
Electron. Struct. 4 (2022) 023004 https://doi.org/10.1088/2516-1075/ac572f

OPEN ACCESS

RECEIVED

30 September 2021

REVISED

22 December 2021

ACCEPTED FOR PUBLICATION

21 February 2022

PUBLISHED

19 August 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

ROADMAP

Roadmap on Machine learning in electronic structure

H J Kulik1,∗ , T Hammerschmidt2,∗ , J Schmidt3,∗ , S Botti4,∗ , M A L Marques3,∗ ,
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Abstract
In recent years, we have been witnessing a paradigm shift in computational materials science. In
fact, traditional methods, mostly developed in the second half of the XXth century, are being
complemented, extended, and sometimes even completely replaced by faster, simpler, and often
more accurate approaches. The new approaches, that we collectively label by machine learning,
have their origins in the fields of informatics and artificial intelligence, but are making rapid
inroads in all other branches of science. With this in mind, this Roadmap article, consisting of
multiple contributions from experts across the field, discusses the use of machine learning in
materials science, and share perspectives on current and future challenges in problems as diverse as
the prediction of materials properties, the construction of force-fields, the development of exchange
correlation functionals for density-functional theory, the solution of the many-body problem, and
more. In spite of the already numerous and exciting success stories, we are just at the beginning of a
long path that will reshape materials science for the many challenges of the XXIth century.
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1. Predicting material properties

1.1. Using machine learning to accelerate computational materials design
Heather J Kulik

Massachusetts Institute of Technology
1.1.1. Status
Computational materials discovery efforts with density functional theory (DFT) and machine learning (ML)
have matured in the past decade. Here, I focus on open-shell transition-metal complex discovery, which has
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Figure 1. Approach showing data generation and ANN ML model training for exploration and exploitation in computational
materials discovery.

unique challenges, owing to the vastness of compound space spanned by their ligand chemistry, isomers, coor-
dination number, spin/oxidation state, and charge [1]. Specialized workflows for DFT high-throughput screen-
ing of transition-metal chemistry (e.g., molSimplify, https://molsimplify.mit.edu) are key for data generation.
For this class of materials, semi-empirical and force field methods are not predictive. Tailored representa-
tions [2] are also essential for predictive ML artificial neural network (ANN), models on modest data sets (ca.
300–1000 complexes). Sparse, graph-based, metal-focused representations encode the metal-dominance of
transition-metal complex properties for properties such as spin splitting, redox potential, and catalyst ener-
getics [2]. For closed-shell complexes, standard whole-molecule descriptors used in organic chemistry may
also be suitable [3]. Once trained, both ML model exploitation [4] and exploration [5, 6] can accelerate chem-
ical discovery efforts (figure 1). Trained models can be exploited to enumerate or optimize properties with a
genetic algorithm (GA) in a discrete chemical space by leveraging uncertainty quantification (UQ) metrics
such as ensemble variance or distances in the model’s latent/feature space [7]. The GA fitness function can be
the combined property score with a penalty for high-uncertainty, distant points. This approach ensures the
prediction errors on discovered complexes are close to test set errors by only making predictions where the
models is confident, and lead compounds can be validated with DFT. Alternatively, in active learning (AL)
with ML model exploration (see also section 5.1), we acquire points that are both promising and uncertain for
model retraining, for example, with expected improvement in efficient global optimization [5]. This approach
is useful when multi-objective optimization requires a large (ca. millions of complexes) search space and the
best leads are unknown. These methods enhance ML model accuracy at an improving Pareto front at each gen-
eration. Because DFT calculations are carried out at each step, the improvement of the model can be assessed
as can its optimism about the compound space. With this approach, design rules and leads are discovered in
weeks instead of decades that a parallelized, random search with DFT would require [5].

1.1.2. Current and future challenges
Despite the promise and rapid progress in this field, compelling materials spaces with correlated electronic
structure in open-shell transition metal complexes introduce additional concerns:

(a) Electronic structure method accuracy. The hierarchy of systematically improvable accuracy established for
small-molecule organic chemistry fails for transition-metal chemistry. Although DFT is widely applied,
imbalances in delocalization and static correlation error make the choice of exchange–correlation (XC)
functional [1] system-dependent (figure 2). Single-reference correlated quantum chemistry methods can
fail due to the multi-determinantal nature of open-shell systems [8]. Detection of multi-reference char-
acter in screening (e.g., with MultirefPredict, https://github.com/hjkgrp/MultirefPredict) is necessary.
However, multi-reference methods require careful parameter selection, including active space and orbitals.
Robust data for benchmarking may be unavailable due both to uncertainty in experimental measurements
and differences between the computational and experimental setup.

(b) Efficient and robust data acquisition. Calculations may fail to converge, to optimize to a stationary point,
or to produce a robust result, leading to wasted computational effort [9]. Automated workflows should
avoid generating erroneous data that hinder the learning task for ML models. Given the nuanced com-
putational cost and performance considerations in transition-metal chemistry, automated tools must be
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Figure 2. Dimensionality reduction of candidate mononuclear octahedral spin crossover (SCO) complexes (i.e., with
near-degenerate high- and low-spin states) with mid-row (i.e., Cr–Co) 3d transition metals. The leads (discrete circles) change
with functional choice (% exact exchange, colored as in inset). Reprinted with permission from [1]. Copyright (2019) American
Chemical Society.

imparted with the expert knowledge to fine-tune electronic structure method parameters, choices, and
cost vs accuracy trade-offs.

(c) Anthropogenic bias in dataset construction. The set of compounds that have been synthesized, characterized,
and reported in the experimental literature carries significant human biases and omit failed outcomes.
Given the array of choices for enumerating inorganic materials, hypothetical sets can introduce their
own biases and are sensitive to the rules or building blocks used for enumeration. ML models that learn
design principles from these sets, whether generative in nature or through exploration of a discrete set of
compounds, will be influenced by these biases.

(d) Multi-faceted criteria in materials design. Computational materials design frequently focuses on optimiza-
tion of one energy-based criterion, such as a band gap or descriptor of catalytic activity. In practice, a
large number of other criteria such as cost, stability, synthesizability, solubility, and toxicity are equally
important but have received less attention. This is both because these quantities are harder to predict and
because it may be challenging to identify a priori the biggest impediment to experimental realization of a
computationally designed material.

1.1.3. Advances in science and technology to meet challenges
ML-accelerated computational discovery is expected to benefit most from synergistic integration of advance-
ments in artificial intelligence (AI) with related areas of computational chemistry. Although electronic
structure method accuracy is system-specific, statistical models of optimal parameter choice, including DFT
functionals, multi-reference character [8], or active spaces in multi-reference theories [10] will enable improve-
ment. ML models that encode more flexible parameters in current theories or supersede analytical forms have
the potential to advance accuracy beyond current methods. The integration of UQ [7] and sensitivity anal-
ysis into both the electronic structure and ML predictions will bring robustness to computational discovery.
Semi-supervised models that leverage a combination of labelled and unlabelled data will address the chal-
lenge posted by divergent property landscapes with varying theory choice [1, 8] (figure 2). Natural language
and image processing extraction of large experimental data sets will provide both larger benchmark sets and
knowledge of the repeatability/uncertainty from independent experimental property measurements (see also
section 4.1). Continued increases in algorithmic and hardware efficiency will also increase how much data can
be generated and improve the fidelity of this data. Nevertheless, models that can recapitulate expert decisions
will guide how to best use computational resources, including prediction of when calculations will succeed
or fail. Increased development and use of human-guided ML will be important. While bias is challenging to
overcome, critical assessments of the relationship between synthesized and hypothetical materials, including
through improved representations that adequately encode similarity and data distribution characteristics will
enable biases to be recognized and acknowledged. Tight integration between experiment and computation
driven by autonomous tools and improved generative models will enable ML-accelerated discovery to address
the multitude of unknowns associated with the design of practical materials.
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1.1.4. Concluding remarks
Initial efforts of integrating ML into computational workflows suggest substantial promise for augmenting and
accelerating the traditional trial-and-error approach to computational materials discovery. Certain regions
of chemical space, such as those that contain the correlated open-shell transition-metal centers in coordina-
tion complexes and metal–organic frameworks, are both the most promising for functional materials design
and the most fraught with outstanding challenges. Tighter integration between computational scientists and
experimental efforts as well as incorporation of advanced AI into software workflows are expected to enable
extension of the current efforts to tackle realistic, multi-faceted design challenges. In doing so, it is anticipated
that it will become increasingly feasible to carry out autonomous discovery of new functional materials in days
to weeks instead of years or decades.
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1.2. Machine learning for material-property prediction
Thomas Hammerschmidt

Ruhr-Universität Bochum, Germany

1.2.1. Status
Many aspects of our society rely on highly optimized materials. The demands on the materials range from
structural stability in extreme conditions to high functional performance with long life time. Common goal of
the materials design is to optimize the performance by tuning material chemistry and processing. The immedi-
ate questions are: (i) which crystal structure and microstructure form for a given chemical composition under
which conditions? (ii) Which performance can be expected? (iii) how stable is the performance during service?
(iv) How can processing optimize performance and life time? Traditional empirical optimization leaves vast
regions of chemical space and processing unexplored. The promise of ML for material-property prediction is
to optimise known materials and to design new materials for specific target properties.

The most fundamental material property is the equilibrium crystal structure that a combination of chemi-
cal elements will form. Early attempts to predict compound formation used one-dimensional descriptors that
arrange the elements of the periodic table along a string [11]. Compounds can then be represented as struc-
ture maps that cast the data set of experimentally observed compounds in low-dimensional representations,
an approach later confirmed by mining DFT data [12]. More fine-grained information of the chemical ele-
ments like electronic configuration, covalent radius, or electro-negativity, can be utilized for classification of
structural stability with more complex structure maps [13] or in feature vectors for regression learning of DFT
data. A further refinement is to utilize also information of the interatomic interaction, either in terms of the
mere geometric arrangement of the atoms or e.g. in terms of electronic-structure based descriptors [14] based
on bond-order potentials. Current ML of material properties typically combines atom/bond information with
chemistry information, see figure 3 as example [15]. Such atomic-scale descriptors can be upscaled to some
degree, e.g., to complex entities like grain boundaries [16]. However, for predicting macroscopic material prop-
erties like plastic deformation, many length and time scales need to be bridged. ML at these scales is based on
information from, e.g., micromechanical simulations [17].

1.2.2. Current and future challenges
The prediction of material properties by ML has enormous potential to deliver a wealth of materials for the
benefit of our society, particularly for the energy, environment and communication sectors. The possibilities
range from optimized known materials over unexpected new material classes to inversely-designed materials.
Still, the challenges are manifold:

(a) At the atomic level we have witnessed enormous progress in the last years regarding the application of data-
science techniques to results of quantum-mechanical (QM) calculations. Most ML models, however, use
descriptors that are agnostic of the underlying physics, i.e. of the interatomic bond between the chemical
elements. This is instead picked up implicitly by extensive sampling of the potential energy surface (PES).
The consequence is a degree of data hunger that poses a considerable challenge for the exploration of
high-dimensional chemical and structural spaces.

(b) ML macroscopic material properties requires different concepts. Taking structural materials as example,
the relevant information units are the microstructure elements and their formation and evolution during
fabrication, processing and operation. This involves the combinatorial diversity of chemical compositions
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Figure 3. Example of ML architecture for predicting structural and functional material properties of transparent conductors,
reproduced from [15], CC BY 4.0. The feature engineering constructs a feature vector with information on chemistry and atomic
structure at a per-atom and at a per-structure level. The feature vector is contracted in the feature selection step and separate
models are trained for the formation energy and the bandgap.

and the geometrical complexity of the microstructure. From an electronic-structure perspective, a main
challenge is the extrapolation from calculations for comparably small simulation cells to microstructure
elements (e.g., dislocations, interfaces, precipitates) with sufficient chemical and geometrical complexity.
At the macroscopic level the challenges are the representation of microstructure elements and the identi-
fication of suitable descriptors as well as the generation of meaningful artificial data for learning the time
evolution.

(c) A related challenge is the gap between the data from electronic-structure calculations and the data
from experiments on macroscopic material properties. Taking mechanical deformation as example, it
is known that the modification of stacking-fault energies by alloying elements affects the macroscopic
plastic deformation, see e.g. reference [18]. However, it is not clear at the moment how to join data of
electronic-structure calculations of stacking-fault energies with experimental stress–strain data in order
to machine-learn the influence of chemical composition on the mechanical strength of a microstructured
material.

1.2.3. Advances in science and technology to meet challenges
Meeting the above challenges for predicting material properties by ML requires advances in the combination of
correlative data science with causative physical models. This requires methodological developments of physical
models and of their connection to data-science techniques.

Major impact on the efficiency, robustness and interpretability of ML models can be expected from
advances in the construction of chemistry/physics-aware descriptors, in the biasing of sampling techniques
towards the chemically/physically relevant phase-space, in the implementation of ML constraints/guidance
from domain knowledge (available as physical parameters or as physical models), and in the development of
ML models with robust transferability.

This may include, e.g., extensions of the periodic table of the elements towards dictionaries of local building
blocks of chemistry as developed in molecular sciences [19]. For predicting the properties of bulk materials,
such schemes would need to be advanced to handle long-ranged effects of crystalline and microstructured
systems. Another potentially viable route to utilize domain knowledge of the interatomic interaction would
be to equip electronic-structure based descriptors of the local atomic environment with parameters that are
specific for the chemical bond, e.g., pairwise Hamiltonians from down-folding DFT eigenstates to a tight-
binding minimal basis [20] (figure 4).

8
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Figure 4. Parameters of a tight-binding bond-model obtained by downfolding DFT eigenstates of two-atomic molecules to a
minimal basis across the periodic table, reprinted (figure) with permission from [20], Copyright (2021) by the American Physical
Society. The combination with electronic-structure based descriptors of the local atomic environment [14], effectively encodes
domain-knowledge of the interatomic interaction in the descriptor that can be exploited for ML material properties across
chemical space.

A prerequisite for combining the results of electronic-structure calculations with experimental data on
macroscopic material properties is the ML-ready preparation of the data sets in a common logical framework.
This will allow further advances in identifying correlations in the joint data at different time and length scales.

1.2.4. Concluding remarks
The application of ML for the prediction of materials properties has just started but already now the tremen-
dous success is revolutionizing the design of materials. High precision and vast chemical screenings have been
demonstrated for properties that are directly linked to time- and length scales of electronic-structure calcula-
tions. Some of the central challenges at the moment are the combination of physical insight and data-science
techniques, the up-scaling of the electronic-structure calculations to macroscopic material properties and the
joint learning with experimental data. Taking these steps will enable us to switch gear from computing the
property of a material to computing the material for a property.
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1.3.1. Status
The discovery of new materials is one of the key drivers for progress in material science. We are obviously
interested in predicting composition and crystal structure of stable materials that can be synthesized in a
lab. A particularly important concept in materials design is the distance of a candidate system to the convex
hull of thermodynamic stability EHull (see figure 5), as this quantity measures if the compound would rather
decompose to reaction products with lower energy. Finding crystal phases on the convex hull (or close to it)
is unfortunately an extremely difficult task. In fact, just enumerating all possible combinations of chemical
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Figure 5. Convex hull (line connecting the blue circles) for the binary system SnxBr1−x. Unstable systems are marked with orange
squares.

elements in all different crystal structures is a problem with factorial complexity. Moreover, most of the result-
ing compounds are highly unstable, and therefore of little or no interest. There are two opposite approaches
to tackle the problem of thermodynamic stability. (i) one can search for the most stable crystal structure(s)
at a given chemical composition [21] or (ii) one can search for the chemical elements that stabilize a certain
structure prototype. This latter method is applied in high-throughput studies based on DFT. Although success-
ful, these approaches are highly data-intensive. In this context, the emergence of ML has shown tremendous
potential to speed up materials discovery. Early works [22–25] were based on traditional ML algorithms, such
as kernel ridge regression (KRR) or randomized tree ensembles. These works were already quite successful,
allowing for a speed-up factor of five [23] or more.

In most cases the target property predicted was the formation energy [22, 24, 26, 27] which defines stability
with respect to decomposition in elementary substances. In principle, the distance to the convex hull can be
calculated from the formation energies but it can also be predicted directly. Contradictory results in literature
[28–30] do not allow to conclude yet whether the former or the latter choice leads to better predictions.

Some authors [22–24] used only compositional information, such as e.g., the electronegativities, atomic
numbers, positions of the constituting elements in the periodic table, etc, to define the input system. Crystal
structure information based on the Voronoi tessellations, invariant with respect to the volume of the unit cell,
was incorporated in reference [25]. Purely composition-based models are limited to predict only one structure,
as they cannot differentiate between different crystal prototypes with the same composition. As a consequence,
only one prototype can be included in the training data, leading to a restriction of available data by orders of
magnitude. Ward et al demonstrated [25] that additional training data of other prototypes improve prediction
accuracy in calculating both formation energy and distance to the convex hull. It is important to note, however,
that in high-throughput studies the relaxed geometry of the compounds is in general not available, so this
information should not be used as input feature of the machines.

For the last years we have witnessed an evolution from simple ML algorithms to a variety of deep neural
networks (NNs) [26, 27, 30–32] with far superior performance when sufficient data is available. The perfor-
mance gap between handcrafted features and representations learned by deep NNs is not surprising, as this
can be expected from experience gathered in other fields of science [33]. This second generation of prediction
models can again be split into composition-based and structure-based models. Different works benefit from
different representations of the composition: reference [31] uses a simple vector, while reference [27] repre-
sents the composition as a fully connected graph of the elements. According to an in-depth comparison of
the various implementations [28], the latter is the most accurate model purely based on composition for the
prediction of formation energies.

Structure-based models stem from the crystal-graph convolutional NNs of reference [26]. These message
passing networks [32] rely on representing crystals as a graph where each atom forms a node and the edges
contain a representation of the bonds. Periodicity results in loops in the graph. After the publication of the
original idea [26] a large number of works [30, 32] have applied message passing networks with different update
functions to predict several material properties. Structure based deep learning models not only profit from the
additional training data but also from the complete knowledge of the crystal structure. Therefore while the
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accuracy of these networks and their prediction ability is superior [28], the reported errors are not directly
pertinent to high-throughput searches. For example, Park and Wolverton [30] reports roughly eight times
larger errors when using non-relaxed structures as input. Nevertheless, the speed-up achieved during high-
throughput searches based on the improved crystal-graph convolutional NNs of reference [30] is excellent and
around one order of magnitude better than in earlier composition-based works.

One recent development is the inclusion of uncertainty in the prediction [27]. Uncertainty estimates allow
for AL and for an informed decision on the candidate materials predicted by the models. Goodall and Lee [27]
also reports an improvement in the prediction error when using a loss function that includes information on
the aleatoric variance. The epistemic variance is usually approximated through a Monte-Carlo estimate, either
by using an ensemble of models or by including active dropout layers. There is one large group of models that
is based on experimental instead of theoretical data. Unfortunately, the number of experimentally realized
systems is very limited, and is dwarfed by the available theoretical data.

