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Abstract

We consider an investor that trades continuously and wants to liquidate an initial asset position
within a prescribed time interval. As a consequence of his trading activity, during the execution of the
liquidation order, the investor has no guarantees that the placed order is executed immediately, it may
go unfilled, partially filled or filled in excess. The uncertainty in the execution affects the trading activity
of the investor and the asset share price dynamics generating additional sources of noise: the execution
risk and the price impact risk, respectively. Assuming the two sources of noise correlated and driven
by the cumulative effect of the investor trading strategy, we study the problem of finding the optimal
liquidation strategy adopted by the investor in order to maximize the expected revenue resulting from
the liquidation. The mathematical model of the liquidation problem presented here extends the model
of Almgren and Chriss (Almgren, R., Chriss, N., Optimal execution of portfolio transactions, Journal of
Risk, 2000) to include execution and price impact risks. The liquidation problem is modeled as a linear
quadratic stochastic optimal control problem with finite horizon and, under some assumptions about the
functional form for the magnitude of execution and price impact risks, is solved explicitly. The derived
solution coincides with the optimal trading strategy obtained in the absence of execution uncertainty for
an asset price with a modified growth rate. This suggests that the uncertainty in the execution modifies
the directional view of the investor about the future growth rate of the asset price.

Keywords: liquidation problem, stochastic optimal control, execution risk, price impact risk, Hamilton
Jacobi Bellman equation
AMS Subject Classifications: 93E20, 60H10, 49L20
JEL Codes: C0, C61

1 Introduction

The liquidation problem is the problem of finding the optimal strategy adopted by an investor in order to
liquidate his position on a risky asset within a prescribed time interval, called liquidation interval. The
liquidation problem is widely studied in mathematical finance (see, among others, Almgren and Chriss,
2000, Almgren, 2003, Almgren, 2012, Ankirchner et al., 2016, Fatone et al., 2014, Frei and Westray, 2015,
Guéant and Lehalle, 2015, Lorenz and Schied, 2012, Schied et al., 2010, Tse et al., 2013). The mathematical
models of the liquidation problem studied in these papers assumes that the execution of the liquidation
order influences the asset share price inducing a difference between the expected asset price and the actual
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price at which the trade is executed. In the financial markets usually this is the case when the liquidation
order is a market order of large size.

The earliest model of the liquidation problem has been introduced by Almgren and Chriss (2000), this
is a discrete time model. Continuous time versions of the Almgren and Chriss model are developed by
Almgren (2003), Gatheral and Schied (2011) and Forsyth et al. (2012). In these models the asset share price
is the sum of an arithmetic Brownian motion and of a term that describes the impact of the investor trading
activity. The utility function is the difference between the expected revenue resulting from the execution of
the liquidation order and its variance. The liquidation problem is modeled as a mean variance optimization
problem that is reduced to an elementary calculus of variations problem. Several generalizations of the
continuous time model introduced in Almgren (2003) have been developed. For example, Almgren (2012)
studies how liquidity affects the asset share price dynamics. In Fatone et al. (2014) the presence on the
market of retail investors and its consequences on the execution of the liquidation order are considered. The
retail investors are modeled as an homogeneous population of small investors whose behaviour is described
by a mean field game. More recently, Huang et al. (2019) use the mean field approach to model the
liquidation problem in presence of multiple traders. Guéant and Lehalle (2015) assume the utility function
to be a C.A.R.A. (Constant Absolute Risk Aversion) function and study the effects of limit order books
on the execution of the order. In all these models the trading strategies are deterministic functions.

Trading strategies modeled as stochastic processes have been considered in Schied et al. (2010), Ankirch-
ner et al. (2016), Cheng et al. (2017), Bulthuis et al. (2017). In Schied et al. (2010) the trajectories of
the trading strategy are bounded and absolutely continuous functions of time defined in the liquidation
interval. In Ankirchner et al. (2016) the effects of trends in the asset share price on the execution of the
liquidation order are studied and the trading strategy is a square integrable stochastic process of time. In
both papers a liquidation condition is imposed on the admissible trading strategies to require that at the
end of the liquidation interval the initial asset share position is sold with probability one. The asset share
price dynamic equation of Schied et al. (2010) and Ankirchner et al. (2016) is the same used by Alm-
gren (2003) and the liquidation problem is modeled as a stochastic optimal control problem. Under some
assumptions the value functions of the control problems are determined as solutions of the corresponding
Hamilton Jacobi Bellman equations and of their auxiliary conditions (i.e. an initial condition in Schied
et al., 2010, and a final condition in Ankirchner et al., 2016). The auxiliary condition used in Schied et
al. (2010) and Ankirchner et al. (2016) is known in aeronautical engineering as fuel condition (see Bather
and Chernoff, 1967, and, in the financial context, Schied et al., 2013). The fuel condition of aeronautical
engineering is a final condition that guarantees that no fuel is left unused at the end of the mission planned.
In the liquidation problem the same condition guarantees that at the end of the liquidation interval the
investor has completed (with probability one) the sale of the asset shares initially held.

Trading strategies that are diffusion processes are considered in Cheng et al. (2017) to model the order
fill uncertainty. The liquidation problem is solved in two different settings: in the first one the magnitude of
order fill uncertainty is a prescribed positive constant parameter independent of the trading strategy, in the
second one the magnitude of order fill uncertainty is a linear function of the optimal trading strategy. In the
first setting the optimal trading strategy is found explicitly in terms of elementary functions without any
constraints. In contrast, when the magnitude of uncertainty is a linear function of the trading strategy,
the system of Riccati equations associated to the Hamilton Jacobi Belmann equation is solvable under
some strong assumptions on the parameters of the problem and the solution, when there exists, cannot be
expressed in terms of elementary functions. More recently, Bulthuis et al. (2017) have extended the model
of Cheng et al. (2017) to include the uncertainty of limit order fills. The model is enriched by the addition
of constraints to bound the trading strategy of limit and market orders and of a “trade director” to penalize
trading strategies made simultaneously by buy side market and sell limit orders. A further extension of
the model of Cheng et al. (2017) is done by Cheng et al. (2019) in the case of constant uncertainty. The
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new model adds to the old one a dynamic risk adjustment of the liquidation strategy. The risk adjustment
is taken into account adding to the profit and loss function a quadratic term penalizing the strategies that
are far from a prescribed target value.

Recently many authors investigate the noisy nature of the price impact. In Graewe et al. (2017) the
authors consider linear temporary price impact and persistent price impact of limit order book (LOB) with
stochastic resilience. In this context the resilience is the capacity of the LOB to revert to its normal shape
after the market order placed by the large trader. The persistent impact measures the effect of the past
trades on the asset share price and decays over time. In Becherer et al. (2018) the price impact is interpreted
as a volume effect process and modeled as an Ornestein-Uhlenbeck stochastic process depending on the
large trader holding. The assumption is motivated by the need of having a process that reverts to zero
in absence of trading. The diffusion term in the stochastic volume process is interpreted as an exogenous
noise induced by the trading activities of other large traders that are independent of the stochastic volume
process itself. Ma et al. (2020) use an Ornestein-Uhlenbeck stochastic process to model the permanent
price impact due the activity of other market participants.

