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ABSTRACT The urban plan of Palermo (Sicily, Italy) has evolved throughout Punic,
Roman, Byzantine, Arab, and Norman ages until it stabilized within the borders that
correspond to the current historic center. During the 2012 to 2013 excavation cam-
paign, new remains of the Arab settlement, directly implanted above the structures of
the Roman age, were found. The materials investigated in this study derived from the
so-called Survey No 3, which consists of a rock cavity of subcylindrical shape covered
with calcarenite blocks: it was probably used to dispose of garbage during the Arabic
age and its content, derived from daily activities, included grape seeds, scales and
bones of fish, small animal bones, and charcoals. Radiocarbon dating confirmed the
medieval origin of this site. The composition of the bacterial community was character-
ized through a culture-dependent and a culture-independent approach. Culturable
bacteria were isolated under aerobic and anaerobic conditions and the total bacterial
community was characterized through metagenomic sequencing. Bacterial isolates
were tested for the production of compounds with antibiotic activity: a Streptomyces
strain, whose genome was sequenced, was of particular interest because of its inhibi-
tory activity, which was due to the Type I polyketide aureothin. Moreover, all strains
were tested for the production of secreted proteases, with those belonging to the ge-
nus Nocardioides having the most active enzymes. Finally, protocols commonly used
for ancient DNA studies were applied to evaluate the antiquity of isolated bacterial
strains. Altogether these results show how paleomicrobiology might represent an inno-
vative and unexplored source of novel biodiversity and new biotechnological tools.

IMPORTANCE One of the goals of paleomicrobiology is the characterization of the mi-
crobial community present in archaeological sites. These analyses can usually provide
valuable information about past events, such as occurrence of human and animal in-
fectious diseases, ancient human activities, and environmental changes. However, in
this work, investigations about the composition of the bacterial community of an an-
cient soil sample (harvested in Palermo, Italy) were carried out aiming to screen ancient
culturable strains with biotechnological potential, such as the ability to produce bioac-
tive molecules and secreted hydrolytic enzymes. Besides showing the biotechnological
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relevance of paleomicrobiology, this work reports a case of germination of putatively
ancient bacterial spores recovered from soil rather than extreme environments. Moreover,
in the case of spore-forming species, these results raise questions about the accuracy
of techniques usually applied to estimate antiquity of DNA, as they could lead to its
underestimation.

KEYWORDS paleomicrobiology, bacterial spores, aureothin, Streptomyces,
Nocardioides, Palermo

The urban plan of Palermo (Panormus as a Phoenician-Punic city) has evolved
throughout Punic, Roman, Byzantine, Arab, and Norman ages until it stabilized

within the borders that today correspond to the current historic center. Generally
speaking, the centrality of this area from the 2nd century BCE to the 3rd century CE
was well known so far (1). The 2012 to 2013 excavations (by Aleo Nero of the BBCCAA
Superintendency, Archaeological Section of Palermo), carried out on the occasion of
urban works, have brought out a new building phase starting from the Arab age that
was not highlighted before and that is implanted directly above the structures of the
Roman age. Wall structures and abundant Arabic ceramics of different types dating
from the mid-10th to the mid-11th century CE have been discovered.

The materials investigated in this study come from the so-called Survey No 3 (2), in
particular from the stratigraphic unit 176 (hereinafter indicated as SU176) (Fig. 1). It
consists in a rock cavity of subcylindrical shape (3.20 m deep and an average width of
0.80 m) covered with calcarenite blocks. This structure was used to dispose of garbage
during the Arabic age, as evidenced by a layer of thousands of perfectly preserved
seeds (particularly grape seeds), together with other organic remains such as scales
and bones of fish, small animal bones, and charcoals. Thus, this deposit was used to
get rid of daily activity remains. The soil is finely grainy and highly organic. SU176 is
sealed by three distinct successive stratigraphic units (Fig. 1B).

The layers of soil and debris have very informative potential and are very useful for
the possibility of reconstructing the ancient environment and landscape. Moreover,
they offer the opportunity to carry out wide-spectrum analyses, including biological
ones. In this context, paleomicrobiology investigations can often provide valuable and
complementary information about past events, taking advantage of next generation
sequencing-based approaches (3, 4). Although most examples of this multidisciplinary
approach regard the study of the natural history of human infectious diseases and
pathogens to understand their evolution and virulence (5–8), other investigations have
been conducted to provide evidences about past human activities (9, 10), to date envi-
ronmental changes (11) and conduct ecological studies about past ecosystems (12,
13), to detect traces of bacterial infections in ancient animal remains (14), and to recon-
struct events occurred in past human settlements (15).

Soil is recognized as one of the richest sources of bacteria producing bioactive com-
pounds (16). In this regard, recent examples of the successful isolation from soil of bacteria
producing interesting and promising biomolecules (e.g., compounds with antibacterial,
antifungal, antiviral, anti-inflammatory, and anticancer activities) are available in literature
(17–22). For instance, such bacteria have been shown to inhibit growth of human and ani-
mal pathogenic microorganisms (23–26). Notably, most of the isolated producer bacteria
belong to the phylum Actinomycetota, in particular to the genus Streptomyces (27, 28).
Thus, the aims of this work were to characterize the composition of the bacterial commu-
nity of the samples collected from Survey No 3 by using both culture-dependent and cul-
ture-independent approaches, and to screen culturable bacteria for their ability to produce
bioactive molecules and hydrolases with biotechnological potential.