1.3.2. Current and future challenges
All theoretical solid-state databases, and consequently all discussed ML models, rely on the
Perdew–Burke–Ernzerhof functional [34]. Since the development of this density-functional, 25 years
of research have brought progress that has been largely unused. Upgrading to a new functional such as
SCAN [35], that provides better formation energies, requires recalculating all convex hulls, a computationally
expensive but perfectly feasible task with today’s supercomputers.

So far, we discussed various algorithmic approaches to predict the thermodynamic stability. Of course, the
amount and quality of data also plays a major role in ML. Early works [22, 23] usually used custom training
sets calculated for each high-throughput study. Nowadays, most models are trained either on the materials
project database [36] or the open quantum materials database [37]. Unfortunately, these databases are not
fully compatible with one another due to different calculation parameters. The former is relatively small and
includes mostly stable or almost stable materials. The latter is larger and contains a more varied distribution of
materials. The largest database is by far the automatic FLOW (AFLOW) database [38] with 3.3 million com-
pounds. There are furthermore few publicly available datasets, each containing several hundred thousands
entries [23, 39]. Combining all these data should allow for the use of datasets that will be one order of mag-
nitude larger than current ones, enabling consequently more reliable predictions of thermodynamics stability.
This is a timely, but unfortunately far from trivial task. Concerning the algorithmic development, the obvi-
ous challenge is to harness the accuracy of message-passing models to predict stable materials by developing
versions that do not rely on relaxed geometries.

1.3.3. Advances in science and technology to meet challenges
The developments in ML algorithms to discover new stable materials follow a path similar to the one of nearly
all other fields of AI during the last 70 years. In fact, models that leverage computation more efficiently and
are able to learn from large amounts of data have replaced, and by now dominate, algorithms based on human
intuition and understanding. This is true in the fields of image recognition, natural language processing, strat-
egy games (Go, chess, StarCraft II), etc. Sutton called this the ‘bitter lesson’ [40]. Consequently, we should
focus on developing methods and datasets that let us use effectively the enormous potential that modern com-
puting offers. On the one hand, this requires maximizing the amount of data. Unfortunately, at the moment,
the majority of calculations performed in high-throughput studies is thrown away. For example, DFT results
for unrelaxed structures can and should also be kept for training ML models. This would require developing
structure sensitive models that can take advantage of the extra data and circumvent calculations of relaxed
crystal structures.

1.3.4. Concluding remark
Finally, and maybe most importantly, we have to realize that all developed models are just tools that should
be combined and further applied to explore the chemical space of possible compounds, instead of being left
unused after being developed.

1.4. Learning rules for materials properties and functions
Mario Boley1 and Matthias Scheffler2

1Monash University, Australia
2The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt

Universität, Berlin, Germany

1.4.1. Status
In materials science and engineering, one is typically searching for materials that exhibit exceptional perfor-
mance for a certain function, and the number of these materials is extremely small. Thus, statistically speaking,
we are interested in the identification of ‘rare phenomena’, and the scientific discovery typically resembles the
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Figure 6. By mapping materials (depicted as squares) into spaces defined by relevant ‘materials genes’ we can identify regions
where materials exhibit desired exceptional properties. Depending on the employed AI methods, such regions can be given by
simple Boolean conditions (dashed line) or in terms of more complex analytic ‘descriptor’ functions (here, d1, d2) of the genes
(solid line). Typically, the space of relevant genes will have a much higher dimensionality than two.

proverbial hunt for the needle in a haystack. Let us illustrate this with a ‘classical’ example, i.e. searching for
materials that are very robust, highly transparent, and at the same time have a high heat conductivity. In the
immense space of structural and chemical materials, there is one strong high-performance candidate: carbon
in the diamond structure. Hardly any other material comes close. And from a thermodynamic perspective, this
material is not even stable but metastable. As we understand the mechanisms behind the mentioned proper-
ties, we trust the conclusion that diamond is the exceptional champion of the issued search. But how can we
reliably find materials that exhibit exceptional performance for functions in general, for example, for catalysis,
photovoltaics, or batteries? All searches face the following situation [41]:

• The number of possible materials is practically infinite.

• The electronic and atomistic processes that rule a desired materials function are many, and their con-
certed action is typically highly complex and intricate, resulting an immense number of possibly relevant
mechanisms.

• The number of data that are ‘clean’ (comprehensively characterized and high-quality) and relevant for
the function of interest are typically very low.

Under these daunting conditions we aim to identify the rules that govern the rare phenomena correspond-
ing to particularly exceptional materials. Such rules describe regions in materials spaces that are relevant for
the function of interest (see figure 6). In analogy to biology, the basic physico-chemical parameters entering
these rules may be called ‘materials genes’, as they are related to processes that trigger, actuate, or facilitate,
or hinder the property of interest. In particular, we are interested in such regions that (1) contain exclusively
or at least predominantly materials with desired properties and (2) are described in a way that allows us to
efficiently sample from them new synthesizable materials. Publicly shared materials databases and AI methods
have enabled encouraging progress [41] towards this goal (see figure 7 as an example) [42]. However, critical
challenges remain.

1.4.2. Current and future challenges
Most available data science and ML methods are fundamentally unsuited for the required identification of rare
phenomena. Firstly, they typically aim to fit a global model to the available data by minimizing the ‘regularized’
average error. This focus on average global performance not only puts importance on accurately modelling
the hay instead of the needles. Even worse, regularization means to deliberately avoid modelling the extra-
ordinary for the sake of avoiding overfitting. Secondly, as pointed out by Ghiringhelli et al [43], off-the-shelve
methods cannot reliably identify meaningful and trustworthy rules that describe exceptional materials, because
they implicitly or explicitly rely on descriptors (also called representations) of materials that are either too
restrictive (because they are hand-picked) or too unrestrictive (e.g., in the case of deep learning) and thus
model ‘non-physical’ relations likely unrelated to the materials genes of relevance.
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Figure 7. Map of catalysts given by the SISSO model for the selectivity of propane conversion to acrylic acid. For details see
reference [42]. The desired high selectivity situation is colored dark blue. The materials used for deriving the descriptors are
indicated by the black lines. The function d1

S is quite complex, identifying the macroscopy material, i.e. its basic properties
(e.g. composition) as well as its porosity etc. VPPmodified is a suggested material that would result by changing some materials
parameters of the VPP material. In general, however, the relationship ‘real materials’→ d1

S is not efficiently invertible.

Using symbolic regression and compressed sensing, the sure independence screening and sparsifying oper-
ator (SISSO) approach [44] alleviates this problem by identifying descriptors consisting of typically only a few
analytical functions of relevant materials genes. Based on its physical plausibility and robust empirical per-
formance, we can say with some confidence that this approach successfully identifies rules satisfying our first
criterion: the description of regions that predominantly contain desired materials. A remaining problem lies
in the second requirement: our ability to efficiently sample interesting novel materials. Rejection sampling can
be employed to generate candidates if the considered materials class is small, e.g., binary systems restricted to a
few crystal structures. However, this does not scale to the vast design spaces relevant for general searches. The
central challenge is that SISSO similar to other commonly used descriptors are not efficiently invertible. While
representing materials through their genes enables us to discover reliable rules, many points in gene space do
not correspond to real materials, and this complicates the direct generation of new candidates from a specific
region.

1.4.3. Advances in science and technology to meet challenges
An important alternative approach to rule identification is subgroup discovery (SGD) [45]. Similar to SISSO,
SGD also describes non-linear relations between materials genes and properties. However, in contrast to SISSO,
the SGD rules are given as Boolean conjunctions of conditions on individual genes. This means that the
described regions in gene space are simple axis-parallel (hyper-)rectangles, which makes it easier to generate
novel materials from them: while, as above, most combinations of the gene values may not correspond to real
materials, axis-parallel conditions allow to decompose the generation process into simpler steps by considering
conditions on decoupled genes independently.

Unfortunately, currently available SGD methods are, not designed to describe rare phenomena. They are
based on ideas from confirmatory statistics (significance testing) to derive final conclusive results from a given
dataset. To assure results that are significant for the data at hand, they prioritize the detection of relatively
frequent phenomena. Fortunately, in the context of materials science, this extremely conservative approach of
one-shot correctness can be relaxed. Since we have computational methods that can obtain accurate new data
with reasonable efficiency, we can aim for an approach where pattern discovery and first-principles methods
work in unison to facilitate rapid scientific discovery.

Borrowing ideas from Thompson sampling and Bayesian optimization [46], such rule discovery methods
should propose rules that are reasonable candidates to describe the rare material champions and then obtain
new simulated data from the proposed regions to validate or falsify this proposal. By repeating this process,
we iteratively arrive at new regions where desired materials are more and more likely to be found. Instead of
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one-shot correctness, this approach aims to identify the desired rare phenomenon as soon as possible in this
iterative process by optimizing an exploration/exploitation trade-off38.

This compelling vision provides a clear agenda of statistical and algorithmic problems to tackle: firstly, we
need a sound selection mechanism for hypotheses about rare phenomena that appropriately compromises
between the value of a rule and the likelihood that it can be confirmed by future data. Secondly, we need
efficient algorithms that find optimal regions based on this selection mechanism.

1.4.4. Concluding remarks
In summary, publicly shared materials data and AI code, as provided by the NOMAD AI Toolkit [47], as well
as physically plausible representations based on materials genes (like the ones used in SISSO and SGD) have
facilitated progress towards identifying rules that describe desired materials. So far, however, all approaches are
lacking either the ability to consistently describe only promising materials or the ability to efficiently gener-
ate them—at least at the ultimately required scale. To advance further, challenging statistical and algorithmic
problems have to be solved, but there are promising starting points: the combination of Bayesian approaches
to multiple hypothesis testing [48] as well as the versatile branch-and-bound approach [49] to discrete opti-
mization stands a good chance to enable the envisioned methods. However, due to their reliance on adaptively
generated new data, their development will require a concentrated interdisciplinary effort between materials
and data science.
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1.5. Deep learning for spectroscopy
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1.5.1. Status
Spectroscopy is a fundamental tool in materials research, characterisation and discovery, and has consequently
become a major objective of ML tasks. Here, deep learning based on NNs is a particularly powerful approach.
NNs are universal approximators since they have the ability to represent almost arbitrarily complex relation-
ships, as found in spectroscopy between materials properties and spectra, given the right architecture, enough
neurons, layers (depth) and training data. Deep learning has celebrated first successes in spectroscopy by
correlating the electronic structure and spectral properties of materials to their atomic structure39 [50–52],
functional properties [53, 54] and synthesis parameters [55, 56].

Deep learning for spectroscopy pursues two parallel goals (figure 8(a)): spectra prediction (typical in compu-
tational studies) and property inference (typical in experimental approaches). Successful NN spectra predictions
allow us to cut down on the time and resources behind computational or experimental spectroscopy. Trained
on available input (e.g., atomic structure or materials attributes) and output (e.g., spectra or spectroscopic
quantities) pairs, the NN can make output predictions for new input instantaneously, without further resource
requirements [50–52] and directly, without first computing the PES as discussed in section 2.3 of this roadmap.

In property inference tasks, data input and output are reversed to echo spectroscopic applications. NNs
predict materials structure and properties from spectral input, or classify the inputs into different categories.
Spectroscopy input can come in the form of spectra or spectral images. This approach to deep learning spec-
troscopy has, for example, been applied to extract structure information from core level [55, 56], nuclear
magnetic resonance [57], vibrational [58] and Raman [59] spectroscopy, to identify cancerous cells or micro-
bial pathogens from Raman and infrared spectra [53, 54] and to detect faulty photovoltaic modules from
electroluminescence images [60].

The first deep learning spectroscopy attempts were made 30 years ago [61, 62], but the influx of mod-
ern deep NN architectures has provided a notable research boost in the last 3 to 4 years. To unlock the full
potential of deep learning for spectroscopy, several challenges have to be overcome. NNs could then become

38 Here, ‘exploration’ refers to sampling from regions where one is still uncertain about materials performance, and ‘exploitation’ refers
to sampling from regions with relatively strong and certain materials performance.
39 Atomic motion can be included by incorporating it in the spectral training data through, e.g., molecular dynamics or electron–phonon
coupling.
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Figure 8. Deep learning spectroscopy paradigm (a) and workflow (b).

a staple in theoretical spectroscopy for fast and accurate spectra generation enabling high-fidelity and high-
throughput excited state research. They could be directly integrated into spectroscopic hardware from work-
bench instruments to large scale infrastructures (e.g. synchrotrons) to aid diagnostics and data analysis and
facilitate data-driven science [63].

1.5.2. Current and future challenges
A typical deep learning spectroscopy workflow is shown in (figure 8(b)). Each step from data acquisition,
choice of materials representation, NN design and training, to testing and prediction, presents its own chal-
lenges. To advance the current state-of-the-art, we must address the issues of raw data availability, material
representation and its invertibility, as well as model interpretability, uncertainty and scalability (figure 9).

Deep learning networks typically contain a large number of neurons, with parameters that must be learned
during training. Although deep architectures provide the NNs with the flexibility to learn the complex rela-
tionships encountered in spectroscopy, parameter fitting requires extensive training data. Open data sets and
data infrastructures are emerging in the natural sciences and engineering [60], but spectroscopy data is scarce.
The challenge of data-hungry NNs needs to be addressed by data availability (or better data abundance), as
well as more data efficient network architectures and training protocols.

A more conceptual challenge is related to materials representations, data frameworks that encode material
microstructure and properties into the NN. While representation design is an active research field, it is unclear
which representation types produce the most accurate and transferable deep learning models. Further invert-
ibility problems arise when a representation is inferred from spectra instead of materials properties [56, 57].
This presents an obstacle to inverse prediction tasks, which now require an additional reconstruction step to
retrieve the desired properties from the deep learned representation.

From the technical viewpoint, model scalability, interpretability and uncertainty stand in the way of rapid
development. Deep learning spectroscopy requires big data, placing a burden on our computational infras-
tructures in both data computation and model fitting tasks. The learning process in NNs is arithmetical and
abstract. Interpretability relates to the human desire to extract physical insight from NN models, and gain
a better understanding of deep learning so we can make systematic improvements. NNs are also lacking an
intrinsic measure of model uncertainty to indicate confidence in any individual prediction. Equipping deep
learning approaches with additional information about the model, such as uncertainty, would allow us to
systematically improve both spectroscopy datasets and learning quality.
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Figure 9. Deep learning spectroscopy challenges (in yellow) and scientific and technological advances (in white) to address them.

1.5.3. Advances in science and technology to meet challenges
Emerging solutions to the outstanding problems are illustrated in (figure 9). To overcome the current data
scarcity in deep learning spectroscopy, ongoing simulation work is contributing open-access datasets [64],
with experimental data delivered by open-source digitalization workflows developed for, e.g. multidimensional
photoemission spectroscopy [65]. In the future, curated spectroscopy datasets should be made available to
the community by open-science data infrastructures [63], and data acquisition workflows should be directly
integrated into the instrumentation to facilitate routine data digitization in spectroscopy.

Multi-fidelity ML techniques, including transfer learning (TL), have the potential to address both data
availability and scalability issues. In these hierarchical approaches, learning is based on ample but approximate
low fidelity data and refined with costly high quality data points. Advances in multi-fidelity applications [66]
promise to accelerate spectroscopy research: abundant data from a data-rich spectroscopy technique could be
used to reduce the number of required acquisitions from a resource-intensive experiment or computational
method.

The challenges associated with materials representation and the invertibility of deep learning can be mit-
igated by feature engineering. Feature engineering refers to the design of data representations for optimal
learning, a subject of active research. Incorporating domain knowledge and constraints (e.g. invariances,
uniquenesses or invertibilities) into this process would facilitate smaller network architectures and faster learn-
ing. Moreover, automated feature generation (by, e.g., a preceding NN) could produce even more compact
representations or reveal features that were previously hidden to human researchers.

From the technical viewpoint, model scalability, interpretability and UQ can be addressed by innovative NN
design. TensorFlow or PyTorch for Python or Flux for Julia provide examples of well-developed deep learning
libraries that can facilitate the implementation of more complex learning frameworks. These deep learning
software libraries, coupled with upcoming GPU architectures and hybrid GPU/CPU computing platforms,
will allow us to build on current studies towards larger datasets and novel applications.

With the help of ensemble learning, we are finally gaining insight into deep learning. Using the same data to
train multiple models at the same time reveals model variability and thus uncertainty, which can be exploited
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to improve datasets and enhance learning. Ensemble learning, feature engineering, NN architecture design and
multi-fidelity learning provide us with a method portfolio for tracking information uptake and processing in
NNs, ultimately facilitating the interpretability of deep learning models.

1.5.4. Concluding remarks
Deep learning spectroscopy has become an exciting research field, brimming with innovative ideas and
approaches that are employed across different types of spectroscopy. We are fast approaching generalised and
transferable pre-trained models for fast predictions and industrial pre-screening. Through ongoing work,
we will be able to correlate computational spectra to experimental data, facilitating the interpretation of
spectroscopy signals and accelerating applications.

In the future, robust, possibly pre-trained and easy to use deep learning spectroscopy software needs to be
developed for non-experts and integrated into data infrastructures or spectroscopy instruments or facilities. In
time, the accumulation of studies across different research fields could make it possible to establish correlations
between different types of spectroscopies. All spectroscopic responses of materials are governed by the same
QM foundations. Accessing this complementarity with deep learning will allow us to combine the strengths of
different spectroscopy techniques and usher in a new era in materials characterisation.
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1.6.1. Status
Disordered materials—characterized by extreme structural and chemical disorder—remain a critical focus
for research and development. Metallic glasses couple enhanced mechanical properties—such as greater
strength and corrosion resistance than their crystalline analogs—with plastic-like processability, advancing
applications such as precision gears, sporting goods, and medical devices [67–69]. Chalcogenide glasses can
exhibit rapid amorphous-crystalline transitions, with corresponding optical contrast changes that are use-
ful for phase-change memory devices [70]. High-entropy solid-solutions, having several components near
equimolar concentrations, offer excellent strength/ductility combinations, robust thermodynamic stability,
and often properties surpassing those of the constituents [71].

ML and data-driven surrogate modeling have enabled many recent discoveries in disordered systems. Perim
et al proposed a spectral glass-forming-ability descriptor based on the energy distribution of distinct struc-
tural phases (figure 10(a)), inspired by Greer’s ansatz of necessary structural confusion during cooling [67].
The work was extended in two other studies: (i) a generalization of the descriptor for ternary compositions
(figure 11(a)) [68] and (ii) the creation of an automatic phase diagram reader analyzing the eutectic angle—a
proxy for its depth—for 200 chemistries with 385 eutectics (figure 11(c)) [72]. Ren et al employed the feedback
between ML and high-throughput experiments, incorporating synthesis path information, to guide the dis-
covery of metallic glasses (figure 11(d)) [69]. Recently, Kusne et al combined databases, ML, and experiments
through a closed-loop autonomous framework and directed it to the Ge–Sb–Te ternary system, resulting in
the discovery of a new phase-change memory material [70].

Another spectral descriptor, the entropy-forming-ability, was proposed by Sarker et al to quantify acces-
sibility of random configurations in solid solutions. It led to the discovery of six high-entropy, high-hardness
carbides [73]. The descriptor was extended within the Lederer–Toher–Vecchio–Curtarolo approach incor-
porating random configurations into a mean-field statistical model where order parameters predict the
order-disorder transitions [74]. Rickman et al used canonical-correlation analysis and a GA to find new
high-hardness multi-component alloys (figure 11(b)) [75]. Grabowski et al developed an approach to com-
pute vibrational free energies of multi-component systems accounting for anharmonicity that combines
thermodynamic integration and an ML potential, outperforming existing approaches in efficiency and
accuracy [76].