The works of Cheng et. al. (2017), Bulthuis et al. (2017), on the one hand, and of Graewe et al. (2017),
Becherer et al. (2018), Ma et al. (2020), on the other hand, provide new research lines about optimal
execution including execution risk and stochastic price impact. Our paper is related to both these strands
of literature, aimed to provide a new model of liquidation problem that takes into account the cumulative
impact of trading strategy on the order execution and on the asset share price.

In automated financial markets the order, after being scheduled, goes into a processing system, posed
in a queue and executed as quickly as possible. When placing a market order, an investor is guaranteed
to execute the order as the next available price. Therefore an investor that schedules a market order
gives a priority to the certainty of execution over the certainty of the execution price. However, there
are no guarantees that the placed order, especially if large, is executed immediately, in fact it may go
unfilled, partially filled or filled in excess. The overfill, for example, can incur when the trading system
places simultaneously more orders than it needs to fill, collect their fills and cancel the excess orders
afterwards. The causes of the lag between the placement and the settlement of an order can be many,
from the unavailability of requested asset volume to the size of the order. Similarly, private taste shocks or
beliefs (Sannikov and Skrzypacz, 2016, Kyle et al., 2017) or private information regarding the asset value
and/or inventories (Du and Zhu, 2017) as well as uncertainty in order fills (Cheng et al., 2017, Bulthuis
et al., 2017) can deviate the realized trading strategy of the investor from the originally scheduled trading
strategy. Because of the phenomena generating this deviation are hardly predictable, we refer to all of them
indifferently as execution risk. Trade urgency exacerbates the execution risk improving the probability of
suboptimal trading executions and noisy market reactions (see Sannikov and Skrzypacz, 2016). Moreover,
we suppose that, because more unexpected, the noise generated by earlier trades is larger than the noise
due to later trades. This last assumption is in line with the empirical findings of Capponi and Cont
(2019), according to which the price changes, caused by the execution of the order, depends on trade
duration. Based on the previous considerations, we measure the execution risk as the cumulative effect of
the scheduled trading strategy assuming that this scheduled trading strategy contributes to the execution
risk not only instantaneously but also in the future with magnitude proportional to the square root of the
residual trade duration. In line with Sannikov and Skrzypacz (2016), Cheng et al. (2017), Bulthuis et al.
(2017) we model the effects of execution risk on the trading strategy assuming that the holding position is
an Îto diffusion process whose noise term characterizes the magnitude of the execution risk. The addition
of the execution risk in the dynamics of the holding position is an attempt to model the filled order instead
of the scheduled order, as pointed out by Cont and Kukanov (2021). Our model generalizes the model of
Cheng et al. (2017), where the magnitude of the execution risk is assumed to be constant and/or a linear
function of the scheduled trading strategy.
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The scheduled order reveals private information of the investor about the value of the traded asset, as
a consequence, the market participants update their beliefs about the asset price generating unexpected
trading activities that are quickly reflected by shocks on price volatility (see Büyüksahin and Harris,
2009). The idea that the trading activity is a driver of price volatility is not new, just think to the wide
literature about the relationship between trading volume/frequency and price volatility (see, among others,
Huang and Masulis, 2003, Avramov et al., 2006) or to the role of the trading activity to predict volatility
supported by Jang et al. (2019). The further risk induced by the trading activity in the price volatility
can be interpreted as a price impact risk. The price impact risk can also read as the difference between
the price changes determined by the executed order and those due to the scheduled order. Since the price
impact risk is a byproduct of the investor trading activity, similarly to execution risk, it is assumed to be
driven by the cumulative effects of the scheduled trading strategies with magnitude proportional to the
square root of the residual trade duration. Specifically, the price impact risk is taken into account adding
to the asset share price dynamic equation a noise term driven by a Wiener process correlated to the the
holding position. Both the noise terms of holding position and asset share price dynamic equations are
assumed to be square root functions of the scheduled trading strategy and of the time left to reach the end
of the liquidation interval. Therefore, the price impact is made by two components: the price impact cost,
responsible for the changes in the price drift, and the price impact risk, responsible for the changes in the
price volatility. The noisy nature of the price impact is also supported by the empirical findings of Moro
et al. (2009) and by the stochastic impact models of Graewe et al. (2017), Becherer et al. (2018), Ma et
al. (2020). Finally, it should be noted that assuming the price impact as a square root function of trading
strategy is in line with the empirical studies of Moro et al.(2009).

Note that, because of execution risk, at the end of the liquidation interval the investor can have a
residual asset position to sell in order to complete the liquidation order. In this case the residual asset
position must be sold at the final time. In order to penalize trading that at the end of the liquidation
interval has not completed the liquidation, we consider as utility function of the control problem the sum
of the expected revenue resulting from the liquidation and of a term penalizing the trading strategies that
at the end of the liquidation interval have residual amount of asset shares left unsold. The asset share
price dynamic equation of the model presented in this paper is that of Almgren and Chriss (2000) except
for the temporary impact term, that here is proportional to the scheduled trading strategy instead of the
(actual) trading strategy, and for the presence of a further source of noise due the price impact risk. The
liquidation problem consists in finding the drift of the holding position that maximizes the utility function.
The liquidation problem is formulated as a linear quadratic stochastic optimal control problem that has
the holding position as state variable and the scheduled trading strategy as control variable. We use the
completion of squares method to derive the Hamilton Jacobi Bellman equation and the optimal feedback
control. Explicit formula of the optimal scheduled trading strategy is found. The optimal scheduled trading
strategy of the model considered is determined and its dependence on the model parameters is studied.

The contribution of this paper is twofold. Firstly, we introduce a new model for the execution risk that
takes into account both the cumulative impact of trading strategy on the order execution and a stochastic
price impact. This model has the advantage of being analytically solvable without imposing any constraints
on the model parameters. Secondly, we provide a different perspective of the price impact decomposing
it into two factors: the price impact cost and the price impact risk. The price impact cost refers to the
additional cost incurred by the investor as a consequence of the price change due to its own trading activity.
The price impact risk is the additional source of volatility induced in the price by the trading activity and
reflects the reaction of the other investors to the scheduled order.

Note that in this paper we consider the liquidation problem under execution risk for a single asset. It
would be interesting to extend this problem to a multiple assets problem, that is to a basket or a portfolio
made of different assets. In these cases both the correlation and the co-integration of the assets must be
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included in the liquidation problem together with the market impact of the order flow from other market
participants. One simple strategy is to consider each asset of the multidimensional problem independently
and employ a liquidation strategy for individual assets, see for example, Almgren and Chriss (2000). This
strategy is optimal if the assets in the portfolio do not exhibit any co-movements or dependence. In a
more general framework the correlation and the co-integration of the assets and the price impact of market
orders from all market participants (including the agent liquidating the basket or the portfolio) must be
considered. Some attempts in this direction are given in Cartea et al. (2019), Tsoukalas et al. (2019).

This paper is structured as follows. In Section 2 we formulate the liquidation problem. In Section 3,
under some hypotheses on the form of execution risk, we solve the model introduced in Section 2. In Section
4 we discuss some case studies that illustrate the behaviour of model presented in Section 2. Finally, in
Section 5 some conclusions are drawn.

