy - Voorhees metric describes a non
rotating spacetime (gtϕ = 0), thus we can consider Eq.
(40) that reads

1−
E2
(
r2 − 2kr

) (
1− 2k

r

)−δ − L2
(
1− 2k

r

)δ
r2 − 2kr

∣∣∣∣∣
r=rp

= 0

(48)
Its derivative with respect to r gives the condition for cir-
cular orbits, say Eq. (15):

(
1− 2k

r

)−δ [
2δkrE2(r − 2k) + 2L2(δk + k − r)

(
1− 2k

r

)2δ]
r2(r − 2k)2

∣∣∣∣∣∣
r=rp

= 0. (49)

with rp = re, rd, as before. Solving the system given by
the two last relations, we obtain the total energy and the
angular momentum

E =

√(
1− 2k

r

)δ
(δk + k − r)

2δk + k − r

∣∣∣∣∣∣
r=rp

, (50)

L = ±

√
δkr(2k − r)

(
1− 2k

r

)−δ
2δk + k − r

∣∣∣∣∣∣
r=rp

. (51)

Consequently, we immediately get

ut
∣∣
r=rp

= −

√(
1− 2k

r

)−δ
(δk + k − r)

2δk + k − r

∣∣∣∣∣∣
r=rp

, (52)

uϕ|r=rp = ±

√
δk(2k − r)

(
1− 2k

r

)δ
r(k − r)2(2δk + k − r)

∣∣∣∣∣∣
r=rp

. (53)

Furthermore, from Eq. (43), we have

b± = ∓
√
r2 − 2kr(
1− 2k

r

)δ , (54)

Finally, substituting Eqs. (111) - (112) evaluated in r = rd
into Eq. (28), we get the angular velocity:

Ωd± = ∓

√√√√ δk(2k − rd)
(

1− 2k
rd

)2δ

rd(k − rd)2(δk + k − rd)
, (55)

where Ωd+ and Ωd− are respectively referred to a co-
rotating and to a counter-rotating photons source with
respect to the angular velocity of the gravitational field
source. In conclusion, substituting all these equations into
Eqs. (103) - (104), we get the expressions for z1 and z2 for
the Zipoy - Voorhees metric

z1± = ±

{(
1− 2k

rd

)δ (
1− 2k

re

)−δ [
−

√√√√(1− 2k
re

)δ (
1− 2k

rd

)2δ

(rd − 2k)2(k − re + kδ)kδ

(rd − k)2(k − re + 2kδ)(rd − k − kδ)
+

+

(
1− 2k

rd

)δ√√√√(
1− 2k

re

)δ
(2k − re)2kδ

(k − re)2(re − k − 2kδ)

]}{√√√√(1− 2k
rd

)δ
(k − rd + kδ)

k − rd + 2kδ

[(
1− 2k

rd

)δ
+

±

√√√√ (rd − 2k)2
(

1− 2k
rd

)2δ

kδ

(rd − k)2(rd − k − kδ)

]}−1

, (56)
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z2± = ±

{(
1− 2k

rd

)δ (
1− 2k

re

)−δ [√√√√(1− 2k
re

)δ (
1− 2k

rd

)2δ

(rd − 2k)2(k − re + kδ)kδ

(rd − k)2(k − re + 2kδ)(rd − k − kδ)
+

−
(

1− 2k

rd

)δ√√√√(
1− 2k

re

)δ
(2k − re)2kδ

(k − re)2(re − k − 2kδ)

]}{√√√√(1− 2k
rd

)δ
(k − rd + kδ)

k − rd + 2kδ

[(
1− 2k

rd

)δ
+

∓

√√√√ (rd − 2k)2
(

1− 2k
rd

)2δ

kδ

(rd − k)2(rd − k − kδ)

]}−1

, (57)

where the subscript ± is again referred to a co-rotating
and counter-rotating source with respect to the angular
velocity of the gravitational field source. Let us observe
that z1 = −z2, in both the co-rotating and counter-rotating
cases, regardless of the mass that generates the gravita-
tional field. Above we put forward that the z1 and z2 vari-
ations can be expressed in terms of rd for both a rotating
and counter-rotating configurations. This would help to
argue the intervals of validity for the Zipoy - Voorhees
free parameters when this metric is applied to astrophys-
ical situations. We describe this approach in detail below.

3.2 Gravitational field sources for the Zipoy -
Voorhees metric

We analyze the variation of z1 and z2 as function of the
position of the detector rd, in the co-rotating and in the
counter-rotating configurations. Our analysis is based on
different gravitational field sources

– a neutron star in the maximally - rotating configura-
tion [35], corresponding to a high gravity regime,

– a white dwarf in the maximally - rotating configuration
[35], correspoding to an intemediate gravity regime,

– Earth and Mars for the Solar System, corresponding
to a low gravity regime.

We report the plots 1, 3 and 5 in which we infer the avail-
ability intervals for each term.
For the neutron star, the variation of z1 and z2 as func-
tion of rd depend stronger on δ. For this reason, we choose
three value of δ, one for each range, Fig. 1

1. δ = 1000, i.e., where we take an arbitrary large value
to address the condition δ � 1 ,

2. δ = 3
4 , as arbitrary close value to δ = 1, obtained as

mean value of the interval 1
2 < δ < 1,

3. δ = 1
4 , as arbitrary close value to δ = 0, obtained as

mean value of the interval 0 < δ < 1
2 .