1.6.2. Current and future challenges
The search space for disordered systems is ever-growing. The ‘N + 1’ theorem demonstrates that, statisti-
cally, the tendency to form ordered compounds is overtaken by the configurational entropy associated with
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Figure 10. Illustration of the thermodynamic density of states motivating the glass-forming-ability and entropy-forming-ability
descriptors as formulated in references [67, 73], respectively. (a) The thermodynamic density of states is the energy distribution of
unique structural phases having a fixed composition. (b) If the set of structural phases are of different lattices (off-lattice), the
distribution captures structural ‘confusion’ during solidification, quantifying the glass-forming-ability [67]. Alternatively, if the
structural phases are enumerated derivative structures (on-lattice), representing e.g. random ordered approximates, the
distribution captures the accessibility of these configurations, quantifying the entropy-forming-ability [73].

a rising number of species, making disorder unavoidable [71]. Because the size of the search space renders
trial-and-error experimentation and computational analyses difficult (even in the most efficient and high-
throughput workflows [69–71, 73, 75, 76], see for example AFLOW in section 4.2), there is a need for effective
and interpretable entropy-, kinetic- and synthesizabilty descriptors. Glasses are particularly challenging, as
their formation is strongly influenced by processing [69] and they lack an underlying lattice on which to build
configurational thermodynamics [67].

Understanding properties at operating conditions is also critical [70, 74, 75]. Overcoming a zero-
temperature formalism requires calculation of the vibrational free energy [67]. The increasing chemical com-
plexity is a major obstacle for computational accuracy (≈1 meV atom−1) as the number of parameters needed
to fit reliable ML potentials quickly becomes prohibitively large [76].

The quality and availability of data controls the rate at which predictive models can be constructed. Much
of the relevant data is published in non-standard tables and graphs, such as phase diagrams having labels
difficult to interpret in an automatic fashion (figure 11(c)) [72]. Beyond accessibility, approaches relying on
experimental data, while valuable, are often limited in scope, having narrow domains of applicability with
regards to chemistry and stoichiometry [67, 73, 74]. Experimental data is also biased toward positive results
(e.g. formation of a single phase), whereas ‘negative’ results (phase decomposition) are often not published
[73]. Generally, ML models are excellent interpolators and poor extrapolators, calling into question whether
they are suitable for the task of true-knowledge discovery. For the vast search space of glass formers and high-
entropy materials, the construction of sufficiently trained and interpretable ML models remains an ambitious
challenge considering the abundance of data required to capture the full set of chemistries, stoichiometries,
and kinetic processes.

1.6.3. Advances in science and technology to meet challenges
Construction of open-access databases, both experimental and computational, will accelerate the development
of ML and surrogate models, improving accuracy and widening applicability. Data accessibility and content
are crucial. Application programming interfaces (APIs) enable automatic retrieval of data, allowing for rapid
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Figure 11. Various examples of ML applications to disordered systems: (a) an illustration of how the structural confusion
concept determining glass-forming-ability was generalized for ternary compounds [68], (b) a visualization of the correlation
matrix of features (predictors P1 to P8) used to predict hardness [75], (c) an illustration of discernible features captured by the
pattern recognition software developed to analyze phase diagrams [72], and (d) an active-learning workflow between ML and
high-throughput experiments [69]. (a) Reprinted from [68], Copyright (2019), with permission from Elsevier. (b) Reproduced
from [75], CC BY 4.0. (c) Reproduced from [72], CC BY 4.0. (d) Reproduced from [69], CC BY-NC 4.0.

(re)training of models as algorithms and parameters are optimized and new data is made available. Standard-
ization of simple query syntax and data structures will facilitate integration of data from multiple sources.
Metadata provides necessary context for measurements and calculations—allowing researchers to integrate
datasets—and should include details such as temperature/pressure/compositional ranges, classification cri-
teria, models/equations, grid densities, and calculation parameters. Efforts should be made toward exposing
graphical data in machine-processable formats (e.g., phase diagrams, x-ray diffraction patterns), and making
available data not typically published (‘negative’ results) that would help validate models.

The curse-of-dimensionality—a reference to the overwhelming number of feature combinations conceiv-
able—ensures that intelligent descriptor development (e.g., via surrogate features) will continue to play a
vital role in modeling over brute-force feature enumeration. Quantifying concepts/insights such as Greer’s
‘structural confusion’ and Turnbull’s ‘deep eutectic’ in glasses, while also incorporating thermodynamic
descriptions, will expedite discoveries.

Above all, integration of active-learning workflows is expected to have the biggest impact in modeling. A
bidirectional feedback mechanism between ML models and experiments/calculations has shown great promise
in accelerating materials discovery and property calculation [69–76]. In one case, a science-over-the-network
infrastructure automates most aspects of the prediction-to-experimental-validation workflow [70], allowing
for each trial to inform the next until the target is achieved. In another case, a model predicting properties of a
material (e.g., an interatomic potential) employs an extrapolation-grade to assess whether a new input (con-
figuration) deviates too far from the training set, indicating the need to expand the training set and triggering
a subsequent rebuilding of the model [76]. The approach offers a systematic path to discovery and desired
predictive power while avoiding the need to build arbitrarily large training sets.
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1.6.4. Concluding remarks
Structural and chemical disorder provides access to unexpected properties, useful for many valuable tech-
nological applications. Still, its direct modeling remains challenging. Yet, advancements in ML are narrow-
ing the gap. A combination of automation, development of databases/APIs, and new infrastructure linking
ML models with high-throughput experiments have given rise to active-learning workflows. Human input is
reduced to optional expert intervention, critical as delocalization becomes prominent. Active-learning inher-
ently overcomes the extrapolation limitations of ML, exposing deficiencies in training data at each step and
self-correcting with new measurements/calculations. The approach has shown to be the most effective way
of generating new data, improving models, and exploring large spaces—like those where future, better-
performing glass formers and high-entropy materials are expected to reside.
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2. Construction of accurate force fields and beyond

2.1. Machine learning for molecular quantum simulations
Alexandre Tkatchenko

University of Luxembourg

2.1.1. Status
The employment of ML approaches is transforming the field of molecular simulations (MS). This is par-
ticularly true for QM modelling, given the high computational cost of explicit first-principles calculations
for solving the Schrödinger equation (SE) for systems of interacting nuclei and electrons. The widely quoted
dilemma of MS consists of selecting an approximate QM method that provides sufficient accuracy and yet is
computationally tractable to carry out sufficiently long molecular dynamics simulations for a system of inter-
est. The ultimate goal of developing quantum machine learning (QML) approaches is to abolish this dilemma
and achieve the accuracy of high-level QM methods in MS at the computational cost comparable to classical
mechanistic force fields. As a community, we are still far from achieving this goal, nevertheless many seminal
contributions in the past decade have pushed the QML field to the forefront of molecular simulations [77, 78].
For example, QML methods can now identify new phases in amorphous materials [79], allow carrying out
molecular dynamics of medium-sized molecules with essentially exact QM forces [80], and offer unprece-
dented statistical insights into chemical environments [19, 81, 82]. Up to now, most of these applications were
done under idealized conditions (small molecules in vacuum or solids under controlled conditions of temper-
ature and pressure). Future work should concentrate on enabling tighter embedding of molecular simulations
and ML methods [83], combining QM and statistical mechanics via ML algorithms, developing universal ML
approximations for covalent and non-covalent molecular forces, and developing algorithms for targeted explo-
ration of large chemical spaces of reactants, products, and transition states. Obviously, all of these advances
should be continuously assessed on growing community-curated datasets of validated microscopic and macro-
scopic properties. The most remarkable aspect of ML techniques is that their statistical view on molecular
properties often enables asking new questions and obtaining novel insights into MS. For example, ML analysis
of large swaths of chemical space leads to discoveries of molecules with unexpected properties [82], offers hints
for new chemical reaction mechanisms [84], or even suggests new physicochemical relations [85]. Such novel
discoveries are often made by interdisciplinary teams of researchers that are able to combine their knowledge
of physical laws and constraints, chemical intuition, and sophisticated ML algorithms.

2.1.2. Current and future challenges
The main challenge of QML is to develop universal models that are able to predict arbitrary QM properties of
molecules and solids (total energy, atomic forces, multipoles, polarizabilities, gaps) while being as data efficient
as possible. The traditional ML approach of using big data to increase performance is helpful but insufficient
given that nucleoelectronic systems have many symmetries and invariances that need to be satisfied, and in fact
substantially help, when predicting their QM properties. For example, many existing QML models are rather
successful when predicting extensive properties (atomization/cohesive energy or polarizability), but they are
much less accurate for predicting intensive electronic properties (electronic gaps, excitation energies). This
creates a new dilemma for further development of QML methods: the ML models need to incorporate more
physical knowledge (‘quantumness’), while also being fast to evaluate and applicable to increasingly larger and
more complex systems, as well as to a wider set of electronic properties.
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Another pressing challenge is that ML-driven molecular simulations should strive toward achieving real-
istic complexity. Investigations using highly accurate QM methods normally require overly simplified model
systems while more realistic model systems necessitate less accurate but computationally efficient MS meth-
ods. This compromise should no longer be necessary. We are due for a paradigm shift in how thermodynamics,
kinetics, and dynamics of systems in complex chemical environments (e.g. for multiscale biological processes
like drug design and/or catalytic processes at solid liquid interfaces under photochemical excitations, etc) can
be treated more faithfully with less approximations.

Many further challenges exist that have led or will lead to mutual bidirectional cross-fertilization between
ML and MS. The power of this path is that solving a burning problem in MS with a novel crafted ML model
may also result in unforeseen insights in how to better design core ML methods. Interestingly, the exploratory
usage of ML for knowledge discovery in natural sciences typically requires novel ML models and unforeseen
scientific innovations, and this can lead to interesting insights that are not necessarily limited to molecular
simulations.

2.1.3. Advances in science and technology to meet challenges
ML is a relatively new technology compared to decades of developments of QM and statistical mechanics
techniques in the field of MS. Hence, many complementary directions are being explored at the moment,
some of which lead to important advances. For example, hundreds of different representations (a necessary
input to any ML model) have been proposed to model interatomic interactions in molecules and solids. Most
of the available representations trade efficiency vs quality of the description. This situation can be compared to
the proliferation of different density-functional approximations (DFA) for electronic-structure calculations.
Eventually, the community should agree on a reasonably small set of useful and practical representations.

An emerging idea is to directly learn computationally efficient model Hamiltonians for electronic interac-
tions based on correlated wavefunctions, DFA, tight-binding, molecular orbital techniques, and/or the many-
body dispersion method. ML can predict Hamiltonian parameters and the QM observables would be calculated
via diagonalization of the corresponding Hamiltonian. The challenge is to find an appropriate balance between
prediction accuracy and computational efficiency to dramatically enhance larger scale simulations.

One important aspect that QML approaches enable is providing a novel perspective on exploring increas-
ingly larger chemical spaces for designing molecules and materials with desired properties. However, any such
exploration requires reliable QM data for a larger set of systems of interest. The recent emergence of compre-
hensive datasets (such as NOMAD, Materials Project, GDB, among others) is very welcome and this path of
creating validated, easily accessible, and trustworthy data should be further pursued.

2.1.4. Concluding remarks
Molecular simulations have been significantly advanced with ML approaches. However, many challenges
remain and solving them will require coming up with creative interdisciplinary approaches combining quan-
tum and statistical mechanics, chemical knowledge, and sophisticated ML tools, firmly based on growing
datasets that cover increasingly broader domains of the vast chemical space.

Many advances in this field required mixed teams with members educated in different aspects of physics,
chemistry, mathematics, and computer science. Going forward, this field also brings the need to solve the new
educational challenge of developing new generations of researchers with an academic curriculum that inter-
weaves chemistry, physics and computer science to enable a meaningful research contribution to the exciting
and emerging field of ML-driven molecular quantum simulations.
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2.2. Bayesian machine learning for microscopic interactions
Albert P Bartók

University of Warwick, United Kingdom

2.2.1. Status
A long-held promise of atomic simulation has been to serve as the ultimate toolset to predict physical prop-
erties and interpret experimental phenomena, thus capable of ab initio materials and molecule design. While
methodological, software and hardware developments have significantly increased the capabilities of QM pack-
ages, time and length scales necessary to capture multiscale phenomena are still out of the boundaries of
first-principle calculations. Traditionally, interatomic potentials have been proposed to represent microscopic
interactions in a computationally efficient way. The design of such potentials is typically based on theoret-
ical considerations, containing a small number of free parameters, which can be found from matching the
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Figure 12. Schematic representation of the GAP framework. Ab initio data collected on systems tractable by QM calculations and
GPR are used to fit models which can be evaluated for significantly larger configurations without loss of accuracy.

behaviour of the model to limited experimental or computed data. However, predictive capabilities of simula-
tions based on the fixed functional forms employed by traditional interatomic potentials, have proved severely
limited in all but the simplest cases, necessitating more flexible approaches.

The demand for adaptive models, capable of describing multiple bonding situations of the same material
simultaneously, suggests a significantly expanded parameter space, which necessitates larger amount of data to
determine the parameterisation. Thanks to the availability of reliable and efficient ab initio software packages,
microscopic data, as opposed to macroscopic observables, can be generated in abundance and utilised in fitting
flexible interatomic potential models. This had been recognised well before ML has become ubiquitous, and
formulated, for example, as the force-matching embedded atom model [86], the ReaxFF force-field [87], or
PESs for molecular systems.

ML interatomic potentials pushed this idea to the extreme, by disposing of most of the physics-based
considerations of the functional form, replacing it with a non-parametric regressor that imposes little or no
constraints on the mathematical form of the interaction, and relies chiefly on data. Gaussian process regres-
sion (GPR) is a Bayesian technique that imposes a prior in the form of a distribution of functions and uses
data as evidence to provide predictions [88]. Gaussian approximation potentials (GAP), see figure 12 [89]
represent a practical realisation of a ML potential, based on a combination of sparse GPR and a purpose-built
kernel called smooth overlap of atomic positions [90], which have proved highly successful in molecular and
materials science modelling.

2.2.2. Current and future challenges
The highly flexible form of GAP is both a blessing and a curse in that the physical behaviour of the model
is derived from data, therefore adequate data coverage is essential to constrain the interaction function at
all atomic environments that are sampled at conditions of the simulator’s interest. Even though it has been
demonstrated that general-purpose potentials for single-component systems can be generated [91], multi-
component systems remain challenging due to the significantly increased complexity of the configurational
space. To automate the data collection, iterative and AL approaches have been investigated, but it is impor-
tant to note that the computational cost of fitting GAPs increases linearly with database sizes. Although the
cost of evaluating a GAP is controlled by the sparsification applied on the data set, the number of represen-
tative points necessary to achieve an accurate fit is also expected to increase with the complexity of the PES.
It is reasonable to assume that generating GAP models of more complex materials, and especially disordered
phases, may become impractically expensive due to the (i) amount of ab initio data that needs to be computed;
(ii) GAP fitting procedure; (iii) GAP evaluation; or a combination of these.

Long range electrostatic and dispersion interactions, resulting from charge transfer and polarisation, pose
another challenge to ML potentials that are primarily optimised to capture the energetics of localised, chem-
ical bonding. Due to screening effects, the effective range of electrostatics may be significantly reduced, and
therefore the majority of the interaction may be captured by a local model, but this approach is, in general,
detrimental to transferability.

GPR has the advantage that the posterior distribution of the model is available, providing not only a pre-
diction for the mean, but the variance as well. In practice, however, the error estimate computed from the
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predicted variance has only been found to be quantitative for simple, low-dimensional fits, such as two- and
three-body interaction terms [92]. A robust error prediction would significantly aid the reliability of GAP and
other GPR based potentials, and also enable further automation of the potential generation process. Further
studies are required to understand the failure of the error prediction.

2.2.3. Advances in science and technology to meet challenges
Methodological improvements will need to address the current performance limitations of the GAP framework
when applied on complex, multicomponent materials. Recent studies demonstrated that feature selection tech-
niques can greatly reduce the computational cost of the evaluation of the potential, at a cost of a modest and
controllable loss of accuracy. The general ML community has achieved significant advances in sparsification
technology [93], which should be evaluated in the context of interatomic potentials and adopted where the
advantages are evidenced.

Fitting GAP potentials is computationally expensive, and for larger data sets memory requirements neces-
sitate specialised hardware. Developments, either methodological or concerning the software implementation,
should be directed to utilise standard parallel architectures, thereby speeding up fits and eliminate the need
for large memory machines. Not only would this democratise the fitting process, but it would allow exhaustive
hyperparameter optimisation, resulting in more robust and transferable potentials.

Currently two aspects of PESs, locality and smoothness, are explicitly built into the Bayesian prior of the
GAP framework. Neither is fully general, nor do they capture all the common features of atomic interactions.
Incorporation of more physical priors would improve transferability of ML potentials, reduce the amount of
data that is required for training and potentially increase the computational efficiency of evaluating the models.
A unified Bayesian model for long-range electrostatics would incorporate such a prior, resulting in improved
efficiency, accuracy and transferability. Similarly, short range repulsion from the Pauli exclusion principle is
a fundamental property of atomic interactions, but currently it is either learned from the data or treated via
a pair term, which is fitted separately. A prior encoding our physical understanding would be the Bayesian
solution.

Finally, these improvements of the GAP methodology and software would also revolutionise the workflows
for database generation. Currently a lengthy iterative process is required to generate the necessary data [94],
often exploring highly unphysical configurations. Elimination of incorrect bias from suboptimal hyperparam-
eters also depends on using large amounts of fitting data. A more restrictive, but physical prior would alleviate
this reliance on large databases, leading to quicker and more reliable fitting protocols.

2.2.4. Concluding remarks
Much beyond a proof-of-principle concept, ML interatomic potentials have matured to be utilised as tools to
gain, hitherto impossible, quantitative understanding of microscopic processes and to make accurate macro-
scopic predictions [95]. Challenges posed by complex potential energy landscapes can be addressed by further
developments of the ML framework, leading to more transferable and cheaper models that can be fit from a
small amount of data in an automated way. Closer integration of physical priors into the formalism can be
viewed as a step towards traditional interatomic potentials, but without the loss of generality and rigorous
mathematical treatment of regularisation.

2.3. Spectroscopically accurate potential energy surfaces (SAPES) from machine learning
Sergei Manzhos,1 Manabu Ihara1 and Tucker Carrington2

1Tokyo Institute of Technology
2Queen’s University

2.3.1. Status
Solving the SE describing the motion of the nuclei, and in particular calculating vibrational (e.g. infrared)
spectra, presents a stringent test for ML potentials, as spectra are sensitive to the global quality of the PES.
Comparing computed and experimental observables is the ultimate test of the quality of a PES, and thereby
the usefulness ML fitting methods. Errors at test points are less informative. To compute spectra with the
desired sub-cm−1 accuracy, PES errors must be much smaller (on the order of a cm−1) than those admis-
sible in MD and quantum reaction dynamics calculations (where PES errors of hundreds of cm−1 are not
uncommon) [96].

