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Abstract: We study the LOCC-assisted quantum capacity of a bosonic dephasing channel with
energy constraint on the input states. We start our analysis by focusing on the energy-constrained
squashed entanglement of the channel, which is an upper bound for the energy-constrained LOCC-
assisted quantum capacity. As computing energy-constrained squashed entanglement of the channel
is challenging due to a double optimization (over the set of density matrices and the isometric
extensions of a squashing channel), we first derive an upper bound for it, and then, we discuss
how tight that bound is for the energy-constrained LOCC-assisted quantum capacity of the bosonic
dephasing channel. In doling so, we prove that the optimal input state is diagonal in the Fock basis.
Then, we analyze two explicit examples of squashing channels through which we derive explicit
upper and lower bounds for the energy-constrained LOCC-assisted quantum capacity of the bosonic
dephasing channel in terms of its quantum capacity with different noise parameters. As the difference
between upper and lower bounds becomes smaller by increasing the dephasing parameter, the
bounds become tighter.

Keywords: quantum channel maps; quantum capacities; squashed entanglement

1. Introduction

One of the essential steps for the implementation of quantum information protocols
and the development of quantum technology is the establishment of reliable communication
between two parties. This is a motivator to analyze the capacity of quantum channels,
especially quantum capacity, which corresponds to the highest rate at which quantum
information can be communicated over many independent uses of a noisy quantum channel
from a sender to a receiver (it also equals the highest rate at which entanglement can be
generated over the channel).

As continuous-variable systems are promising candidates for quantum communica-
tion, analyzing the capacity of channels defined over infinite-dimensional Hilbert spaces
is of practical and theoretical importance. In this set of channels, the subset of Gaussian
channels that maps Gaussian states to Gaussian states has been studied extensively [1–6].
However, there is a strong motivation to go beyond Gaussian channels to have better
performance in tasks such as parameter estimation [7] and teleportation [8–10] or to bypass
the limitations of Gaussian maps for entanglement distillation [11–14], error correction [15],
and quantum repeaters [16].

In general, computing quantum capacity is challenging because of two necessities:
first, the optimization of an entropic functional (coherent information) over the set of
input density operators, and second, its regularization [17]. The situation becomes more
complicated for non-Gaussian channels compared to Gaussian ones because one cannot
limit the analysis to states of Gaussian form, characterized just by covariance matrix
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and displacement vector. That makes obtaining analytical or numerical results for non-
Gaussian channels a daunting task. Despite such technical difficulties, recently, there has
been increasing attention to non-Gaussian channels [18–21]. In particular, in [20], it has
been shown that the quantum capacity of bosonic dephasing channel, as an example of a
non-Gaussian channel, is achieved by a Gaussian mixture of Fock states. Moreover, the
quantum capacity of a deformed bosonic dephasing channel was recently studied in [22].

In [20], we addressed and derived the quantum capacity of the bosonic dephasing
channel. It was shown [23] that the quantum capacity and LOCC-assisted quantum capacity
of the bosonic dephasing channel are equal, and we thus conclude that the capacity of the
channel does not increase under the allowance of LOCC assistance. Here, we are interested
in finding the energy-constrained LOCC-assisted quantum capacity of the bosonic dephas-
ing channel. The bosonic dephasing channel describes a snapshot of a quantum Markov
process, and the channel noise parameter is proportional to the time the bosonic system
interacts with the environment in the weak-coupling limit [20,24]. Furthermore, dephasing
is an unavoidable source of noise in photonic communications [25]. This happens, for
instance, with uncertainty path length in optical fibers [26].

Energy-constrained LOCC-assisted quantum capacity of the bosonic dephasing chan-
nel is the maximum rate at which entanglement can reliably be established between the
sender and receiver when local operations and classical communication (LOCC) between
the sender and receiver are also allowed. Additionally, we consider energy constraint on
the channel input. The importance of sharing entanglement is related to the key role of this
correlation in the implementation of quantum protocols. This is not limited to theoretical
investigations and is actually the cornerstone of developing quantum networks [27]. This
motivates analyzing any factor that affects the rate of entanglement sharing, including
LOCC between the sender and the receiver.

Although for practical reasons it is essential to know the LOCC-assisted quantum
capacity of the channels [28], there is no compact formula in terms of entropic function-
als to quantifying it. It was proven that (energy constraint) squashed entanglement of a
channel is an upper bound for (energy constraint) LOCC-assisted quantum capacity [29]
and secret-key agreement capacity [28]. However, computing (energy constraint) squashed
entanglement is another challenge because it requires two optimizations, one over the set
of input density operators and another over the set of isometric extensions of a squash-
ing channel. Thus, even computing a bound for the (energy constraint) LOCC-assisted
quantum capacity through such optimization results, in general, is extremely challenging,
if not impossible. In order to facilitate performing the optimization for computing the
channel energy-constrained squashed-entanglement, we shall use the channel symmetry
to restrict the search over smaller sets of density operators and isometric extensions. We
will analytically prove that for 50/50 beamsplitter squashing channel, there is an upper
bound and a lower bound for LOCC-assisted quantum capacity of the bosonic dephasing
channel with/without energy constraint, in terms of its quantum capacity with/without
energy constraint. Numerically we shall compute these bounds for inputs subject to energy
constraint, which will result in tight bounds. We shall also discuss the value of these
bounds when there is no input energy constraint. We also study symmetric qubit squashing
channels and, in this subset, numerically search for the optimal squashing channel.

The structure of this paper is as follows. In Section 2, we set our notation and provide
an essential background on squashed entanglement, LOCC-assisted quantum capacity,
and the degradability of quantum channels. Here, we also recall the bosonic dephasing
channel. In Section 3, we introduce the structure of the optimal input state. Section 4 is
devoted to two explicit examples for squashing channels for the bosonic dephasing channel:
50/50 beamsplitter and symmetric qubit channels. We summarize and discuss the results
in Section 5.
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2. Background and Notation

In this section, we set our notation and provide the background required to follow the
discussions in the next sections.