However, for WDs, see Fig. 3, the increase or decrease of
δ do not seem to modify the overall evolution. The same
happens for the binary configuration constituted by the

Earth and Mars: one can notice from Fig. 5 that they
very weakly depend upon δ variation. The above config-
uration is built up assuming the Earth and Mars as dis-
tinct gravitational sources as separate cases. For the sake
of clearness, the δ variation is not so evident from our
plots since those variations are extremely small and not
particularly visible. The corresponding values have been
evaluated for WDs, Earth and Mars, noticing a slight dif-
ference that permits one to fix δ to portray the examples
we showed in the aforementioned figures. Even though not
so evident from our plots, the above occurrence for which δ
is as larger as one approaches higher gravity regimes turns
out to be clear even from a theoretical viewpoint. As one
approaches regimes of low gravity any quadrupole devia-
tion is negligibly small and so one can approximate with
a spherical symmetry those configurations, without los-
ing generality. Furthermore, in the low and intermediate
gravity regimes the symmetries z1+ = z2− and z1− = z2+

emerge, together with z1± = −z2±, being valid for any
gravitational sources. The pending caveat to check would
be represented by orbit stability, i.e. Eq. (16). For the
Zipoy - Voorhees metric, the second derivative with re-
spect to r of Eq. (48) is always zero: since this is a quasi-
spherical spacetime, we can assert that all orbits are sta-
ble.
Finally, let us observe that, for δ = 1 and, consequently,
k = m, all these equations reduce to those obtained in the
Schwarzschild metric (see Appendix A). It is now remark-
able to stress that for δ = 1/2, in all the analyzed gravity
regimes, we do not obtain critical values of z, as expected.

3.3 The Schwarzschild - de Sitter metric

In this subsection, we apply the method described above
to the Schwarzschild - de Sitter metric, corresponding to a
spherical symmetric spacetime with an effective cosmolog-
ical constant, Λ [37,38,39]. For this fundamental property,
the metric can be used for cosmological applications, to in-
fer bounds on red and blue shifts, fixing Λ. In spherical
coordinates, we have
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ds2 = −
(

1− 2m

r
+
Λr2

3

)
dt2 +

1(
1− 2m

r + Λr2

3

)dr2 + r2dθ2 + r2 sin2 θdϕ2. (58)

We again stress, as we did in Sec. 2.1, we study the phe-
nomenon in the equatorial plane, namely θ = π/2. Even
this metric is clearly non-rotating and so Eq. (40) becomes1−

E2r2 − L2
(

1− 2m
r + Λr2

3

)
r2
(
1− 2m

r + Λr2

3

)
∣∣∣∣∣∣
r=rp

= 0 , (59)

and its derivative with respect to r[
6(3m+ Λr3)E2

(Λr3 + 3r − 6m)
− 2L2

r3

]∣∣∣∣
r=rp

= 0. (60)

with rp = {re, rd}, as before. Solving the system given by
the former two equations, we obtain

E2 =
(Λr3 + 3r − 6m)2

9r(r − 3m)

∣∣∣∣
r=rp

, (61)

L2 =
r2(3m+ Λr3)

3(r − 3m)

∣∣∣∣
r=rp

, (62)

from which we get the total energy and the angular mo-
mentum:

E =
Λr3 + 3r − 6m√

9r(r − 3m)

∣∣∣∣∣
r=rp

, (63)

L = ±r

√
3m+ Λr3

3(r − 3m)

∣∣∣∣∣
r=rp

. (64)

Thus, we again find

ut
∣∣
r=rp

=

√
r

r − 3m

∣∣∣∣
r=rp

, (65)

uϕ|r=rp = ±

√
3m+ Λr3

3r2(r − 3m)

∣∣∣∣∣
r=rp

. (66)

Furthermore, we have

b± = ∓
√

r2(
1− 2m

r + Λr2

3

) , (67)

Ωd± = ±

√
3m+ Λr3

d

3r3
d

, (68)

where Ωd+ and Ωd− are respectively referred to a co-
rotating and to a counter-rotating photons source with
respect to the angular velocity of the gravitational field
source, as before. Hence, plugging all these relations within
Eqs. (103)-(104), we get the expressions for z1 and z2 for
the Schwarzschild - de Sitter metric

z1± = ±

√
re

re−3m

(√
3m+Λr3d

3rd−6m+Λr3d
−
√

3m+Λr3e
3re−6m+Λr3e

)
√

rd
rd−3m

(
1∓

√
3m+Λr3d

3rd−6m+Λr3d

) , (69)

z2± = ∓

√
re

re−3m

(√
3m+Λr3d

3rd−6m+Λr3d
−
√

3m+Λr3e
3re−6m+Λr3e

)
√

rd
rd−3m

(
1±

√
3m+Λr3d

3rd−6m+Λr3d

) , (70)

where the subscript ± is again referred to a co-rotating
and counter-rotating source with respect to the angular
velocity of the gravitational field source. Let us observe
that z1 = −z2, in both the co-rotating and counter-rotating
cases, regardless of the mass that generates the gravita-
tional field.

3.4 Gravitational field sources for the Schwarzschild -
de Sitter metric

In analogy to our previous treatment, for the Schwarzschild
- de Sitter metric we analyze the variation of z1 and z2

as function of the position of the detector rd, in the co-
rotating and in the counter-rotating cases. As before, our
analysis is based on different gravitational field sources:

– a neutron star in the maximally - rotating configura-
tion [35], see Fig. 2. Here the employed field is strong,
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– a white dwarf in the maximally - rotating configuration
[35], see Fig. 4. Here we consider an intermediate field,

– Earth and Mars for the Solar System, see Fig. 6.