Some methods of solving the SE require a potential in sum-of-products (SOP) form [97, 98]. (NN, see
section 2.4 for a more general account of NN potentials) allow achieving a SOP naturally by using exponential
neurons [99]. The accuracy is competitive with alternative SOP schemes such a potfit [97], even when using
fewer terms [100]. The first NN spectroscopically accurate potential energy surfaces (SAPESs) were produced
by Manzhos and Carrington in 2006 and the methods can now be used routinely [96, 101, 102]. NN (and
other methods) have been combined with permutationally invariant polynomials (PIP) to ensure symmetry.
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It is important to ensure the correct symmetry to achieve a SAPES, although symmetry can always be restored
by averaging at symmetrically equivalent points. In reference [101], for the first time, SAPESs for CH4 were
constructed from the same ab initio data with different ML methods (NN, PIP-NN, interpolating moving least
squares) and full-dimensional variational calculations were used to assess the spectroscopic accuracy of the
PES. All methods resulted in PES errors (at test points) and spectrum errors of the same order of magnitude
(both on the order of several cm−1). PIP-based methods gave a lower PES error whereas NN gave a spectrum
slightly closer to the experiment. Structures and harmonic frequencies were practically the same.

More recently, GPRs were shown to produce spectroscopically accurate PESs from less data than required
by a NN for the same accuracy [103]. Combining both NN and GPR with a n-mode representation/high
dimensional model representation (HDMR) [104] can improve ML fits from sparse data and achieve SAPES.

2.3.2. Current and future challenges
Today, several ML methods (notably NN, GPR) can achieve SAPESs, with similar errors, in a routine and
black-box way for molecules with five or more atoms. However, truly comparative (using the same data and
computing spectra with accurate methods) studies of SAPESs are still scarce and more such studies are needed.
SAPES for larger systems remain a challenge but the challenge is shifting from building the PES to developing
methods for accurately computing spectra. The comparative study on methane [101] showed good accuracy
of the PES and the spectrum with all methods, but comparative data on other and less symmetric five-atomic
molecules are still outstanding. The comparative study of NN vs GPR also suggests that the PES error may
be much (by a factor of 50) larger than the spectrum error [103]. Judging the quality of a PES on the basis
of errors at a set of test points can be misleading. More comparisons of not only PES errors achieved with
different methods but of resulting spectra are needed to determine the best way of fitting a PES and typical
required test point errors.

This is related to another challenge—data distribution (sampling). Smart point selection schemes have
brought significant advantages to reactive PESs [96]. There are indications that significant benefits can be
reaped from point optimization when computing spectra [105, 106], but for SAPES this is yet to be explored
and used in applications. As sampling of multidimensional PESs is necessarily sparse, methods to avoid or
detect ‘holes’ (that significantly deteriorate the spectrum) are desirable.

A major challenge for SAPES construction remains molecules on surfaces or nanoparticles, which are of
importance to technologies such as fuel cells, industrial and photo-catalysis etc. Accurate computational spec-
troscopy has been largely absent from this field notably because of the lack of SAPESs, even though it is desired,
in particular, for accurate species assignment. Reported PES fitting errors for molecules on surfaces are rela-
tively high (%10 cm−1), which are compounded with the low accuracy of the underlying ab initio methods
(typically DFT with a GGA functional).

Recently, powerful black-box NN based methods have emerged that allow mapping between structure
(including atom types as well as positions) and properties that can also be used for PES construction [107];
however, their performance for spectroscopy is still not explored.

2.3.3. Advances in science and technology to meet challenges
To fully utilise the potential of ML in constructing SAPESs, further developments in methods of computa-
tional spectroscopy are needed that will allow calculations on five- and more-atom systems with exact kinetic
energy operators (KEOs) and arbitrary coupling. To construct SAPESs from very sparse data, combining a PES
representation with lower-dimensional functions, either via HDMR or via dimensionality reduction, and ML
are very promising [104], in particular, to reduce the risk of ‘holes’.

GPR has recently emerged as a powerful tool with several advantages over NN, achieving better accuracy
with fewer data (or requiring fewer data for the same accuracy). Being a non-parametric method with which
it is much easier to avoid overfitting (and ‘holes’), it also can deal with high-dimensional data (although
it becomes costly with more than ∼10 000 training data). Expanding the use of GPR can help address
the challenge of SAPES for molecule-surface systems precisely because it allows using fewer, and therefore
higher-accuracy, data.

In the next several years, ML combined with more accurate vibrational spectroscopy computational meth-
ods will be applied in solid state and on interfaces. Collocation [108] will make it possible to get accurate spectra
by considering a number of degrees of freedom without any limitations on the degree of coupling and the KEO,
and vibrational self-consistent field, because it is easy to apply, will provide more accurate spectra than a har-
monic approximation, in particular, by using an n-mode representation of the PES. ML will be used either to
build the entire PES or component functions in an HDMR representation. Experimental spectra of molecules
on surfaces are poorly resolved (∼1 cm−1) and probe only low-lying states, which reduces the required accu-
racy of the PES. It is also possible to avoid building SAPESs for surfaces and other difficult cases and instead to
use collocation and compute the potential at all the collocation points [108]. Most ML SAPESs used supervised
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ML. Unsupervised approaches are promising especially in the area of selecting optimal sampling points and
are awaiting in-depth exploration when applied for SAPES.

2.3.4. Concluding remarks
PES fitting is the bridge between the calculation of ab initio points and the application of a method for comput-
ing a vibrational spectrum. Having a fitted PES significantly reduces the number of required ab initio points. It
is now possible, and more importantly, easy to make SAPESs using black-box ML fitting methods. Previously,
it was necessary to develop physically motivated fitting functions for each problem. This requires knowing
much about the molecule for which one wants to fit a PES. Using ML methods obviates the need to tinker
with a fitting function and makes it almost trivial to build the bridge. This reduces the task of computing
a spectrum to choosing an ab initio method, running quantum chemistry calculations and then choosing a
dynamical method and computing the spectrum.
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2.4. High-dimensional neural network potential energy surfaces in chemistry and materials science
Jörg Behler

Universität Göttingen

2.4.1. Status
Machine learning potentials (MLP) have become an important tool for atomistic simulations in chemistry
and materials science, because they can provide energies and forces with the accuracy of electronic structure
methods at a small fraction of the computational costs. The first MLPs have been introduced about 25 years
ago by Doren and co-workers [109] employing ANNs. This first generation of NN potentials, which has been
explored by several groups in the following decade, demonstrated the high accuracy of MLPs but was still
restricted to low-dimensional systems depending only on a few degrees of freedom. MLP became applicable
to high-dimensional condensed systems containing thousands of atoms through the introduction of high-
dimensional neural network potentials (HDNNPs) by Behler and Parrinello in 2007 [110], which represented
the first example of a second-generation MLP. In this approach, which is common to many modern MLPs,
the total energy is constructed as a sum of environment-dependent atomic energies that in case of HDNNPs
are delivered by a set of atomic NNs. The underlying assumption about the locality of the atomic interactions
works surprisingly well for many systems, as long as the considered chemical environments are sufficiently
large. Still, in many cases long-range electrostatic interactions are important. These have been included in the
third generation of MLPs by making use of environment-dependent atomic charges, for instance expressed by
a second set of atomic NNs [111]. These charges are then used to compute long-range electrostatic interactions
by explicitly evaluating Coulomb’s law. Nevertheless, third-generation HDNNPs are still local and do not allow
to take global dependencies of the electronic structure such as non-local charge transfer or even changes in
the total charge of the system into account. These phenomena can be included in the fourth generation of
MLPs employing global charge equilibration techniques. A first method applicable to ionic systems has been
the charge equilibration NN technique [112], which has recently been combined with HDNNPs to yield a
fourth-generation 4G-HDNNP [113] that is applicable to a wide range of systems (figure 13).

2.4.2. Current and future challenges
In the past two decades, methodical advances have substantially extended the applicability of high-dimensional
NN potentials. Still, several challenges remain. A first challenge is the further incorporation of physical knowl-
edge, with the inclusion of electrostatic interactions in third- and fourth-generation HDNNPs being a first
step. For instance, currently a lot of work is in progress to also incorporate dispersion interactions, which rep-
resent a comparably small but important contribution to the potential-energy surface of many systems and can
also be rather long-ranged. Several approaches are possible to include dispersion interactions, which can either
be assigned to the third- or fourth-generation. It should be noted that both of these generations include long-
range interactions without truncation, while the central quantities like charges, or dispersion coefficients, have
a local or non-local dependence, respectively. Further interesting extensions could involve the charge density
or atomic spins, which might in the long-term perspective open the possibility to construct HDNNPs for the
simultaneous description of several electronic states.

Another challenge is the validation of HDNNPs and MLPs in general. While ML methods can reproduce
available data very accurately, they often have very limited extrapolation capabilities, and thus the knowledge
about the range of validity of a given potential is of vital importance. The central problem is that the validation
is most challenging in the absence of reliable reference data, while just in this situation quality control is essen-
tial. Therefore, improved methods for detecting unreliable predictions are needed. Estimates of the reliability
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Figure 13. Generations of NN potentials.

and the relevance of novel atomic configurations encountered in atomistic simulations can be made based
on ensembles of NNs [114]. Such AL strategies are a very important field of research [115], and connect the
validation challenge to the challenge of constructing suitable reference data sets. These sets should be as small
as possible to enable an efficient construction of the potential, while a large diversity of structures is needed
to achieve transferable potentials. The identification of the atomic configurations needed to cover the relevant
part of the potential-energy surface remains a crucial aspect of the development of all types of MLPs.

2.4.3. Advances in science and technology to meet challenges
The construction of MLPs is a very interdisciplinary field, which benefits from advances in many different
areas. Along with the progress in the construction of more reliable potentials as outlined above, the accuracy
of the underlying electronic structure calculations is becoming increasingly important, since MLPs cannot
be more accurate than the underlying data. While DFT calculations at the level of the generalized gradient
approximation are still dominant for condensed systems, it has been recognized that the level of hybrid func-
tionals would be desirable for many systems. The substantially higher costs of these functionals require further
advances in the efficiency of modern DFT codes as well as in computer hardware. Hence, the construction of
the reference data sets will remain the computational bottleneck in the development of HDNNPs.

In contrast to the comparably mature field of electronic structure calculations, the technology of ML algo-
rithms, which are nowadays penetrating every aspect of life, is advancing very rapidly. Many modern software
tools and libraries are now available and lower the barrier for entering the field of MLP development by facil-
itating the construction of potentials. In this context it is important to note that the classification scheme of
MLPs into generations is not fully applicable to all types of MLPs, including also some flavors of NN potentials.
An example is represented by message passing NNs like atoms-in-molecules network (AIMNet) [82], which
pass information about the atomic environments through the system. Consequently, the interaction range that
can be described is related to the number of passing steps does not depend on a fixed cutoff radius as employed
for instance in HDNNPs.

Another challenge concerns the development of suitable descriptors to characterize the atomic configu-
rations, which has been a fundamental problem of early NN potentials. With the introduction of second-
generation MLPs a breakthrough has been achieved [116], which resulted in descriptors compatible with
the mandatory rotational, translational and permutational invariances of the PES. Although many different
types of descriptors are available nowadays meeting these requirements, some fundamental limitations like the
unfavourable scaling with the complexity of configuration space in terms of the number of chemical elements
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remain unsolved. Therefore, with increasing possibilities to construct large data sets, a general solution of this
scaling problem is now becoming more and more urgent.

2.4.4. Concluding remarks
In summary, the development of high-dimensional NN potentials, like the development of MLPs in general, is
a rapidly growing field which has not yet reached its peak. Starting with first potentials suitable for rather small
molecular systems, over the years NN potentials have been extended to high-dimensional systems containing
thousands of atoms, now including long-range interactions based on atomic charges taking non-local charge
transfer and even different global charge states into account. All these developments have enabled simulations
of increasingly complex systems in almost all fields of chemistry, materials science, and even biomolecular
systems. Several challenges remain, like the construction of representative and high-level reference data, the
validation of the obtained potentials, and the derivation of improved descriptors for chemically more diverse
systems. In particular the inclusion of physical knowledge recently has received a lot of attention, and many
new interesting developments can be expected in the coming years.
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2.5.1. Status
In the area of ab initio molecular simulations, DFT calculations have become a workhorse of computational
organic chemistry. But we face a dilemma: standard computational algorithms for N-electron systems require
O(N2) storage and O(N3) arithmetic operations. This O(N3) complexity is a critical bottleneck that limits
capabilities to study larger realistic chemical systems and longer time scales relevant to the biological exper-
iments. One solution to these problems is the development of empirical potentials built with ML methods
[117]. The ML potentials have seen remarkable progress during recent years and have proven their ability to
accurately predict energies and forces of molecules when trained on a properly developed dataset.

Behler and Parrinello introduced the idea of HDNNPs [110]. In HDNNPs, the total energy of the system is
computed based on atomic contributions: Etot =

∑Natom
i=1 NNi(Gi) where Gi depends on the atomic coordinates

and the local environment within a given cutoff distance. The cutoff distance limits the interatomic interactions
with the neighboring atoms that are contributing to the structural fingerprints in the form of many-body
symmetry functions Gi. The Gi are constructed for every atom and are used as input vectors to the atomic NN,
which computes the energy contribution of the atoms to the total energy Etot. HDNNPs are trained to describe
one molecular system at a time. Therefore, one of the main issues of HDNNPs is transferability. The potential
needs to be retrained for every new application.

This problem has been addressed with the development of new methods that provide general-purpose
models like Accurate NeurAl networK engINe for Molecular Energies or ANI. In the ANI model, Smith et al
developed a modified symmetry functions Gi (Justin Smith symmetry functions or JSSFs) that allowed over-
coming these limitations for organic molecules [118]. ANI-1x model uses iterative AL procedure with training
to a large and diverse dataset of molecules [119]. The initial ANI models were developed for neutral organic
molecules consisting of four elements (HNCO). Subsequently, ANI-2x models were extended to seven ele-
ments (CHNOSFCl) [120] and even nine [82]. Overall, the ANI methodology provides a systematic approach
for generating atomistic potentials (figure 14). It drastically reduces the human effort required for fitting a
force field and automates their development. Using an NNP does not require one to choose a functional form.

2.5.2. Current and future challenges
Most NNPs, including ANI models (figure 15(a)), are inherently local in how they describe chemistry. Adding
missing long-range interactions is needed for an accurate description of realistic chemical systems. One route
to do this is to predict atomic point charges for modeling the long-range Coulomb potential.

Using multi-modal training, one can predict atomic charges together with energies and forces. The
‘AIMNet’ architecture (figure 15(b)) was inspired by the quantum theory of atoms in molecules. The AIMNet
lifts multiple limitations in NNPs. It encodes long-range interactions and learnable representations of chem-
ical elements. Several alternative approaches were also proposed in SchNet [121] and HIPNN [122] models.
The AIMNet model utilizes the idea of multi-modal learning, making a simultaneous prediction of differ-
ent atomic properties based on one common layer. This layer is enforced to capture the relationships across
multiple learned modalities and serves as a joint latent representation of atoms in the molecule.
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Figure 14. An example of the accuracy of the ML PES scans. Relaxed 2D torsion profiles for ANI-2x (left) and DFT (right). Two
dihedrals (shown in bold) were rotated about one another to generate the corresponding confirmations. The bonds composing
the scanned dihedrals are highlighted in bold. The middle columns show the MAE and RMSE respectively, of the relative energies
in kcal mol−1 between ANI and DFT. Reprinted with permission from [120]. Copyright (2020) American Chemical Society.

Figure 15. Several NN architectures for atomistic force fields. (a) ANI; (b) AIMNet; (c) AIMNet-NSE; and (d) ML-EHM. The
yellow blocks show input data (coordinates R, atomic numbers Z, total molecular charge Q) and output (energies E,
spin-polarized charges q, EHM diagonal matrix elements, α and empirical fitting coefficient K). The green blocks indicate NN
blocks for training and the blue blocks show mathematical transformations. Reprinted with permission from [124]. Copyright
(2021) American Chemical Society.

Most NNPs have so far been trained on only either closed-shell or open-shell structures and therefore can-
not correctly describe effects of spin and multiplicity. As the first step in this direction, recent work introduced
the AIMNet-NSE (neural spin-charge equilibration), figure 15(c) architecture to learn a transferrable poten-
tial for organic molecules in arbitrary charge states [123]. Conceptually the neural spin equilibration (NSE)
module serves as a neural charge- and spin-equilibration scheme by redistributing spin-charges through the
iterative procedure and making energy prediction based on the distribution of alpha and beta spin densities.
In contrast to the standard geometric descriptors, the AIMNet-NSE model incorporates adaptable electronic
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information into ML models. It could be applied as a fast and reliable method to compute multiple proper-
ties like ionization potential, electron affinity, spin-polarized charges, and a wide variety of conceptual DFT
indexes.

Another direction of NNPs model development is focused on capturing the correct physical behavior by
combining physical models with ML [124]. This so-called physics-aware AI models promise to improve gener-
alization by forcing ML models to obey physical laws and symmetries. The simplest of such models could be ML
combined with the extended Hückel method or ML-EHM (figure 15(d)). ML-EHM predicts a set of molecule-
and environment-dependent Hamiltonian elements to predict Frontier orbitals and energies approaching DFT
accuracy.

2.5.3. Advances in science and technology to meet challenges
One of the major concerns of ML force field development is the reference data used for training. The quantity
of data that can be used for training is limited due to the high computational cost of QM. Therefore, many
models are developed to address one specific application. This severely hinders the applicability of NNPs in
practice. This issue might be mitigated with advanced training strategies that take advantage of AL and TL.
These algorithms can help not only to decrease required reference data but also improve the accuracy of NNPs.
Training ML models for every QM method is also impractical. Developing multi-theory ML models and data
fusion is a critical bottleneck in constructing robust ML-accelerated QM methods. TL can be used to retrain
an existing model with additional training data to extend the domain of applicability.

Most of the NNPs available in the literature provide only deterministic predictions and cannot model
uncertainties. It is important distinguishing between at least two different types of uncertainty, often referred
to as aleatoric and epistemic. Epistemic uncertainty results from the lack of knowledge about the system and
could be addressed with the accumulation of more training data. In contrast, the aleatoric or statistical uncer-
tainty is associated with a model. The incorporation of probabilistic methods and Bayesian NNs will help to
capture inheriting model uncertainty.

An explainable ML model is also essential to understand, appropriately trust, and effectively develop a
proper physical model. Thus ML/AI models are expected to incorporate physics knowledge in their design and
architecture. This includes conservation laws, causality, symmetry, geometrical and topological properties,
constraints, and more. We envision that novel approaches will be able to interpret and highlight those physical
priors learned by the models. Next-generation analysis and design tools will help domain scientists think about
new ideas and find underlying physical laws in visual and straightforward, yet interpretable ways.