2 The model

We consider an investor that wants to liquidate within a fixed time interval, called liquidation interval,
a prescribed number of shares of a risky asset traded in the financial market. Let R be the set of real
numbers, R+ be the set of real positive numbers and T, Y ∈ R be positive numbers. We denote by [0, T ]
the liquidation interval and by Y the initial amount of asset shares that must be sold within the time
interval [0, T ]. Let y(t) be the holding position, i.e. the number of asset shares held by the investor at
time t ∈ [0, T ], and v(t, y(t)) : [0, T ]× R → R be the scheduled trading strategy associated to the holding
position y(t), t ∈ [0, T ]. To keep the notation simple, in the rest of paper the dependence of v on y is
omitted and we use the shorthand notation v(t) to denote v(t, y(t)), t ∈ [0, T ].

The scheduled trading strategy v(t) is the strategy scheduled by the investor to sell the asset shares at
time t, t ∈ [0, T ]. Because of the execution risk, the (realized) holding position y(t), t ∈ [0, T ], satisfies the
following stochastic differential equation:

dy(t) = −v(t) dt+ φ(t, v(t)) dW (t), t ∈ [0, T ], (2.1)

where φ is a real function and W (t), t ∈ [0, T ], is a standard Wiener process. The function φ characterizes
the magnitude of the execution risk. The holding position of the investor in [0, T ] changes as a consequence
of the desire of the investor to buy or sell (modeled in (2.1) by the term vdt) and of the effects of execution
risk (modeled in (2.1) by the term φdW ).

The presence in the holding position dynamics (2.1) of the diffusion term φdW has many possible
explanations (see, among others, Sannikov, Y., Skrzypacz, 2016, Cheng et al., 2017). For example, if the
investor is a broker executing the liquidation order on the behalf of his clients, the diffusion term φdW can
model the shocks generated by the random orders of his clients. More generally, the diffusion term φdW
can model investor belief shocks (Kyle et al., 2017) or uncertainty in the order fills (Cheng et al., 2017 and
Bulthuis et al., 2017). Equation (2.1) is equipped with the initial condition:

y(0) = Y. (2.2)

Equation (2.1) is the state equation of the model of the liquidation problem studied in this paper, the
initial condition (2.2) assigns the amount of asset shares that must be sold within the liquidation interval
[0, T ]. The function v is the unknown control variable of the liquidation problem.

Let t ∈ [0, T ], we denote by S0(t) the market price of the asset share at time t, and by S(t) the
corresponding execution price (see Forsyth et al., 2012) at time t, that is the price realized after the sale.
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We assume that S(t), t ∈ (0, T ], is a stochastic process modeled by the following equations:

S(t) = S0(t) + κ(H(t)− v(t)), t ∈ (0, T ], (2.3)

S0(t) = S0
0 + µt+ γ(y(t)− Y ) + ψB(t), t ∈ (0, T ], (2.4)

where H(t) =

∫ t

0
χ(s, v(s))dZ(s), t ∈ [0, T ], χ is a real function such that χ(t, 0) = 0, t ∈ [0, T ], µ ∈ R,

ψ > 0, κ > 0, γ > 0 and S0
0 > 0 are real constants, and B and Z are standard Wiener processes. Note

that the prices S0(t), and S(t), t ∈ [0, T ], solutions, respectively, of (2.3), (2.4), are negative with positive
probability. Usually this is an undesirable property since most of the time negative asset share prices are
not allowed. However when S0

0 > 0 and µ > 0 are large enough and sufficiently small values of T are
considered the event “negative asset share prices” has small probability and can be tolerated, as done in
Almgren (2000, 2012), Ankirchner et al. (2016), Fatone et al. (2014), Guéant and Lehalle (2015), Cheng
et al. (2017).

We briefly note that when multiple correlated assets are considered, formuale (2.3), (2.4) must be
adapted to the circumstances, using, for instance, the Cholesky factorization for the asset price correlation
matrix of the Wiener processes appearing in (2.4). For simplicity, we omit these generalizations here but
this extension is an interesting on-going research topic.

The terms γy in (2.4) and −κv in (2.3) model, respectively, the permanent and temporary impacts. The
noise term H(t) in (2.3) measures the additional risk at time t caused by the trading activity through the
cumulative effect of the trading strategy scheduled by the investor over the time interval [0, t], t ∈ [0, T ].

The stochastic process S0(t), t ∈ [0, T ], describes the market price (see Cheng at al., 2017 and Forsyth
et al., 2012), i.e. the asset share price that is not influenced from the temporary impact, and is defined
by equation (2.4). Throughout the paper we will refer to the term κ(H − v), responsible for the difference
between the execution and the market prices, as price impact.
Moreover, we assume:

E(dB(t), dW (t)) = E(dB(t), dZ(t)) = 0, and E(dZ(t), dW (t)) = ρdt, (2.5)

i.e. the Wiener processes B(t), W (t) and B(t), Z(t), t ∈ [0, T ], are uncorrelated, while the Wiener processes
Z(t), W (t), t ∈ [0, T ], are correlated with constant correlation coefficient ρ ∈ [−1, 1]. In fact, unlike the
market risk (driven in (2.4) by the Wiener process B), which is independent of the investor trading activity,
the noises in (2.1) and (2.4), modeled by the Wiener processes Z and W, are both caused by the uncertainty
in the execution, so they are correlated.

Equations (2.3), (2.4) extend the asset share price dynamic equation introduced by Almgren and Chriss
(2000) to the case where the trading strategy is subject to execution risk. In (2.3) the drift coefficient v(t),
t ∈ [0, T ], of the state equation (2.1) replaces the time derivative of the holding position used in Almgren
(2003). These two terms coincide when in (2.1) we choose φ ≡ 0.

Let us justify the choice made in (2.3) of the term κ(H−v) used to model the price impact of the trading
strategy on the asset share price. First of all it must be observed that when φ 6= 0 the trajectories of the
diffusion process (2.1) are not differentiable, therefore it is not possible to consider their time derivative
as done in Almgren and Chriss (2000). Secondly, it must be noted that, in absence of the noise term
φdW (t) in (2.1), the scheduled trading strategy v(t), t ∈ [0, T ], determines the holding position and, as a
consequence, affects the asset share price dynamics. In contrast, when φ 6= 0, in real markets, where the
prices are the result of auctions, the desired strategy v influences the asset share price dynamics even when,
due to unexpected circumstances (modeled in (2.1) through the term φdW ), the desired strategy of sale
does not define completely the holding position dynamics. By choosing the scheduled trading strategy v,
the investor selects his desirable amount of asset shares to sell. This choice influences the asset share price
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dynamics and, consequently, the strategies of the other investors trading on the same asset. Therefore the
investor trading activity generates an extra cost as a consequence of the price change due to the trading
itself. For this reason we refer to the term −κv as price impact cost. Differently from the price impact
cost, the term κH affects directly the noise of the execution price S and represents the additional noise
generated by the influence of the scheduled order on the market price. Such additional noise can be due,
for example, to the behaviour assumed by the other investors trading on the same asset, as a consequence
of the placement of the liquidation order. Because of its noisy nature, we refer to this term as price impact
risk. It should be noted that the price impact cost and the price impact risk can be read as the drift and
the volatility of a stochastic price impact process like those used by Graewe et al. (2017), Becherer et al.
(2018) and Ma et al. (2020).
The expected revenue resulting from the liquidation at time T is given by:

