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Abstract: In this work, we outline a general method for calculating Auger spectra in molecules, which
accounts for the underlying symmetry of the system. This theory starts from Fano’s formulation of the
interaction between discrete and continuum states, and it generalizes this formalism to deal with the
simultaneous presence of several intermediate quasi-bound states and several non-interacting decay
channels. Our theoretical description is specifically tailored to resonant autoionization and Auger
processes, and it explicitly includes the incoming wave boundary conditions for the continuum states
and an accurate treatment of the Coulomb repulsion. This approach is implemented and applied to
the calculation of the K− LL Auger and autoionization spectra of ozone, which is a C2v symmetric
molecule, whose importance in our atmosphere to filter out radiation has been widely confirmed.
We also show the effect that the molecular point group and, in particular, the localization of the
core-hole in the oxygen atoms related by symmetry operations, has on the electronic structure of the
Auger states and on the spectral lineshape by comparing our results with the experimental data.

Keywords: Fano’s interaction; Auger spectroscopy; ozone; electronic correlation; Hartree-Fock;
Configuration Interaction; continuum wavefunction; projected potential method

1. Introduction

Ozone has attracted enormous interest in recent years, due, in particular, to its
paramount role that is played in atmospheric chemistry. On the one hand, a dramatic
decrease in ozone concentration within the Earth’s upper atmosphere has shown a major
negative impact on the effective shielding of our planet from ultraviolet sunlight, whose
absence would be fatal to life [1]. On the other hand, ozone is known to act as greenhouse
gas [2,3], thus increasing global warming, as well as to be a harmful pollutant in metropoli-
tan areas being produced by exhaust gases of combustion processes with a considerable
human health hazard potential.

These reports on the importance of ozone in the chemical dynamics of the atmo-
sphere, as well as in the absorption of virtually all the ultraviolet light that passes into
the stratosphere, fuelled ozone research. However, while several studies focused on the
ground state electronic and vibrational properties of ozone [4–6], little to no theoretical and
experimental information regarding electronic excited state dynamics can be found [7–9].
This investigation turns out to be crucial, e.g., to identify the molecular species that filter
out the highest energy light, such as γ, X, and UV-rays, and to determine the amount of
radiation reaching the surface of our Earth.

Moreover, the analysis of the excited states is also interesting in view of the fact that
all of the ozone bands are dissociative [10,11], which means that the molecule falls apart to
O + O2 upon photon absorption. This dissociative mechanism drives further helpful or
harmful reactions, depending on where in the Earth’s atmosphere they occur [12]. In these
photo-excited processes, the system often goes through intermediate quasi-bound states,
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which have long lifetimes if compared with the collision times. Afterwards, the excited
system undergoes a dissociative path into final channels that are characterized by the
presence of a few asymptotically non-interacting fragments, the observation of which
provides useful information on the properties of the system under examination. In general,
these decay processes are due to the fact that the resonant excited state that is produced
by the initial collision with the high-energy photon is embedded in the continua of the
final fragments.

Auger spectroscopy, in particular, is a type of electron spectroscopy that is based on
scattering processes in which the initial state consists of a projectile, typically X-ray or
UV photons or electrons, which collides with an atomic, molecular, or solid state target,
and the final states feature electrons, photons, or heavy particles according to the type
of experiment. The analysis of the energies and intensity distribution of these secondary
electrons represents the central problem of Auger spectroscopy. Indeed, Auger electrons
are emitted with system-dependent probabilities in several open channels, characterized
by different kinetic energies and identified by different quantum numbers. Of course, the
Auger spectral lineshape reflects the symmetry of the perturbed system.

From the standpoint of computation, one notes the existence of an ample body of
techniques developed for atomic systems, whereas, for molecules, the number is much
more limited [13,14]. This is mainly due to the difficulties that are created by the reduced
symmetry of molecular systems, which hinders the use of numerical techniques for rep-
resenting the electron as it moves outward through the field of the ionized molecule.
Furthermore, another relevant difficulty of molecules is represented by the inclusion of
the nuclear motion and its coupling with the electronic degrees of freedom. For example,
in ozone, fast excited dissociation may occur at once with the Auger emission [10], gener-
ating an interplay between the vibrational and electronic degrees of freedom beyond the
Born–Oppenheimer approximation [15–17], which affects the kinetic energy of the emitted
Auger electrons.