Furthermore, we consider Λ as the cosmological constant,
whose value is Λ = 1.1056 × 10−52m−2 [11]. As for the
Zipoy - Voorhees metric, in the low and intermediate grav-
ity regimes we again find z1+ = z2− and z1− = z2+, in
addition to z1± = −z2±. The last thing to check is the
orbits stability, i.e. Eq. (16). For the Schwarzschild - de
Sitter metric, the second derivative of Eq. (59) is[

8Λr4 + 6mr(1− 5Λr2)− 36m2

r2(r − 3m)(Λr3 + 3r − 6m)

]∣∣∣∣
r=rp

≥ 0. (71)

Thus, we study Eq. (71) for every gravitational field source.
By considering the photons emitter placed on the neutron
star, i.e. re = R, with R the neutron star radius, we get
that the emitter orbit is stable:

V ′′eff(re) = 7.61641× 10−4 > 0, (72)

while the detector orbit is stable for:

rd ≥ 9.4374 km. (73)

Analogously, by considering the photons emitter placed
on the white dwarf, i.e. re = R, with R the white dwarf
radius, we get that the emitter orbit is stable:

V ′′eff(re) = 8.62859× 10−14 > 0, (74)

while the detector orbit is stable for:

rd ≥ 1.5876 km. (75)

Finally, by considering the photons emitter placed on the
planet, i.e. re = rEarth and re = rMars, with rEarth and
rMars the Earth and Mars radius respectively, we get that
the emitters orbits are stable

V ′′eff(re) = 3.42303× 10−17 > 0 for Earth, (76)

V ′′eff(re) = 2.43224× 10−17 > 0 for Mars, (77)

while the detectors orbits are stable for

rd ≥ 2.65555× 10−5 km for Earth, (78)

rd ≥ 2.84142× 10−6 km for Mars. (79)

As before, let us observe that, for Λ → 0, all these equa-
tions reduce to those obtained in the Schwarzschild metric.
For the sake of completeness, we briefly report the details
in Appendix A.

4 Theoretical discussion

In this section, we describe our findings confronting our
predictions with current experimental bounds, got from
experiments. Further, we propose how to build up plau-
sible experiments and develop technical configurations to
check the validity of our methods. We first discuss our
outcomes in the two perspectives that we described above,
i.e., Zipoy - Voorhees and Schwarzschild - de Sitter met-
rics. Then, we highlight the basic demands of likely exper-
imental features to check the goodness of our limits.

4.1 High and intermediate gravity regimes

The increase or decrease of our red and blue shift bounds
depend upon the choice of our free parameters. The pos-
sible underlying configuration is crucial in understanding
how to single out the most feasible interval of red shifts
or blue shifts. We then split the involved two symmetries
below, commenting separately our findings and compar-
ing our bounds with previous expectations got from the
literature.

Numerical values got during computation

M R
(M�) (103m)

WD 0.18 18304.5
NS 1.07 13.61

Table 1
Table of astrophysical values adopted during our compu-
tation for high and intermediate gravity regimes. We only
consider the maximally rotating configurations for NS and
WD, where gravitational effects are stringent.

4.1.1 NS case

In the case of NS, we compute our expectations over z1(r)
and z2(r) in the maximally - rotating configuration, with
the ranges of masses and radii respectively given by M ∈
[1.07; 1.47]M� and r ' 13.61. The values got by z1 and
z2 reach a plateau as d & 0, i.e., as d becomes larger than
zero. This indicates the strong gravity regime of NS, as ex-
pected, and happens for both the setups of Schwarzschild
- de Sitter and Zipoy - Voorhees spacetimes, when the for-
mer is computed for very large δ values. Particularly, the
Zipoy - Voorhees metric seems to match the Schwarzschild
- de Sitter solution as the quadrupole increases, in agree-
ment with the fact that NS are described as rotating ob-
jects. Further, this indicates the Schwarzshild - de Sitter
spacetime is a suitable approximation for determining the
NS red and blue shifts, although the metric itself does
not describe a rotating object. The very impressive fact is
that one underlines very small changes within the interval
δ ∈ [0.75; 103]. This suggests a limiting regime between
the above interval, being compatible with the theoretical
bounds over δ that exclude repulsive effects of gravity.

4.1.2 WD case

In the case of WD, we have regimes of intermediate grav-
ity. We therefore compute our expectations over z1(r) and
z2(r) in the maximally - rotating configuration, with the
ranges of masses and radii respectively given by M ∈
[0.18; 1.47]M� and r ' 18304.5 km. The values got by
z1 and z2 reach a plateau as d & 3, i.e., as d becomes
larger than zero. As well as NS regime for both the setups
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Fig. 1
z1(r) and z2(r) as function of d = rd−re within the Zipoy
- Voorhees spacetime. The gravitational field source is a
neutron star of mass M = 1.07M�, with M� = 1.47 km
the solar mass, and radius R = 13.61 km, in the maxi-
mally - rotating configuration [35]. Here, d ∈ [0; 4 · 105]
km, whereas z1 and z2 are in power of 10−1. In the small
zoom, we report z1 and z2 up to d = 40 km.

of Schwarzschild - de Sitter and Zipoy - Voorhees space-
times, with very large δ, we encounter the same behaviors.
As for the NS, we can deduce that the Schwarzshild - de
Sitter metric is even a good approximation for WDs in
determining the red and the blue shift. Finally, from Figs.
(3) - (4) we immediately get

z1+,ZV = z2−,ZV = z1−, SdS = z2+, SdS , (80)

z1−,ZV = z2+,ZV = z1+, SdS = z2−, SdS , (81)

where the subscripts ZV and SdS indicate Zipoy - Voorhees
and Schwarzschild - de Sitter spacetimes respectively.