RESULTS
Analysis of SU176 content. Content analysis and dating indicated that during the

High Middle-Ages, the pit described in this work might have been used to dispose rub-
bish. Indeed, besides soil, samples contained 210 grape seeds, some metal wastes, a
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fragment of upper bivalve valves (possibly derived from the biogenic limestone), and
some animal bone fragments (i.e., three sesamoid bones of Canis familiaris, bones,
teeth and scales of fish, and a fragment of sheep long bone). In the case of the grape
seeds, such a quantitatively large finding is very rare. The medieval origin of this site
was confirmed by AMS 14C dating: in fact, calibrated radiocarbon dating of the grape
seeds gave results reported in Table 1.

The morphometric analysis of the grape seeds identified a low level of variability
inside the sample and an intermediate position in terms of fine morphology between
current wild Vitis and Sicilian cultivars. This could indicate a rather uniform provenience
of the Vitis vinifera seeds (G. Lombardo personal communication) and presumably the
short duration, in terms of use, of this stratum.

Isolation and identification of bacteria from sample of SU176. Bacteria were iso-
lated under aerobic and anaerobic conditions: the total viable count of aerobic bacteria
in the soil sample was 2.088 � 104 CFU/g, while that of anaerobic ones was 5 � 107

CFU/g. Isolated colonies were clustered by phenotype and two representatives of each
were used for further analyses. Thus, 23 isolates were considered. Sequencing and
analysis of genes encoding the 16S rRNA (16S rDNAs) revealed that bacterial isolates
were affiliated with the following genera: Arthrobacter, Bacillus, Nocardia, Nocardioides,
Paenibacillus, and Streptomyces (Table 2, Table S1).

Metagenomic analysis and analysis of ancient DNA. Shotgun sequencing of
metagenome was performed to characterize the bacterial community of the soil sample
and to investigate the hypothesis that isolated bacteria were ancient. Microorganisms
are normally heterogeneously distributed inside microaggregates and macroporosities
of the soil (29) and, under specific physical-chemical conditions, soil particles can bind
DNA fragments of diverse lengths, enabling the preservation of ancient DNA (aDNA)
molecules over time (30–32). However, DNA extraction and purification from sediments

FIG 1 Survey No 3 site. A: Top view picture. B: Vertical stratigraphic section (2). Six stratigraphic units were identified and described as
follows (from up to bottom): SU168 had inconsistent materials attributable to infiltration activities occurred during modern age; SU173
had a loose consistency and included loose materials; SU174 had a loose consistency and contained tiles, a few ceramic fragments, and
fragments of cocciopesto; SU175 had a very compact consistency, a greenish color, and contained several ceramic fragments (one of
these was relative to an Islamic overpainted amphora); SU176 (the stratigraphic unit investigated in this work) was black colored
(burnt), with a relatively compact consistency (but slightly less than SU175), and included grape seeds, bone fragments, fish scales and
bones, and coals; SU177 was very compact, beige colored, with rock fragments relating to the construction of the well.

TABLE 1 Radiocarbon dating regarding grape seeds found in SU176

Radiocarbon age 908± 33 BP (before Present)
d 13C 2346 2%
1 Sigma CE 1044 – CE 1099
2 Sigma CE 1034 – CE 1193
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is hindered by the presence of mineral and organic components of the soil matrix and
by the numerous inhibitory compounds commonly found in environmental samples
(33). Thus, two different extraction protocols optimized for the recovery of ancient DNA
(i.e., method PS and method D, as described in Materials and Methods) were used. The
highest DNA yield was obtained through method D, with a concentration of 2.44 ng/mL,
while extraction with method PS yielded a DNA concentration of 1.49 ng/mL (Table S2).

After shotgun sequencing, 20,308,706 raw reads were obtained (10,487,426 for extrac-
tion D and 8,655,023 for PS). Microbial taxonomic profiling showed that the two extrac-
tion methods produced similar results regarding the bacterial taxonomic composition
(Table S3). Bacterial genera having a relative abundance .0.2% are represented in Fig. 2,
as this threshold was chosen for its capacity to describe .50% of the overall biodiversity
of each sample. The bacterial community identified with metagenomic analysis included
also all the genera that the isolated bacteria belonged to (i.e., Arthrobacter, Bacillus,
Nocardia, Nocardioides, Paenibacillus, and Streptomyces; Table 2). Moreover, it is important
to notice that, although their DNA was detected with this analysis, bacteria belonging to
the genera that are commonly present in soil samples (e.g., Agrobacterium, Pseudomonas,
Stenotrophomonas, etc.) and that are generally cultivable in nonselective media (like those
used in this work) were not isolated, probably because they could be unviable or in a via-
ble but not-culturable (VBNC) state (34, 35). Thus, these findings supported the hypothe-
sis that isolated bacteria were ancient.

To this aim, antiquity of DNA was then investigated through the analysis of deamination
patterns. Data showed that DNA of only eight species could be considered ancient (Table
S4): Anaerostipes hadrus, Bifidobacterium angulatum, Blautia sp. SC05B48, Castellaniella defra-
grans, Clostridium perfringens, Escherichia coli, Methylocystis rosea, and Methylocystis sp. SC2.
Except for C. perfrigens (36), none of these species are able to produce spores (37–44): in
the case of C. perfrigens it cannot a priori be excluded that, besides its DNA, even its spores
were present in the soil sample and that they would have been able to germinate if seeded
in the appropriate conditions (e.g., optimal medium and anaerobiosis).