E
[
−
∫ T

0
(S(t)− S0

0)dy(t) + (S(T )− S0
0)y(T )

]
, (2.6)

where E[·] denotes the expected value of ·. In (2.6) the term

R = E
[
(S(T )− S0

0)y(T )
]

= E
[
(S0(T )− S0

0)y(T )
]

+ E [κ(H(T )− v(T ))y(T )] (2.7)

represents the expected revenue resulting from the liquidation at the final time t = T. Since the holding
position of the investor is subject to random noise (see equation (2.1)) it is possible that at the end of the
liquidation interval there is a residual amount of asset shares y(T ) to sell or buy. This adds to the expected
revenue resulting from the liquidation at the market price S0(T ) (i.e. the term E

[
(S0(T )− S0

0)y(T )
]
) an

extra term, due to the risk of trading at the execution price S(T ) instead of the market price S0(T ). This
extra term is given by E [κ(H(T )− v(T ))y(T )] in (2.7). In line with Cheng at al. (2017) we assume that:

E [−κv(T )y(T )] = E
[
−λy2(T )

]
, (2.8)

where λ > 0 is a real constant.
For t ∈ [0, T ] let M[t,T ] be the set of the real-valued absolutely continuous and adapted processes in

[t, T ]. We define the set of admissible controls as the set of square integrable processes, that is:

At =

{
g ∈M[t,T ] :

∫ T

t
E[g2(t)]dt < +∞

}
. (2.9)

The liquidation problem is formulated as the following linear quadratic stochastic optimal control
problem:

max
v∈A0

E
[
−
∫ T

0
(S(t)− S0

0)dy(t) + (S0(T )− S0
0)y(T )− λy2(T )+κH(T )y(T )

]
, (2.10)

subject to the constraints (2.1), (2.2).
The penalization term E

[
−λy2(T )

]
in (2.10) measures the cost to sell at time T the residual amount of

asset shares y(T ) at the execution price S(T ) instead of the market price S0(T ) (see Cheng at al., 2017).
In line with Karatzas et al. (2000) for the finite-fuel control problem and Cheng et al. (2017), Bulthuis et
al. (2017) for the liquidation problem, we consider a quadratic penalization term. It is worthing to note
that as λ→ +∞ the cost of selling at the end of the liquidation interval goes to infinity, i.e. the liquidation
at time T is not allowed and the final condition y(T ) = 0 is enforced. The condition y(T ) = 0 is the well
known finite fuel constraint introduced by Beneš et al. (1980) and further developed by Karatzas (1985).
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When φ0 = χ0 = 0 (i.e there are no execution and price impact risks) and λ→ +∞ (i.e. the liquidation
is completed at T with probability one) problem (2.10), (2.1), (2.2) reduces to the optimal execution
problem solved by Almgren (2003), therefore the optimal trading strategy, solution of problem (2.10),
(2.1), (2.2) when µ = 0, is the Volume Weighted Average Price (VWAP) strategy that sells in each time
interval an amount proportional to the predicted volume for that interval (Almgren, 2003).

3 The solution

The uncertainty surrounding the investor trading activity, affecting both the holding position and the
asset share price, has marginal effects in time. These marginal effects depend on time and on the trading
strategy of the investor and are expressed by the terms φ(t, v) and χ(t, v), t ∈ [0, T ], v ∈ R+, in (2.1) and
(2.3), respectively. The market reaction to the liquidation, especially at the beginning, is large because the
other market participants, who do not have a priori information about the investor intent, are taken caught
unaware. As a consequence of this news, the market participants adopt different behaviours impacting both
the holding position of the investor and the price dynamics. Over time, the same strategy is perceived as
less unexpected. Once the trading strategy is fixed, earlier investor trades are noisier than later trades.
Moreover, the greater the urgency to complete the liquidation order, due to the sizable residual asset
position, roughly measured by v(t)(T − t), the greater is the magnitude of execution risk (see Sannikov
and Skrzypacz, 2016) and the impact on the price.

Based on the previous considerations and in line with the empirical findings of Capponi and Cont
(2019), we model the marginal effects φ(t, v), and χ(t, v), t ∈ [0, T ], v ∈ R+, in (2.1) and (2.3), respectively,
as follows:

φ(t, v) =φ0
√

(T − t)v, t ∈ [0, T ], v ∈ R+, (3.1)

χ(t, v) =χ0

√
(T − t)v, t ∈ [0, T ], v ∈ R+, (3.2)

where φ0 > 0, χ0 > 0.
In other words, formulae (3.1), (3.2) say that, fixed the trading strategy, the marginal effect of execution
and price impact risks decreases over time and vanishes when the liquidation is completed. It is worth
noting that the square root dependence on trade duration, T − t, is in line with the empirical findings
of Capponi and Cont (2019), while the square root dependence on trading strategy, v, is in line with
the empirical studies of Moro et al. (2009). Finally, choices (3.1), (3.2) allow for an explicit solution of
problem (2.10), (2.1), (2.2) expressed in terms of elementary functions without imposing any constraints
on the model parameters.

It is worth noting that in Cheng et al. (2017) the execution risk φ in (3.1) is modeled as a constant
term or a linear function of the trading strategy. This means that, instead of (3.1), in Cheng et al. (2017)
the authors consider

φ(t, v) = m0, or φ(t, v) = m1v, t ∈ [0, T ], v ∈ R+, (3.3)

where m0, m1 are real constants. Note that when we choose the marginal effects φ and χ as in (3.1),
(3.2) in (2.3) (2.4) and ρ = 1 in (2.5) our model reduces to a model involving only the execution risk that
extends the model of Cheng et al. (2017) by considering the execution risk as a square root function of the
trading strategy.

Proposition 3.1
Given v ∈ A0, S solution of (2.3), (2.4) and y solution of (2.1), (2.2), the expected revenue in (2.10) can
be rewritten as follows:

R = E
[
−λy2(T ) +

γ

2
(y2(T )− Y 2) +

∫ T

0

(
µy(t) +

(γ
2
φ20 + κρχ0φ0

)
(T − t)v(t)− κv2(t)

)
dt

]
. (3.4)
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Proof.
By (2.1), (2.2) and (2.3), (2.4) we have:

−
∫ T

0
(S(t)− S0

0)dy(t) =−
∫ T

0
(µt+ γ(y(t)− Y ) + ψB(t)− κv(t) + κH(t))dy(t)

=− µ
∫ T

0
tdy(t)− γ

∫ T

0
y(t)dy(t) + γY

∫ T

0
dy(t)− ψ

∫ T

0
B(t)dy(t)

+ κ

∫ T

0
v(t)dy(t)− κ

∫ T

0
H(t)dy(t). (3.5)

Since:

y(t)dy(t) =
1

2
d(y2(t))− 1

2
φ20(T − t)v(t)dt, t ∈ [0, T ], (3.6)

B(t)dy(t) = d(B(t)y(t))− y(t)dB(t), t ∈ [0, T ], (3.7)

H(t)dy(t) = d(H(t)y(t))− y(t)dH(t)− ρχ0φ0(T − t)v(t)dt, t ∈ [0, T ]. (3.8)

Substituting (3.6), (3.7), (3.8) into (3.5) we have:

−
∫ T

0
(S(t)− S0

0)dy(t)+(S0(T )− S0
0)y(T ) = −κH(T )y(T ) +

γ

2
(y2(T )− Y 2)

+

∫ T

0

(
µy(t) +

(γ
2
φ20 + κρχ0φ0

)
(T − t)v(t)− κv2(t)

)
dt

+ ψ

∫ T

0
y(t)dB(t) + κφ0

∫ T

0

√
(T − t)v3(t)dW (t) + κ

∫ T

0
y(t)dH(t). (3.9)

By the assumption v ∈ A0, by the Jensen inequality and by (2.1) there exists a real constant K > 0 such
that

sup
t∈[0,T ]

y2(t) ≤ K

(
1 +

∫ T

0
v2(s)ds+ sup

t∈[0,T ]

(∫ t

0
φ0
√

(T − s)v(s)dW (s)

)2
)
< +∞, t ∈ [0, T ],

using the Îto isometry we have

E

[(∫ t

0
φ0
√

(T − s)v(s)dW (s)

)2
]

=

∫ t

0
φ20(T − s)v(s)ds.