4.2 Regime of low gravity

The use of lunar laser ranging is commonly got using pow-
erful pulsed searchlight, from the Earth to lunar corner
cube retroreflectors6 [40,41]. More generally, Laser Rang-
ing (LR) is a technique that gets a measure of the round

6 Device made up of three perpendicular reflective surfaces
which retro-reflect the signal in the same direction in which it
arrived.
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Fig. 2
z1(r) and z2(r) as function of d = rd − re within the
Schwarzschild - de Sitter spacetime. The gravitational field
source is a neutron star of mass M = 1.07M�, with
M� = 1.47 km the solar mass, and radius R = 13.61
km, in the maximally - rotating configuration [35]. Here,
d ∈ [0; 4 ·105] km, whereas z1 and z2 are in power of 10−1.
In the small zoom, we report z1 and z2 up to d = 40 km.

- trip time of a laser fired by a ground station on Earth,
received by a cube corner retroreflector on a satellite and
reflected back to the station. If the satellite is not the
Moon, we refer to as satellite laser ranging [42]. We follow
here both the lunar and satellite LR approaches to face
the low gravity regime.
For every LR experiment is performed, it is important to
take into account the relative motion between the laser
source and the retroreflector. This causes an angular de-
flection of the laser beam. In fact, in absence of a relative
motion, the laser would exactly return back to the station.
The angular deflection is also called velocity aberration
(VA) and it is defined as

V A =
2

c
[∆vd − ve cosφ] , (82)

where ∆vd is the difference between the orbital velocity
and rotational velocity at the equator of the satellite or
planet on which is placed the retroreflector, ve the rota-
tional velocity of the satellite or planet on which is placed
the laser source at the equator and φ the laser source lati-
tude. Consequently, the term in the square brackets in Eq.
(82) represents the relative velocity between the involved
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Fig. 3
z1(r) and z2(r) as function of d = rd−re within the Zipoy
- Voorhees spacetime. The gravitational field source is a
white dwarf of mass M = 0.18M�, with M� = 1.47 km
the solar mass, and radius R = 18304.5 km, in the max-
imally - rotating configuration [35]. Here, d ∈ [0; 4 · 105]
km, whereas z1 and z2 are in power of 10−3. In the small
zoom, we report z1 and z2 up to d = 104 km.

two objects. We are going to use the VA and the laser
wavelength to determine the red and blue shifts through
relativistic Doppler effect in the equatorial plane, i.e.,

λ′ = λ

√
1 + V A/2

1− V A/2
(83)

where, instead of the ratio between the relative velocity
and c, we used the VA through Eq. (82). Thus, one im-
mediately computes the required z through the standard

formula z = λ′−λ
λ . We intend to study the theoretical

models by considering Earth and Mars as sources of the
gravitational field in the solar system. We want to compare
the theoretical results with the experimental ones deriv-
ing from the LR missions. We thus analyze our numerical
technique for three configurations,

– Earth - Moon system. Here, we model the two astro-
physical objects and involve the lunar LR.

– Earth - satellite system. Here, the configuration is anal-
ogous to the standard lunar LR, but using an artificial
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Fig. 4
z1(r) and z2(r) as function of d = rd − re within the
Schwarzschild - de Sitter spacetime. The gravitational field
source is a white dwarf of mass M = 0.18M�, with
M� = 1.47 km the solar mass, and radius R = 18304.5
km, in the maximally - rotating configuration [35]. Here,
d ∈ [0; 4 ·105] km, whereas z1 and z2 are in power of 10−3.
In the small zoom, we report z1 and z2 up to d = 104 km.

satellite instead of the Moon. This second case is there-
fore similar to the previous one7.

– Mars - Phobos system. Here we propose ex novo an
architecture to get feasible red and blue shift ranges.
So, our computation provides an alternative view to
LR, since it involves a laser source placed on Mars,
considered the gravitational source modeled through
our spacetime approach. The corner cube retroreflec-
tors could be placed on Phobos, i.e. a natural Mars
satellite8 A similar approach has been developed by
[43], where the authors proposed a system constituted
by Earth and Phobos. The procedure we here develop
permits to extend previous results through the use of
alternative technologies of LR.

7 We here refer to the LARES2 expectations. For us,
LARES2 is the acronym of Laser RElativity Satellite No. 2
and makes use of the Earth - satellite LR prerogative that we
need.

8 This prerogative goes beyond the binary system Earth -
Moon, with the advantage of being closer to each other, i.e.
guaranteeing a more precise pulse measure.