Antimicrobial activity and identification of bioactive compounds. The produc-
tion of bioactive compounds by the 23 isolates was assayed against Escherichia coli, Kocuria
rhizophila, and Saccharomyces cerevisiae that were chosen because they are a Gram-negative

TABLE 2 Strains isolated from SU176.1 and – indicate isolation in aerobic and anaerobic
conditions, respectively

Isolate Accession no. Aerobiosis Isolation medium Genus
Arthrobacter sp. AV21P MW282143 1 SFM Arthrobacter
Bacillus sp. AV1 MW282129 1 LB agar Bacillus
Bacillus sp. AV11 MW282135 1 LB agar
Bacillus sp. AV13 MW282136 1 LB agar
Bacillus sp. AV15 MW282137 1 LB agar
Bacillus sp. AV16 MW282138 1 LB agar
Bacillus sp. AVA MW282147 2 FeRid
Bacillus sp. AVF MW282151 2 Postgate C
Nocardia sp. AV9 MW282133 1 LB agar Nocardia
Nocardia sp. AV10 MW282134 1 LB agar
Nocardioides sp. AV21 MW282142 1 SFM Nocardioides
Nocardioides sp. AV22 MW282144 1 SFM
Nocardioides sp. AV23 MW282145 1 SFM
Nocardioides sp. AV24 MW282146 1 SFM
Paenibacillus sp. AVB MW282148 2 FeRid Paenibacillus
Paenibacillus sp. AVC MW282149 2 FeRid
Paenibacillus sp. AVD MW282150 2 FeRid
Streptomyces sp. AV2 MW282130 1 LB agar Streptomyces
Streptomyces sp. AV6 MW282131 1 LB agar
Streptomyces sp. AV8 MW282132 1 LB agar
Streptomyces sp. AV19 MW282139 1 SFM
Streptomyces sp. AV20A MW282140 1 SFM
Streptomyces sp. AV20B MW282141 1 SFM
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bacterium, a Gram-positive bacterium, and a eukaryote, respectively. Isolates were cultivated
on three different media to evaluate the possible influence of nutrients on antimicrobial syn-
thesis. Among them, only those belonging to the genus Streptomyces exerted an antimicro-
bial activity. In particular, Streptomyces sp. AV8 and Streptomyces sp. AV19 were of particular
interest because they produced the largest inhibition halos (Fig. 3, Table S5).

As shown in Fig. 3, both strains exerted a strong growth inhibition of the Gram-pos-
itive K. rhizophila and, although to a lesser extent, even the growth of E. coli and S. cere-
visiae was inhibited. Notably, their inhibition halos had also almost identical diameters
(Table S5), and alignment of their 16S rDNA partial sequences (100% identity) sug-
gested that these two isolates belonged to the same species and/or strain.

FIG 2 Bacterial genera distribution. The histograms represent the relative abundance of the most abundant genera in the samples extracted with the two
protocols reported in Materials and Methods (Panel A: method PS; Panel B: method D). Genera with a relative abundance higher than 0.2% in each sample
are reported in the plot.
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Hence, on the basis of these results, a screening of bioactive compounds produced by
Streptomyces sp. AV19 grown on R2YE was performed, and methanolic extracts whose anti-
microbial activity was verified by microbiological assays against K. rhizophila (Fig. S1) were
analyzed by means of HPLC/ESI/Q-TOF (High Performance Liquid Chromatography/Electron
Spray Ionization/Quadrupole-Time of Flight). In Fig. 4, the HPLC trace for Streptomyces sp.
AV19 is reported.

The main compound found in the extract was the Type I polyketide antibiotic aur-
eothin (peak 1 in Fig. 4) accompanied by some compounds related to its production
(peaks 2 to 8 in Fig. 4) and a membrane hopanoid (peak 9 in Fig. 4) (45–48) (Fig. 5,
Table 3, Fig. S2).

Sequencing of Streptomyces sp. AV19 genome. Genomic DNA of Streptomyces sp.
AV19 was extracted and sequenced, obtaining a draft genome with 8 contigs and
N50 = 4,053,991 bp: the total length was 7,671,946 bp and a GC content 72.15%, thus
both parameters being consistent with other Streptomyces genomes. The phylogenetic
analysis based on the complete 16S rDNA of Streptomyces sp. AV19 showed that the
closest species is Streptomyces luteireticuli (Fig. S3). The antiSMASH program (version
6.1.1) (49) was used to identify secondary metabolite biosynthetic gene clusters, select-
ing ‘strict’ as detection strictness. Data obtained revealed the presence of 36 clusters in
Streptomyces sp. AV19 genome (Table S6). The most represented gene cluster type was

FIG 3 Antimicrobial activity assay using the agar plug method. Streptomyces sp. AV8 and Streptomyces
sp. AV19 were cultivated on R2YE (left upper plug), LB Agar (right upper plug) and SFM (lower plug).