2.5.4. Concluding remarks
Recent years showed substantial progress in NNP development and their applications toward a variety of
molecular systems. They are promising to change the way how force fields are constructed. Atomistic ML
potentials offer accuracy comparable with QM methods but many orders of magnitude faster in many cases.
NNPs are already used to find reliable conformational energies for molecules, re-parametrizing existing force
fields, protein-ligand free energy calculations. But this power comes with great responsibility. Reflecting on
the famous quote attributed to Derek Lowe, ‘It is not that machines are going to replace chemists. It is that the
chemists who use machines will replace those that do not’. We are currently witnessing a transformation of chem-
ical sciences into a novel data-driven field. This requires deep methodological and cultural change coupled to
educational and workforce development programs at the professional, graduate, undergraduate, and even high
school levels.
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2.6.1. Status
Electronic structure calculations have progressed to a level of accuracy which makes modeling of atomic-
scale systems from first principles truly predictive. By computing energy and forces corresponding to the
ground-state Born–Oppenheimer PES they enable molecular dynamics simulations that explore the structural
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landscape, and assess the stability of different configurations. What is more, electronic structure methods pro-
vide a wide spectrum of properties available either as a by-product of the calculation or as a post-processing
step, so that the prediction of functional properties, electronic responses, and experimental observables are
available with similar accuracy and transferability to those achieved for the ground-state energetics.

Unfortunately, the high computational cost, and its steep scaling with the number of electrons included
in the simulation, limit the time and length scales that are accessible to simulations. The last decade has
witnessed the emergence of ML techniques to address these limitations, and to bring the accuracy of first-
principles methods to the types of simulations that are needed to model complex materials and molecules in
realistic conditions. Using the atomic identities and positions as inputs, appropriately processed to incorpo-
rate fundamental symmetries and physical insights, ML techniques make it possible to fit structure-property
relations using a very flexible functional form and a limited number of reference calculations. Once trained,
the model can be used to inexpensively predict the same kind of properties for any set of new, yet similar,
structures, paving the way to the calculation of thermodynamic observables that can directly be compared
with experiments.

Most of the established approaches, including the ones discussed in sections 2.1–2.5 of this Roadmap,
focus on the prediction of interatomic potentials [125]. As ML potentials are employed to make predictions of
more and more experimentally accessible materials observables, however, it is becoming increasingly impor-
tant to predict properties beyond just the PES. Without access to the full spectrum of electronic and functional
properties, ML falls short of being a complete replacement for electronic-structure calculations.

2.6.2. Current and future challenges
The most successful ML schemes share several common ideas. The use of translation and rotation invariant
descriptors of the local configurations mimics the invariance of the potential to these symmetry operations.
Furthermore, an additive decomposition of the energy in contributions from atom-centered environments,
localized by a relatively short-ranged cutoff, enables transferability between different system sizes and improves
greatly the data efficiency of the training step. This decomposition, although justifiable in light of the nearsight-
edness of electronic matter, undermines their ability to capture classical long-range effects such as electrostatic
interactions and polarization phenomena, as well to describe non-local quantum effects such as dynamical
electronic correlations.

Overall, it is still very difficult for ML models to replicate the ability of first-principles methods to predict
properties beyond the potential. One major challenge is that the common wisdom that the community has
developed to guide the construction of a good ML potential may not apply to other properties. Another, more
fundamental issue is that several properties have structure beyond that of a rotationally-invariant scalar. Ten-
sors and scalar fields, for instance, require a framework that reflects their covariance with respect to rotations
and/or translations. Likewise, spectral properties such as the electron density of states (DOS) or the dielectric
response (see also section 1.5) require simultaneous learning of multiple target observables, which also calls
for a model that is adapted to the structure of the target data. Being able to predict properties with non-trivial
geometric and algebraic nature opens the way to make better use of the ingredients of the electronic-structure
calculation, either as a learning target or as an integral part of the learning architecture.

In addition to the theoretical hurdles, there are still many technical challenges still hindering widespread
adoption of ML for general properties. A main priority is the development of software packages that treat
all properties on an equal footing and allow fitting and predicting them in tandem with the potential. The
generation of training data and the optimization of the computational cost of these calculations, are closely
related issues that will require a concerted effort across the community.

2.6.3. Advances in science and technology to meet challenges
Many active research lines aim to close the gap between the capabilities of electronic structure calculations and
their data-driven counterparts. The main strategy that they have in common is to adapt either the atomistic
features that are used as input, or the mathematical structure of the model itself to reflect the underlying physics
of the problem and the specific structure of the target property.

Rotationally covariant quantities, such as tensors and scalar fields, can be decomposed into a minimal
basis of irreducible spherical tensors, which can be learned with a corresponding set of covariant structural
features [126] or by building models endowed with a covariant architecture [127]. The efficient evaluation of
equivariant features that describe high-orders of interatomic correlations [128], and can achieve remarkable
levels of accuracy even using a simple linear model, is a promising research direction.

A second trend involves using electronic properties both as regression targets and as inputs—blurring
the lines between electronic-structure calculations and data-driven models. Not only has it become possible
to obtain accurate predictions of the ground-state electron density [129]: a new generation of orbital-free
density-functional approaches has been proposed using the density as an input to learn accurate electronic
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Figure 16. Prediction of the heat capacity of nickel by integrating a ML PES, to sample the nuclear motion, with a ML model of
the electronic DOS. The model gives experimentally-accurate predictions by including both nuclear and electronic degrees of
freedom. Note, however, that the heat capacity peak at the Curie temperature is not reproduced—showing that the ML model
could be further improved by including magnetic effects. Figure reprinted with permission from [133], Copyright (2021) by the
American Physical Society.

energies [130]. The data-driven treatment of other ingredients of an electronic structure calculation, such
as the two-center Hamiltonian matrix elements [131] (see also section 3.1) or the functional ansatz for the
wavefunction [132] (discussed in section 3.4), incorporates ML into methods that span the whole spectrum of
quantum chemical techniques. These predictions are also useful to compute physical observables: the electronic
contributions to the thermophysical properties of materials [133] (figure 16) and the electrostatic potential and
the interaction between molecular fragments [129] can be easily obtained from the electronic DOS and the
charge density.

To increase the accuracy of both potentials and property models, one can no longer avoid incorporating
long-range physics. This can be done by using models with an explicit physical structure, e.g. by comput-
ing the electrostatic energy of the system based on the prediction of local charges and multipoles [134]. Such
approaches have the advantage of including long-range electron correlation by virtue of enforcing the cor-
rect physics, as was recently shown in the case of the molecular dipole moment [135], or indeed by the
charge equilibration approach discussed in section 2.4. An alternative strategy to reach the same goal involves
including long-range correlations directly into the featurization. These models based on long-range features
have the advantage of being more flexible, without restriction to any particular model or target property. For
example, the multi-scale long-distance equivariants [136] use simultaneously an atom-density to describe the
local structure and an artificial potential generated by it (figure 17) to capture non-local behaviour with an
interpretable asymptotic limit.

Last but not least, software and data repositories must also be adapted to this new generation of inte-
grated models, providing better interoperability with electronic-structure packages, efficient implementations
of increasingly complicated featurizations and regression schemes, and standardized storage of properties such
as electron density and wavefunctions.

2.6.4. Concluding remarks
ML models have made great strides in reproducing and predicting the thermodynamic properties of mate-
rials at finite-temperature by approximating and sampling the QM PES. Integrated schemes that predict any
property accessible from electronic-structure calculations, and that unify ML predictions and physics-based
steps, combine the best characteristics of the two approaches, further extending the reach of atomistic simula-
tions. The fundamental challenge consists in finding the balance between the level of physical information that
is incorporated directly in the model and the data-driven flexibility needed to capture unexpected effects. The
description of long-range physics and of complex properties such as densities, tensors and matrix elements,
provide compelling examples of the potential of generally applicable, physics-inspired, and mathematically
sound ML schemes for atomic-scale modeling.
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Figure 17. Construction of a long-range representation of an atomic structure. (Left) An atomic density is constructed by
smearing atoms into Gaussian functions; the resulting density is expanded on a basis within a given localized cutoff about each
atom, missing long-ranged interactions. (Right) The field to be expanded is instead constructed from the Coulomb potential
generated by the (fictional) smeared atomic density, bringing true long-range information directly into the structural
representation. Reproduced from [136] with permission of The Royal Society of Chemistry.
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3. Solving the many-body problem with machine learning
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3.1.1. Status
The prediction of PESs and chemical properties with ML has become an established procedure for accelerating
electronic structure methods. While those models do not explicitly capture the electronic degrees of freedom
of the system, there has been a recent surge of ML being used in all aspects of quantum chemistry, such as
predicting the electron density, Hamiltonians and wavefunctions. These developments unlock the potential
for unified approaches that use ML as an integral part of electronic structure methods [137].

Physical knowledge is increasingly being built into atomistic ML models. This includes not only funda-
mental constraints, such as rotational and translational symmetries and energy conservation, but also repre-
sentations adopted from electronic structure methods. Examples for the latter include the use of Hartree–Fock
molecular orbitals for the prediction of higher levels of theory [138]. Similarly, MP2 features have been used
for the prediction of coupled-cluster amplitudes [139]. In this instance, ML provides a starting guess to accel-
erate convergence at the higher level of theory. Beyond that, incorporating physical regularities in ML mod-
els facilitates the representation of electronic structure. For example, the NN SchNOrb (figure 18) predicts
Hamiltonians in local atomic orbital representations common to most quantum chemistry codes [83]. Thus,
electronic structure data can serve as input to ML and the predictions can be fed back into quantum chem-
istry software. Density-functional tight-binding has been fused with ML to learn Hamiltonians [140, 141] and
repulsive energy contributions with improved accuracy and transferability [142].

Finally, there have been several approaches to solve the SE using a NN representation of the wave function.
For example, PauliNet [132] yields highly accurate correlation energies by using variational quantum Monte
Carlo (QMC) in combination with the NN potential SchNet (see section 3.4). These examples demonstrate
the potential of hybrid ML-electronic structure methods to not only accelerate but enable calculations at high
accuracy, without requiring unattainable amounts of training data.
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Figure 18. The SchNOrb NN predicts ground-state Hamiltonians in atomic orbital representations from atomic configurations.
This can be used to predict molecular orbital energies, wave functions and to provide input to quantum chemistry software [83].

3.1.2. Current and future challenges
The development of ML-enhanced electronic structure methods requires a thorough understanding of the
capabilities and limitations of both components for optimal symbiosis. In order for NNs to benefit from incor-
porating physical knowledge, it needs to be represented appropriately. For example, while nuclear charges
appear to be helpful to characterize atom types, high-dimensional embeddings have turned out to be more
effective in practice. Currently, the two major challenges of unifying ML and electronic structure methods are
obtaining efficient ML representations of electronic structure and generating suitable reference data.

To overcome the main bottlenecks of electronic structure codes, ML surrogates must be able to represent
central quantities such as electron density, wave functions and multi-centre/multi-electron integrals. Future
ML representations of these quantities may depart from common existing basis representations due to the
differing requirements of ML models compared to electronic structure theory [131]. For example, while cal-
culated properties such as orbital or state energies can be non-smooth with respect to nuclear positions, this
is highly problematic for ML approaches and requires careful consideration of representations that deliver
smooth functions in configuration space. Other issues arise when properties are calculated from wavefunc-
tions of different states. Since the wavefunction is only determined up to an arbitrary phase, sign changes need
to be controlled against a reference [143].

Another challenge is the prohibitive cost of computations to generate accurate reference data. In such cases,
divide and conquer approaches need to be used, partitioning the system using, e.g., a combination of different
levels of theory in a multi-scale strategy or by breaking the large system down into more manageable fragments.
Local atom or fragment-centred representations of electronic structure synergize well with such schemes and
offer the possibility of transferability and linear scaling with system size. However, it is not yet clear how they
can account for long-range, collective, or symmetry effects on system scales not accessible to the reference
method. The latter aspect is particularly problematic for the representations of systems that exhibit different
electronic and spin configurations, for example transition metal complexes or excited states [143].

3.1.3. Advances in science and technology to meet challenges
A necessary condition for the deep integration of ML and electronic structure codes is the definition of fast,
compatible interfaces with formalised communication and data standards. In this context, the modularization
of quantum chemistry packages is a recent development that needs to be further pursued (figure 19) [137].
While quantum codes are often implemented in Fortran, deep learning frameworks such as PyTorch or Ten-
sorFlow rely on C++ backends and the flexibility of Python. To achieve complete integration, automatically
differentiable electronic structure codes will be required for end-to-end optimization of ML components.

A promising route towards more transferable and scalable electronic structure codes is their combination
with basis representations predicted by ML. Those can be constructed either by pre-processing electronic struc-
ture reference data [131, 138], or by performing integrated representation learning. Previous design choices
need to be revisited and explored in combination with ML. This relates particularly to the trade-off between
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Figure 19. Schematic layout of highly modular electronic structure codes that are deeply integrated with elements of ML.
Reproduced from [137]. CC BY 4.0.

basis set size and the complexity of interaction integrals. Decisions that would have previously been discarded
due to computational infeasibility may be enabled by ML and lead to faster, more accurate solutions. New
ML methods must be able to better deal with the non-smoothness of certain properties, such as excited-state
potentials, or non-unique properties with arbitrary phase. These steps may eliminate the need for manual
pre-processing and enable the seamless integration of ML algorithms into electronic structure code.

For the efficient acquisition of reference data, further improvements are required in so-called life-long
learning, i.e., the continued training of models, which can be prone to overfitting or forgetting of previously
acquired knowledge. Ideally, data acquisition happens transparently, i.e., explicit calculations are carried out
automatically when the training domain of the ML component is left. This necessitates further development
of methods for fast and reliable error estimates. Finally, the whole procedure should be integrated with global
data repositories, to optimally use computing resources. To overcome system size restrictions of the electronic
structure reference, new multi-scale approaches must be developed, e.g., by embedding local ML representa-
tions into physically motivated global frameworks. Here, expertise from established fragmentation methods
and multi-scale strategies will prove invaluable.

3.1.4. Concluding remarks
Recent developments have shown that ML methods are able to model fundamental properties of electronic
structure, either in real-space or in abstract basis representations. The challenges for the coming years relate to
finding physically meaningful representations within ML models that can break through the scaling limitations
of conventional electronic structure theory. To achieve this, ML methods will need to go beyond the reference
electronic structure basis by constructing efficient representations that correctly capture physical boundary
conditions while retaining favourable computational scaling properties. Finally, fast and transferable unified
approaches need to incorporate physical constraints into ML models while staying flexible enough to learn
expressive representations from data.
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3.2. Using machine learning to find new density functionals
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3.2.1. Status
DFT has provided low-cost alternatives to direct solution of the SE for almost a century [144]. The Kohn–Sham
(KS) scheme [145], in which only the XC energy needs to be approximated as a functional of the density, has
greatly improved accuracy while maintaining low computational cost. Today, about 30% of supercomputer
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use is devoted to solving these equations, but there are hundreds of different human-designed XC approx-
imations in use, each producing different predictions. Almost all begin using the density and its gradient
(semilocal approximations). Materials science is dominated by simple standard functionals, often designed
using exact conditions, while chemistry mostly uses approximations designed only for molecules, but often
achieving higher accuracy.

Four prominent limitations come to mind. Most DFT calculations are for weakly correlated systems, and
there is tremendous desire to improve their accuracy without significant computational cost. Second, DFT
has well-known generic failures, such as self-interaction error or poor energetics for strongly correlated sys-
tems, such as a stretched H2 molecule [146]. Most XC approximation fail to produce a realistic binding energy
curve without breaking spin. As one goes from two atoms to four and many, the difficulties grow and can be
related to the failure of DFT approximations to capture Mott–Hubbard physics [147]. Third, theorems prove
that, in principle, one can avoid solving the KS equations if one has a sufficiently accurate approximation for
the KS kinetic energy, but here the limitations are even greater, due to the need to extract accurate densities
and total energies. Finally, ground-state DFT yields only ground-state energies and densities, but there is also
tremendous need to predict response properties. Here we focus only on the ground state.

ML has already helped with functional development. In prescient work a quarter-century ago, Tozer et al
[148] found a semilocal approximation by training a NN to optimize a fit to KS potentials. Moreover, Bayesian
methods were used to analyse DFT errors in 2005 [149]. More recently, Snyder et al [150] used KRR combined
with a principal component analysis of training densities, to create a KS kinetic energy functional reaching
chemical accuracy, albeit in a very simple model. And Nagai et al [151] showed that, by training a NN on both
the densities and energies of just a few molecules, one could create semilocal approximations comparable in
accuracy to those of humans and generalizing to a broad range of molecules.

The field of using ML to design functionals is in its infancy, and improvements in speed, accuracy, and
applicability of DFT are beckoning. Any such improvements that can be implemented in standard codes will
have enormous scientific impact.

3.2.2. Current and future challenges
ML is promising for improving DFA to overcome the limitations listed above, and progress is likely in all three
areas.

First, there are many ingredients already in use for making XC approximations, including dispersion cor-
rections, fractions of exact exchange (both global and range separated), random phase approximation, etc.
Can ML be used to find the ‘best’ combination of these ingredients? More fundamentally, how do we define
‘best’?

Second, ML allows the possibility of constructing completely non-local functionals, using information
about the density at every point in space, either with KRR or NN’s. This can be used to find the exact functional
for strongly correlated systems, as in reference [152], especially if full differentiable programming techniques
are used. Here, by using the KS equations as a regularizer, a full dissociation curve for (one-dimensional) H2

was constructed from just two data points alone, suggesting tremendous potential for generalizability. How-
ever, such a functional, defined on the whole R-space, cannot be applied to arbitrary systems, so what features
must be included to make it work more generally?

Third, ML can produce pure density functionals, which could bypass the need to solve the KS equations.
This was demonstrated for small molecules, producing an ML functional that yields accurate densities and
energies for malonaldehyde and resorcinol MD simulations [153], and for water in condensed phase [154].
But, as above, such functionals cannot be expected to generalize well, and so must be retrained for each new
species, unlike standard DFT.

In figure 20, we employ the KS regularizer (KSR) from reference [152] to calculate the binding curve of
1D H3 and show its attributes at R = 4 Bohr. The KSR is chemically accurate even when the bond is stretched
and predicts the density with negligible error. A recent study [155] provides an example of implementation
of differentiable DFT in 3D. A similar extension of the work in reference [152] can effectively provide a stable
solution for strongly correlated matter. However, much work remains to test these algorithms to answer what
would be the degree of generalization and what could be done to improve them further.

3.2.3. Advances in science and technology to meet challenges
ML has revolutionized many aspects of everyday life, from movie selection to facial recognition. Over the past
10–15 years, there have been significant attempts to use it in physical sciences and especially in electronic
structure theory. The most notable success has been the development of force fields, both in chemical and
configuration space [156].