Roberto Giambò et al.: Red and blue shift in spherical and axisymmetric spacetimes and astrophysical constraints 11

0 1 2 3 4

-2

-1

0

1

2

d

z
1(
r
)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

-1.0

-0.5

0.0

0.5

1.0

d

z
1
(r
)

Earth

Mars

0 1 2 3 4

-2

-1

0

1

2

d

z
2(
r
)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

-1.0

-0.5

0.0

0.5

1.0

d

z
2
(r
)

Earth

Mars

Fig. 5
z1(r) and z2(r) as function of d = rd−re within the Zipoy -
Voorhees spacetime. We analyzed the two cases, i.e. emit-
ter on Mars and Earth respectively, with d ∈ [0; 4 · 105]
km, whereas z1 and z2 are in power of 10−5. In the small
zoom, we report z1 and z2 up to d = 6 · 103 km. This
choice enables to get feasible intervals for Phobos, where
d ' 5986.5 km, with Mars as source, and intervals for
LARES2 [36], where d ' 5899 km, with Earth as source.

Our predicted values, got from the theoretical models un-
der exam for these three configurations, are portrayed in
Tabs. 2-3. Here, we again observe the same symmetries
reported in Eqs. (80,81).
On the other hand, the indirect measurements of z, ob-

tained starting from the experimental data of the LR, are
instead reported in Tabs. 5-7 in Appendix B. The slight
differences between experimental and predicted outcomes
are due to several facts. First, experimentally speaking, we
are handling the VA technique only. Second, the accuracy
can be refined adopting more than the configurations here
investigated. Below, we summarize how to heal such issues
adopting direct measure methods, by proposing novel ex-
perimental configurations.

4.2.1 Designs of proposed experimental setups

In view of the overall results, we summarize the following
consequences of our treatments.

– At high gravity regimes δ values, using axisymmet-
ric spacetime, agree with the Schwarzschild - de Sitter
prediction, making use of the Planck satellite bounds.

– As well as NS, the regimes of intermediate gravity, here
investigated employing WD, behave in analogy.
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Fig. 6
z1(r) and z2(r) as function of d = rd − re within the
Schwarzschild - de Sitter spacetime. We analyzed the two
cases, i.e. emitter on Mars and Earth respectively, with
d ∈ [0; 4 ·105] km, whereas z1 and z2 are in power of 10−5.
In the small zoom, we report z1 and z2 up to d = 6 · 103

km. This choice enables to get feasible intervals for Pho-
bos, where d ' 5986.5 km, with Mars as source, and in-
tervals for LARES2 [36], where d ' 5899 km, with Earth
as source.

– At low gravity, in the solar system, our spacetime met-
rics are clearly unadequate to fix stringent limits over
the free parameters as well as the red and blue shift
intervals that slightly disagree with observations, see
Appendix B.

– Analogously LR cannot be used to get indirect mea-
surements for z. Moreover, the results coming from the
use of Schwarzschild metric, without taking care about
the Λ value, seem to agree with our scheme, indicat-
ing that Λ is quite badly constrained within the solar
system (see Tab. 4 in Appendix A).

From the above considerations, a direct measure of z would
be more predictive than other indirect treatments. So that,
one can build up experimental setups based on genuine
wavelength measures only. To do so, let us take the sim-
plest configuration we could work with, based on the sys-
tem Earth - Moon. We can send a laser pulse whose wave-
length is known, as well as in the lunar LR technique.
The detector is meant to measure the corresponding wave-
length and then to get possible hints on red or blue shifts.
Alternatively, another possibility is offered by a rotating
orbiter around Mars or more away planets, without ex-
cluding to take into account other configurations. The or-
biter sends signals, whose wavelength is known. The detec-
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z ± δz Lunar LR (10−5) Satellite LR (10−6) Phobos LR (10−6)

z1+ ≡ z2− 2.298042 7.36990 4.72646

δz1+ ≡ δz2− ±0.000005 ±0.01551 ±0.00046

z1− ≡ z2+ −2.298057 −7.37018 −4.72653

δz1− ≡ δz2+ ±0.000005 ±0.01551 ±0.00046

Table 2
Table of red and blue shift values, predicted by means of the Zipoy - Voorhees metric. We also report the corresponding
error bars, namely δz1,2±, evaluated by the standard logarithmic error propagation. Since for low gravity, the predictions
over z do not significantly change by varying δ, with an accuracy smaller than one part over 106, we arbitrarily select
δ = 0.5. Here we consider Lunar LR for the system Earth - Moon, satellite LR for the system Earth - LARES2 [36]
and finally Phobos LR for the proposed experiment that employs Mars and its satellite, Phobos.

z ± δz Lunar LR (10−5) Satellite LR (10−6) Phobos LR (10−6)

z1+ ≡ z2− −2.298057 −7.37018 −4.72653

δz1+ ≡ δz2− ±0.000005 ±0.01551 ±0.00046

z1− ≡ z2+ 2.298057 7.37018 4.72653

δz1− ≡ δz2+ ±0.000005 ±0.01551 ±0.00046

Table 3
Table of red and blue shift values, predicted by means of the Schwarzschild - de Sitter metric. We also report the
corresponding error bars, namely δz1,2±, evaluated by the standard logarithmic error propagation. Here we consider
Lunar LR for the system Earth - Moon, satellite LR for the system Earth - LARES2 [36] and finally Phobos LR for
the proposed experiment that employs Mars and its satellite, Phobos.

tor, again placed on the given planet we are considering,
gets the signals and provides a direct measure of the pulse
shift in wavelength that is converted in red and blue shift.
Last but not least, even if the astrophysical configurations
of NS and WD could in principle be adopted for future
missions to better get z, the experimental complexity to
put on them instruments would be a great limitation for
the experiment itself. On the other hand, cosmological red
and blue shifts would be the key to fix the cosmological
constant value. The strategy would be to take the large
scale structure of the universe, switching the spacetime to
more complicated metrics that could overcome the likely
issues related to Schwarzschild - de Sitter.