In this work, we first present a general theoretical and computational method for
interpreting core-electron spectroscopies on molecules, such as autoionization and Auger,
which allows for one to accurately reproduce the experimental results, by including, in
principle, the vibrational details as well as the combined effects on the spectral lineshapes
due to the intrinsic features of the transition, the characteristics of the incident radiation
and those of the electron spectrometer. In particular, we discuss the central feature of our
approach, which is the ability to calculate accurate wave functions for continuum states of
polycentric symmetric (or asymmetric) systems at a computational effort that is similar to
that of standard bound-state calculations. This method is used for calculating the O1s→ σ∗

resonant photoemission and the K− LL Auger spectra of the ozone molecule. The accuracy
of the results is progressively increased by using different levels of theory, from mean field
Hartree–Fock (HF) to correlated method, such as Configuration Interaction (CI), measuring
the relative importance of the different contributions of the electron-electron correlation to
the experimental spectrum. Furthermore, the effect on the Auger lineshape of the presence
of core-hole localized in the 1s orbitals of symmetry-related oxygen atoms, rather than in a
delocalized molecular orbital, is discussed.

2. Theoretical and Computational Methods
2.1. Autoionization and Auger Decay as Resonant Multichannel Processes

Auger states are excited, quasi-bound states created by inner-shell excitation or ion-
ization that are embedded in the continuum of the next higher charge state of the system.
They can decay by either electron emission (radiationless transition) or by radiation emis-
sion. The radiationless decay is called autoionization or Auger transition, depending on
whether the system initially undergoes a neutral excitation by promoting an electron to an
empty orbital or is ionized by the impinging photons. The primary excitation process is
often accompanied by the simultaneous ionization (shake-off) or excitation (shake-up) of a
valence electron. The resulting peaks in the spectrum are called satellite lines. Shake-up
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and shake-off processes typically account for 10% of the total spectral intensity and they
will be neglected in our analysis.

We rely on the time-independent approach developed by Fano [18] to evaluate the
autoionization (or Auger) cross section. This approach interprets the decay process as
due to the interaction between a quasi-bound state, produced by the primary excitation
(ionization), and the continuum states of the single (double) ionized target.

Let us describe this method in the case of an autoionization process, in which one
electron is excited to a discrete (resonant) state |Φ〉 that is degenerate with several continua
{|χ−α,E 〉} of the ionized target [19]. We notice that the label |α〉 is a notation standing for
"good quantum numbers” (angular momentum, spin, etc...) in spherically symmetric
systems, such as atoms, and symmetric molecules. The total Hamiltonian of the problem,
assuming the validity of the Born–Oppenheimer approximation, is H = Hs + Hrad + Hint,
where Hs is the many-body Hamiltonian of the isolated system, Hrad = ∑k,λ h̄ωa†

λ(k)aλ(k)
is the electromagnetic radiation Hamiltonian, where k is the wavenumber of a wave that is
confined within a box of volume V = L× L× L, λ is the polarization direction and ω = kc,
and, finally, the interaction operator Hint = êλ ·∑j qj~rj, where Oλ is the component of the
dipolar operator in the polarization direction êλ.

The continuum wave function of the system {|χ−α,E 〉} is characterized by the incoming
wave boundary condition (−), which means that asymptotically represents one electron
released, with energy E , into a channel that is specified by the state α of the ionized target
at the energy Eα. In Fano’s approach, the scattering eigenstate |Ψ−α,E 〉 of the Hamiltonian of
the isolated system Hs is represented by the following linear combination of discrete and
continuum states:

|Ψ−α,E 〉 = aα(E)|Φ〉+
Nc

∑
β=1

∞∫
0

|χ−β,τ〉Cβ,α(τ, E)dτ, (1)

with the normalization condition:

〈Ψ−α,E |Ψ
−
β,E ′〉 = δαβδ(Eα + E − Eβ − E ′). (2)

The states {|χ−β,τ〉}, which appear in Equation (1), are continuum states that are obtained
through the diagonalization of the many-electron Hamiltonian matrix of the system Hs
that is constructed using a set of interacting continuum states {|χβ,ε〉}, as follows:

〈χβ,ε|Hs − E|χγ,ε′〉 = (Eβ + ε− E)δ(Eβ + ε− Eγ − ε′) + Vβγ(ε, ε′; E). (3)

A solution of this set of equations is characterized by the following asymptotic behavior:

lim
r→∞

χ−α,E = ∑
γ

Ωγ

2ir

(
eiθγ(E ,r)δγα − e−iθγ(E ,r)S+

γα

)
, (4)

where {Ωγ} are symmetry-adapted wave functions that describe the possible states of
the ionized target and also containing the angular coordinates and the spin state of the
outgoing electron. The radial phases {θγ(E , r)} depend on the nature of the long-range
interaction inside each channel and S+

γα is the scattering amplitude into channel γ. The
coefficients of Equation (1) are obtained by solving the following equations

〈Φ|Hs − E|Ψ−α,E 〉 = 〈χ
−
β,ε|Hs − E|Ψ−α,E 〉 = 0, (5)

which explicitly read:

(EΦ − E)aα(E) +
Nc

∑
β=1

∞∫
0

M−β (τ, E)Cβα(τ, E)dτ = 0; (6)
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aα(E)M−β (ε, E)∗ + (ε + Eβ − E)Cβα(ε, E) = 0, (7)

where
M−β (ε, E) = 〈Φ|Hs − E|χ−β,ε〉; (EΦ − E) = 〈Φ|Hs − E|Φ〉 . (8)

By moving into the complex plane to avoid singularities that appear in the coefficients
{aα, Cβα} of Equations (6) and (7), one obtains the following expression

|Ψ−α,E 〉 = |χ
−
α,E 〉+

M−α (E , E)
E− Er − i Γ

2

|Φ〉+ lim
ν→0

∑
β

∞∫
0

|χ−β,τ〉M
−
β (τ, E)∗

E− Eβ − τ − iν
dτ

, (9)

with Γ and Er defined as follows

Γ = ∑
β

Γβ = 2π ∑
β

|M−β (Er, E)|2; Er = Er − Eα; (10)

Er = EΦ + ∆; ∆ = ∑
β

P
∞∫

0

|M−β (τ, E)|2

E− Eβ − τ
dτ . (11)

Finally, knowing the stationary states {|Ψ−α,E 〉} for each possible combination of the quan-
tum numbers α and E , one can obtain the cross section for the autoionization process, in
which the photon absorption of appropriate energy promotes an electron to a discrete reso-
nant state |Φ〉, and, afterward, the ionized target decays non-radiatively into channel |χ−α,E 〉.
Indeed, according to the general theory of scattering [20,21], the autoionization cross sec-
tion is proportional to the square element of the transition matrix. Using Equations (8)–(11),
one obtains:

T+
f i(E) = 〈χ−α,E ; N − 1, ω|Ĥint|o; N, ω〉+

+
〈χ−α,E |Ĥs − E|Φ〉〈Φ−; N − 1, ω|Hint|o; N, ω〉

E − Er + i Γ
2

, (12)

connecting the initial state |Ψ+
i 〉 = |o〉|N, ω〉, which is the tensorial product of the ground

state |o〉 of the system and of the |N, ω〉 state of the radiation with N ω-frequency photons,
to the final state |Ψ−f 〉 = |Ψ

−
α,E 〉|N − 1, ω〉, which is the tensorial product of the continuum

state, |Ψ−α,E 〉 of the system and of a state of the radiation in which one photon of frequency
ω has been absorbed. In Equation (12), the following definition has been used:

|Φ−〉 = |Φ〉+ lim
ν→0

Nc

∑
β=1

∞∫
0

|χ−β,τ〉M
−
β (τ, E)∗

E− Eβ − τ − iν
dτ; E = ω− (Eα − Eo). (13)

By neglecting the first term in the right hand side of Equation (12), which represents the
contribution to the cross section of direct photoemission, the cross section of the resonant
autoionization process can be approximated, as follows:

dσf i(E)
dE =

4π2ω

Nc
|T+

f i (E)|
2 = σ(ω)