FIG 4 Representative HPLC/MS trace for methanolic extract of Streptomyces sp. AV19. *, peaks referred to the culture medium.
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Polyketide Synthase (PKS), followed by Non-Ribosomal Peptide Synthetase (NRPS). In
agreement with the HPLC/MS data, aureothin biosynthetic gene cluster was detected,
having a 100% similarity with the Streptomyces thioluteus one (50–52). Moreover, in the
case of coelichelin biosynthetic gene cluster, a 100% similarity was found with the
Streptomyces coelicolor one (53–55).

Protease activity. All isolates were tested for the production of secreted proteases
through a gel zymography exploiting gelatin as the substrate. Although this assay showed
that most of the isolates produced this kind of hydrolases, those belonging to the
Nocardioides genus (i.e., Nocardioides sp. AV21, Nocardioides sp. AV22, Nocardioides sp.
AV23, and Nocardioides sp. AV24) had the most complex patterns (Fig. 6). As shown in
Fig. 6, for each isolate no differences were observed between the two media used for cul-
tivation. Noteworthy, the four couples of patterns were different one another, suggesting
that the four isolates belonged to different species and/or strains. Moreover, since spent
media were tested without further processing (e.g., concentration), the intensity of the
bands suggested an interesting potential of these bacteria for future biotechnological
applications.

DISCUSSION

In this work the characterization of the bacterial community of an ancient soil
retrieved from an Arabic site located in Piazza della Vittoria in Palermo (Sicily, Italy) has
been described. The isolation of culturable bacteria was performed in both aerobic and
anaerobic conditions, yielding to the growth of strains belonging to Arthrobacter, Bacillus,

FIG 5 Chemical structure of aureothin and related metabolites. Numbers refer to peaks depicted in Fig. 4.

TABLE 3Metabolites identified in the methanolic extract of Streptomyces sp. AV19 culture through HPLC/MS. Peaks are numbered in
agreement with the HPLC trace depicted in Fig. 4

Peak Compound Rt (min) Calcd. mass Exp. mass Formula
1 Aureothin 8.37 398.1598 [M1 H]1 398.1596 C22H23NO6

2 Isoaureothin 8.82 398.1598 [M1 H]1 398.1602 C22H23NO6

3 Griseulina 8.87 342.1336 [M1 H]1 342.1334 C19H19NO5

4 Luteoreticulina 9.05 342.1336 [M1 H]1 342.1330 C19H19NO5

5 Aureothin isomer 9.14 398.1598 [M1 H]1 398.1596 C22H23NO6

6 Deoxyaureothin 9.30 384.1805 [M1 H]1 384.1805 C22H25NO5

7 Deoxydehydroaureothin 9.50 382.1649 [M1 H]1 382.1646 C22H23NO5

8 Deoxydehydroaureothin isomer 9.64 382.1649 [M1 H]1 382.1650 C22H23NO5

9 35-Aminobacteriohopane232,33,34-triol 10.52 546.4881 [M1 H]1 546.4877 C35H63NO3

aTentative identification.
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Nocardia, Nocardioides, Paenibacillus, and Streptomyces genera. They belong to either
Actinomycetota or Bacillota phyla (56) and are commonly recognized as soil-dwelling bac-
teria. Notably, bacteria belonging to all these genera include species able to produce
spores (i.e., Bacillus, Nocardia, Nocardioides, Paenibacillus, and Streptomyces) (28, 57) or
dormant forms (i.e., Arthrobacter) (58). This peculiarity might be considered a strong sug-
gestion that all described procedures, from sampling to isolation, were performed avoid-
ing any external contaminations and, above all, that the sampled site was really isolated
from the surrounding environment, at least in more recent times. Indeed, neither com-
mon environmental and laboratorial bacteria (e.g., E. coli, Staphylococcus, Agrobacterium,
Burkholderia, Pseudomonas, Rhizobium, etc.) nor fungi, for example molds, were isolated,
although normally able to grow in the nonselective media used in this work. However, in
the case of fungi, it should be considered that specific and/or selective media for their iso-
lation were not used here and that the adopted cultural conditions might have not sup-
ported their growth.

Metagenomic analysis of the soil sample revealed the existence of a more complex
bacterial composition. It is quite possible that bacteria detected by metagenomic anal-
ysis, but not isolated, (i) were unviable and only their DNA endured in the soil, or (ii)
they could be in a VBNC state, or (iii) they were viable but they did not grow due to
the adopted culturing conditions or to inhibition activity by other growing bacteria.
Nevertheless, it is not possible to know whether the site has remained constantly iso-
lated along the centuries. In this regard, it cannot a priori be excluded that the site
could have been contaminated because of disparate and unpredictable events (e.g.,
water infiltration, accidental opening, colonization by arthropods normally inhabiting
soil, etc.) after it stopped being used for its original purpose and it was abandoned and
eventually forgotten.

Isolation of bacteria potentially able to produce spores or dormant forms might sug-
gest that these isolates derived by germination of ancient spores. Shotgun sequencing
and degradation patterns analysis identified a group of eight species with the expected
features of DNA isolated from ancient organisms (i.e., short fragments and high fre-
quency of misincorporation at the ends of the molecules [59]), with none of them being
related to our isolated bacteria. Thus, antiquity of our isolates would be fairly question-
able. However, it should be considered that the antiquity of DNA is normally qualitatively
evaluated on the basis of the degradation that occurs over time under specific environ-
mental and taphonomic conditions (60–63). Moreover, degradation kinetics process is
well-known in ancient bones and teeth (64–66) rather than in other biological substrates.