But the development of DFA is still a black art, requiring an unholy alliance of physical (or chemical)
intuition, deep knowledge of theory, and some very carefully chosen data. A major difficulty is to build ML
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Figure 20. (a) One dimensional H3 dissociation energy curve created with the KSR-global function from reference [152]. This
model was trained with just two configurations. The changes in predictions as the model evolves from underfitted to overfitted
are shown by the darkening shades of grey. The optimal parameters, determined from a single validation configuration, yield the
chemically accurate blue curve. Enn is the nuclear interaction energy, density matrix renormalization group (DMRG) is essentially
exact, and LSDA is the result of the local spin density approximation. (b) The density, XC energy and XC potential of H3 at 4
Bohr, calculated using the optimal parameters.

models that respect all the implicit (and explicit) rules in DFT that humans know (often only intuitively)
so that the models extrapolate appropriately to new materials and new molecules. With our traditional XC
approximations, when we run a KS calculation on an entirely new problem, we have a strong sense of how
accurate we expect it to be, and certain intuitive consistency tests, such as trying a different functional, even
if we cannot put quantitative error bars on our predictions. If we can use ML to design better functionals,
overcoming any of the three challenges mentioned previously, such ML-designed functionals will permanently
alter the computational landscape.

Much has been said and written about the potential for quantum computers to transform electronic struc-
ture calculations. It is certainly true that, once a sufficiently large error-correcting machine is widely avail-
able, there are several strongly correlated problems that they might solve for us. But unless there are extreme
speedups in routine classical computations, DFT will long continue as the workhorse for the 99% of problems
(or aspects of these problems) that DFT works well for.

3.2.4. Concluding remarks
The applications of ML to functional design are still in their infancy. There is no general-purpose XC approx-
imation designed by ML in use or available in most codes. It will take more effort and research to understand
what the best way is to apply ML techniques (likely NN’s) to develop better approximations, including ones
that can be systematically improved with increases in training data. ML could produce either faster or more
accurate functionals for present applications or extend the reach of practical DFT calculations to encompass
strongly correlated systems. The future looks bright but has not arrived yet.
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Figure 21. Schematic figures of ML XC functional (left) and its usage in KS equation (right). The same ML projection is
repeatedly substituted for the self-consistent KS cycle. Reproduced from [151]. CC BY 4.0.

3.3. Machine learning Kohn–Sham exchange–correlation potentials
R Nagai1,2, R Akashi2 and O Sugino1,2

1The University of Tokyo
2The University of Tokyo

3.3.1. Status
The method of KS DFT [145] is the current standard for the first principles calculation of electronic struc-
tures for its reasonable computational cost. Improvement of the XC functional, which governs the accuracy
of results, has long been a challenging issue. Being a functional of the distribution of charge density, its exact
form is beyond calculable expression. Its practical approximate forms have so far been constructed using the
physical conditions, such as asymptotic behavior and scaling relations, as a guiding principle, but the accuracy
has still been a problem [157, 158]. This is due to the lack of physical conditions needed for the construction
of complex functionals beyond the local or semilocal ones and is also due to difficulty in analytically interpo-
lating the asymptotes inside the nonuniform density region typical of real materials. There is much room for
improvement if one can directly refer to the nonuniform density and use a powerful interpolation scheme for
functional development.

The ML scheme is expected to overcome this difficulty. By using the extremely flexible ML model for the
XC functional and tuning the model parameters to reproduce the density-to-energy relation of real materials,
one can obtain a computable form that applies to the nonuniform density cases. The data to be reproduced
(training data) are, for example, those from the accurate and costly calculation. The modern ML approach
to DFT has been first initiated for an orbital-free formalism [150], whereas it has later been extensively applied
to the more familiar KS method [151, 152, 159, 160] (figure 21). In the latter case, the use of the KEO has been
shown to suppress numerical instability when applied to systems not included in the training data [159]: we
here focus on this.

3.3.2. Current and future challenges
The ML models such as NN in principle enable us to implement the fully nonlocal exact functional with
arbitrary accuracy, but in practice, we are faced with obstacles. To train the XC potential applicable to real three-
dimensional materials, one may use electronic structure data (energy and density) of representative systems
such as molecules and solids. However, gathering accurate data is a demanding task. Precise experimental
observation of electronic density is still difficult, and therefore one has to employ theoretical calculations for
generating the training data. Since our goal is to improve accuracy over the existing functionals, the training
data should be generated from methods that are more accurate than those of the standard functionals. Some
wavefunction theory methods such as the coupled-cluster and QMC methods meet this requirement at an
affordable computational cost. However, the cost of their application to large systems like solids becomes yet
formidable.

Even if an accurate electronic structure dataset is obtained, another class of difficulty arises in designing the
training scheme. Usual supervised learning uses pair of input and output data for the training. For the training
of XC potential, the ‘input’ and ‘output’ correspond to the density and XC potential, respectively. To prepare
the training XC potential with the training electronic density, we need to solve the numerically difficult inverse
KS problem [161]. Furthermore, the XC potential thus obtained has a difficult property to treat in the training.
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Since it is close to the exact one, the value of the potential at any spatial point is dependent on the whole density
distribution; the exact XC hole is fully nonlocal. Though training of the fully nonlocal ML potential has been
demonstrated in 1D model systems [159], such a form is not applicable to other systems; when the sizes of target
systems are different, the density distribution cannot be input into the same trained ML model. Transferrable
design of (semi)local XC potential is thus desirable. Moreover, determining the nonlocal functional with many
parameters requires a large amount of training data.

3.3.3. Advances in science and technology to meet challenges
With the limited availability of the training dataset, a recent study [151] have demonstrated an efficient way
to train the ML functional. It showed that the semilocal form trained with accurate electronic density data
in a few molecules can yield practical accuracy for various molecules. This transferability is due to the fact
that the electronic state at a point is mainly affected by those within a short-range. By limiting the functional
form to semilocal, every spatial point gives different density-potential relation. A large amount of data is,
especially in 3D, thus available even in a single molecule, thanks to which the training of the huge number of
model parameters is enabled. Furthermore, the kinetic operator term in the KS equation is shown to suppress
the error coming from the non-smooth shape of the trained ML functional [159]. Utilizing those properties
enables efficient extraction of the essential properties of the XC functional from a limited number of molecules,
which is computationally desirable.

In the same study [151], a novel approach has been initiated which avoids the problem of getting the train-
ing XC potential data. There, each training iteration consists of the whole solving procedure of the KS equation,
and the obtained energy and density are compared with the reference density data. The ML parameters are opti-
mized to decrease the loss function defined by the density and energy. In this procedure, the XC potential is
not directly referred to. Optimization was executed with the simulated annealing, which is basically a random
walk and does not use a gradient of the loss function. Later, Li et al have implemented the solution of the KS
equation itself as a differentiable program, where back-propagation of the loss function, i.e. differentiation of
the KS procedure, is implemented [152]. The indirect training of XC potential with the density paves a feasible
way to improve ML density functionals exceeding conventional ones.

3.3.4. Concluding remarks
The ML methods open a novel approach for constructing the XC potential referring to the realistic density
regime, in contrast to the conventional functional construction that refers to the asymptotes. For further
improvement, there are challenges to overcome: efficient collection of electronic structure data and develop-
ment of effective training methods. To overcome them, insight into the Frontier technology of ML is important
as well as accumulated knowledge of materials science. The semilocal property of electronic effect, the kinetic
operator as ‘regulator [159]’, and integration of the KS equation into the training can be listed as effective ways
for further advances toward the functional with ultimate accuracy. As DFT has advanced as a general frame-
work for studying interacting many-body systems, it will be fruitful to exchange knowledge independently
developed in other fields such as classical particles [162].
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3.4. Deep-learning quantum Monte Carlo for molecules
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3.4.1. Status
Most chemical and physical properties of molecules and materials are accurately described by the nonrelativis-
tic and time-stationary electronic SE. As the computational cost of its exact solutions increases exponentially
with the number of electrons, N, the main challenge is finding approximations that strike a good balance
between accuracy and computational cost.

The past decade has seen a surge in ML approaches to predict the outcome of quantum chemistry calcu-
lations by training kernel machines or NNs on datasets of molecules (see sections 2.1–2.6). In contrast, this
section focuses on ab initio ML, which aims to find the solution of a problem specified by self-consistency
relations or a variational formulation.
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Figure 22. Deep QMC solves the SE by alternating between optimizing the parameters of the NN ansatz via the variational
principle (blue) and sampling from the square of the wave function to generate data (yellow). Reprinted by permission from
Springer Nature Customer Service Centre GmbH: [Springer Nature][Nature Chemistry] [166] (2020).

Figure 23. Pople diagram of quantum chemistry with DFT and deep QMC shown as offering exceptional compromise between
accuracy and cost.

In a seminal paper, Carleo and Troyer [163] made a connection between ML and quantum mechanics by
modeling wave functions as NNs and interpreting the energy expectation value as a ML loss function, which is
minimized according to the variational principle of the SE. By self-consistently sampling from the square of the
wave function with QMC, this approach generates its own data on the fly (figure 22). The initial applications
of the novel approach targeted spin systems on lattices. Generalizations to electrons and to real space followed
shortly after, starting with electrons on lattices as in the Hubbard model [164], through the first exploratory
work for electrons in real space [165].

Recently, PauliNet [166] and FermiNet [167] have been proposed as two highly accurate yet affordable
deep-learning architectures that solve the SE using antisymmetric NNs,

ψ (r1, . . . , rN) :=
∑

k

det
[
φk

i

(
hj(r1, . . . , rN )

)
ϕk

i (rj)
]

where hj is an output of a permutation-equivariant NN for the jth electron, while φk
i andϕk

i are many- and
one-electron functions, respectively, for the ith generalized orbital in a kth Slater determinant. PauliNet and
FermiNet differ in how hj, φk

i , and ϕk
i are constructed. In certain characteristics they both outperform well-

established methods, such as the coupled-cluster method, with a computational cost that scales only as N3 to
N4. While the exponential scaling of the exact solution of the electronic SE is fundamental and will dominate
at large N, the aim of deep QMC is to push the onset of this exponential scaling to large enough N so as to
offer an electronic structure method for intermediate-sized atomic systems with a few hundreds of electrons
with unprecedented compromise between accuracy and computational cost (figure 23).

39



Electron. Struct. 4 (2022) 023004 Roadmap

3.4.2. Current and future challenges
To date, the largest systems to which deep QMC has been applied have around 30 electrons, and the excellent
results obtained so far provide no indication that it cannot be scaled up. This leaves an order of magnitude in
system size to be bridged in the near future for deep QMC to become highly practical. Besides the sheer number
of electrons, the higher nuclear numbers and the associated difficulties that plague all QMC approaches will
present another obstacle in going to complex chemical systems such as transition-metal complexes.

The accuracy of any polynomial electronic structure method must inevitably deteriorate with increasing
system size, owing to the computational complexity of the electronic many-body problem. This is, however, a
theoretical asymptotic consideration—what matters in practice is what is the onset and the rate of this dete-
rioration for relevant system sizes. While full characterization of this accuracy decay remains unresolved even
for well-established methods [168], their modes of failure are well-known. Although first results of this kind
for deep QMC have been already published [169], most of the work in this area remains to be done.

By far the most applications of standard QMC are not to molecules but to solids, because unlike for
molecules, there is essentially no other electronic structure method practical for solids that would match the
accuracy of QMC. Being an explicitly many-body method, QMC uses a supercell approach to treat periodic
systems, which again translates to the demand on treating larger numbers of electrons, but extending deep
QMC to solids also presents other challenges, such as the ability of the NNs to capture long-range electron
interactions.

Does deep QMC have anything more to offer than just highly accurate variational QMC? While this
achievement would already make deep QMC a worthwhile endeavor, one can naturally ask whether the use
of deep NNs in QMC might open entirely new avenues that would be simply impossible without them. For
instance, deep autoregressive models for quantum lattice systems avoid the need to run lengthy Markov-chain
Monte Carlo simulations by directly generating samples of electron configurations [170], and it remains to be
seen whether such an approach can be transferred to electronic real-space systems.

3.4.3. Advances in science and technology to meet challenges
Standard QMC is a well-established electronic structure method that has been implemented in several mature,
high-performance software codes, which use numerous advanced techniques to make the calculations more
efficient. Pseudopotentials enable efficient treatment of heavier atoms. Diffusion Monte Carlo substantially
increases the accuracy of the energy that can be obtained from a given, already optimized ansatz. Such tech-
niques, and many others, can be transferred to deep QMC, while carefully considering how is their cost-benefit
ratio changed by the use of NNs in the ansatzes.

On the deep learning side, novel NN architectures should be considered, such as graph networks whose con-
volutions incorporate not only distance but also angular information. Another important aspect is to explore
where the optimum lies in constructing the ansatz between large-scale deep learning architectures (such as Fer-
miNet) and architectures that incorporate more physical knowledge (such as PauliNet). The evaluation of the
Laplacian of the wave function in the kinetic energy term is by far the biggest computational bottleneck in deep
QMC, but automatic differentiation in popular deep learning frameworks has not been optimized with such
terms in mind, so advances in this area could yield high gains in efficiency. Finally, we must develop bench-
marks to test the performance of the learning system in a practically relevant manner—while the pioneering
works used the variational (absolute) energies as benchmarks, these are less informative for large molecules
where energy differences matter more.

The real-space formulation of the electronic SE, as used in deep QMC, is also referred to as first quanti-
zation. Second quantization is an alternative formulation that uses one-electron basis sets to transform this
differential equation into an algebraic problem, and is the foundation of quantum chemistry. Second quanti-
zation has been also subjected to improvement via NNs [171], which opens the question of marrying the two
alternative approaches, which might result in a more robust method that would combine the advantages of
both.

Using deep NNs for the sampling part of QMC would require entirely new architectures, that would be
able to encode antisymmetry in an autoregressive fashion. At present, this seems beyond the reach of existing
techniques in deep learning.

3.4.4. Concluding remarks
Standard electronic structure methods have been developed for decades to get to the point where they are now,
with numerous methodological and computational techniques and tricks under their belt. Deep QMC has only
been recently developed, yet it is already competing with those standard methods. This suggests a promising
future for this novel approach once it receives more attention and efficient codes are developed. We believe
that deep QMC will provide chemists and materials scientists with a new powerful computational tool.
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3.5.1. Status
In textbooks on condensed-matter physics, solid-state systems are usually described as clean and periodic
structures. On the contrary, disorder is ubiquitous in real materials, and it drastically affects the system proper-
ties. It induces consequential phenomena such as Anderson localization, which causes insulating behavior even
when the band is not full, in contrast to textbook band-structure theory. Disordered systems may also undergo
so-called many-body localization, meaning that in isolation they fail to reach thermodynamic equilibrium. As
a consequence, even the basic assumptions of (equilibrium) statistical mechanics are not applicable. For these
reasons, disorder challenges the conventional top–down approach to condensed-matter theory, whereby mate-
rial properties are predicted from fundamental equations and basic principles. On the other hand, disordered
systems may lend themselves to a data-driven approach, whereby bottom-up inference is performed by iden-
tifying regular patterns from large experimental or synthetic (i.e., computer generated) datasets. In fact, when
disorder is included in the theoretical modelling, many random realizations of the same underlying model have
to be considered. In conventional approaches, observable properties are predicted from averages over these
random datasets. In recent years, physicists started exploring the use of ML techniques to exploit such datasets
more fruitfully. The goal is twofold: on the one hand, researchers aim to develop computational techniques
more adequate for disordered systems than conventional top–down theories. On the other hand, they are
investigating whether randomness can be introduced on purpose to enable the utilization of ML techniques in
the domain of condensed-matter theory. For example, deep NNs have been trained to predict the ground-state
energies of quantum particles in disordered potentials [172]. After being trained on datasets including many
random realizations, the networks provided accurate predictions for previously unseen instances, bypassing
the direct solution of the SE. Such studies pave the way to different strategies to solve both clean and disor-
dered quantum many-body problems, but they also present researchers with new challenges that need to be
addressed.

3.5.2. Current and future challenges
Disordered models are being used as a challenging testbed to evaluate the performance of ML techniques
in solving condensed-matter problems. In reference [172], supervised learning was used to map disordered
potentials formed by randomly placed Gaussians to the corresponding ground-state energies. The adopted
convolutional NN demonstrated capable of automatically extracting the relevant features, avoiding recurse
to ad-hoc engineered descriptors. Reference [173] performed an analogous mapping, considering as input a
model for ultracold atoms in disordered optical speckle fields. Since these two studies addressed non inter-
acting particles, sufficiently copious training databases (order of 105 instances or more) could be generated
at an affordable computational cost. Addressing interacting many-body systems is more challenging, since
producing so many training instances is impractical. While this problem is encountered in most applica-
tions of supervised learning to quantum many-body systems, it is particularly relevant for disordered systems,
since the number of descriptors required for their characterization has to scale with the system size and, as a
consequence, larger datasets are needed for training.

NNs are also being used to implement compact representations of many-body wave-functions [174] (see
section 3.4). A recent application to disordered quantum spin models highlighted the need of further exploring
which network connectivity (e.g., all-to-all versus sparse) is optimal for quantum many-body problems [175].

ML algorithms are being applied also to DFT (see sections 3.2 and 3.3). Reference [150] employed KRR
to reconstruct the kinetic-energy functional of Hamiltonians with randomly placed Gaussians, opening new
paths to build orbital-free theories. The appealing feature of KRR is that training requires only order of 100
instances. However, accurately computing the functional derivatives is a challenging problem [150], still under
intense investigation [130]. Also convolutional NNs have been applied to DFT data for disordered models
[176], showing that they allow bypassing the KS scheme.

Interacting many-body systems have been addressed within DFT in references [177, 178], considering one-
dimensional lattice models with on-site disorder. The training sets were produced via exact-diagonalization
and via DMRG techniques. However, addressing realistic higher-dimensional models still represents a chal-
lenging task, due to the cost of creating suitable training databases.
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Figure 24. TL for a disordered quantum Ising chain with nearest-neighbour and far-neighbour (10 sites) couplings. The
ground-state energy per spin epred predicted by a scalable NN is shown as a function of the exact value eexact. The network is
trained on small chains with N = 15 spins, which can be solved via exact diagonalization. It is tested on larger chains with N = 50
spins, which are simulated via unbiased QMC simulations. The random couplings are uniformly sampled in the interval [0, J], the
transverse-field intensity is Γ ∼= 0.36 792J, and the energy unit is the maximum coupling J. Reprinted (figure) with permission
from [180], Copyright (2020) by the American Physical Society.

3.5.3. Advances in science and technology to meet challenges
The supervised training of the currently available NNs for disordered quantum systems requires massive
datasets. This is a critical problem, since this many instances can be generated only for small quantum systems,
unless uncontrolled approximations are accepted. Most network architecture adopted so far have been adapted
from those already is use in the fields of image analysis and speech recognition. Hopefully, novel architectures
specifically designed for quantum matter will reach superior learning speeds.

TL is emerging as an alternative strategy to accelerate the training process. In the field of image analy-
sis, it is standard practice to adopt pre-trained networks, previously optimized on generic databases, to then
transfer the learned parameters to more specific classification tasks. An analogous strategy has recently been
applied also to quantum matter. Specifically, it has been used to transfer knowledge from small to larger system
sizes. For example, reference [179] introduced size-extensivity by combining identical parallel networks, each
one addressing a small tile of the whole input system. A small overlap between adjacent tiles was allowed to
account for spatial correlations. In reference [180], size scalability has been implemented by including global
pooling layers in a convolutional model. Reference [181] considered an ad-hoc descriptor for the particle num-
ber, allowing the network operating with heterogeneous datasets including different densities. Notably, these
architectures have also been tested in extrapolations tasks, i.e., in making predictions for system sizes larger
than those included in the training set. The obtained results for a disordered quantum Ising chain are shown
in figure 24. However, the regime of validity of these extrapolation techniques needs to be further investigated,
especially in the presence of long-range or frustrated interactions [180].