1
2π

Γα

(E − Er)2 + Γ2/4
, (14)

where σ(ω) ∝ |〈Φ; N − 1, ω|Hint|o; N, ω〉|2 is the cross section of the excitation process
|o〉 → |Φ〉. One can observe that, as long as Γα, which represents the decay rate into
channel |α〉 and Γ, which represents the total decay rate, are slowly energy dependent in
the range of interest, the cross section per unit energy that is defined by Equation (14) has
a Lorentzian profile. The energy shift ∆, as defined in Equation (11), usually represents a
small correction to EΦ, so it can typically be neglected.
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We notice that similar results can also be obtained for the Auger decay, where, at odds
with the resonant autoionzation process, the intermediate state is constituted by a quasi-
bound state of the ionized target plus one electron emitted upon the initial photoionization,
while the final state is characterized by the presence of two electrons in the continuum.
In our model, which explicitly includes the incoming wave boundary conditions for the
continuum states, the Auger decay is described as a two-step process in which no interac-
tion occurs between the primary photo-emitted and Auger electrons. This approximation is
typically acceptable when the projectile’s kinetic energy is much higher than the ionization
energy of the inner-shell electrons.

Therefore, the T matrix of the process can be written, as follows:

T+′
αi = 〈χ−α,E1E2

; N − 1, ω|Ĥint|o; N, ω〉

+

∞∫
0

〈χ−α,E1E2
|Ĥs − E|Φτ〉〈Φτ ; N − 1, ω|Hint|o; N, ω〉
E1 + E2 − Er − τ + iΓ/2

dτ, (15)

where E1 and E2 are the energies of the outgoing electrons that are related to the other
characteristic energies of the problem by the following relationship: E1 + E2 = ω− (Eα −
Eo) (Eo is the ground state energy of the system). The intermediate state |Φτ〉 is a continuum
state that, as long as ω >> Eα − Er, can be approximated by an antisymmetrized product,
Â{|Φ〉|τ〉}, where |τ〉 represents the state of the primary electron. In a similar way, the final
state can be represented by Â{|χ−β,E2

〉|E1〉}, where |E1〉 is the state of the primary electron.
When neglecting the first terms in the right-hand side of Equation (15), which repre-

sents the probability amplitude of the double direct ionization process, one obtains

dσα(E)
dE = σ(E) 1

2π

Γα

(E − Er)2 + Γ2/4
; E = ω− (Er − Eo), (16)

where σ(E) is the photoionization cross section of the primary process. This result, again,
displays a Lorentzian behaviour and indicates that Γα is the rate of the non-radiative decay
process from the ion intermediate state |Φ〉 into the channel |α〉, and Γ is the total Auger
decay rate.

The cross sections (14), (16) represent the starting point for constructing the “theoreti-
cal” spectrum that is to be compared with the experimental one. They give the contributions
to the spectrum due to the intrinsic features of the target, while the finite resolution of
the electron spectrometer, the specific characteristics of the incident photon beam, and the
broadening of the Auger lineshapes due to vibrational modes can be taken into account by
performing a convolution with a Gaussian function [14].

2.2. The Projected Potential Approach and the Many-Body Hamiltonian

Basically, in order to assess the cross sections (14) and (16), we are left with the
problems of calculating the intermediate resonant state and the continuum wavefunction.
In particular, the problem of finding the eigensolutions of the Hamiltonian is separated
with respect to finding the bound and continuum orbitals. This means neglecting the effects
that the continuum orbital has on the bound orbitals. The latter are obtained separately,
thus, without taking the presence of the outgoing electron into account. This is the so-
called “Static Exchange Approximation” . In general, the interacting decay channels {χ̃

α~k}
are represented by the tensor product

χ
α~k(1, ..., N − 1, N) = Â[Θα(1, ..., N − 1)ϕ

α~k(N)] (17)

between a set of functions ϕ
α~k(1) that describes the spin-orbital of the unbound electron

and Θα(1, ..., N − 1) that is the determinant representing the bound state of the remaining
N − 1 system (N − 2 for Auger processes), and Â is the antisymmetrizer that also includes
the normalization constant.
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On the one hand, since both the intermediate and the final ionic states are bound
states of the molecule, one can calculate their energies while using the standard quantum
mechanical techniques proposed for bound-state calculations, such as the single Slater
determinant HF, or many configuration wave functions methods, such as CI or MC-SCF,
or Green’s function based techniques [14]. In particular, the solutions of the secular problem
for the (N − 1)-electron system (N − 2 for Auger processes) are obtained inside the space
spanned by the orbitals that were taken from a set of n bound orbitals |θj〉. The HF single-
determinant wavefunction and the CI treatment of symmetry-adapted orbitals will both be
used to obtain the bound state eigenfunctions in Equation (17) as:

〈Θα|ĤN−1
s |Θβ〉 = Eαδαβ. (18)

This solution is searched within the Hilbert space spanned by a basis set that we use to
expand the orbital wavefunctions. Our basis set is typically built with Hermite Gaussian
functions (HGF)

g(r) = g(u, v, w; a, R; r) = N
∂u+v+w

∂Xu∂Yv∂Zw (
2α

π
)3/4exp[−α(r−R)2],

where R ≡ (X, Y, Z) gives the position where g is centered, α is a coefficient determining
the HGF width, the order of derivation (u, v, w) determines the symmetry type, and N is a
normalization factor

N = [αl(2u− 1)!!(2v− 1)!!(2w− 1)!!]−1/2, l = u + v + w,

Using a mixed basis set of HGFs of every order and centrature, we evaluate the mono and
bi-electronic integrals of the many-body Hamiltonian (18).

On the other hand, to construct the continuum orbital of Equation (17) in the effective
field of the bound orbitals, we developed a method that is capable to also include the
interchannel coupling among various {χ

α~k} and, furthermore, the interaction among
continuum and discrete states. We use the projected potential approach in order to include
these effects. Within the projected potential framework, a model Hamiltonian is defined, in
which the monoelectronic and the bielectronic part of the potential are both represented
in terms of L2-functions. The use of this model Hamiltonian allows for us to also include
the interchannel coupling and directly obtain the correct, non-interacting decay channels
{|χ−

α~k
〉} defined in the previous section (see Equation (4)).
To present this approach, we consider the case of a N-electron system with one electron

in the continuum. We define a projector π̂(i) = ∑m
l=1 |gl(i)〉〈gl(i)| into a m-dimensional

space (G) of L2(R3)− functions, spanned by the orthonormal set {|gl〉 ; l = 1, ..., m}.
We project both the electron-nuclei attraction potential V̂en(i) = −∑µ

Zµ

|~ri−~Rµ |
, and the

electron-electron Coulomb repulsion v̂(i, j) = 1
|~ri−~rj |

operators, obtaining the following

model electronic Hamiltonian

Ĥs(1, ..., N) =
N

∑
i=1

[T̂(i) + V̂π
en(i)] +

1
2

N

∑
i 6=j

v̂π(i, j), (19)

T̂(i) = −1
2
∇2

i ; V̂π
en(i) = π̂(i)V̂en(i)π̂(i), (20)

v̂π(i, j) = π̂(i)π̂(j)v̂(i, j)π̂(i)π̂(j). (21)

By only projecting out the potential terms of the Hamiltonian, we come up with
the solution to the issues of (i) accurately representing the orbital inside the scattering
region, which is the important volume where the matrix elements that couple bound and
continuum states (see Equation (8)) have to be appropriately calculated; and, (ii) recovering
the continuum part of the spectrum by means of the unprojected kinetic term. The region
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where the potential is projected can, of course, be incremented by including, e.g., more
diffuse HGFs so as to more accurately approximate the Coulomb potential tail. Outside
this region, where only the long-range part of the potential survives, one can represent the
continuum orbital as a linear combination of eigenfunctions of the long-range potential,
which are typically known analytically (e.g., Coulomb wave functions).

In order to construct the product (17) and find the continuum eigenfunctions ϕαk of
the Hamiltonian (19) with positive eigenvalues, we notice that the Hamiltonian matrix
diagonalization within the entire functional space G is equivalent to solve the follow-
ing projected Lippmann–Schwinger (LS) equation, which also includes the appropriate
boundary condition:

ϕαk(r) = eik·r + Ĝ−0 (ε)T̂α(ε)eik·r, (22)

where G−0 (ε = k2

2 ) =
1

ε− k̂2
2 −iε

is the free-particle Green’s function and T̂α is the transition

operator that is defined by the equation:

T̂α = V̂π
α + V̂π

α Ĝ−0 (ε)T̂α. (23)

In Equation (23) V̂π
α (r) is the approximate representation of the Coulomb operator (see

Equations (20) and (21)), including both electron–electron and electron–nuclei interactions,
projected using a finite set of L2 functions. The elements of this basis set are chosen to
minimize the difference (V̂α − V̂π

α )|ϕ
α~k〉 inside the scattering volume. We notice that, in

Equation (22), the correction to the free-wave state to obtain the scattering wavefunction is
represented by a linear combination of functions of the type G−0 |α〉gj.