FIG 6 Extracellular proteases secreted by bacterial isolates belonging to the genus Nocaridioides (i.e.,
Nocaridioides sp. AV21, Nocaridioides sp. AV22, Nocaridioides sp. AV23, and Nocaridioides sp. AV24). L
and F indicate the medium used, LB and FermII, respectively.
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Indeed, the absence of damage patterns could be potentially explained by the structure
of spores: DNA packed within spores is probably less (or not at all) exposed to environ-
ment. Thus, it might be possible that evaluation of DNA deamination patterns is not the
most reliable method to determine antiquity of DNA derived by organisms producing re-
sistant forms such as spores, as this approach could possibly lead to its underestimation.
Albeit these considerations are probably reasonable, data reported in this work do not
allow to undoubtedly confirm that bacteria described here were truly ancient.

Although works regarding the successful, and in some cases controversial, germination
of very ancient Bacillus spores have been reported, environmental conditions described
thereof do not resemble ours (67–72). Indeed, our isolates derived from a buried, although
isolated, soil sample rather than uncommon and extreme environments, such as extremely
old inclusions in amber or permafrost. If confirmed, this might represent an example of
germination of ancient spores recovered from a soil sample and produced by bacteria
belonging to other genera than Bacillus, whose longevity and resistance against abiotic
stresses are extensively reported and under investigation, even with a 500 year-long
experiment (73–75). Noteworthy, in case of confirmation, this would be, to the best of our
knowledge, the first example of germination of ancient spores produced by the actinomy-
cete Nocardia, Nocardioides, and Streptomyces strains.

Among the isolates, only streptomycetes exhibited the production of bioactive com-
pounds with antimicrobial activity. In detail, Streptomyces sp. AV19 was of particular in-
terest because of its strong inhibitory effect on the growth of target organisms. HPLC/
MS procedures allowed to identify the Type I polyketide aureothin as the antibiotic com-
pound produced by this strain. In agreement with experimental data, sequencing of its
genome revealed the presence of the aureothin biosynthetic gene cluster sharing a
100% degree of similarity with that of S. thioluteus, the only known producer of this anti-
biotic until now. Moreover, the analysis of the Streptomyces sp. AV19 complete genome
also revealed the presence of 38 predicted gene clusters for the biosynthesis of second-
ary metabolites, such as polyketides, nonribosomal peptides, and siderophores.

Finally, this work gave us the opportunity to test the presence of features amenable of
further studies and which could be exploited for biotechnological purposes. This is the
case of the sets of secreted proteases produced by Nocardioides isolates. Indeed, although
commonly found in soil sample, this genus is still poorly characterized, especially from a
molecular viewpoint, and, necessarily, new experiments will be performed to exploit its
full potential. At this regard, next steps will take advantage of high-throughput proce-
dures such as third-generation sequencing of DNA and phenotype microarray.

In conclusion, we underline the importance of having found daily wastes in a strati-
graphically limited situation and sealed by depositions and later works. The experimen-
tal approach applied in this work is an example of how ancient bacterial strains might
represent new sources of biochemical and metabolic capabilities potentially useful for
modern biotechnology, demonstrating once again the need for and importance of a
multidisciplinary approach to solve an archaeological problem.

MATERIALS ANDMETHODS
Sampling. Two samples, consisting in 500 g of soil collected from the pit located in Piazza della

Vittoria in Palermo, were examined. They were harvested using sterile scalpels and containers and
derived from a defined and sealed stratum inside the pit. Samples were processed immediately upon ar-
rival at the laboratory the same day of collection. The aliquot used for DNA extraction was kept in ice to
avoid possible degradation and sent to a dedicated ancient DNA facility. The materials in the soil sam-
ples were analyzed under stereo microscope (Leica) and grape seeds coming from the stratigraphic unit
underwent AMS 14C dating (Laboratory INNOVA Scarl. Caserta, Italy).

Isolation of bacteria in aerobic conditions. One g of sample was resuspended in 1 mL of sterile
0.9% wt/vol NaCl solution and 100 mL of 1021 and 1022 dilutions were plated on LB agar (Miller’s LB
broth base, Invitrogen) and SFM (20 g/L mannitol, 20 g/L soy flour, 20 g/L Bacto agar) (76). CFU were
enumerated upon incubation in standard atmosphere at 30°C for 3 to 7 days. Three independent repli-
cates from the same soil sample were processed. Colonies were repeatedly streaked on fresh medium
until pure cultures were obtained.

Isolation of bacteria under anaerobic conditions. Bacteria belonging to the functional group of Fe
(III) reducing bacteria (FeRB) were isolated using an anaerobic medium (FeRid) containing: 1.0 g/L Fe ci-
trate, 1.5 g/L peptone, 0.6 g/L NaH2PO4, 2.5 g/L NaHCO3, 1.5 g/L NH4Cl, 0.1 g/L CaCl2 � 2H2O, 0.1 g/L KCl,
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0.1 g/L MgCl2 � 6H2O, 0.005 g/L MnCl2 � 6H2O, 0.001 g/L NaMoO4 � 2H2O, pH 7.0. The medium was steri-
lized and cooled down under nitrogen flux, then 100 mL of medium were distributed in 10 different
sealed vials. The soil sample (100 mg) was suspended in 3 mL of sterile water, injected in the sealed vials
and incubated at 28°C.