Since massive training sets will be required to develop novel network architectures, the community will
benefit if they will be shared in public repositories. It is also worth mentioning that the training with (slightly)
noisy data has recently been tested, showing that the prediction accuracy does not dramatically degrade [173].
This led to the speculation that, in the future, training sets could be produced using (inevitably noisy) cold-
atom quantum simulators or other quantum devices.

3.5.4. Concluding remarks
Disordered quantum systems are proving to be particularly suitable for data-driven approaches based on
ML algorithms. Various successful studies focusing on paradigmatic testbed models have been performed,
and promising applications also to more complex electronic systems have recently been reported [179, 182].
The key enabling factor is the possibility to generate copious datasets of random realizations. Still, various
challenges need to be addressed. The learning speed of NNs must be increased by designing architectures
specifically tailored to quantum systems. Furthermore, massive databases need to be generated and shared
among researchers in the field. Certain TL protocols have already been used to accelerate the learning process,
but the applicability of pre-trained models to different kinds of disorder must be further explored. In the long
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term, one can envision the use of quantum simulators as generators of suitable training datasets for intractable
quantum many-body systems.
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4. Big data for machine learning

4.1. Challenges and perspectives for interoperability and reuse of heterogenous data collections
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4.1.1. Status
Many or most of our colleagues may now agree that data-centric approaches will complement and change the
way how research is currently performed. As a matter of fact, we are experiencing an atmosphere of departure
in several aspects. Data-analytics and ML approaches are being developed and applied to various problems,
and high-throughput screening is going hand in hand with the establishment of small- and large-scale data
collections. The NOMAD Laboratory [183] is quite orthogonal to all of them as it was never dedicated to a par-
ticular research topic or material class, but rather aimed at being an open platform for sharing data within the
entire community. It allows users to upload computational results from all major electronic-structure codes,
now hosting (as by March 2021) more than 100 mio. calculations from individual researchers as well as from
other databases (see reference [183] for details).

Such a huge and findable, accessible, interoperable, reusable (FAIR) [184] data repository is a wonderful
playground for being explored in view of (i) comparing the performance of different methodologies for one
and the same material, (ii) finding trends in the data, e.g., by unsupervised learning, or (iii) using the data
pool for developing and applying novel AI tools. As such, we can consider these data as a gold mine of the 21st
century. Turning it into gold, however, can only be realized if we fully control and understand this raw material.
Among the four characters of FAIR, the I (interoperability) is the most critical and largely unresolved issue
when bringing together data from different sources. So far, in contrast to quantum chemistry, there exist only
a few efforts geared towards reproducibility [185] and benchmarking [186, 187] which hampers the assessment
of data quality. Even more critical, on the experimental side, the situation is much worse. Needless to say, a
balanced picture, where experimental and theoretical characterization of materials go hand in hand with each
other, will be crucial for realizing the 4th paradigm of materials research.

4.1.2. Current and future challenges
As mentioned above, interoperability may be the biggest obstacle, hampering the wider usage of inhomoge-
neous data. In fact, the most innovative AI method is of little value if data can be mis-interpreted because their
quality is either not known or not considered. Thus, our future research not only concerns powerful AI tools
but also in-depth analysis and understanding of the data.

How can we control data and assess their quality? Staying within the realm of computational ab initio
results, the major content of the NOMAD Laboratory, ground-state calculations—in particular the energetics
of materials—are likely to be controlled first. Here, first examples of data assessment [188] and error estimates
[189, 190] are underway. Excited states, in turn, are a true challenge. As an example of the complexity we
mention the GW approach of many-body perturbation theory which is sketched in figure 25. Arguably, only
experts who have enough insight into the implemented algorithms and approximations, are able to fully judge
the quality of the output of such computationally heavy calculations. To address just a few aspects: on the
technical side, we may need an auxiliary basis set coming with various parameters. Likewise, there are various
ways for doing the analytical continuation of the Green function, as there are various ways for carrying out the
required frequency integration; and there are different ways to screen the Coulomb potential, etc. GW studies
are typically (unless done self-consistently) based on a particular ground-state calculation which also may
largely affect the results. Hence, to make GW calculations comparable and to be able to distinguish between
the accuracy of an approach and the precision of a numerical implementation, an urgent need is to convince
code developers to fully document their codes, providing information on used approximations, algorithm and
related numerical parameters.

Likewise, particle-based methods (classical molecular-dynamics) not only suffer from huge volumes but
also from very many different force-field implementations in a large variety of codes.
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Figure 25. Complexity of excited-states calculations exemplified by the GW approach.

Turning to the experimental side, heterogeneity appears to be an even much bigger problem. Nevertheless,
the NOMAD Laboratory has made first steps to include results from different probes. A concept based on the
NOMAD experience, describing how data from experiment and synthesis shall be processed and incorporated
into a federated data infrastructure is described elsewhere [191].

4.1.3. Advances in science and technology to meet challenges
Overall, the most critical step towards FAIR handling of all materials-science data is the establishment of a
metadata schema for each synthesis route, experimental probe, and theoretical approach, connected by a mate-
rials ontology [190]. Importantly, the metadata must be as complete as possible to allow for the assessment of
the data quality, i.e., they need to capture all parameters that may influence the results. Here, we introduce a
data-analysis tool that is capable of measuring the impact of various parameters on ab initio calculations. It is
based on an implementation that follows the spirit of the density-of-states (DOS) fingerprint by Isayev and co-
workers [192]. We take the simple example of bulk silicon to demonstrate the basic idea. In figure 26, we show
that among the 2625 single-point calculations hosted by NOMAD, the biggest share has been obtained from
FHI-aims (1525), followed by VASP (519), octopus (306), and exciting (174). Obviously, several XC
functionals, basis sets of different quality, etc have been employed to create the data. The top and bottom panel
show two examples for how (dis)similar the results are. On the top, we see two calculations by exciting, one
with the local-density approximation (LDA), another one with G0W0 on top. We clearly see the well-known
effect of G0W0, rigidly shifting up the conduction bands in this material. These deviations cause the similarity
coefficient to be only moderate (Tc = 0.73). In contrast, using the same functional as is the case in the bottom
panel, the results are more similar (Tc = 0.83). Here the differences stem from the usage of different codes (at
equal lattice parameter), increasing at lower energies. This example is, of course, only a rough assessment. The
method can, however, be refined by including considerations of basis-set quality, k-mesh, and various other
computational parameters on the one hand or structural differences on the other hand. All this is currently
studied in more detail and published elsewhere [190, 193].

Our strategy is to investigate first the origin of discrepancies on the basis of dedicated data sets (e.g., those
used in references [185, 189]) before exploring the entire NOMAD data space.
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Figure 26. (Center) Pie chart showing the distribution of bulk Si calculations in the NOMAD Laboratory computed by different
codes: FHI-aims (1525), VASP (519), octopus (306), exciting (174), Quantum ESPRESSO (86), others (25). (Top) DOS obtained
by GW@LDA and LDA with exciting. (Bottom) DOS obtained by PBE with VASP and FHI-aims. Tc indicates the similarity
coefficient [193] between the two respective calculations. It reflects the entire energy range between −10 and +5 eV. For the
corresponding data see reference [194].

4.1.4. Concluding remarks
Reaching full interoperability of data from different sources represents a huge challenge for fully exploiting the
enormous data space created by the community. Also benchmark results are largely missing so far. To close this
gap, we not only create reference data for prototype materials but also aim at assessing the impact of various
approximations and computational parameters. Here, we have shown a tool that enables the assessment of
methods and data in terms of the DOS. In the future, our investigations will be expanded to other materials
properties of interest, and will be further developed towards inclusion of experimental data. Moreover, our
tools can be used to search for materials that exhibit features that are similar to those of other materials but are
superior with respect to other criteria. A first version is already implemented in the NOMAD Encyclopedia,
providing the most similar materials to a chosen reference.
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Figure 27. Schematic representation of the AFLOW framework. Starting from a large set of prototypes, properties are calculated
from ab initio methods and served to the public via web applications and data APIs.

4.2.1. Status
The creation and curation of large, reliable, and standardized data sets to train and validate models poses
a significant challenge in applying ML to materials science. Large repositories such as the AFLOW database
provide an excellent opportunity to combine automated frameworks with data science and AI [195].

Figure 27 demonstrates the AFLOW data generation workflow. Input structures are based on experimen-
tally observed materials or are generated from the over 1100 crystallographic prototypes spanning all 230 space
groups in the prototype encyclopedia [196]. Integrated within the AFLOW software, the encyclopedia auto-
matically decorates these prototypes with different elements to generate new hypothetical compounds. Starting
with these structures, AFLOW performs DFT calculations via a standardized set of parameters.

The AFLOW software calculates a variety of structural, thermodynamic, electronic, and thermo-
mechanical properties that can be used for training and validating ML models. Structures are characterized
with the AFLOW-SYM module, a tool to determine common symmetry descriptors [197]. The routines are
self-consistent and adaptive, freeing users from needing to tune tolerance thresholds, and real- and reciprocal-
space isometries are guaranteed to be commensurate. Thermodynamic properties are calculated via the
AFLOW-CHULL module, which can be used to determine phase stability, phase coexistence, decomposition
reactions, and the synthesizability of materials [198]. Thermo-mechanical properties such as bulk and elastic
moduli, thermal expansion, and vibrational thermodynamics can be determined using the AFLOW-GIBBS
and elasticity libraries [195].

At over 3.5 million entries with over 200 properties each, the resulting database is one of the largest of its
kind. It is available to the public through various web applications and data APIs on https://aflow.org. The
generated data have been used to develop property descriptors and to train ML models, such as the property-
labelled materials fragments (PLMF) model, to predict thermo-mechanical and electronic properties [199].
PLMF and other models are available through the AFLOW-ML web application and Python module [200].

4.2.2. Current and future challenges
Programmatic access to the vast quantity of materials data in the AFLOW database is necessary to maximize
its usefulness for training ML models. Materials APIs such as the AFLOW-REST-API simplify the retrieval of
properties from a specific entry by querying a uniform resource locator (URL), but only allow access to one
database entry at a time and require users to know in advance which materials to request. To generate data for
ML, a database needs to be searchable by properties without advance knowledge of its structure and format,
while also being code-base agnostic.
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Figure 28. Workflow for training ML models. Materials properties in the AFLOW database can be queried via AFLUX to build
descriptors and features. The AFLOW-ML web application and API can be used to predict thermo-mechanical, electronic, and
vibrational properties. Reproduced from [202]. CC BY 4.0.

In addition to high-volume data, ML models rely on diverse data sets that are free from duplicates to
prevent training bias. Identifying distinct crystalline compounds is a considerable challenge due to varying
representations of the structure. Standard conversion techniques are error prone as similar structures may
be cast into different representations, and symmetry descriptors alone do not determine structural equiva-
lence. Unique prototype designations are also necessary to distinctly label structures and enable searches for
certain structure-types in materials repositories. Since by-hand duplicate removal and structure labelling are
intractable given the growth rate of materials data, rigorous structural similarity metrics and classification
algorithms are required to remove duplicate compounds to improve model prediction and identify unique
structure-types.

Developing reliably predictive ML algorithms requires accurate training data. DFT has shortcomings that
can skew ML results: band gaps tend to be underestimated, and formation enthalpies for polar materials such
as oxides are unreliable. Meanwhile, high-entropy alloys and ceramics, a newly emerging class of materials,
are difficult to model directly, and their synthesizability cannot be sufficiently described using enthalpy alone.
They are often represented using large supercells, making it expensive to generate large data sets. New theories
and correction schemes are thus required to provide accurate data sets for ML algorithms.

4.2.3. Advances in science and technology to meet challenges
The domain-specific AFLUX language provides programmatic access to the AFLOW database [201]. It com-
bines the accessibility of a data API with the features of a search interface without requiring knowledge of the
database structure. Searches can be performed using the query part of the URL with only a minimal set of
logical operators. For example,

https://aflow.org/API/aflux/?species(!Pb),Egap(1*,*3),paging(0)

returns all lead-free entries with a band gap of 1 eV to 3 eV. Requests can be arbitrarily complex, giving users
control over the data they receive without requiring pruning. AFLUX outputs data in JavaScript Object Nota-
tion (JSON) or in plain text for languages without native JSON capabilities. Using AFLUX, AFLOW can be
easily integrated into ML workflows as shown in figure 28. Materials properties can be extracted from the
AFLOW repositories via the AFLUX API. From the data and through use of the AFLOW modules, descriptors
and feature vectors can be fed into ML algorithms to train and validate models.

To enhance the diversity of the database, the AFLOW-XtalFinder module identifies and classifies new
prototype structures and maps compounds into their ideal prototype designation [202]. Similarity metrics
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distinguish isopointal and isoconfigurational structures regardless of their representation via internal sym-
metry routines, local geometry analyses, and atom mapping procedures. Unique prototypes are added to the
AFLOW prototype encyclopedia, and distinct compounds are prioritized for inclusion in the database. Com-
parisons can be performed on user data sets to group similar compounds or structures, removing duplicates
to save computational resources, and to eliminate training bias for ML models. All AFLOW entries have been
mapped into their ideal prototype designation, enabling users to search the database by structure type.

New models have been developed to describe materials that are challenging for DFT. For polar compounds,
the coordination corrected enthalpy method corrects formation enthalpies based on bonding environments,
significantly improving accuracy [203]. To investigate configurational disorder (see section 1.6 for discussion of
disordered materials), the AFLOW partial occupation module generates ensembles of ordered configurations
[204]. Calculated properties of the configurations are weighted according to the Boltzmann distribution to
model the behaviour and energy spectrum of the disordered material.

4.2.4. Concluding remarks
The AFLOW ecosystem provides an opportunity to combine big data with AI to discover new materials. With
over three million entries, its database is the largest of its kind, offering a variety of structural, electronic, ther-
modynamic, and thermo-mechanical properties. The data can be programmatically accessed and filtered using
the AFLUX language. New structures are continuously identified with AFLOW-XtalFinder, and similarity met-
rics ensure compounds are unique, improving database diversity and reducing training bias for ML models.
Methods developed within the ab-initio AFLOW-workflow improve formation enthalpy predictions for polar
materials and enable modelling of disordered compounds, providing avenues to research new classes of mate-
rials. AFLOW can be easily integrated into ML workflows, making it a valuable tool for AI based materials
research.
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5. Frontier developments of machine learning in materials science

5.1. Adaptive learning strategies for electronic structure calculations
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5.1.1. Status
Adaptive learning is an emerging paradigm in materials informatics for rapid and efficient navigation of the
vast parameter space [205–208]. The basic idea behind adaptive learning is that a supervised ML algorithm
can achieve improved performance with fewer training data points, provided the learning task is carried out by
allowing the algorithm to autonomously choose data points from the vast unknown or unexplored space [209].
Any supervised ML method needs training data to build the models. The choice of the training data should be
such that it is diverse and representative of the problem of interest. A poor choice will impair the predictive and
generalizable capability of the trained ML models. Therefore, it is critical to optimally sample the search space.
The reason why adaptive learning is particularly well-motivated in electronic structure calculations is due to
the expensive nature of the calculations, where a brute-force approach is not efficient or practical. Surrogate
models that approximate the predictions of the expensive electronic structure codes with little computational
cost has the potential to accelerate the design and discovery of new materials.

We can broadly classify adaptive learning into two categories: AL and Bayesian optimization. In both AL
and Bayesian optimization, we start from a small number of labelled instances to train ML models, but have a
massive number of unlabelled instances. In AL, the trained models are programmed to choose an instance from
the massive unlabelled dataset that they are least confident in predicting, thus reducing the overall uncertainty
or error. Whereas in Bayesian optimization, the interest is in rapidly finding the optimum of a function that are
costly to evaluate and lack gradient information. Both methods employ utility (or acquisition) functions that
query each unexplored data point in the search space. Promising data points (that satisfy a well-defined con-
straint) are recommended for the next iteration of validation and feedback. Learning from data is formulated
as an iterative process until convergence is reached. We can run these calculations either sequentially (where we
select one data point at a time for validation and feedback) or in a batch mode (where several data points are
selected at a time for validation and feedback). There are growing examples in electronic structure calculations,
where AL and Bayesian optimization approaches are finding increasing use [210–212]. As high-performance

48



Electron. Struct. 4 (2022) 023004 Roadmap

Figure 29. A schematic describing the purpose of a utility function in evaluating the trade-off between exploitation and
exploration. The solid red curve is the response surface from a trained ML model. The blue data point is the best data point in the
training data. The green and red data points represent unexplored data points in the design space. Reproduced from [208].
CC BY 4.0.

computing capabilities improve and databases grow in number and complexity (e.g., complex interfaces, sur-
faces and heterostructures), integrating massively parallel electronic structure codes with adaptive learning
will be critical for efficient exploration of the vast search space.

5.1.2. Current and future challenges
There are two necessary ingredients for implementing adaptive learning: (1) an ML method that will allow for
quantifying uncertainties in every explored and unexplored data point in the search space. It is common to
use either posterior probability distributions from Bayes’ theorem or parametric confidence intervals for UQ
[206, 207]. (2) A utility function that will take the expected value and the associated uncertainties from the
trained ML models as input to setup the query, and rank each data point in an order of value, representative-
ness, and/or diversity.

Off-the-shelf methods such as the random forests and GPR are the workhorses for AL and Bayesian opti-
mization, respectively. These methods provide a probabilistic measure of the output quantity. However, there
are many other state-of-the-art ML methods such as the KRR, support vector machines (SVM) and ANNs.
But they do not have the intrinsic capability to quantify uncertainties. Application of ensemble learning and
Bayesian inference-based approaches to KRR, SVM, and ANN can overcome these limitations. This will equip
the community with more tools to build ML models for a given dataset. There are two reasons why we should
think beyond GPR and random forests models: (1) a priori we do not know which ML algorithm will be better
suited for a given data set. No-free-lunch theorems states that there are no universal ML algorithms that will
work for every problem [213]. The GPR and random forests are convenient choices, but are not optimal in all
settings. (2) Not all ML algorithms have strong scaling performance with the number of training samples and
input dimensionality.

Utility functions evaluate the trade-off between exploration and exploitation of the search space on the
basis of the current performance of the trained ML models (figure 29). Some of the popular utility func-
tions include uncertainty sampling, expected improvement, knowledge gradient, probability of improvement,
upper confidence bound and mean objective cost of uncertainty (to name a few) [207]. If adaptive learning is
operated in batch mode, then we need additional strategies to select diverse data points such that the model
performance will be improved [209]. Another promising application of Bayesian optimization is in accelerating
reinforcement learning (RL) algorithms through efficient hyperparameter optimization.