2.1. Notation

In this subsection, we set our notation. Throughout the paper we shall mainly deal
with four input (output) systems. “S” and “S′” label, respectively, the input and the
output main system. Similarly, “E” and “E′” label, respectively, the input and the output
environment. “R” labels the reference system that remains unaltered from input to output.
Finally, “F” and “F′” denote the input and the output environment for the squashing
channel that we shall introduce later on. The associated Hilbert spaces will be denoted
by HX and HX′ , where X can be either R, S, E, F or combinations of them. By NX→X′ ,
we denote a completely positive trace preserving (CPTP) map or, for short, a quantum
channel [30]:

NX→X′ : T (HX)→ T (HX′), (1)

where T (HX) stands for the set of trace-class operators onHX. Furthermore, by L(HX),
we represent the set of linear operators on the Hilbert spaceHX .

A unitary extension of channel NX→X′ , is a unitary operator U : HX ⊗HY → HX′ ⊗
HY′ whereHX ⊗HY is isomorphic withHX′ ⊗HY′ , such that [30]:

NX→X′(ρX) = TrY′
(
UNXY→X′Y′(ρX ⊗ |0〉 〈0|Y)

)
= TrY′(U(ρX ⊗ |0〉 〈0|Y)U†) (2)

for all ρX ∈ T (HX), where
UNXY→X′Y′ [•] := U •U†. (3)

Similarly, an isometric extension of channel NX→X′ is an isometry V : HX → HX′ ⊗HY′ ,
such that [30]:

NX→X′(ρX) = TrY′
(
VNX→X′Y′(ρX)

)
= TrY′(VρXV†), (4)

for every ρX ∈ T (HX), where

VNX→X′Y′ [•] := V •V†. (5)

Purification of density matrix ρX is denoted by |φXY〉, and the density operator correspond-
ing to it is [30]

φXY := |φXY〉 〈φXY| . (6)

The von Neumann entropy of an arbitrary state ρ is [30]

S(ρ) := −Tr(ρ log ρ). (7)

Throughout the paper, we use the logarithm to base two. We recall that the von Neumann
entropy is invariant under unitary transformations of the argument and is also sub-additive
and strongly sub-additive [31,32].

The conditional entropy of a bipartite quantum state ρXY is defined as follows [30]:

S(X|Y)ρXY := S(ρXY)− S(ρY), (8)

where ρY = TrX(ρXY). The quantity (8), unlike its classical counterpart, can be negative [31].
An additional property that will be used hereafter is its concavity.

For a bipartite quantum state ρSS′ ∈ T (HS ⊗HS′), the mutual information I(S; S′)ρSS′
quantifies the correlation between subsystems with reduced density matrices ρS = TrS′(ρSS′)
and ρS′ = TrS(ρSS′). It is defined as [30]:

I(S; S′)ρSS′ :=S(ρS) + S(ρS′)− S(ρSS′). (9)
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This quantity, due to sub-additivity, is non-negative, like its classical counterpart [30,31].
Moreover, for a tri-partite quantum state ρSS′R ∈ T (HS ⊗HS′ ⊗HR), conditional

mutual information I(S; S′|R)ρSS′R quantifies the correlation between density matrices of
subsystems ρS = TrRS′(ρSS′R), and ρS′ = TrRS(ρSS′R), conditioned to ρR = TrSS′(ρSS′R).
This positive quantity is given by [30]

I(S; S′|R)ρSS′R
:= S(S|R)ρSR + S(S′|R)ρS′R − S(SS′|R)ρSS′R , (10)

where the conditional entropy of a bipartite state is defined in Equation (8). The quantity (10)
is non-negative because of the strong sub-additivity property [31,33].

2.2. Squashed Entanglement

In this subsection, we review the definition of quantities necessary for introducing
the upper bound on the two-way LOCC-assisted quantum capacity of a channel. First, we
recall the definition of squashed entanglement of a bipartite system. Then, we proceed
with reviewing the definition of squashed entanglement of a channel and energy constraint
squashed entanglement of a channel.

Squashed entanglement is an entanglement monotone for bipartite quantum states
defined as follows [34]:

Definition 1. The squashed entanglement of a bipartite quantum state ρSS′ ∈ T (HS ⊗HS′) is
defined as

Esq(S; S′)ρSS′
:=

1
2

inf
ρSS′E′

I(S; S′|E′)ρSS′E′ , (11)

where the infimum is taken over all extensions of ρSS′ that is over all quantum states ρSS′E′ such
that ρSS′ = TrE′(ρSS′E′).

Using the concept of bipartite state squashed entanglement, the squashed entangle-
ment of a channel was introduced in [28]. It represents the maximum squashed entangle-
ment that can be generated by the channel.

Definition 2. The squashed entanglement of a channel NS→S′ , is given by:

Ẽsq(NS→S′) = sup
ρS

Esq(ρS,NS→S′), (12)

where the supremum is over all input density operators, ρS ∈ T (HS), and

Esq(ρS,NS→S′):=
1
2

inf
V
N sq

E→E′
E→E′F′

(
S(S′|E′)σS′E′ + S(S

′|F′)σS′F′

)
. (13)

Here, the infimum is taken over all isometric extensions of the squashing channel (see Figure 1) and
σS′E′ and σS′F′ are, respectively, obtained by partial trace over degrees of freedom inHF′ andHE′ of
the state

σS′E′F′ :=
(
V
N sq

E→E′
E→E′F′ ◦ V

NS→S′
S→S′E

)
(ρS), (14)

where VNS→S′
S→S′E and V

N sq
E→E′

E→E′F′ are, respectively, the conjugation of isometric extension of the channel
NS→S′ and N sq

E→E′ (see Equation (5)). The superscript sq in N sq
E→E′ labels the squashing channel.

If there exists a channel for which the infimum in Equation (13) is achieved, we call it
the optimal squashing channel.

The definition of the squashed entanglement of a channel can be generalized to the
case where there is a constraint on the energy of input states.
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Figure 1. Schematic representation of the bosonic dephasing channel, squashing channel, and their
isometric extensions.

Definition 3. For channelNS→S′ with energy constraint at the input, that is Tr(ρSG) ≤ N where
ρS represents an arbitrary input state, G is the energy observable (the Hamiltonian of the system),
and N ∈ [0, ∞), the energy-constrained squashed entanglement of the channel is given by

Ẽsq(N , G, N) = sup
ρS :Tr(ρSG)≤N

Esq(ρS,NS→S′), (15)

where Esq(ρS,NS→S′) is defined in Equation (13).