By using the previous definitions, one gets the following expression for the matrix
element that couples two interacting channels:

〈χ
α~k|Ĥ

N |χβ~p〉 = (2π)3δ(~k− ~p)δαβ(
k2

2
+ Eα) + 〈ϕα~k|V̂

en
π δαβ + Ŵαβ

π |ϕβ~p〉, (24)

where

Ŵαβ
π (1) =

N

∑
j=2
〈Θα(2, .j., N)|v̂π(1, j)(1̂− P̂1,j)|Θβ(2, .j., N)〉, (25)

and P̂1,j is the operator that interchanges the (1, j) variables.
If, now, we assume that the bound-state problem has been solved, i.e., the eigenvectors

(|Θ1〉, |Θ2〉, ..., |ΘM〉) of ĤN−1 (ĤN−2 for the Auger process) have been found inside the
space of the Slater determinants built up using the {θj} orbitals, we can look at the matrix
elements that are defined in Equation (24) as the representation of an effective one-particle
Hamiltonian over a set of basis vectors {|ϕ

α~k〉}. Indeed, this Hamiltonian is that of a particle,
with internal degrees of freedom, which moves in an effective potential, depending on
the internal states {|α〉} of the particle itself. We notice that the basis vectors {|ϕ

α~k〉} are
labelled by two indices, one continuous (~k) and one discrete (α), and that they shall satisfy
orthonormality constraints, both with respect to~k and to α. Finally, the bound orbitals
Θα(1, ..., N − 1) and continuum wavefunctions ϕ

α~k(~r) can be made mutually orthogonal.

3. Results and Discussion
3.1. The Ozone Molecular Geometry and Its Electronic Structure

The ozone ground state has a trigonal planar bent molecular geometry belonging to
the C2v symmetry group (similar to the water molecule), whereby the central oxygen atom
is in a sp2-hybridized configuration. In order to optimize the ozone atomic coordinates,
we started from experimental oxygen positions and accommodated the molecule in a cell
with side of 10 Å. The ozone geometry was relaxed below 10−3 Ry/Å for the interatomic
forces via first-principles density functional theory (DFT) calculations, as implemented
in the Quantum Espresso code suite [22], using a PBE-GGA functional [23]. We have
used the Troullier–Martins (TM) norm-conserving pseudopotentials that were tabulated
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in the Quantum Espresso web page. Including the Γ point only to sample the Brillouin
zone and using a kinetic energy cut-off of 130 Ry, the self-consistent DFT convergence
is reached within the energy error of 10−5. Upon optimization, the O–O bond length
turns out to be 1.273 Å, while the O–O–O angle is 117.16◦, which compares well with
the experimental data [24] (1.272 Å and 116.78◦, respectively). Figure 1 shows the ozone
ground state geometry. The molecular bonds in ozone can be represented as a resonance
between two contributing structures, each with a single bond on one side and double bond
on the other, where the terminal OT atoms are more electron rich than the central OC atom.
The three sp2 hybrid orbitals form a net of 2 O–O σ bonds and five lone pairs (two on
each terminal OT and one on the central OC). The remaining four valence electrons are
distributed among the three unhybridized 2pz orbitals on each oxygen atom, forming one
lowest energy π bond, one highest energy π∗ antibonding, and one intermediate energy π
nonbonding orbitals, respectively.

Figure 1. Ozone geometry in the ground state.

3.2. The Auger Spectrum of Ozone

Electronic structure calculations have been initially carried out at mean-field HF level
for the ground state, a set of highly-excited core-hole intermediate states and the double-
ionized molecule. In this respect, several studies pointed out the bi-radical character of
the electronic ground state [5,25]. We remind that the HF method is based on a set of
non-linear equations, minimized to deliver the best variational wavefuntions and energy.
Thus, they are sensitive to the kick-off orbitals. In this regard, below we will show the
effect of localizing the inner hole on atomic or molecular symmetry orbitals.