Bacteria belonging to the functional group of sulfate reducing bacteria (SRB) were isolated in the
same way (at 28°C), but the previous medium was replaced by medium “Postgate C,” which contained:
0.5 g/L KH2PO4, 1.0 g/L NH4Cl, 4.5 g/L Na2SO4, 0.06 g/L CaCl2 � 6H2O, 0.06 g/L MgSO4 � 7H2O, 3.0 g/L Na
lactate, 3.0 g/L Na acetate, 1.0 g/L yeast extract, 0.1 g/L FeSO4 � 7H2O, 0.3 g/L Na citrate � 2H2O, pH 7.5.

Both FeRB and SRB were isolated by injecting 1 mL of culture into new fresh medium for five times
in a row, spending 3 months for isolating FeRB and SRB in liquid media. At the end, 100 mL of culture
were streaked on the corresponding agar plates for the final isolation.

16S rDNA amplification and sequencing. Genera of all isolated strains described in this work were
determined through sequencing of 16S rDNA. PCRs were performed in a 25 mL volume containing 1�
PCR Reaction Buffer (Invitrogen), 3.5 mM MgCl2, 200 mM each dNTPs (Invitrogen), 0.2 mM each universal
primer (27F 59-AGAGTTTGATCMTGGCTCAG-39 and 1492R 59-TACGGYTACCTTGTTACGACTT-39) and 1 U of
Taq DNA polymerase Recombinant (Invitrogen). One mL of single colony thermal lysate was used as the
template DNA: briefly, a bacterial colony was resuspended in 25 mL of TE buffer (10 mM Tris-HCl, 1 mM
EDTA, pH 8) and incubated at 100°C for 5 min; then the lysate was incubated in ice for 5 min and centri-
fuged (5 min at 11,000 � g); the resulting supernatant was eventually used as the template DNA. The
thermal cycle was 94°C for 3 min, followed by 30 cycles of 94°C for 45 sec, 50°C for 1 min and 72°C for
90 sec, and finally 72°C for 10 min. PCR products were purified using the Purelink Quick Gel Extraction
and PCR Purification Combo kit (Invitrogen) and sequenced by BMR Genomics (Padua, Italy) through
Sanger sequencing.

In the case of Streptomyces sp. AV19, a 16S rDNA-based phylogenetic analysis was performed. The
complete 16S rDNA was used as BLAST query, choosing the 16S rRNA sequences (Bacteria and Archaea)
database, and limiting the search to the species recognized as whorl-forming Streptomyces (Table S7)
(77). Sequence alignments were downloaded using the Multiple Sequence Alignment (MSA) Viewer tool
and the phylogenetic tree was constructed by using the phangorn R library (v.2.10) (78). The maximum
likelihood method was used to reconstruct the tree (79) with 100 bootstrap and stochastic rearrange-
ments. Different nucleotide substitution models were tested before choosing the one with the lowest
BIC value. The phylogenetic tree was visualized using the online tool iTOL (80).

Analysis of metagenomic DNA. All molecular laboratory work was conducted in the dedicated an-
cient DNA (aDNA) facilities at the Laboratory of Anthropology (University of Florence), following strict
guidelines to prevent contaminations. Blank controls were processed in parallel with samples for moni-
toring of potential reagent contamination. Additionally, before proceeding with DNA extraction, the
archaeological sample was exposed to UV light for 10 min to sterilize the external surface.

Two different silica-based extraction methods were used to increase the chances of recovering an-
cient microbial DNA from the sample. Here, these two methods are designated D and PS, respectively.

(i) Extraction method D. This method is based on a digestion and purification protocol commonly
used to extract highly fragmented DNA molecules from mineralize tissues (81). While this protocol was
developed for the recovery of aDNA from bones and teeth, it was successfully applied on different bio-
logical materials (82–84). Approximately 50 mg of soil were digested overnight at 37°C in 1 mL of
Extraction Buffer (0.5 M EDTA, 0.25 mg/mL Proteinase K, and 0.05% vol/vol Tween 20). After pelleting,
DNA was purified and concentrated using a High Pure Extender Assembly column from the Viral Nucleic
Acid kit (Roche), combining the supernatant with 10 mL of binding buffer (5 M GuHCl, 40% vol/vol iso-
propanol) and 400 mL of 3 M Na acetate. After two washing steps with wash buffer (20 mM NaCl, 2 mM
Tris-HCL in ethanol), DNA was eluted twice in a final volume of 60 mL of elution buffer.

(ii) Extraction method PS. A standard microbial extraction protocol for DNA recovery from soil was
applied using the DNeasy PowerSoil Pro kit (Qiagen) and following manufacturer instructions with some
modifications. In brief, approximately 200 mg of sediment were resuspended in a solution prepared with
400 mL of 0.5 M EDTA and 100 mL of 20 mg/mL Proteinase K. The sediment suspension was added to a
PowerBead Tube containing 750mL of Solution CD1 and rotated for 4 h at room temperature, followed by
bead beating at 3,200 rpm for 10 min. After pelleting, the supernatant was split into two equal aliquots to
reduce clogging issues encountered when loading extraction lysates onto a single column (83). Each ali-
quot was combined with 7.5 mL of binding buffer and centrifuged twice in a Roche High Pure Extender
Assembly column. After two washing steps, DNA was eluted in two rounds of 30mL of elution buffer for a
total volume of 60 mL. After extraction, DNA yield was quantified using Qubit 4 Fluorometer with dsDNA
High Sensitivity kit (Invitrogen).