2.3. Two-Way LOCC-Assisted Quantum Capacity

In this subsection, we bring to light the definition of the two-way LOCC-assisted
quantum capacity and its energy-constrained form [28,29]. Then, we recall its upper bound
in terms of the squashed entanglement of a channel.

The performance of quantum channels for reliable quantum communication is quanti-
fied by quantum capacity when there are no extra resources, such as shared entanglement
or classical communication between the sender and receiver. By allowing further resources,
we expect higher rates of information transmission through the channel. When LOCC is
allowed interactively between the sender and receiver, the capability of the channel for
quantum communication is quantified by its two-way LOCC-assisted quantum capacity,
which is defined as follows:

Definition 4. The two-way LOCC-assisted quantum capacity QLOCC
S↔S′ (NS→S ′) of quantum chan-

nel NS→S ′ is the highest achievable rate of faithful qubit transmission (through infinitely many
uses) of the channel with the assistance of unlimited two-way classical communication [35,36].

The above definition is generalized for the situations where there is an upper bound
on the average input energy:

Definition 5. The energy-constrained two-way LOCC-assisted quantum capacity QLOCC
S↔S′ (NS→S′ , G, N)

of a quantum channelNS→S′ is the two-way LOCC-assisted quantum capacity of Definition 4, with
the constraint that the average input energy per channel use (determined by the observable G) is not
larger than N.

Note that we could have considered a uniform energy constraint at the input (constrain-
ing the energy of each input) instead of considering the average input energy constraint
(see e.g., [29]). However, the two-way LOCC-assisted quantum capacity with uniform
energy constraint is upper bounded by the two-way LOCC-assisted quantum capacity with
average energy constraint on the input. To see this, note that the average input energy
constraint on a state ρS1 ...SK over K channel uses can be written as

1
K

K

∑
i=1

Tr(ρSi G) ≤ N, (16)
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where ρSi is the reduced state of ρS1 ...SK to the i-th input register and G is the Hamiltonian
of each single input system. In contrast, the uniform input energy constraint reads

Tr(ρSi G) ≤ N, ∀i ∈ {1, . . . , K}. (17)

It is easy to see that (17) is more demanding than (16) (see also [29]). Thus, deriving an
upper bound on the former results in upper bounding the latter as well.

Despite the importance of two-way LOCC-assisted quantum capacity, there is no ex-
plicit compact expression to compute this capacity for a given channel. However, according
to [29], an upper bound on QLOCC

S↔S′ (NS→S′ , G, N) is given by squashed entanglement of
the channel:

QLOCC
S↔S′ (NS→S′ , G, N) ≤ Ẽsq(NS→S′ , G, N), (18)

where the right hand is given in Equation (15).

2.4. Symmetric Channels

Here, we recall the notion of symmetric channels [37,38]. For defining symmetric
channels, first the complementary channel needs to be introduced. For a channel

NX→X′ : • 7→ TrY

(
UNXY→X′Y′(• ⊗ |0〉 〈0|)

)
, (19)

with UNXY→X′Y′ defined in Equation (3), the complementary channel N c
X→Y′ is given by

N c
X→Y′ : • 7→ TrX

(
UNXY→X′Y′(• ⊗ |0〉 〈0|)

)
, (20)

Setting the definition of complementary channel, symmetric channels are those channels
for which

N c
X→Y′ = NX→X′ . (21)

Indeed, for symmetric channels T (HX′) and T (HY′) are isomorphic.

2.5. Quantum Dephasing Channel

The continuous-variable bosonic dephasing channel N γ
S→S′ can successfully model

decoherence in many different setups [39]. As the input space HS and output space HS′

are isomorphic, from now on, we denote the bosonic dephasing channel with N γ
S→S where

γ ∈ [0,+∞) is related to the dephasing rate. Bosonic dephasing channels are described
through the following operator–sum representation [20].

N γ
S→S(ρ) =

∞

∑
j=0

KjρK†
j , (22)

where the Kraus operators are given by

Kj = e−
1
2 γ(a†a)2 (− i

√
γa†a)j√
j!

, (23)

with a†, a being bosonic creation and annihilation operators on HS, and γ ∈ [0,+∞) is
related to the dephasing rate. To see how γ is related to the dephasing rate, let us look at
another equivalent representation of the channel [20]:

N γ
S→S(ρ) =

∫ +∞

−∞
e− i a†aφρei a†aφ pγ(φ)dφ, (24)

with

pγ(φ) =

√
1

2πγ
e−

φ2
2γ . (25)
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As can be seen from (24), each e− i a†aφ term corresponds to a phase shift φ to the input state
ρ. Thus, the channel is a probabilistic mixture of phase-shift operators to the input state
with a probability distribution pγ(φ) that depends on γ, (which is actually the variance of
the probability dephasing distribution).

The channel can be dilated into a single-mode environment using the following unitary
UN γ

S→S
∈ L(HS ⊗HE)

UN γ
S→S

= e− i
√

γ(a†a)(b+b†) = e− i
√

γ(a†a)b†
e− i
√

γ(a†a)be−
1
2 γ(a†a)2

, (26)

with b†, b being bosonic creation and annihilation operators on HE. The unitary (26) has
the form of a controlled dephasing with the environment’s mode acting as a control.

It is not hard to see that the channel N γ
S→S has a phase covariant property under the

unitary operator, that is

N γ
S→S(UθρU†

θ ) = UθN
γ
S→S(ρ)U

†
θ , (27)

where unitary operator Uθ is given by

Uθ = ei(a†a)θ∈ L(HS). (28)

Moreover, given ρ = ∑m,n ρm,n|m〉〈n|, the output of the complementary channel can be
written as

N γc

S→E(ρ) = TrS

[
UN γ

S→S
(ρ⊗ |0〉 〈0|)U†

N γ
S→S

]
=

∞

∑
n=0

ρn,n |− i
√

λn〉 〈− i
√

λn| , (29)

where |− i
√

λn〉 ∈ HE is a coherent state of amplitude
√

λn with phase − i and |0〉 is the
vacuum state of the environment. By the above relation and using Equation (28), we can
see that

N γc

S→E(UθρU†
θ ) = N

γc

S→E(ρ). (30)

which means that the complementary channel of N γ
S→E is invariant under the unitary (28).