The ground state of the ozone molecule is described by the following configuration
1 A1 : 1a2

1 1b2
1 2a2

1 3a2
1 2b2

1 4a2
1 5a2

1 3b2
1 1b2
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2.

The intermediate quasi-bound states that are populated by the primary ionization are
the following:
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2 4b2

1 6a2
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2.

The final states of the doubly ionized target are characterized by two holes distributed
in all possible ways among the 3,4,5,6a1, 2,3,4b1, 1a2, and 1b2 orbitals, which results in
81 different possible final channels. We will limit the discussion to the electronic spectrum,
using only the electronic Hamiltonian and taking the effects of the nuclear motion into
account in a simplified manner by adding a broadening of the Auger lines only at the end,
in order to compare the theoretical and experimental spectra. A further line broadening will
be included to take the finite resolution of the spectrometer used in electron spectroscopy
measurements into account. Furthermore, the two-step and static exchange approximations
are used and only the decay process from the intermediate quasi-bound state is analyzed.
In the case of the Auger decay, we further assume that the primary electron is fast enough
to avoid any appreciable interaction with the ionized ozone molecule.
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The basis functions that were used in the expansion of bound and continuum or-
bitals is taken from the aug–cc–pVQZ basis set with (12s, 6p, 3d, 2 f , 1g) HGF contracted
to (5s, 4p, 3d, 2 f , 1g) centered on each oxygen nucleus. In order to increase the accuracy
and rely on a larger number of diffuse functions to represent the continuum orbital, in our
simulations we completely decontracted the aug–cc–pVQZ HGF basis set to (13s, 7p, 4d)
HGF without the g-symmetry Gaussian to limit the computational cost. Indeed, this de-
contraction procedure will significantly add to the computational cost of the calculation of
the Auger spectra. The HGF basis set has been decontracted in order to have eigenvectors
of an average HF operator at energies near to those of the Auger electron in the various
decay channels. Using this HGF basis set, we calculated the total and orbital energies of
the neutral ground state of ozone by numerical solution of the HF equations with and
without the inclusion of relativistic effects [26], where, in the latter simulation, the electronic
repulsion also takes the Gaunt term into account [27]. These results are reported in Table 1
in a.u. Analyzing these values we conclude that relativistic effects are negligible and a
non-relativistic approximation can be adopted to simulate the Auger lineshape of ozone.

Table 1. Relativistic (rel.) vs. non relativistic (non rel.) Hartree–Fock (HF) total (EHF) and orbital
energies (εHF), calculated for the ozone ground state. The values are reported in a.u.

1a1 1b1 2a1 3a1 2b1 4a1

εHF non rel. −20.9179 −20.7070 −20.7070 −1.7453 −1.4281 −1.0948
εHF rel. −20.9124 −20.7015 −20.7015 −1.7460 −1.4286 −1.0957

5a1 3b1 1b2 4b1 6a1 1a2

εHF non rel. −0.8301 −0.7983 −0.7785 −0.5640 −0.5531 −0.4870
εHF rel. −0.8296 −0.7979 −0.7778 −0.5633 −0.552 −0.4865

EHF non rel. −224.356
EHF rel. −224.408

The final decay states are represented by the wave functions of Equation (17), where
|Θα〉 is the wave function for the state |α〉, representing the final single and double ionized
target for autoionization and Auger processes, respectively, while ϕακ is the spin-orbital
describing the Auger electron. We remind that the use of χ

α~k instead of the well behaving
wave function χ−

α~k
that diagonalizes the Hamiltonian (3) is equivalent to disregard the

coupling among the decay channels. This approximation is, in general, too drastic [13,14]
and will be abandoned in our calculations. The following linear combinations of Slater
determinants represent the intermediate and final bound states of the single and double
ionized molecule:

|Φ(1, . . . , N − 1)〉 =
1√

(N − 1)!
∑

i
ai|ϕi

1(1), . . . , ϕi
N−1(N − 1)|, (26)

|Θα(1, . . . , N − 1)〉 =
1√

(N − 2)!
∑

j
bαj|θ

j
1,α(1), . . . , θ

j
N−2,α(N − 2)|. (27)

The coefficients ai and bα,j are variationally determined by solving the secular problem
with respect to the standard electronic Hamiltonian. The bound orbitals {ϕ} and {θ} are
obtained by solving separate HF equations for the various states of interest and, therefore,
the resulting orbitals for a given state are not orthogonal to those of a different state
of charge.