Finally, applying the Burkholder-Davis-Gundy inequality, there exists constants K ′,K ′′ > 0 such that

E
[∫ T

0
y2(t)dt

]
≤ K ′E

[
sup

t∈[0,T ]
y2(t)

]
≤ K ′′

∫ T

0
E
[
1 +

∫ T

0
(v2(s) + φ20(T − s)v(s))ds

]
< +∞.

Then we have:

E
[∫ T

0
y(t)dB(t)

]
= 0. (3.10)

By the assumption v ∈ A0 we have E
[∫ T

0
(T − t)v3(t)dt

]
≤ TE

[∫ T

0
v3(t)dt

]
<∞ then

E
[∫ T

0

√
(T − t)v3(t)dW (t)

]
= 0. (3.11)
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Moreover, from E
[∫ T

0
(T − t)2v2(t)dt

]
≤ T 2E

[∫ T

0
v2(t)dt

]
< +∞ it follows that the stochastic process

H(t), t ∈ [0, T ], is a martingale and

E
[∫ T

0
y(t)dH(t)

]
= 0. (3.12)

Finally, substituting (3.10), (3.11), (3.12) into (3.9) we obtain (3.4). This concludes the proof.

Proposition 3.2
The value function of stochastic optimal control problem (2.10), (2.1), (2.2) satisfies the following Hamilton
Jacobi Bellmann equation:

∂V (t, y)

∂t
+

1

4κ

(
φ20
2

(T − t)∂
2V (t, y)

∂y2
+
(
γφ20 + κρχ0φ0

)
(T − t)−

(
∂V (t, y)

∂y
+ γy

))2

+ µy = 0 (3.13)

with final condition:

V (T, y) = −λy2. (3.14)

The optimal scheduled trading strategy v∗(t), t ∈ [0, T ], solution of problem (2.10), (2.1), (2.2) has the
state-feedback expression:

v∗(t, y) =
y(t)

T − t+ α
− 1

4κ
(µ+B)

(
T − t+ α− α2

T − t+ α

)
+

1

2κ
B(T − t)

+
α

2κ

(
B(T − t)
T − t+ α

− κφ20
T − t+ α

ln

(
T − t+ α

α

))
, t ∈ [0, T ], y ∈ R, (3.15)

where α =
2κ

2λ− γ
> 0 and B =

γ

2
φ20 + κρχ0φ0.

Proof
We use the completion of squares method (see Brokett, 1970). Using (3.4) the liquidation problem becomes:

max
v∈A0

E
[
−λy2(T ) +

γ

2
(y2(T )− Y 2) +

∫ T

0

(
µy(t) +

(γ
2
φ20 + κρχ0φ0

)
(T − t)v(t)− κv2(t)

)
dt

]
(3.16)

subject to constraints (2.1), (2.2). The value function associated to problem (3.16), (2.1), (2.2) is given by:

V (t, y) = max
v∈At

Et

[
−λy2(T ) +

γ

2
(y2(T )− y2(t)) +

∫ T

t

(
µy(s) +

(γ
2
φ20 + κρχ0φ0

)
(T − s)v(s)

−κv2(s)
)
ds
]
, t ∈ [0, T ], (3.17)

where the maximum is taken over the class of the trading strategies solutions of (2.1), (2.2) whose scheduled
trading strategy belongs to At. In (3.17) Et[·] denotes the conditional expectation E[·|y(t) = y], t ∈ [0, T ].
Applying Îto formula to y2(t), t ∈ [0, T ], and using (2.1), (2.2) we have :

y2(T ) = y2(t) +

∫ T

t

(
φ20(T − s)v(s)− 2y(s)v(s)

)
ds+ 2

∫ T

t
φ0
√

(T − s)v(s)y(s)dW (s), t ∈ [0, T ], (3.18)
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then the value function V in (3.17) reduces to:

V (t, y) = −κ min
v∈At

Et

[∫ T

t

(
v2(s)− 2

α
y(s)v(s)− 1

κ

(
φ20
γ

2
+ κρχ0φ0

)
(T − s)v(s)

+
1

α
φ20(T − s)v(s)− µ

κ
y(s)

)
ds+

λ

κ
y2
]
, t ∈ [0, T ], (3.19)

where α =
2κ

2λ− γ
.

Let:

f1(t) =− 1

2κ
(µ+B)

(
T − t+ α− α2

T − t+ α

)
+

φ20
T − t+ α

(T − t)

+α

(
B

κ

T − t
T − t+ α

− φ20
T − t+ α

ln

(
T − t+ α

α

))
, t ∈ [0, T ],

f2(t) =
1

T − t+ α
− 1

α
, t ∈ [0, T ].

We observe that f1(T ) = f2(T ) = 0, f ′2(t) = 1/(T − t+ α)2 and

f ′1(t) =
1

T − t+ α

(
− φ20
T − t+ α

(T − t) +
B

κ
(T − t) + f1(t)

)
+
µ

κ
, t ∈ [0, T ].

The application of Îto formula to f1(t)y(t) and f2(t)y
2(t), t ∈ [0, T ], yields:

0 =f1(t)y(t)−
∫ T

t

(
f1(s)v(s)− f ′1(s)y(s)

)
ds+

∫ T

t
f1(s)φ0

√
(T − s)v(s)dW (s), t ∈ [0, T ], (3.20)

0 =f2(t)y
2(t)−

∫ T

t

(
2f2(s)v(s)y(s)− y2(s)

(T − s+ α)2
− f2(s)φ20(T − s)v(s)

)
ds

+

∫ T

t
2f2(s)y(s)φ0

√
(T − s)v(s)dW (s), t ∈ [0, T ]. (3.21)

Since f1(t) and f2(t) are bounded in [0, T ] the stochastic integrals of

∫ T

t
f1(s)φ0

√
(T − s)v(s)dW (s) and∫ T

t
2f2(s)y(s)φ0

√
(T − s)v(s)dW (s) has zero expectation (thought they are not necessarily martingales)
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and from (3.19), (3.20), (3.21) we have:

V (t, y) = −κ min
v∈At

Et

[∫ T

t

(
v2(s)− 2

α
y(s)v(s)− 1

κ

(
φ20
γ

2
+ κρχ0φ0

)
(T − s)v(s) +

1

α
φ20(T − s)v(s)