3. Optimal Input State

In this section, we derive an upper bound for the squashed entanglement of the bosonic
dephasing channel defined in Equation (22). In doing so, we prove that the optimal input
state for which such an upper bound can be achieved is diagonal in the Fock basis. We use
the structure of optimal input state to simplify the expression for squashed entanglement
of the channel, which we will use in subsequent sections.

To analyze energy-constrained squashed entanglement (see Definition 3) for the
bosonic dephasing channel as energy observable G, we use the operator a†a because
for a bosonic mode, it corresponds (up to a constant) to the Hamiltonian.

Proposition 1. For a bosonic dephasing channel with parameter γ and energy observable G = a†a,
the supremum in Equation (15) is achieved by diagonal states in the Fock basis.

Proof of Proposition 1. Define USX : (HS ⊗HX)→ (HS ⊗HX) to be

USX = Uθ ⊗ idX , (31)

where Uθ is as in Equation (28). Moreover, consider an arbitrary joint density operator
σSX ∈ D(HS ⊗HX) and denote

σθ
SX :=USXσSXU†

SX . (32)
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Due to the invariance property of von Neumann entropy under unitary transformations,
we have

S(S|E′)σSE′ + S(S|F
′)σSF′ = S(S|E

′)σθ
SE′

+ S(S|F′)σθ
SF′

, (33)

where σθ
SE′ and σθ

SF′ are defined in Equation (32) with the Hilbert spaceHX to beHE′ and
HF′ , respectively, and

σSE′ :=(idS⊗N
sq
E→E′)(UN γ

S→S
ρSEU†

N γ
S→S

), (34)

σSF′ :=(idS⊗N
sqc

E→F′)(UN γ
S→S

ρSEU†
N γ

S→S
), (35)

with ρSE∈ T (HS ⊗HE) being an arbitrary system–environment initial state. On the other
hand, the conditional entropy is concave, meaning that the following relation holds true:

1
2π

∫ 2π

0
dθ
(
S(S|E′)σθ

SE′
+ S(S|F′)σθ

SF′

)
≤ S(S|E′)σ̄SE′ + S(S|F

′)σ̄SF′ , (36)

where

σ̄SE′ :=(idS⊗N
sq
E→E′)(UN γ

S→S

( 1
2π

∫ 2π

0
dθρθ

SE

)
U†
N γ

S→S
), (37)

σ̄SF′ :=(idS⊗N
sqc

E→F′)(UN γ
S→S

( 1
2π

∫ 2π

0
dθρθ

SE

)
U†
N γ

S→S
), (38)

with ρθ
SE defined in the same way as in Equation (32). Considering Equations (26) and (31),

with the aid of simple algebraic steps, it can be seen that the following commutation relation
holds true:

[UN γ
S→S

, USE] = 0. (39)

This means that the unitary extension of the phase covariant bosonic dephasing channel is
invariant under a local phase operator and is symmetric. Using this commutation relation,
we can conclude that:

USE′(idS⊗N
sq
E→E′)UN γ

S→S
= (idS⊗N

sq
E→E′)UN γ

S→S
USE, (40)

USF′(idS⊗N
sqc

E→F′)UN γ
S→S

= (idS⊗N
sqc

E→F′)UN γ
S→S

USE. (41)

Then, by means of Equation (33), relation (36) becomes:

S(S|E′)σSE′ + S(S|F
′)σSF′ ≤ S(S|E

′)σ̄SE′ + S(S|F
′)σ̄SF′ . (42)

Now, consider the initial joint state of the system and the environment to be

ρSE = ρS ⊗ |0〉E 〈0| . (43)

By expanding ρS in the Fock basis as ρS = ∑n,m ρm,n |n〉 〈m|, the integrals in Equations (37)
and (38) take the following form:

1
2π

∫ 2π

0
dθρθ

SE =
1

2π

∫ 2π

0
dθUSE(ρS ⊗ |0〉E 〈0|)U†

SE

=
1

2π

∞

∑
m,n=0

∫ 2π

0
dθρn,mei(n−m)θ |n〉S 〈m| ⊗ |0〉E 〈0|

=
∞

∑
n=0

ρn,n |n〉S 〈n| ⊗ |0〉E 〈0| . (44)
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Therefore, by considering the above relation along with Equation (42), it can be seen that
the optimal input state for squashed entanglement of the channel defined in Equation (12)
is diagonal in the Fock basis.

For the case where we have energy constraint on the input state, the same arguments
from Equation (31) to Equation (44) hold true. However, this time, the optimal input state
in Equation (44) takes the form

ρ
opt
SE = ∑

n

′
ρn,n |n〉S 〈n| ⊗ |0〉E 〈0| , (45)

where

∑
n

′ :=
∞

∑
n=0

Tr(ρSa†a)≤N

, (46)

and we shall use this notation hereafter.

The proof of Proposition 1 is based on two main properties. The first one is the
concavity of conditional entropy. Similar arguments have been used to bound the squashed
entanglement of other channels [29]. The second one is the direct usage of the symmetry
property of the unitary extension of the phase covariant bosonic dephasing channel, without
invoking the fact that the isometric extension of a group covariant channel has covariant
properties [40].

Due to Proposition 1, the supremum in Equation (15) is replaced by a supremum over
the set of diagonal states in the Fock basis satisfying the energy constraint, or in other
words, over the probability distributions of Fock states satisfying the energy constraint:

Ẽsq(N γ
S→S, a†a, N) = sup

pn :∑n npn≤N
Esq

(
ρ

opt
S ,N γ

S→S

)
, (47)

where
ρ

opt
S = ∑

n

′pn |n〉S 〈n| , pn := ρn,n, (48)

is obtained by tracing over the environment degrees of freedom of Equation (45). Hence,
for the optimal input state, the system–environment output state is given by

σ
opt
SE′ = ∑

n

′pn |n〉S 〈n| ⊗ |− i
√

γn〉E 〈− i
√

γn| . (49)

For subsequent developments, it is more convenient to re-express Equation (13) in terms of
mutual information, namely:

Esq(ρS,NS→S′) = inf
V
N sq

E→E′
E→E′F′

1
2
(
S(S′|E′)σS′E′ + S(S

′|F′)σS′F′
)