(iii) Preparation of DNA library and sequencing. Twenty mL of each extract (i.e., D and PS) were
prepared for shotgun metagenome sequencing. Double-stranded Illumina libraries were constructed fol-
lowing a custom double-indexing protocol (85) optimized for ancient samples. No uracil DNA glycosylase
(UDG) treatment was performed to retain misincorporation patterns that can be used to authenticate
aDNA sequences (86). After 15 cycles of indexing PCR, qualitative and quantitative analysis of the libraries
was executed with Agilent TapeStation (D1000 kit). The two libraries were pooled in equimolar amounts
and sequenced by Illumina MiSeq in paired-end mode (2 � 751 81 8 run parameters).

(iv) Bioinformatic analysis. Sequencing data were demultiplexed and sorted according to the indi-
vidual sample barcodes using Illumina bcl2fastq conversion software. Raw reads were processed for their
quality, the adapter sequences were removed, and paired-end reads collapsed using AdapterRemoval (v2)
(87) software with the following option: 2minlength 30 2minquality 25 2trimns 2trimqualities 2collapse.
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After sequences duplicate removal with Prinseq (88), Kraken2 (v.2.0.8-beta) (89) was used for taxonomic
identification.

A custom database updated to December 2020 of bacterial, viral, archaeal, and mitochondrial
genomes from the NCBI Reference Sequence (RefSeq) database (https://www.ncbi.nlm.nih.gov/refseq/)
was created. To avoid spurious classification, we masked reference genomes for low-complexity regions
with Dustmasker (https://www.ncbi.nlm.nih.gov/books/NBK569845/). The output of Kraken2 was ana-
lyzed through Bracken software to estimate species read abundances (90). In order to evaluate the au-
thenticity of the most abundant identified species, each sample read was aligned to its respective refer-
ence genomes deposited in the NCBI RefSeq database using only that species reported as “reference” or
“representative.” Burrows-Wheeler Alignment (BWA) program was used for this aim, using the aln algo-
rithm with high stringency (-n 0.1) (91). Aligned sequences were then investigated for their deamination
profile using PMDtools (2threshold 1 –requiremapq = 30) (https://github.com/pontussk/PMDtools). For
each species aligned, bam files were converted to bed using bedtools (https://bedtools.readthedocs.io/
en/latest/) and we estimated the edit distance (-tag NM) that was subsequently used to compute the
edit distance algorithm (2D%) to further confirm sequence authenticity (92). The Bracken output was
used to investigate species distribution among samples using R software and phyloseq package (93).

Genome sequencing. Genomic DNA of Streptomyces sp. AV19 was extracted as previously reported
(76) and sequenced with both Illumina and Nanopore technologies. Illumina library was prepared through
a strategy based on enzymatic fragmentation to produce dsDNA fragments followed by end-repair, A-tail-
ing, adapter ligation and library amplification using the Kapa Hyperplus kit (Kapa Biosystems). The obtained
DNA library was sequenced with single-end 300 cycle strategy by NextSeq550 using the NextSeq550 high
output v2 kit (Illumina Inc.). Nanopore library was prepared as previously described (94), adopting a PCR-
free approach and using the protocol provided by Oxford Nanopore Technologies (ONT) (version
NBE_9065_v109_revY_14Aug2019). One mg of DNA was repaired and end-prepped using the NEBNext
Companion Module for Oxford Nanopore Technologies Ligation Sequencing (New England Biolabs). Five
hundred ng of end-prepped DNA were barcoded using Native Barcoding Expansion 13-24 (ONT) and NEB
Blunt/TA Ligase Master Mix (New England Biolabs). Finally, adapters were ligated and the DNA library was
enriched with .3 kb-long fragments using the Long Fragment Buffer included in the Ligation Sequencing
kit (ONT). DNA library was immediately sequenced using an R9.4.1 Flow Cell (ONT), previously primed with
Flow Cell Priming kit (ONT). Sequencing was performed with a MinION Mk1B (ONT) and the MinKNOW soft-
ware (v.21.10.4) for 72 h. Basecalling was performed using Guppy (v.4.3.4).

De novo hybrid assembly of the genome sequence was accomplished using Unicycler software (v.
0.4.8.0) in ‘conservative’ bridging mode (95), within a Galaxy environment. The draft genome has 8 con-
tigs, a total length of 7,671,946 bp and N50 of 4,053,991 bp.