4.3 Error analysis

In this subsection, we report the values of z and the re-
spective errors obtained when the field sources are the NS
and the WD, both in the two employed metrics. We have

selected 3 values of d = rd − re within the range chosen
for the plots, d ∈ [0; 4 · 105]. In particular:

– d = 0 and d = 4 · 105, i.e. the extremes of the interval;
– d = 2 · 105, which is the midpoint of the interval.

In the case of the Zipoy - Voorhees metric, we considered
the δ values chosen for the plots (δ = 1/4, δ = 3/4 and
δ = 1000); while for the Schwarzschild - de Sitter metric,
we considered the Λ value of the Planck collaboration:
Λ = (1.10566± 0.022703) · 10−46 km−2.
Errors are calculated through the standard logarithmic er-
ror propagation, considering that for NS and WD it is hard
to get with high accuracy both mass and radii. We there-
fore work out the following strategy: we consider Refs. [44,
45] and there we got the maximum and minimum bounds
associated to mass and radii for both NS and WD. Then,
we consider the average constraints and use for our com-
putation, in particular

– for NS: M = (1.07± 0.11)M� and R = 13.61+2.18
−0.68 km,

– for WD:M =
(
0.180+0.056

−0.004

)
M� andR = 18304.5+5491.3

−823.70
km,
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where M� = 1.47 km. Computation has been reported in
Appendix B.

5 Conclusions

In this paper, we evaluated the red and blue shifts for
distinct astrophysical and cosmological sources. To do so,
we arbitrarily split three gravitational regimes, i.e., high,
intermediate and low gravity, based on the use of NS, WD
and solar system constraints. We characterized two space-
times, the first inspired by astrophysical configuration, ex-
ploring the consequences of the Zipoy - Voorhees metric
on NS and WD. The second based on cosmological con-
sideration, using the Schwarzschild - de Sitter spacetime.
By varying the free parameters that enter the two met-
rics, we got feasible red and blue shift intervals and in-
terpreted our expectations in view of current experiments
and limits. Since the two underlying spacetimes are mostly
different, we consider an axisymmetric solution, i.e., the
Zipoy - Voorhees metric, to characterize NS and WD,
showing that at the level of solar system, the δ free term
is unbounded. Analogously, at low gravity, we assumed,
instead, the Schwarzschild - de Sitter solution, where we
fixed the Λ Planck’s value, getting acceptable red and blue
shift ranges. Further, we considered lunar and satellite LR
techniques and showed an overall overestimation on z1,2±
when using the VA. In turn, we interpreted such a re-
sult noticing that at low gravity the general relativistic
effects are clearly disfavored. In fact, even the Λ value
predicted by the Planck satellite cannot fully reproduce
the expected intervals of z1,2± that LR experiments esti-
mate. On the other side, bearing in mind the maximally
- rotating configurations for NS and WD, we got suit-
able red and blue shift intervals. We therefore concluded
the most suitable approximations for NS and WD objects
could be performed involving high quadrupole moments.
The same happened for the cosmological constant, besides
the solar system regime, showing a good agreement with
current bounds and indicating the goodness of Planck Λ
measurements. Error bars have been computed for spe-
cific cases got from experiments over NS and WD mass
and radii, in full agreement with our predicted bounds.
Possible experimental designs for improving the quality
of our results have been naively proposed. We discussed
coarse - grained approaches to build up likely experimen-
tal configurations and set ups with the aim of refining the
current accuracy over red and blue shift. To this end, we
propose to adopt the binary system composed by Mars -
Phobos to improve z1,2± measurements using the satel-
lite LR technique. As red and blue shifts can be used to
test the equivalence principle and/or sometimes to check
the validity of particular classes of models, we intend to
contrive new experiments that will be able to construct
bounds over Λ, instead of postulating it. In so doing, as
perspective we expect to work out a back - scattering pro-
cedure, different from the one here developed. Moreover,
we intend to model other astrophysical sources as possible
probes to test the red and blue shifts at different regimes
of gravity, with the ambitious aim of reconciling several

gravity regimes. In this respect, we underline that a more
detailed analysis will be expected for getting experimental
bounds in cosmology. So, the proposed experimental set
up, with additional requirements that will be studied in
incoming efforts, could represent a new technique to al-
leviate tensions between different measurements of H0 in
cosmology [46]. We believe this can be also generalized for
any other cosmological tension, in general.
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A Results for the Schwarzschild spacetime

The Schwarzschild metric reads

ds2 = −
(

1− 2m

r

)
dt2 +

1(
1− 2m

r

)dr2 + r2dΩ2, (84)

with dΩ2 = dθ2 + sin2 θdϕ2. Below, we summarize the
main results of the general procedure, described in Sec.
2, applied to this metric. In particular, we find an overall

agreement with the results got in [26]. We have as con-
served quantities

E =
r − 2m√
r(r − 3m)

∣∣∣∣∣
r=rp

, (85)

L = ±r
√

m

r − 3m

∣∣∣∣
r=rp

, (86)

and velocities

ut
∣∣
r=rp

=

√
r

r − 3m

∣∣∣∣
r=rp

, (87)

uϕ|r=rp = ±1

r

√
m

r − 3m

∣∣∣∣
r=rp

, (88)

and the kinematic quantities

b± = ∓ r√
1− 2m

r

, (89)