= inf
V
N sq

E→E′
E→E′F′

1
2

(
S(σS′E′)− S(σE′) + S(σS′F′)− S(σF′)

)

= S(σS′)− sup

V
N sq

E→E′
E→E′F′

1
2

(
I(S′; E′)σS′E′ + I(S′; F′)σS′F′

)
, (50)

Therefore, for the bosonic dephasing channel with an optimal input state, we have:

Esq(ρ
opt
S ,N γ

S→S) = S(σ
opt
S )− sup

V
N sq

E→E′
E→E′F′

1
2

(
I(S; E′)

σ
opt
SE′

+ I(S; F′)
σ

opt
SF′

)
, (51)
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where due to the invariance of an optimal input state under channel action, the output of
the channel is given by σ

opt
S = ρ

opt
S , and

σ
opt
SE′ = ∑

n

′pn |n〉S 〈n| ⊗ N
sq
E→E′

(
|− i
√

γn〉 〈− i
√

γn|
)

, (52)

σ
opt
SF′ = ∑

n

′pn |n〉S 〈n| ⊗ N
sqc

E→F′

(
|− i
√

γn〉 〈− i
√

γn|
)

, (53)

are classical quantum states.
In this section, we investigated the squashed entanglement of a bosonic dephasing

channel, which is an upper bound for its energy-constrained two-way LOCC-assisted
quantum capacity (Equation (18)) [29]. We showed that to compute this upper bound, two
optimizations are required: one over the probability distribution of Fock states at the input
(see Equation (47)) and the other over isometric extensions of the squashing channel (see
Equation (51)).

4. Squashing Channel for Bosonic Dephasing Channel

Confining our search for squashing channels to the set of symmetric channels, Equation (51)
turns into:

Esq(ρ
opt
S ,N γ

S→S) ≤ S(σ
opt
S )− sup

V
N sq

E→E′
E→E′F′∈Vsym

1
2

(
I(S; E′)

σ
opt
SE′

+ I(S; F′)
σ

opt
SF′

)
(54)

where σ
opt
SE′ is defined in Equation (52), and Vsym is the set of isometric dilations of symmetric

channels. When the squashing channel belongs to the set of symmetric channels, σ
opt
SE′ = σ

opt
SF′ .

Hence, we have

Esq(ρ
opt
S ,N γ

S→S) ≤ S(σ
opt
S )− sup

V
N sq

E→E′
E→E′F′∈Vsym

I(S; E′)
σ

opt
SE′

= S(σopt
S )− sup

N sq
E→E′∈Nsym

I(S; E′)
σ

opt
SE′

(55)

where Nsym is the set of symmetric channels. The last equality holds true because the
mutual information I(S; E′)

σ
opt
SE′

only depends on the squashing channel, not on its isomet-

ric extension.
In the next coming subsections, we consider two specific cases. In the first one, we

consider a 50/50 beamsplitter for the symmetric squashing channel, and in the second
one, we restrict the search for the optimal squashing channel to the set of symmetric
qubit channels.

4.1. 50/50 Beamsplitter Squashing Channel

In this subsection, we consider a 50/50 beamsplitter as the squashing channel. Among
one-mode Gaussian symmetric channels, the most well-known is the 50/50 beamsplitter.
Furthermore, this choice is in line with the results in [28], where it is shown that in the set
of pure-loss channels, the 50/50 beamsplitter is the optimal squashing channel.

A beamsplitter has two inputs, one playing the role of the environment and the other
of the input to the channel. When the environment mode is kept in a vacuum state, the
beamsplitter performs as a Gaussian channel and is described by the map [41]:

N BS
η (ρ) =

∞

∑
k=0

Bk(η)ρB†
k (η), (56)
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where η ∈ (0, 1) is the transmissivity of the beamsplitter, and Bk(η)s are the Kraus operators
taking the following explicit form in the Fock basis:

Bk(η) =
∞

∑
m=0

√(
m + k

k

)
(1− η2)

k
2 ηm |m〉 〈m + k| . (57)

The beamsplitter transforms a single-mode coherent input state |β〉 into a single-mode
coherent output state |ηβ〉, with a smaller amplitude [41]:

N BS
η (|β〉 〈β|) = |ηβ〉 〈ηβ| . (58)

In this representation, a 50/50 beamsplitter corresponds to η = 1√
2
. Therefore, according

to Equations (47) and (51), an upper bound on the squashed entanglement of the bosonic
dephasing channel can be obtained by the following relation:

Ẽsq(N γ
S→S, a†a, N) ≤ sup

pn

(
S(σopt

S )− I(S; E′)
σ

opt
SE′

)
, (59)

where σ
opt
S and σ

opt
E′ are obtained by partially tracing the following density operator with

respect to S and E′

σ
opt
SE′ = ∑

n

′pn |n〉S 〈n| ⊗ N BS
1√
2

(
|− i
√

γn〉E′ 〈− i
√

γn|
)

= ∑
n

′pn |n〉S 〈n| ⊗ |−
i√
2

√
γn〉

E′
〈− i√

2

√
γn| . (60)

As σ
opt
SE′ is a separable state,

S(σopt
S )− I(S; E′)

σ
opt
SE′

= S(σopt
SE′)− S(σ

opt
E′ ) = S(σ

opt
S )− S(σopt

E′ ). (61)

Therefore, Equation (59) is simplified to

Ẽsq(N γ
S→S, a†a, N) ≤ sup

pn

(
S(σopt

S )− S(σopt
E′ )

)
. (62)

From Equations (60) and (62), it is concluded that:

Ẽsq(N γ
S→S, a†a, N) ≤ sup

pn

(
S
(
∑
n

′pn |n〉 〈n|
)
− S

(
∑
n

′pn |
n
i

√
γ

2
〉 〈n

i

√
γ

2
n|
))

(63)

= sup
pn

(
S
(
∑
n

′pn |n〉 〈n|
)
− S

(
∑
n

′pn |−
√

γ

2
n〉 〈−

√
γ

2
n|
))

.