−µ
κ
y(s)

)
ds+

λ

κ
y2
]
−κEt

[
f1(T )y(T ) + f2(T )y2(T )

]
=− κ min

v∈At

Et

[∫ T

t

(
v2(s)− 2

α
y(s)v(s)− 1

κ

(
φ20
γ

2
+ κρχ0φ0

)
(T − s)v(s))

+
1

α
φ20(T − s)v(s)− µ

κ
y(s) + f ′1(s)y(s)− f1(s)v(s) +

y2(s)

(T − s+ α)2

− 2

T − s+ α
y(s)v(s) +

2

α
y(s)v(s) +

φ20(T − s)
T − s+ α

v(s)− φ20(T − s)
α

v(s)

)
ds

+f1(t)y +

(
1

T − t+ α
− 1

α
+
λ

κ

)
y2
]
, t ∈ [0, T ]. (3.22)

Now, adding and subtracting to (3.22) the term:
1

4κ

∫ T

t

((
− κφ20
T − s+ α

+B

)
(T − s)+κf1(s)

)2

ds, t ∈

[0, T ], we obtain:

V (t, y) =− κ min
v∈At

E
[∫ T

t

(
v(s)− y(s)

T − s+ α
+

1

4κ
(µ+B)

(
T − s+ α− α2

T − s+ α

)
− 1

2κ
B(T − s)− α

2κ

(
B(T − s)
T − s+ α

− κφ20
T − s+ α

ln

(
T − s+ α

α

)))2

ds

]

+ c(t)− κf1(t)y −
(

κ

T − t+ α
+
γ

2

)
y2, t ∈ [0, T ], y ∈ R, (3.23)

where c′(t) = − 1

4κ

((
− κφ20
T − t+ α

+B

)
(T − t)+κf1(t)

)2

, t ∈ [0, T ], and c(T ) = 0.

By straightforward computations it is easy to verify that the maximum in (3.23) is attained at v = v∗

where v∗ is given by (3.15) and

V (t, y) = a(t)y2 + b(t)y + c(t), t ∈ [0, T ], y ∈ R, (3.24)

where:

a(t) =− γ

2
− κ

T − t+α
, t ∈ [0, T ], (3.25)

b(t) =− κf1(t), t ∈ [0, T ]. (3.26)

Note that the functions a(t), b(t), t ∈ [0, T ], are solutions of the following system of Riccati equations:

a′(t) =− 1

κ

(
a(t) +

γ

2

)2
, t ∈ [0, T ], (3.27)

b′(t) =
1

κ

(
a(t) +

γ

2

)(
φ20(T − t)

(
a(t) +

γ

2

)
+B(T − t)− b(t)

)
− µ, t ∈ [0, T ] (3.28)

with final conditions: a(T ) = −λ, b(T ) = 0.
Finally, by straightforward computations, it is easy to verify that the value function V satisfies the

Hamilton Jacobi Bellmann equation (3.13) with final condition (3.14). This concludes the proof.
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Corollary 3.1
In the limit as λ→ +∞ the optimal scheduled trading strategy reduces to:

v∗(t, y) =
y(t)

T − t
− 1

4κ
(µ−B)(T − t), t ∈ [0, T ], y ∈ R. (3.29)

Proof. It easily follows taking the limit of (3.15) as λ→ +∞.

Recall that when φ0 = 0 the optimal scheduled trading strategy v∗ in (3.29) is the optimal trading
strategy of Almgren (2003) under constant directional view about the asset price evolution (see Ankirchner
et al. 2016). When we also have zero drift (µ = 0) the optimal trading strategy is the VWAP strategy that
sells in each time interval an amount of asset shares proportional to the predicted volume for that interval
(see Almgren, 2003). On the other hand, it is worth to note that, when φ0 6= 0, the optimal scheduled
trading strategy in (3.29) is the optimal trading strategy of Almgren (2003) for a modified asset price S

with drift given by µ̃ = µ − B = µ − γ

2
φ20 − κρχ0φ0. To be specific, under execution risk (φ0 6= 0) the

investor modifies his directional view about the future asset price growth rate passing from µ to µ−B. It
should also be noted that, when ρ ≥ 0 (i.e. when there is a non negative correlation between execution and
price impact risk) the asset drift µ̃ in presence of execution risk is smaller than the asset drift µ in absence
of execution risk. In contrast, when ρ < 0 (i.e. when there is a negative correlation between execution and
price impact risk), we have µ̃ > µ. After all, it is legitimate to believe that execution and price impact risk
are positive correlated. In fact, when execution risk affects the trading strategy determining a decrease on
the amount of asset shares sold with respect to the scheduled amount, we expect that the price impact
risk causes a simultaneous increase on the asset share price. We can conclude that, assuming a positive
correlation between execution and price impact risk, the presence of execution risk changes the directional
view of the investor regarding the future price movement causing an asset share return expectation lower
than in absence of execution risk.

Proposition 3.3
Let y∗(t), t ∈ [0, T ], be the optimal holding position of problem (3.16), (2.1), (2.2) as λ → +∞ we have
lim

t→T−
y∗(t) = 0 a.s..

Proof.
Here we follow Delyon and Hu (2006). From Corollary 3.1 substituting v∗, given by formula (3.29), into
(2.1) we obtain that the optimal holding position y∗(t), t ∈ [0, T ], associated to problem (3.16), (2.1), (2.2)
with φ(t, v) = φ0

√
(T − t)v and χ(t, v) = χ0

√
(T − t)v, t ∈ [0, T ], v ∈ R+, is solution of the following

problem:

dy∗(t) =−
(
y∗(t)

T − t
− 1

4κ
(µ−B)(T − t)

)
dt+ φ0

√
y∗(t)− 1

4κ
(µ−B)(T − t)2dW (t), t ∈ [0, T ], (3.30)

y∗(0) =Y. (3.31)

Let ỹ(t) = y∗(t)− 1

4κ
(µ−B)(T − t)2, t ∈ [0, T ], applying Îto’s formula to y∗(t), t ∈ [0, T ], it is easy to

verify by straightforward computations that ỹ is solution of:

dỹ(t) =−
(
ỹ(t)

T − t
− 1

2κ
(µ−B)(T − t)

)
dt+ φ0

√
ỹ(t)dW (t), t ∈ [0, T ], (3.32)

ỹ(0) =ỹ0, (3.33)
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where ỹ0 = Y − 1

4κ
(µ−B)T 2.