5.1.3. Advances in science and technology to meet challenges
There is a sufficient body of published research in the literature that demonstrate the efficacies of the adap-
tive learning methods in computational and experimental materials science. Yet, the field is still in its infancy
requiring key advancements to accelerate the pace of scientific discoveries. We list some of the primary chal-
lenges, along with the advances needed to meet them. (1) At the ML level, there is a need to develop an improved
understanding of the response surface that capture the quantitative input-output relationships. The ML meth-
ods work well when the training data points that are located in close proximity to one another in the input
space also have similar output properties. Presence of ‘property cliffs’, where two similar inputs have a large
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difference in the responses can have an adverse effect on the performance [205]. Post hoc model interpretabil-
ity methods (local and global) can provide clues by opening the complex black-box models and making it
easier for the domain experts to comprehend why certain predictions are made in order to tackle the property
cliff problem. (2) There is also a growing trend to combine classification learning with regression methods to
address a common overarching goal [214]. The training data for classification learning and regression may
(or may not) be different, but there is a vast unexplored search space that is common to both methods for
efficient navigation. It is unclear how the uncertainties will propagate between the two independent models
to inform the decision-making process. (3) The role of domain experts-in-the-loop is also vital to advance
the adaptive learning paradigm. A vast majority of the current approaches rely on off-the-shelf methods that
do not readily incorporate domain knowledge. One of the current trends where domain experts have had an
overwhelming influence is via the choice of meaningful descriptors or representations. Advances are needed
in the domain knowledge-informed kernel design, UQ, and utility functions. (4) Given that there are many
choices for selecting ML methods and utility functions, it is unclear how a particular ML-utility function pair
will perform on a given data set. Currently, there are no heuristics that can guide us to select an informed
pair for a given problem. We need benchmark datasets (similar to the MNIST dataset in computer science) to
reliably test the performances of various adaptive learning strategies [205, 215].

5.1.4. Concluding remarks
The excitement surrounding the adaptive learning research is palpable. The success of adaptive learning will
be key to enable autonomous computing of materials properties and on-the-fly closed-loop high-throughput
computations and experiments. We envision that many research groups will continue to creatively integrate
these strategies into their design scheme, which will positively impact its growth. However, to sustain the excite-
ment, several outstanding research challenges remain to be addressed. Some of the urgent needs are discussed
in this article. Future developments will rely on advances in building interpretable ML models, UQ methods,
and utility functions that will take advantage of the unique properties of the problems under investigation.
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5.2. Reinforcement learning
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5.2.1. Status
RL is a branch of ML that focuses on an agent repeatedly interacting with an environment for the purpose of
maximizing a reward (figure 30). More formally, these are defined as sequential decision making problems.
Inspired by animal learning and behaviour, the field of RL dates back to ideas developed at the beginning
of the 20th century in the field of human behaviour and learning. Edward Thorndike transformed cognitive
psychology with the notion that behaviour could be shaped through the iterative application of reward and
punishment. This concept soon became doctrine and was shown to be a crucial part of biological learning. B F
Skinners’ boxes and animal training experiments in the 1940s made explicit the connection between learning
through repetition and reinforcement. These ideas were then codified within the computer science literature
by a number of contributors [216].

In recent years, when coupled with the flexible representation and capacity of deep NNs, RL has seen a
renaissance, solving problems such as video games, the ancient game of Go, and the navigation and station-
keeping of autonomous craft [217]. Dedicated silicon (e.g. GPU, TPU, and FPGA) coupled with modern neural
architectures have made it practical for RL agents to learn directly from visual input.

Compared to other ML approaches, RL has not yet seen widespread use within the fields of physics and
chemistry. Examples thus far include molecular design tasks [218, 219], navigation of chemical synthesis path-
ways [220], scientific discovery [221, 222] and experimental control [223]. However, we believe that RL has
considerable promise for future applications in the field of material science and in science more generally.

RL algorithms learn, through experience, how to achieve an optimal control policy for a dynamical system.
They can also be used to solve problems of optimization, but the same is true of other ML approaches. RL
excels at control of dynamics.

50



Electron. Struct. 4 (2022) 023004 Roadmap

Figure 30. In RL, an agent interacts with an environment through a series of actions which give rise to changes of its state. The
agent seeks to maximize the discounted sum of rewards it receives as feedback.

Generally speaking, if a system or environment is one which can respond to external stimuli (e.g. increase
the temperature of a reaction vessel, apply an electric field, etc), permits sequential interaction, and there is
some way to quantify a notion of success, RL can be applied.

5.2.2. Current and future challenges
Given the broad range of RL algorithms which exist, we highlight here some general issues, rather than those
specific to a particular approach. The large number of RL algorithms which exist is in fact one issue in the field.
There is general agreement within the community that we have not yet witnessed the ‘Imagenet’ moment of RL;
no single algorithm is broadly applicable and competitive in all cases. Most algorithms are sample inefficient
[224], meaning that a large number of training examples (episodes) must be played in order for an algorithm
to learn. Like many ML sub-disciplines, interpretable models that scale to real-world problems are still not
common. Results can also be quite sensitive to the choice of model hyper-parameters, and often require manual
tuning.

Sparse-reward problems are particularly challenging to learn. When success is only defined by the end goal,
there is essentially no learning signal for the agent to work with. This can exacerbate the problem of sample
inefficiency. Reward shaping is a way to address this, however, if a problem does not have an intrinsic and
reliable reward signal, designing one which achieves the desired agent behaviour can be time-consuming and
error prone. There are many humorous examples of agents displaying untended behaviour while chasing a
poorly designed reward function.

Curriculum learning appears to offer both an effective and intuitive solution to learning, however, deter-
mining a curriculum is itself a difficult problem. Indeed, this is something that even our own education systems
struggle with regularly. Within the domain of games, self-play has been used as an effective form of curriculum
generation, although this approach is not suited to all problems.

5.2.3. Advances in science and technology to meet challenges
Within the current paradigm, RL algorithms require an accurate and efficient mechanism to approximate
either the policy, value function or both. Recent progress in the field has been strongly linked to using NNs
for this purpose as they have been shown to be good general functional approximators. Unfortunately, deep
networks tend to be ‘data hungry’ and suffer from catastrophic forgetting.

The limitations (and benefits) of NNs directly impact the performance and characteristics of RL imple-
mentations which are built with them. A major improvement in RL performance would therefore be achieved
simply with algorithmic or hardware acceleration which can produce accurate approximate functions with less
training data (and can efficiently incorporate new data). Improvements to function approximators used in RL
would have high impact. Meta-learning (algorithms which learn based on the behaviour of other learning
algorithms), improvements in off-line training, and better sim-to-real [225] are all areas which offer potential
areas for improvement.

More generally, representations are again an area where there is significant room for improvement, par-
ticularly in the domain of physics and chemistry. As with supervised learning, when a learning algorithm is
provided data without any prior knowledge, a significant amount of signal is required simply to learn the rel-
evant features. This is in contrast to a scientist when they first enter the laboratory; they already have a great
deal of experience and expertise for operating in 3d environments.
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RL algorithms can be broadly categorized as either model-based or model-free (although there are cases
where the line becomes blurred). The former category consists of algorithms which use the model for a
variety of tasks: planning, obtaining analytic gradients, value-equivalence prediction, and data generation
[ref_categories]. An area for improvement could be the incorporation of hierarchies of models into such agents.
Currently this is not standard practice, and stands in stark contrast to physics and chemistry which are strongly
based on hierarchies of models which describe different effects across a wide-range of length and time scales.
Strong physics-based priors (e.g. energy conservation, momentum conservation) are also generally not built
into RL models in the way that is typically done in material science.

Intrinsic rewards will likely continue to be a fruitful area of methodological development. Concepts such
as novelty and surprise have begun to be applied with promising initial results.

5.2.4. Concluding remarks
RL is a powerful way of solving control problems. Thus far, it has seen less use within the materials science
literature than other ML methods such as supervised learning (e.g. image classification) and unsupervised
learning (e.g. finding patterns within data). We believe that RL is poised to make significant breakthroughs
within materials science, judging by its success with game-playing and autonomous control.
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5.3. Interpretability of machine learning models in physical sciences
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5.3.1. Status
Training a supervised ML model that yields satisfactory predictions (i.e., that maps input features into values
of the target property, with errors below a threshold perceived as tolerable) on test data that are driven from the
same distribution as the training data, is a task that is nowadays almost routinely accomplished. However, the
crucial interest is in that the trained model can generalize, i.e., it can yield trustable predictions also for test data
that are significantly different from the training data. As human beings, i.e., users who are asked to judge and/or
trust predictions of a ML model, we need to understand what the model has learned. Such innate need is related
to the notion of interpretability of the ML model. The literature on interpretability is vast [226–232], but the
field is pre-paradigmatic, i.e., it has not reached a consensus on what are the fundamental questions and what
are the quantities to be measured. Two somewhat contrasting aspects are typically associated to interpretability
[226–228]: transparency of the model and its (post hoc) explainability. Transparency connects to scientific
practice, where a phenomenon is felt as understood when a predictive mathematical law is formulated, which is
expected to work with no exception, at least in a well-defined domain of applicability. Such law is expected to be
simple, so that our brains can process most, if not all, of its consequences. Explainability refers to the possibility
to inspect a perceived ‘black-box’, i.e., a model that is in general too complex to be grasped by the human mind,
but that can be investigated, in order to reveal, for instance, which parts of the input mostly affected the output.
Incidentally, understanding a decision made by a human refers to the post hoc explainability of what happens
in our brains, whose detailed mechanics are beyond current grasp, while we can provide reasons on how a
decision was reached, typically based on ‘similar cases’ [227]. Understanding interpretability and in particular
devising one or a set of consensual metrics for assessing the generalizability and trustability of ML model is one
crucial next step, or the field might face another ‘winter’ due to a consequent lack of trust in ML applicability.

5.3.2. Current and future challenges
The tools for addressing the interpretability of ML models vary with the complexity of the models [226–231]
(see figure 31). For simpler models, transparency is evaluated, i.e., the ability to read and inspect the model.
Sparse models [233] and in particular symbolic inference [234] naturally provide transparent models as they
appear as equations (or inequalities) in terms of functions of input features, which are selected out of a possi-
bly large number of candidates. The interpretation is therefore provided by the identification of which input
features govern the modeled phenomenon. Here, the notions of simulatability and decomposability have been
introduced. These are the ability to follow step-by-step how the ML model produces an output from the input
and the ability to assign a meaning to each part of a model (e.g., the sign and magnitude of regression coef-
ficients), respectively. An outstanding challenge is to define a rigorous metric of transparency, so that models
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Figure 31. Summarized view of interpretability in ML, elucidating what determines the users’ need for interpretability and how
the meaning of the word adapts to the complexity of the learned model. Not mentioned in the text, the ethical/legal aspects are
felt important when ML-based decisions impact individuals or communities.

can be objectively compared, similarly and complementarily to the routinely performed, but insufficiently
informative, comparison in terms of predictive accuracy.

For more complex models, where transparency is lost, a plethora of post hoc explanation tools have been
developed [229–232], which are commonly divided into local (explanation on how a given single output is
obtained) and global (typically, visual analysis of how the dataset is represented internally by the model). The
focus is in general on a statistical analysis on how input features affect the results. The challenge is here to
properly account for the (typically nonlinear) relationship among the input features.

It is highly unsatisfactory that two different interpretability concepts exist depending on the complexity of
the trained model. In facts, there is a continuum of complexity between sparse, symbolic models and com-
plex ones (e.g., deep NNs); the challenge is to seamlessly adapt the complexity of the learned model, and the
related interpretability tools, to the intrinsic complexity of the underlying input-features—target-property
relationship.

Finally, the importance of outliers, datapoints not conforming to the model being learned, needs to be
understood. In physical sciences, a wrongly predicted datapoint may be a signal that a different mechanism
from the so-far identified features-property relationship is at work.

5.3.3. Advances in science and technology to meet challenges
ML is urgently requested to undergo a paradigm change. Together with prediction accuracy, strategies for
assessing the correct model complexity and interpretability metrics need to be developed. If a simple, symbolic
law is the underlying model, a correct ML strategy must be able to recover such exact model. When a more
complex, less transparent model is necessary, then the interpretability metric needs to seamlessly adapt to
the increased complexity. It should become therefore common practice to compare models in terms not only
of their predictive accuracy, but also of their interpretability metric. When applied to the development of
scientific (e.g., physical) laws, the purpose of this formidable task is to provide reasons to accept an ML-learned
features—property relationship in terms of its consistency with the existing bulk of knowledge, so that the ML
model is not felt as a surrogate, until ‘something better’ is found, but as a new scientific law.

In this respect, it is crucial to be able to treat the nonconforming datapoints. Most current ML approaches
are built to neglect such datapoints, a.k.a. outliers, while in physical sciences even one single datapoint not
complying with the general law is treated with uttermost care, as it could be the harbinger of ‘new physics’.
It is therefore desirable that, together with the complexity-aware strategy sketched above, a nonconforming-
datapoints strategy is developed (see also section 1.4). For instance, one may wish to detect different domains
of applicability of more complex, general models, vs specialized but simpler models. A useful analogy could be
thinking at general relativity, which is more general and more complex than classical gravitation. The latter is
however very accurate in a well-specified and understood domain of applicability. In turn, general relativity is
expected to be a special, somewhat simpler, case of a (yet to be developed) quantum-gravity theory. Similarly,
in ML the level of complexity of the learned models might need to be adapted to well-defined domains of
applicability [235], preferably defined by ML algorithms in a data-driven fashion.
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5.3.4. Concluding remarks
In conclusion, ML might have reached its maturity in terms of predictive ability, on data that are statisti-
cally similar to the training data. However, it is still in its infancy when it comes to (i) generalizability to data
significantly different from training data, (ii) treatment of ‘outliers’, i.e., data do not conform to the model
being trained, (iii) having a unified concept of interpretability that seamlessly applies from the obvious trans-
parency of sparse, symbolic models, to the explainability of complex deep NNs, and (iv) adapting the trained
model complexity to the intrinsic complexity of the underlying input feature—property relationship. Hope-
fully, framing the objective in clear terms will stimulate a focused development of ML techniques, which could
promote ML tools to become valuable companions of a scientist, in order to foster future scientific discoveries.

Acknowledgments

I acknowledge Jilles Vreeken, Angelo Ziletti, and Matthias Scheffler for insightful discussions. This work
received funding from the European Union’s Horizon 2020 Research and Innovation Programme (Grant
Agreement No. 676580 and No. 951786), the NOMAD laboratory CoE, and ERC:TEC1P (No. 740233).

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

H J Kulik https://orcid.org/0000-0001-9342-0191
T Hammerschmidt https://orcid.org/0000-0002-2270-4469
S Botti https://orcid.org/0000-0002-4920-2370
M A L Marques https://orcid.org/0000-0003-0170-8222
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K T Schütt https://orcid.org/0000-0001-8342-0964
J Westermayr https://orcid.org/0000-0002-6531-0742
R J Maurer https://orcid.org/0000-0002-3004-785X
K Burke https://orcid.org/0000-0002-6159-0054
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[53] Bağcı̇oğlu M, Fricker M, Johler S and Ehling-Schulz M 2019 Detection and identification of Bacillus cereus, Bacillus cytotoxicus,

Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis via machine learning based FTIR spectroscopy Front.
Microbiol. 10 902

[54] Rehman I U, Khan R S and Rehman S 2020 Role of artificial intelligence and vibrational spectroscopy in cancer diagnostics
Expert Rev. Mol. Diagn. 20 749–55

[55] Toyao T, Maeno Z, Takakusagi S, Kamachi T, Takigawa I and Shimizu K-i 2020 Machine learning for catalysis informatics: recent
applications and prospects ACS Catal. 10 2260–97

[56] Timoshenko J, Lu D, Lin Y and Frenkel A I 2017 Supervised machine-learning-based determination of three-dimensional
structure of metallic nanoparticles J. Phys. Chem. Lett. 8 5091

[57] Cordova M, Balodis M, Simões de Almeida B, Ceriotti M and Emsley L 2021 Bayesian probabilistic assignment of chemical shifts
in organic solids Sci. Adv. 7 eabk2341

[58] Ren H, Li H, Zhang Q, Liang L, Guo W, Huang F, Luo Y and Jiang J 2021 A machine learning vibrational spectroscopy protocol
for spectrum prediction and spectrum-based structure recognition Fundam. Res. 1 488

[59] Jinadasa M H W N, Kahawalage A C, Halstensen M, Skeie N O and Jens K J 2021 Deep learning approach for Raman spectroscopy
Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization (London: IntechOpen)

[60] Zhao Y, Zhan K, Wang Z and Shen W 2021 Deep learning-based automatic detection of multitype defects in photovoltaic
modules and application in real production line Prog. Photovolt., Res. Appl. 29 471–84

[61] Zhaochun Z, Ruiwu P and Nianyi C 1998 Artificial neural network prediction of the band gap and melting point of binary and
ternary compound semiconductors Mater. Sci. Eng. B 54 149–52

[62] Paul S, Johann G, Henrik T and Reiner S 2000 Rapid access to infrared reference spectra of arbitrary organic compounds: scope
and limitations of an approach to the simulation of infrared spectra by neural networks Chem. Eur. J. 6 920–7

[63] Himanen L, Geurts A, Foster A S and Rinke P 2019 Data-driven materials science: status, challenges, and perspectives Adv. Sci. 6
1900808

[64] Stuke A, Kunkel C, Golze D, Todorovíc M, Margraf J T, Reuter K, Rinke P and Oberhofer H 2020 Atomic structures and orbital
energies of 61 489 crystal-forming organic molecules Sci. Data 7 58

[65] Xian R P et al 2020 An open-source, end-to-end workflow for multidimensional photoemission spectroscopy Sci. Data 7 442
[66] Pilania G, Gubernatis J E and Lookman T 2017 Multi-fidelity machine learning models for accurate bandgap predictions of

solids Comput. Mater. Sci. 129 156
[67] Perim E et al 2016 Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

Nat. Commun. 7 12315
[68] Ford D C, Hicks D, Oses C, Toher C and Curtarolo S 2019 Metallic glasses for biodegradable implants Acta Mater. 176 297–305
[69] Ren F, Ward L, Williams T, Laws K J, Wolverton C, Hattrick-Simpers J and Mehta A 2018 Accelerated discovery of metallic

glasses through iteration of machine learning and high-throughput experiments Sci. Adv. 4 eaaq1566
[70] Kusne A G et al 2020 On-the-fly closed-loop materials discovery via Bayesian active learning Nat. Commun. 11 5966
[71] Oses C, Toher C and Curtarolo S 2020 High-entropy ceramics Nat. Rev. Mater. 5 295–309
[72] Dasgupta A, Broderick S R, Mack C, Kota B U, Subramanian R, Setlur S, Govindaraju V and Rajan K 2019 Probabilistic

assessment of glass forming ability rules for metallic glasses aided by automated analysis of phase diagrams Sci. Rep. 9 357
[73] Sarker P, Harrington T, Toher C, Oses C, Samiee M, Maria J-P, Brenner D W, Vecchio K S and Curtarolo S 2018 High-entropy

high-hardness metal carbides discovered by entropy descriptors Nat. Commun. 9 4980
[74] Lederer Y, Toher C, Vecchio K S and Curtarolo S 2018 The search for high entropy alloys: a high-throughput ab initio approach

Acta Mater. 159 364–83
[75] Rickman J M, Chan H M, Harmer M P, Smeltzer J A, Marvel C J, Roy A and Balasubramanian G 2019 Materials informatics for

the screening of multi-principal elements and high-entropy alloys Nat. Commun. 10 2618
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