(64)

Equality (64) is due to the invariance property of von Neumann entropy under the unitary
conjugation that transforms coherent state |i α〉 to |α〉, ∀α ∈ C. In [20], it is shown that
the right-hand side of Equation (64) is the (unassisted) quantum capacity Q of a bosonic
dephasing channel with a dephasing parameter γ

2 and the energy constraint N. Thus,

QLOCC
S↔S (N γ

S→S, a†a, N) ≤ Ẽsq(N γ
S→S, a†a, N) ≤ Q(N

γ
2

S→S, a†a, N). (65)

Thus far, we have derived an upper bound for the energy-constrained squashed entangle-
ment of the channel, which in turn, is an upper bound for the energy-constrained two-way
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LOCC-assisted capacity. Next we derive a lower bound for the energy-constrained two-way
LOCC-assisted capacity. In [42], a lower bound on the two-way LOCC-assisted quantum ca-
pacity was introduced with the name of reverse coherent information [43–45]. The reverse
coherent information of a channel NS→S′ is defined as

IR(NS→S′) := sup
ρS

(
S(ρS)− S(N c

S→E(ρS))
)

. (66)

It is shown in [42] that for a general channel NS→S′ the following inequalities hold

Q(NS→S′ , a†a, N) ≤ IR(NS→S′) ≤ QLOCC
S↔S′ (NS→S′ , a†a, N) (67)

For the bosonic dephasing channel, we know that the quantum capacity is achieved by using
a mixture of Fock states as input, which is invariant under the action of the channel, namely

Q(N γ
S→S) = sup

ρ′S

(
S(ρ′S)− S(N

γc

S→E(ρ
′
S))
)

(68)

where ρ′S belongs to the set of mixture of Fock states [20]. In Appendix A, we show that the
quantum capacity of the bosonic dephasing channel and its reverse coherent information
are equal:

IR(N γ
S→S) = Q(N γ

S→S) (69)

As constraining the average input energy within a bounded error leads to truncating the
Hilbert space dimension and the arguments supporting the equality in (69) are valid over
the truncated Hilbert space dimension (see Appendix B), we conclude that for a bosonic
dephasing channel, the lower bound on its energy-constrained two-way LOCC-assisted
quantum capacity QLOCC

S↔S′ (N
γ
S→S, a†a, N) is equal to its energy-constrained quantum ca-

pacity with parameter γ. Therefore, taking into account Equations (65), (67) and (69) we
arrive at

Q(N γ

S→S , a†a, N) ≤ QLOCC
S↔S (N γ, a†a, N) ≤ Q(N

γ
2

S→S , a†a, N). (70)

With reference to [20], we can compute both the lower bound and the upper bound in
Equation (70). Figure 2 represents these bounds for Hilbert spaces truncated to the dimen-
sion d = 3 (red curves), d = 10 (blue curves), versus the noise parameter γ. In Figure 2,
solid curves correspond to the upper bound in Equation (70), and dashed curves correspond
to the lower bound in Equation (70).

As one can see in Figure 2, lower bounds and upper bounds are very close to each
other, confirming their tightness. To better illustrate this fact, in Figure 3, the difference
is shown between the upper and lower bounds versus noise parameter γ for the Hilbert
space with dimension d = 2 (red curves), d = 3 (green curves), d = 9 (blue curves), and
d = 10 (orange curves). As expected, this difference vanishes at γ = 0. Furthermore, as it is
seen in Figure 3, it decreases as well for large vales of the noise parameter.

As it is shown in Figure 3 for γ < 9, the difference between the lower bound and upper
bound in Equation (70) increases by increasing the dimension of the Hilbert space. The
upper bounds corresponding to different truncated Hilbert spaces are closer to each other
for dimensions larger than d = 9. The same happens for the lower bounds. The saturation
of upper and lower bounds with the increasing Hilbert space dimension can be seen in
Figure 4. This effect is in agreement with the results in [20]. There, the quantum capacity
of a bosonic dephasing channel was well approximated by the quantum capacity of this
channel in a Hilbert space truncated already at dimension nine (capacity saturation effect
by increasing input energy in disguise). Therefore, we can conclude that LOCC-assisted
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quantum capacity of the bosonic dephasing channel without any input energy constraint is
upper and lower bounded by the quantum capacity in the following way:

Q(N γ

S→S) ≤ Q
LOCC
S↔S (N γ

S→S) ≤ Q(N
γ
2

S→S). (71)

In Figure 4, the lower and upper bounds on the LOCC-assisted quantum capacity of
the bosonic dephasing channel do not converge to the same value by increasing d (or
equivalently N); namely, they do not converge to the actual value of the unconstrained
capacity (reported in [23]). This is because in the unconstrained case, other more effective
approaches, different from the squashing channel, can be employed to obtain tighter
bounds [23].

Figure 2. Upper bound and lower bound on energy-constrained LOCC-assisted quantum capacity,
QLOCC

S↔S (N γ, a†a, N), as given in Equation (70) versus noise parameter γ. Solid lines correspond
to the upper bound, while dashed lines correspond to the lower bound. Different colors refer to
different dimensions d of the truncated Hilbert space and hence to different values of the input energy
(N ≈ d/2).

Figure 3. Difference between upper bound and lower bound on QLOCC
S↔S (N γ, a†a, N) as given in

Equation (70), versus noise parameter γ. Different curves correspond to different dimensions d of the
truncated Hilbert space and hence to different values of the input energy (N ≈ d/2).

In conclusion, if we use the 50/50 beamsplitter as the squashing channel for a bosonic
dephasing channel, we successfully obtain a lower and an upper bound for two-way
LOCC-assisted quantum capacity of the bosonic dephasing channel, with energy constraint
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(Equation (70)) and without energy constraint (Equation (71)). As discussed above, these
bounds are tight. For another example of the squashing channel, in the next subsection, we
analyze possible candidates among qubit channels.

Figure 4. Upper bound (blue triangles) and lower bound (red circles) of QLOCC
S↔S (N γ

S→S, a†a, N) given
in Equation (70) versus Hilbert space dimension, d, when noise parameter γ = 3.

4.2. Qubit Squashing Channels

In this subsection, we truncate the infinite-dimensional Hilbert space into a two-dimensional
Hilbert space and search for the best qubit squashing channel. Among the qubit channels,
the upper bound for LOCC-assisted quantum capacity of the generalized amplitude damp-
ing channel is analyzed by constructing particular squashing channels [46]. Here, our focus
is on the bosonic dephasing channel in a truncated two-dimensional Hilbert space, and our
approach uses the characterization of symmetric qubit channels [47] to find the one that
maximizes mutual information in Equation (55).