Antibiotic activity assay. All bacterial isolates were tested to assess the production of bioactive
metabolites. The agar plug method was applied and Escherichia coli DH10B, Kocuria rhizophila ATCC
9341 and Saccharomyces cerevisiae DBY746 were used as target organisms. Briefly, isolates were culti-
vated on LB Agar, SFM, and R2YE (76) at 30°C for 24 to 48 h to obtain a homogeneous growth. Fresh cul-
tures of target organisms were used to prepare suspensions in 0.9% wt/vol NaCl solution having OD600 =
1. Then, 180 mL of suspension were inoculated in 10 mL of LB Soft Agar (10 g/L NaCl, 5 g/L yeast extract,
10 g/L tryptone, 7 g/L Bacto agar) in case of E. coli and K. rhizophila, and in 10 mL of YPD Soft Agar (10
g/L yeast extract, 20 g/L peptone, 20 g/L glucose, 7 g/L Bacto agar) in case of S. cerevisiae (both media
were previously melted and cooled before addition of microorganisms), and poured in Petri dishes.
Then, a circular plug from the aforementioned cultures of testers was placed on the surface of solidified
target organism cultures. E. coli and K. rhizophila plates were incubated at 37°C for 24 h, while those
with S. cerevisiae were incubated at 30°C for 24 h. The production of antibiotics was qualitatively eval-
uated as the presence of growth inhibition halos surrounding the agar plugs. This assay was performed
in triplicate and agar plugs of the corresponding solid media (i.e., without bacteria) were used as
control.

Reversed phase HPLC/ESI/Q-TOF HRMS (high resolution mass spectrometry) experiments.
Samples for HPLC/MS analysis were prepared by treating cultures of Streptomyces sp. AV19 grown on R2YE
with MeOH (40 mL), under sonication for 30 min. The methanolic extract was centrifuged (4,000 � g,
10 min) and the supernatant was directly injected or diluted with mobile phase. Water and acetonitrile
were of HPLC/MS grade. Formic acid was of analytical quality. The HPLC system was an Agilent 1260
Infinity. A reversed-phase C18 column (ZORBAX Extend-C18 2.1 � 50 mm, 1.8 mm) with a Phenomenex
C18 security guard column (4 mm x 3 mm) was used. The flow rate was 0.4 mL/min and the column tem-
perature was set to 30°C. The eluents were formic acid–water (0.1:99.9, vol/vol) (phase A) and formic acid–
acetonitrile (0.1:99.9, vol/vol) (phase B). The following gradient was employed: 0 to 10 min, linear gradient
from 5% to 95% B; 10 to 15 min, washing and reconditioning of the column to 5% B. Injection volume was
10 mL. The eluate was monitored through MS TIC. Mass spectra were obtained on an Agilent 6540 UHD
accurate-mass Q-TOF spectrometer equipped with a Dual AJS ESI source working in positive mode. N2 was
employed as desolvation gas at 300°C and a flow rate of 8 L/min. The nebulizer was set to 45 psig. The
Sheat gas temperature was set at 400°C and a flow of 12 L/min. A potential of 3.5 kV was used on the cap-
illary for positive ion mode. The fragmentor was set to 175 V. MS spectra were recorded in the 150 to 1000
m/z range. Metabolite identification was accomplished by means of HRMS data and comparison with the
Metlin database (Scripps Center for Metabolomics, https://metlin.scripps.edu). Two independent replicates
were analyzed.

Gel zymography. The protocol used for detection of secreted proteases in spent media derived
from Salamone et al. (96) with minor modifications. Tris-glycine SDS-PAGE gels were prepared (97) add-
ing, just in the resolving gel, a warmed gelatin (Gelatin from bovine skin, Sigma-Aldrich) solution to get
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a final concentration of 0.54 g/L. Gelatin was used as the substrate to detect the presence of proteases.
All isolates were grown in LB or FermII (20 g/L dextrin, 10 g/L tryptone, 1 g/L KH2PO4, 3.4 g/L K2HPO4,
0.3 g/L MgSO4 � 7H2O, 0.01 g/L FeSO4 � 7H2O, 0.1 g/L ZnCl2, 0.01 g/L CuSO4 � 7H2O, 0.003 g/L MgCl2 �
4H2O, 0.01 g/L CaCl2, 0.03 g/L NaCl, pH 7) (98) at 30°C in shaking conditions for 1 to 5 days to have rich
cultures. Then, 10 mL of spent medium obtained after centrifugation were added to 10 mL of 2� native
loading buffer (50 mM Tris-HCl pH 6.8, 0.1% wt/vol bromophenol blue, 10% vol/vol glycerol, 10% wt/vol
SDS) and loaded in gels. After electrophoresis, gels were first washed for 10 min at room temperature
and under shaking with wash buffer (2.5% vol/vol Triton X-100, 0.02% wt/vol NaN3) to remove running
buffer traces, then they were incubated in activation buffer (1.5% vol/vol Triton X-100, 0.02% wt/vol
NaN3, 2 mM CaCl2 � 2H2O, 50 mM Tris-HCl pH 7.5) for 1 h at 50°C to activate proteases. Gels were stained
with a staining solution (1 g/L Coomassie brilliant blue R-250, 10% vol/vol acetic acid, 50% vol/vol
MeOH) overnight under gentle shaking. Finally, gels were treated with a destaining solution (7.5% vol/
vol acetic acid, 5% vol/vol MeOH) and presence of proteases was assessed as the appearance of clear
bands on the stained background.

Data availability. Shotgun sequencing reads have been deposited in the Sequence Read Archive
(SRA) database and are available under the BioProject with accession number PRJNA877812.

Draft genome was deposited at DDBJ/ENA/GenBank under the accession JAOAQK000000000. The ver-
sion described in this paper is version JAOAQK010000000. The BioProject accession number is PRJNA877812.
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