Applying Îto’s formula to
ỹ(t)

T − t
, t ∈ [0, T ], we deduce:

ỹ(t)

T − t
=
ỹ0
T

+
1

2κ
(µ−B)t+ φ0

∫ t

0

√
ỹ(s)

T − s
dW (s), t ∈ [0, T ]. (3.34)

Since the stochastic process

{√
ỹ(t)

T − t

}
t∈[0,T ]

is locally bounded a.s., then M(t) =

∫ t

0

√
ỹ(s)

T − s
dW (s), t ∈

[0, T ], is a martingale with quadratic variation:

〈M〉(t) =

∫ t

0

ỹ(s)

(T − s)2
ds, t ∈ [0, T ]. (3.35)

Note that 〈M〉(t) → +∞ as t → T− and there exists a constant K > 0 such that 〈M〉(t) ≤ K

T − t
,

t ∈ [0, T ].
Applying Dambis-Dubins-Schwarz theorem (see Klebaner, 2012), we have that there exists a standard
one-dimensional Brownian motion B̂ such that:

M(t) = B̂(〈M〉(t)), t ∈ [0, T ]. (3.36)

Substituting (3.36) into (3.34) we have:

ỹ(t) = (T − t)
(
ỹ0
T

+
1

2κ
(µ−B)t+ φ0B̂(〈M〉(t))

)
, t ∈ [0, T ]. (3.37)

Finally, since the limit of tB̂(1/t) as t→ 0 goes to zero by the Law of Large Numbers for Brownian motions,
we have that:

lim
t→T−

(T − t)B̂(〈M〉(t)) = 0 a.s., (3.38)

and

lim
t→T−

y∗(t) = lim
t→T−

(
ỹ(t) +

1

4κ
(µ−B)(T − t)2

)
= 0 a.s.. (3.39)

This concludes the proof.

The process ỹ, solution of the stochastic differential equation (3.32), is the diffusion process of Deylon
and Hu (2206) constructed by adding to the process ŷ, solution of dŷ(t) = φ0

√
ŷ(t), t ∈ [0, T ], the extra

drift term −ŷ(t)/(T −t)+1/2κ(µ−B)(T −t). As t→ T− this last term becomes increasingly strong forcing
the process ỹ to hit 0 at t = T a.s. (see Deylon and Hu, 2006, Whitaker et al., 2016). When B = µ a popular
discretization of the stochastic differential equation (3.32) is the Modified Diffusion Bridge introduced by
Durham and Gallant (2002). Note that the process ỹ, solution of (3.32), is absolutely continuous with
respect to the conditioned process ŷ|0, that is the process ŷ conditioned on hitting 0 a.s. at t = T.

The processes y∗(t), ỹ(t), t ∈ [0, T ], solutions of (3.30), (3.31) and of (3.32), (3.33), are Extend Cox
Ingersoll Ross (ECIR) square root processes (Hull and White, 1990) with reversion rate −1/(T − t) and

time dependent equilibrium levels given, respectively, by
1

4κ
(µ−B)(T − t)2 and

1

2κ
(µ−B)(T − t)2.
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By straightforward computations we obtain that the expected value of y∗(t), t ∈ [0, T ], is given by

E(y∗(t)) =

(
Y

T
+

1

4κ
(µ−B)t

)
(T − t), t ∈ [0, T ]. When µ > B, i.e. when the asset growth rate µ is

large enough or the execution risk parameter φ0 is small enough, the expected value of the optimal holding
position is a concave function of time. This means that the investor, on average, liquidates the initial asset
position more quickly over time. This is the behaviour of an investor believing that the asset price will rise
in the future, and, as a consequence, postpones selling in time to take advantage of the asset price increase.
Otherwise, when µ < B, i.e. when the asset growth rate µ is small enough or the execution risk parameter
φ0 is large enough, the expected value of the optimal strategy is a convex function of time. This means that
the investor, on average, liquidates the initial asset position more slowly over time. This is the behaviour
of an investor believing that the asset price is likely to decrease in the future, and, as a consequence, sells
more quickly at the beginning of the liquidation to avoid drawbacks due to the asset price decrease.

Differently to Cheng et al. (2017), where the execution risk affects the optimal trading strategy only
in its diffusion term, in our model the execution risk also affects the drift of the optimal trading strategy
changing the directional view of the investor about the price movements. It is interesting to observe that
when we choose γ = −2κρχ0 we have B = 0 and, in this case, the drift of the optimal holding position y∗,
solution of (3.30), (3.31), does not depend on φ0. This happens only if we choose ρ < 0, i.e. if we assume
that asset share price and holding position are negatively correlated.

In conclusion, both the optimal trading strategy found by Cheng et al. (2017) in the case of constant
or linear execution risk (see equations (3.3)) and the optimal trading strategy found in this paper when
the execution risk is modeled as in (3.1) are obtained solving suitable stochastic optimal control problems
using the standard completion of square method. In Cheng et al. (2017), when the execution risk is
constant, the optimal trading strategy is found explicitly in terms of elementary functions without any
constraints. In contrast, when the magnitude of uncertainty is a linear function of the trading strategy,
the solution, when there exists, cannot be expressed in terms of elementary functions. The liquidation
problem studied in this paper generalizes the model of Cheng et al. (2017) since it takes into account both
execution and price impact risks. This problem is modeled as a linear quadratic stochastic optimal control
problem with finite horizon and, under some ad hoc assumptions on the functional form of the magnitude
of execution and price impact risks, is solved explicitly. More precisely the problem has an explicit solution
expressed by elementary functions and this solution is obtained without imposing any constraints on the
model parameters. In addition to what done in Cheng et al. (2017), we prove that when the penalization
term goes to infinity the optimal solution satisfies the liquidation condition almost surely. Unlike the
optimal trading strategy found by Cheng et al. (2017) in the case of constant execution risk, the optimal
trading strategy derived here depends on the magnitude of the execution risk and of the price impact risk.
Moreover, in the limit as λ → +∞, the optimal trading strategy at time t (see equation (3.29)) differs

from the one found in Cheng et al. (2017) for the term
1

4κ
(µ−B)(T − t), t ∈ [0, T ]. This term takes into

account both the execution risk and the price impact risk and is responsible for the modification of the
directional view about the asset price growth rate of the investor, which changes from µ, in absence of the
execution risk, to µ−B, in presence of the execution risk.

4 Case studies

In this section we analyze the behaviour of the optimal trading strategy obtained in Proposition 3.2 in
two case studies that differ for the orders considered. Moreover, we compare the optimal trading strategy
obtained in Proposition 3.2 with the adaptive VWAP strategy (also called constant uncertainty trading
strategy) of Cheng et al. (2017). The adaptive VWAP strategy is the solution of problem (2.10), (2.1),

15



(2.2) when χ0 = 0 and φ = m0, where m0 is a real constant (see equations (3.3)). When φ0 = χ0 = 0
the optimal trading strategy obtained in Proposition 3.2 and the adaptive VWAP strategy of Cheng et al.
(2017) coincide with the deterministic VWAP strategy of Almgren and Chriss (2000). For shortness, in
the rest of Section we call the optimal holding position and trading strategy obtained in Proposition 3.2
square root uncertainty holding position and trading strategy, respectively.