Following Equation (52), an optimal input state on the truncated input Hilbert space
with dimension two has the following form:

σ
opt
SE′ =

1

∑
n=0

pn |n〉S 〈n| ⊗ N
sq
E→E′(|− i

√
γn〉E 〈− i

√
γn|). (72)

Here, N sq
E→E′ is defined on bounded operators over an infinite-dimensional Hilbert space.

However, by truncating the input Hilbert space, the action of squashing channelN sq
E→E′ is ef-

fectively restricted to bounded operators over the Hilbert space spanned by {|0〉 , |− i
√

γ〉}.
By employing the Gram–Schmidt procedure, we construct orthonormal states as follows

|e0〉 := |0〉 ,

|e1〉 :=
|− i
√

γ〉 − 〈0 |− i
√

γ〉 |e0〉
‖ |− i

√
γ〉 − 〈0 |− i

√
γ〉 |e0〉 ‖

. (73)

Furthermore, as we are restricting our attention to symmetric squashing channels, the input
and output spaces of the squashing channel are isomorphic; thus, we denote it by N sq

E→E.
Hence, the squashing channel in Equation (72) is effectively a qubit channel. Therefore, to
derive an upper bound for squashed entanglement of the channel over a two-dimensional
Hilbert space, we need to compute the right-hand side of the following inequality from
Equation (55)
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Ẽsq(N γ
S→S , a†a, N) ≤ sup

pn

(
S(σopt

S )− sup
N sq

E→E∈Nsym

I(S; E′)
σ

opt
SE′

)
, (74)

with σ
opt
SE′ given in Equation (72) andN sq

E→E being a symmetric qubit channels characterized
in [47]. These latter are described by either of the following sets of Kraus operators:

K1 =

(
sin(θ) 0

0 1√
2

)
K2 =

(
0 1√

2
ei φ cos(θ) 0

)
. (75)

and

K′1 =

(
1 0
0 1√

2
sin(θ)

)
K′2 =

(
0 1√

2
sin(θ)

0 ei φ cos(θ)

)
. (76)

In both cases, θ ∈ [0, π] and φ ∈ [0, 2π]. In principle, all the terms on the right-hand
side of Equation (74) can be computed analytically. However, the final expression after
performing the required diagonalization for computing different terms is complicated, and
optimization over such expressions is essential. Hence, we perform the optimization on the
right-hand side of Equation (74) numerically.

First, we performed the optimization over all qubit symmetric channels and then
found the maximum over all probability distributions. The outcome of our numerical
analysis for the upper bound is depicted in Figure 5 with the dashed-dotted blue curve. For
better comparison in Figure 5, we also presented the upper bound (solid red line) and the
lower bound (dashed red line) when the truncated input Hilbert space is two-dimensional
and the squashing channel is a Gaussian channel, as discussed in Section 4.1. Hence, we
conclude that, at least for a two-dimensional truncated input Hilbert space, symmetric
qubit channels outperform one-mode Gaussian squashing channels for intermediate values
of 2 < γ < 8. However, the difference between the upper bounds given by the 50/50
beamsplitter and symmetric qubit channels is negligible for 2 < γ < 8 and vanishes for
the rest of the values of γ.

Figure 5. Comparison between upper bounds on energy-constrained LOCC-assisted quantum
capacity,QLOCC

S↔S (N γ, a†a, N) obtained using one-mode Gaussian symmetric channel (solid red curve)
and qubit symmetric channel (dash-dotted blue curve) as functions of the dephasing parameter
γ. The red dashed curve shows the lower bound on energy-constrained LOCC-assisted quantum
capacity, QLOCC

S↔S (N γ, a†a, N) obtained by reverse coherent information.



Entropy 2023, 25, 1001 16 of 20

5. Conclusions

We analyzed the LOCC-assisted quantum capacity of a bosonic dephasing channel
subject to energy constraints on input states.

As mentioned earlier, despite the importance of LOCC-assisted quantum capacity,
no closed form in terms of entropic quantities exists thus far. Therefore, we focused our
attention on computing an upper bound on this quantity using squashed entanglement.
However, the existence of nested optimizations (one over the set of input states and the
other over the set of isometric extensions of quantum channels) for calculating the squashed
entanglement makes it extremely challenging to calculate its value for a given channel. This
means that finding an upper bound on the LOCC-assisted quantum capacity is in general a
non-trivial and challenging problem.

To overcome these complications for computing the upper bound for LOCC-assisted
quantum capacity of a bosonic dephasing channel, first, we used the phase covariant
property of the channel to determine the structure of the optimal input state. In other
words, we prove that it is sufficient to search for the optimal input state over the set of
diagonal states in the Fock basis instead of the whole set of density operators. For the
optimization over the isometric extensions of the squashing channels, we were restricted
to the set of symmetric channels of the channel environment output. Therein, we chose
explicit examples of squashing channels.

First, we considered a 50/50 beamsplitter for the squashing channel. We showed that
in this case, the LOCC-assisted quantum capacity of the channel is less than or equal to the
quantum capacity of a bosonic dephasing channel, having the noise parameter reduced by
a factor two. Furthermore, to derive the tightness possible lower bound, we used the result
in [42] where a lower bound on LOCC-assisted quantum capacity is introduced in terms of
reverse coherent information. We proved that the reverse coherent information and the
quantum capacity of bosonic dephasing channels are equal. Hence, when LOCC is allowed,
the reliable rate for sharing entanglement between the two parties increases. Therefore,
taking into account the results in [20], we provided computable upper and lower bounds
for LOCC-assisted quantum capacity of a bosonic dephasing channel, and we showed that
this result is valid whether or not the input state is subject to energy constraints. More
importantly, we showed that these bounds are tight, meaning that the quantum capacity of
a bosonic dephasing channel with noise parameter γ when LOCC is allowed is very close
to the quantum capacity of a bosonic dephasing channel with noise parameter γ

2 . In other
words, with the assistance of LOCC, the effective noise parameter is halved.

To extend our analysis beyond a 50/50 beamsplitter squashing channel, we also
discussed the case where the squashing channel is a symmetric qubit channel. As put
forward in Section 4.2, although the upper bound given by the optimal qubit squashing
channel is smaller than the one with the optimal one-mode Gaussian channel for some
range of noise parameter, their difference is negligible.