Ωd± = ±
√
m

r3
d

. (90)

Finally, z1± and z2± are

z1± = ±

√
re

re−3m

(
1√

rd−2m
− 1√

re−2m

)
√

rd
rd−3m

[
1∓

√
m

rd−2m

] , (91)

z2± = ∓

√
re

re−3m

(
1√

rd−2m
− 1√

re−2m

)
√

rd
rd−3m

(
1±

√
m

rd−2m

) . (92)

z ± δz Lunar LR (10−5) Satellite LR (10−6) Phobos LR (10−6)

z1+ ≡ z2− −2.298057 −7.37018 −4.72653

δz1+ ≡ δz2− ±0.000005 ±0.01551 ±0.00046

z1− ≡ z2+ 2.298057 7.37018 4.72653

δz1− ≡ δz2+ ±0.000005 ±0.01551 ±0.00046

Table 4
Table of red and blue shift values, predicted by means of
the Schwarzschild metric. We also report the correspond-
ing errors, namely δz1,2±, evaluated by the standard log-
arithmic error propagation. Here we consider Lunar LR
for the system Earth - Moon, satellite LR for the sys-
tem Earth - LARES2 [36] and finally Phobos LR for the
proposed experiment that employs Mars and its satellite,
Phobos.

Comparing these last two equations with those obtained
for the Zipoy - Voorhees metric and for the Schwarzschild
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- de Sitter metric, we easily note that Eqs. (56) - (57)
reduce to Eqs. (91) - (92) for δ = 1 (that is k = m) and
Eqs. (69) - (70) reduce to Eqs. (91) - (92) for Λ = 0.

B Numerical constraints got from LR
experiments

In this appendix, we report a few tables concerning the LR
experiments, emphasizing the main differences among lu-
nar LR and satellite LR. Although different types of CCRs
used in space missions, to calculate z we only require the
VAs depending on the orbital and rotational involved ob-
jects velocities, the local position of the laser source on
the planet and the laser beam wavelength, generally 532
nm.

Station φ VA (10−6) z ± δz (10−6)

McDonald 30°.68 N 4.051 2.025629± 0.000007

Apollo 32°.78 N 4.112 2.055989± 0.000007

Matera 40°.65 N 4.370 2.185235± 0.000007

Grasse 43°.75 N 4.485 2.242475± 0.000007

Table 5
z value for four different operational LR stations placed on
Earth and retroreflectors placed on the Moon. The veloci-
ties are expressed in units of radiant. We also report the
corresponding errors, namely δz, evaluated by the stan-
dard logarithmic error propagation. The table is split into
φ < 40 and φ > 40. The increase of z in function of φ
is more than 10% for largest φ here reported. The mean
value is: (2.127332± 0.000007) · 10−6.

Station φ VA (10−6) z ± δz (10−5)

McDonald 30°.68 N 35.30 1.76428± 0.00159

Apollo 32°.78 N 35.36 1.76826± 0.00159

Matera 40°.65 N 35.62 1.78118± 0.00159

Grasse 43°.75 N 35.74 1.78690± 0.00159

Table 6
z value for four different operational LR stations placed
on Earth and retroreflectors placed on LARES2 satellite
[36]. The velocities are expressed in units of radiant. We
also report the corresponding errors, namely δz, evaluated
by the standard logarithmic error propagation. The table
is split into φ < 40 and φ > 40. The increase of z in
function of φ is more than 10% for largest φ here reported.
The mean value is: (1.775155± 0.00159) · 10−5.
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Station φ VA (10−6) z ± δz (10−6)

Mars 0° 12.63 6.314072± 0.000052

Table 7
In this table, we report a plausible z value for a station
placed on Mars equator, with the ansatz that a few retrore-
flectors will be placed on Phobos, as we proposed above. We
also report the corresponding errors, namely δz, evaluated
by the standard logarithmic error propagation. In particu-
lar, we figure out a laser station placed on Mars equator,
i.e., the position in which satellite views got from Mars
leads to the best configuration.

Changing the plane

For our spacetimes, the dependence on θ is contained only
in the gϕϕ component of the metric tensor, through sin2 θ.
Moreover, these metrics are invariant under the transfor-
mation θ → θ′ = π ± θ since sin2 θ′ = sin2 θ. It is there-
fore intriguing to discuss below some consequences of this
recipe.

Schwarzschild - de Sitter metric.Let us fix the value of θ
and, to be as general as possible, let us denote this value
with x. Therefore, the metric tensor components useful for
the calculation are

gtt = −
(

1− 2m

r
+
Λr2

3

)
, (93)

gϕϕ = r2 sin2 x. (94)

Solving the system of equations

Veff(rp) = 0 (95)

V ′eff(rp) = 0 (96)

this time we get

E =
kr3
p + 3rp − 6m

3
√
rp(3rp − 3m)

, (97)

L = ± sin (x)rp

√
3m+ kr3

p

rp − 3m
. (98)

Let us observe that the energy is independent from the
value of x (in fact, this is the same equation obtained in
the case θ = π/2), while the angular momentum depends
on x, as we expected. Consequently, we have

ut
∣∣
rp =

√
rp

rp − 3m
, (99)

uϕ
∣∣
rp = ± 1

sinx

√
3m+ kr3

p

3r2
p(rp − 3m)

(100)

and

b± = ∓ sinx
r√

1− 2m
r + kr2

3

, (101)

Ωd = ± 1

sinx

√
3m+ kr3

d

3r3
d

. (102)

If we insert all these quantities9 into the following equa-
tions

z1 =
(uteΩd − uϕe )b−
utd(1−Ωdb−)

, (103)

and

z2 =
(uteΩd − uϕe )b+
utd(1−Ωdb+)

(104)

we get that all the terms containing sinx simplify each
other: the results for z1 and z2 are identical to those ob-
tained with θ = π/2. Therefore, without loss of generality,
we can fix θ = π/2 from the beginning.