We simulate, with the explicit Euler method, the optimal trading strategy, solution of (2.10), (2.1),
(2.2), and the adaptive VWAP strategy of Cheng et al. (2017) using as simulation parameters those used
in Almgren and Chriss (2000) and Cheng et al. (2017). To guarantee a fair comparison between the two
models, across all simulations we generate the trajectories using the same Brownian motions. Specifically,
assuming the trading year made by 252 trading days, we consider as time unit a trading day and we choose:
the initial asset share position to liquidate Y = 106, the liquidation interval of one day, i.e. T = 1, the initial
asset share price S0

0 = 50$/share, an annual volatility of 30%, i.e. σ = 0.3/
√

252 · 50($/(share)(1/
√
day),

and zero annual return, i.e. µ = 0($/share)(1/day). Moreover, we choose: the permanent impact parameter
γ = 2.5 × 10−7$/share2, the temporary impact parameter κ = 2.5 × 10−6($/share2)day, the correlation
parameter ρ = 0 and λ = 1000κ. Let p0 > 0, in line with Cheng et al. (2017), we choose m0 = p0Y,
φ0 = p0

√
Y/Tshare1/2 and χ0 = σ. With these choices the executed orders have on average p0 deviation

from the placed orders per day. In fact at each time t ∈ [0, T ] the constant φ0 multiplies
√
v(t)(T − t), where

v(t) is roughly of order Y/T . Given Y and T the difficulty of liquidation increases when the execution risk
parameter p0 increases. The aim of this section is to analyze the behaviour of the optimal trading strategy
obtained in Proposition 3.2 when “easy” and “difficult” orders are considered. We consider “difficult” a
liquidation order with small values of p0 and we consider “easy” a liquidation order with large values of
p0. Specifically in the numerical experiments we choose p0 = 10% for the “easy” order and p0 = 30% for
the “difficult” order.

In Figure 1 we plot the sample trajectory of the optimal square root uncertainty holding position
(solid line) and of the optimal constant uncertainty optimal holding position (dotted line) obtained with
p0 = 10% (left panel) and p0 = 30% (right panel). Looking at Figure 1 we observe that at the beginning
of the liquidation interval the optimal holding positions are very close each other and close to the VWAP
holding position that corresponds to a linear reduction of holdings over the liquidation interval. As time
approaches to the liquidation horizon, the optimal square root uncertainty holding position moves away
from the optimal constant uncertainty holding position and, except for the time interval [0.7, 0.8], is under
the optimal constant uncertainty holding position. This behaviour depends on the choices made of λ, µ and
ρ. In fact, as explained in Section 3, the choice λ = 1000κ implies that α ' 0 and the optimal square root
uncertainty holding position approaches to the holding position solution of (3.30), (3.31) whose expected
value for µ = 0 and B > 0 is a convex function of time. As p0 increases the parameter B increases and the
convexity of the optimal square root holding position increases. Otherwise, when λ = 1000κ the constant
uncertainty holding position of Cheng et al. (2017) approaches to the adaptive VWAP holding position
whose expected value for µ = 0 is a linear function of time.

In Figure 2 we plot the sample trajectories of the optimal square root uncertainty trading strategy (solid
line) and of the optimal constant uncertainty trading strategy (dotted line) obtained with p0 = 10% (left
panel) and p0 = 30% (right panel). Looking at the sample trajectories of the optimal trading strategies
shown in Figure 2 we observe that the optimal constant uncertainty strategy is larger and more unstable
than the optimal square root uncertainty strategy and this effect is more evident towards the end of the
liquidation interval where the optimal constant uncertainty strategy spikes up significantly to achieve the
full liquidation. This fact is expected since in the square root uncertainty case it is possible to avoid the
uncertainty choosing the trading strategy equal to zero, meanwhile in the constant uncertainty case this is
not possible (see Bulthuis et al., 2017).
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Figure 1: Sample trajectories of the optimal square root uncertainty optimal holding position (solid line)
and of the optimal constant uncertainty optimal holding position (dotted line) obtained with p0 = 10%
(left panel) and p0 = 30% (right panel).

Figure 2: Sample trajectories of the optimal square root uncertainty optimal trading strategy (solid line)
and of the optimal constant uncertainty optimal trading strategy (dotted line) obtained with p0 = 10%
(left panel) and p0 = 30% (right panel).
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5 Conclusions

We have presented a new model of liquidation problem that takes into account execution and price impact
risks. Under the assumption that uncertainty in execution affects both holding position and asset share
price dynamics and that the magnitude of execution and price impact risks is proportional to the square
root of the residual asset position, we have modeled the liquidation problem as a linear quadratic stochastic
optimal control problem and we have solved it. When the liquidation condition is enforced, i.e. when the
liquidation is completed at the final time of the liquidation interval, the optimal holding position is an
ECIR square root process and belongs to the class of processes proposed by Delyon and Hu (2006). The
model has the advantage of having explicit solution expressed by elementary functions obtained without
imposing any constraints on the model parameters. The optimal trading strategy found in presence of
execution risk coincides with the optimal trading strategy in absence of execution risk for a modified asset
price suggesting that, under execution risk, the investor modifies his directional view about the asset price
growth rate. This finding supports the idea of the existence of a shadow price in friction markets of Kallsen
and Muhle-Karbe (2010) and of Mariani et al. (2019). The proposed liquidation model may be extended
and adapted, for example, to take into account multiple assets and more sophisticated models of stochastic
price impact. These topics will be certainly the goals of future works.
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[25] Guéant, O. & Lehalle, C.A., General intensity shapes in optimal liquidation, Math. Finance, 2015,
25(3), 457–495.

[26] Huang, X., Jaimungal, S. & Nourian, M., Mean-field game strategies for optimal execution, 2019,
Appl. Math. Finance, 26(2), 153-185.

[27] Huanga, R.D. & Masulis, R.W., Trading activity and stock price volatility: evidence from the London
Stock Exchange, 2003, J. Empir. Finance,10(3), 249–269.

[28] Hull, J. & White, A., Pricing interest-rate-derivative securities, Rev. Financial Studies, 1990, 3(4),
573–392.

[29] Jiang, Y.,Cao, Y., Icon, Liu, X. & Zhai, J., Volatility modeling and prediction: the role of price
impact, 2019, Quant. Finance, 19(12), 2015–2031.

19



[30] Kalman, R.E., A new approach to linear filtering and prediction problems, J. Basic Eng., 1960, 82(1),
35–45.

[31] Kallsen, J., & Muhle-Karbe, J., On using shadow prices in portfolio optimization with transaction
costs, 2010, Ann. Appl. Probab., 20, 1341–1358.

[32] Karatzas, I., Probabilistic aspects of finite-fuel stochastic control Proc. Natl. Acad. Sci., USA, 1985,
82, 5579–5581.

[33] Klebaner, F.C., Introduction to Stochastic Calculus with Applications, Imperial College Press, 2012.

[34] Kyle, A.S., Obizhaeva, A.A. & Wang, Y., Smooth trading with overconfidence and market power,
Rev. Econ. Stud., 2017, 1, 1—56.

[35] Lorenz, C. & Schied, A., Drift dependence of optimal trade execution strategies under transient price
impact, Finance Stoch., 2012, 17(4), 743–777.

[36] Ma, G., Siu, C. C., Zhu, S. P. & Elliott, R. J., Optimal portfolio execution problem with stochastic
price impact, 2020, Automatica, 112, 108739.

[37] Mariani, F., Recchioni, M.C. & Ciommi, M., Merton’s portfolio problem including market frictions: A
closed-form formula supporting the shadow price approach, 2019, Eur. J. Oper. Res., 275, 1178–1189.

[38] Moro, E., Vicente, J., Moyano, L.G., Gerig, A., Farmer, J.D., Vaglica, G., Lillo, F. & Mantegna, R.N.,
Market impact and trading profile of hidden orders in stock markets, 2009, Phys. Rev. E, 80, 066102.

[39] Sannikov, Y. & Skrzypacz, A., Dynamic trading: price inertia and front-running, Stanford Univ. Grad.
School of Business Research Paper, No. 3487, 2016, 1–59.
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