Our results not only set as an explicit example to confirm the importance and tightness
of the upper bound in terms of squashed entanglement of the channel, but they also moti-
vate the analysis of the quantum capacity of other non-Gaussian channels, especially with
the assistance of LOCC. Additionally, it seems interesting to devote further investigations
on characterizing the set of symmetric channels for particular classes of initial states and
addressing their performance as squashing channels.
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Appendix A. On the Equality of Quantum Capacity and Reverse Coherent
Information for a Bosonic Dephasing Channel

As defined in Equation (66), the reverse coherent information of the bosonic dephasing
channel is given by

IR(N γ
S→S) = sup

ρS

(
S(ρS)− S(N γc

S→E(ρS))
)

. (A1)

Moreover, its quantum capacity is proven to be given by the following optimization problem
where the supremum is taken over a mixture of Fock states ρ′S [20]:

Q(N γ
S→S) = sup

ρ′S

(
S(ρ′S)− S(N

γc

S→E(ρ
′
S))
)

. (A2)

Here, we show that the supremum in Equation (A1), as in the case of quantum capacity, is
achieved by using a mixture of Fock states. Therefore, we prove that

IR(N γ
S→S) = Q(N γ

S→S). (A3)

To this end, we first define the following function:

IR(NS→S, ρS) := S(ρS)− S(N c
S→E(ρS)). (A4)

Next, we prove that IR(NS→S, ρS) is concave with respect to input states ρS. Consider the
following two classical quantum states:

σXS = ∑
n

pn |n〉X 〈n| ⊗ ρ
(n)
S ,

τXE = ∑
n

pn |n〉X 〈n| ⊗ N c
S→E(ρ

(n)
S ), (A5)

whereN c
S→E is the complementary channel to the channelNS→S. The following inequalities

hold true:

I(X; E)τXE ≤ I(X; S)σXS ,

S(τE)− S(E|X)τXE ≤ S(σS)− S(S|X)σXS ,

S(S|X)σXS − S(E|X)τXE ≤ S(σS)− S(τE). (A6)

The first inequality is due to the data-processing inequality of mutual information, the
second inequality follows the definition of mutual information, and the third inequality is
just a rearrangement. Therefore, due to the classical quantum nature of the states σXS, τXE
in Equation (A5), and the last inequality of (A6), we have:

∑
n

pn

(
S(ρ(n)S )− S(N c

S→E(ρ
(n)
S ))

)
≤ S(∑

n
pnρ

(n)
S )− S(∑

n
pnN c

S→E(ρ
(n)
S )), (A7)
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which is equivalent to

∑
n

pn IR(NS→S, ρ
(n)
S ) ≤ IR

(
NS→S, ∑

n
pnρ

(n)
S

)
, (A8)

for any probability distribution pn. As a consequence, IR(NS→S, ρS) is a concave function
with respect to its argument ρS.

On the other hand, according to Equation (30), the complementary channel of a bosonic
dephasing channel is invariant under the phase shift operator of Equation (28). Then, by
considering the unitarily invariance property of the von Neumann entropy along with the
invariance property of the complementary channel of the bosonic dephasing channel under
the action of Uθ , we conclude that:

IR(N γ
S→S, ρS(θ)) = IR(N γ

S→S, ρS) (A9)

where ρS(θ) :=UθρSUθ . Employing the concavity of IR(NS→S′ , ρS) as in Equation (A8) and
Equation (A9), we are led to:

IR(N γ
S→S, ρS) ≤ IR

(
N γ

S→S,
∫ 2π

0
dθp(θ)ρS(θ)

)
. (A10)

Taking p(θ) as a flat distribution and expanding ρS in the Fock basis, ρS = ∑m,n ρm,n |m〉S 〈n|,
we have: ∫ 2π

0
ρS(θ)p(θ)dθ =

1
2π ∑

m,n

∫ 2π

0
dθρm,nei θ(n−m) |n〉S 〈m| . (A11)

Inserting the above result into the right-hand side of (A10), we end up with:

IR(N γ
S→S, ρS) ≤ IR

(
N γ

S→S, ∑
n

ρn,n |n〉S 〈n|
)

. (A12)

Hence, the supremum in Equation (A1) is achieved by a mixture of Fock states ρ′S. In
other words, the optimization in Equations (A1) and (A2) are over the same space, and this
proves their equality as expressed in Equation (A3).

Appendix B. Bounding the Errors Due to Space Trucation

Since Equation (69) involves entropic quantities, we show here how to bound the error
on the von Neumann entropy S(ρ) when constraining the average input energy Tr(a†aρ)
within an error ε.

Since, according to Section 3, the optimal input state is diagonal in the Fock basis, let
us just consider ρ = ∑∞

n=0 pn|n〉〈n|, with Tr(a†aρ) = ∑∞
n=0 npn = N.

Now, for a given ε > 0, suppose we truncate the space at dimH = dε such that

dε

∑
n=0

npn = N − ε, (A13)

where N is the average input energy. Then, consider the entropy S(ρ). It is S(ρ) =
H({pn}∞

n=0). Therefore,

H({pn}∞
n=0) =

dε

∑
n=0

pn(− log pn) +
∞

∑
n=dε+1

pn(− log pn). (A14)

It follows that

∞

∑
n=dε+1

pn(− log pn) ≤ H
(
{pn}dε

n=0

)
≤ H

(
{ p̃n}dε

n=0

)
, (A15)
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where H({pn}dε
n=0) = ∑dε

n=0 pn(− log pn) and H({ p̃n}dε
n=0) = ∑dε

n=0 p̃n(− log p̃n) with { p̃n}dε
n=0

are the optimal distribution satisfying ∑dε
n=0 np̃n = N − ε.

The first inequality in (A15) is guaranteed by the fact that for dε that is sufficiently
large, the first term is the reminder of a converging series, while the second term is the
partial sum.

Since {pn}dε
n=0 satisfies (A13), the second inequality in (A15) follows from the fact that

{ p̃n}dε
n=0 maximizes H({pn}dε

n=0).
Finally, the farthest right term in (A15) depends on ε; hence, it provides a bound on

the error ∑∞
n=dε+1 pn(− log pn) of S(ρ) when we truncate the space to dimH = dε.
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