Zipoy - Voorhees metric.Let us repeat the same analysis
just done for the Schwarzschild - de Sitter metric. Thus,
let us fix the value of θ and, to be as general as possible,
let us denote this value with x. In this case, the metric
tensor components useful for the calculation are

gtt = −
(

1− 2k

r

)δ
, (105)

gϕϕ =
r2 − 2kr(
1− 2k

r

)δ sin2 x. (106)

Solving the system of equations

Veff(rp) = 0 (107)

V ′eff(rp) = 0 (108)

now we get

E =

√√√√(1− 2k
rp

)δ
(δk + k − rp)

2δk + k − rp
, (109)

L = ± sinx

√√√√δkrp(2k − rp)
(

1− 2k
rp

)−δ
2δk + k − rp

. (110)

Also for the Zipoy - Voorhees metric, the energy is in-
dependent from the value of x (in fact, this is the same
equation obtained in the case θ = π/2), while the angular
momentum depends on x, as we expected. Consequently,
we have

ut
∣∣
r=rp

= −

√√√√(1− 2k
rp

)−δ
(δk + k − rp)

2δk + k − rp
, (111)

9 Let us remember that c = e, d.
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uϕ|r=rp = ± 1

sinx

√√√√ δk(2k − rp)
(

1− 2k
rp

)δ
rp(k − rp)2(2δk + k − rp)

(112)

and

b± = ∓ sinx

√
r2 − 2kr(
1− 2k

r

)δ , (113)

Ωd± = ∓ 1

sinx

√√√√ δk(2k − rd)
(

1− 2k
rd

)2δ

rd(k − rd)2(δk + k − rd)
. (114)

If we insert all these quantities into Eqs. (103)-(104), we
get again that all the terms containing sinx simplify each
other: the results for z1 and z2 are identical to those
obtained with θ = π/2. Therefore, also for the Zipoy -
Voorhees metric, without loss of generality, we can fix
θ = π/2 from the beginning.

Error propagation

We report here the numerical values evaluated from our
error propagation procedure, making use of the logarith-
mic error propagation rule.
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Table 8
z values with errors for the Zipoy - Voorhees metric, with a NS and a WD as field sources, for 3 different values of δ, at 3
different values of d.

d = 0 d = 2 · 105 d = 4 · 105

δ = 1/4 NS WD NS WD NS WD

z1+ = z2− 0.00000+0.11185
−0.03489 0.00000+0.00057

−0.00009 0.11412+0.25949
−0.15085 0.00265+0.00098

−0.00011 0.11555+0.25894
−0.15050 0.00299+0.00103

−0.00012

z1− = z2+ 0.00000+0.12958
−0.04042 0.00000+0.00057

−0.00009 −0.11477+0.26092
−0.15166 −0.00265+0.00098

−0.00012 −0.11601+0.25995
−0.15107 −0.00299+0.00104

−0.00012

δ = 3/4 NS WD NS WD NS WD

z1+ = z2− 0.00000+0.01657
−0.00517 0.00000+0.00057

−0.00009 0.40249+0.07605
−0.04408 0.00265+0.00098

−0.00011 0.40385+0.07626
−0.04423 0.00299+0.00103

−0.00012

z1− = z2+ 0.00000+0.03254
−0.01015 0.00000+0.00057

−0.00009 −0.40475+0.07659
−0.04444 −0.00265+0.00098

−0.00012 −0.40545+0.76646
−0.04449 −0.00299+0.01037

−0.00012

δ = 1000 NS WD NS WD NS WD

z1+ = z2− 0.00000+0.02404
−0.00750 0.00000+0.00057

−0.00009 0.43056+0.08699
−0.05044 0.00265+0.00098

−0.00011 0.43194+0.08719
−0.05058 0.00299+0.00103

−0.00012

z1− = z2+ 0.00000+0.05126
−0.01599 0.00000+0.00057

−0.00009 −0.43302+0.08761
−0.05085 −0.00265+0.00984

−0.00012 −0.43366+0.08762
−0.05087 −0.00299+0.00104

−0.00012

Table 9
z values with errors for the Schwarzschild - de Sitter metric, with a NS and a WD as field sources, at 3 different values of d.

d = 0 d = 2 · 105 d = 4 · 105

NS WD NS WD NS WD

z1+ = z2− 0.00000+0.06596
−0.02057 0.00000+0.00057

−0.00009 −0.47754+0.11548
−0.06703 −0.00266+0.00098

−0.00012 −0.47816+0.11549
−0.06705 −0.00299+0.00104

−0.00012

z1− = z2+ 0.00000+0.06596
−0.02057 0.00000+0.00057

−0.00009 0.47754+0.11578
−0.06703 0.00266+0.00098

−0.00012 0.47816+0.11549
−0.06705 0.00299+0.00104

−0.00012
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