The matrix elements (8) that couple the intermediate and final states are calculated
between Slater determinants built up in terms of orbitals that belong to mutually non-
orthogonal sets, as follows:
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M
α,~k(E) = 〈Φ|Ĥ − E|χ

α,~k〉 = ∑
i

∑
j

aibα,j

{
N−1

∑
l=1

(
N−1

∑
m=2
〈ϕi

l |ĥ|ϑ
j
m,α〉|S

ij
α (l; m)|

+ 〈ϕi
l |ĥ|ηα,~k〉|S

ij
α (l; 1)|

)
+

N−1

∑
l=2

l−1

∑
r=1

[
N−1

∑
m=3

m−1

∑
s=2

(
〈ϕi

l , ϕi
r|ĝ|ϑ

j
m,α, ϑ

j
s,α〉

−〈ϕi
l , ϕi

r|ĝ|ϑ
j
s,α, ϑ

j
m,α〉

)
|Sij

α (l, r; m, s)|+
N−1

∑
m=2

(
〈ϕi

l , ϕi
r|ĝ|ϑ

j
m,α, η

α,~k〉

−〈ϕi
l , ϕi

r|ĝ|ηα,~k, ϑ
j
m,α〉

)
|Sij

α (l, r; m, 1)|
]
− E|Sij

α |
}

, (28)

where Sij
α is the following overlap matrix

Sij
α =


〈ϕi

1|ϑ
j
1,α〉 . . . 〈ϕi

1|ϑ
j
N−2,α〉 〈ϕi

1|ηα,~k〉
...

...
...

〈ϕi
N−1|ϑ

j
1,α〉 . . . 〈ϕi

N−1|ϑ
j
N−2,α〉 〈ϕi

N−1|ηα,~k〉

 (29)

and |Sij
α (l; m)| is the determinant of the minor that is obtained by taking away row l and

column m and |Sij
α (l, r; m, s)| that of the minor obtained by taking away rows (l, r) and

columns (m, s). In order to calculate these matrix elements, which give the relative decay
rates onto the various channels, one has to evaluate integrals between L2-functions, used
to represent both the bound and continuum orbitals. Analytical expressions of these
integrals using HGF of any order and centre as basis functions for the bound orbitals can
be derived [14], which decrease the computational cost.

We stress that, besides a truncated multi-configuration expansion, the only approxi-
mation in our bound state calculations is represented by the decoupling of the electronic
and nuclear motion, without including the effects of the latter from the first-principles.
Therefore, both the intermediate and the final states are purely electronic states obtained at
the equilibrium geometry of the molecule.

In Table 2, we report the HF energy E1, which was calculated by assuming a single
determinant wavefunction with a core-hole in the Auger states 1a−1

1 , 1b−1
1 , and 2a−1

1 ,
respectively. Moreover, in Table 2, we also report the energies calculated using CIS from
the reference configuration for an active space of 27 and 63 orbitals, labelled E2 and E3,
respectively. E1 and E2 were both calculated preserving the molecular symmetry, whereby
the hole is not localized on a particular oxygen atom, rather "delocalized” on a molecular
symmetry orbital. Furthermore, in Table 2, we also report the ionization energies (IE)
that are necessary to extract inner electrons. We notice that IEs from 1b1 and 2a1 orbitals
are almost identical, with these molecular orbitals being almost localized on the two C2v
symmetry-related oxygen atoms. While HF orbital optimization was achieved, starting
from a hole initially delocalized on the 1a1, 1b1, 2a1 inner shells, a partial relocalization
of the holes is reached by adding dynamic correlation via CIS. In our simulations of
the Auger spectral profiles by CIS, we mean to include single excitations from all of
the possible states that can be formed with the presence of one or two holes in a given
subspace of orbitals and, thus, not only single excitations with respect to the excited state
of reference. For example, our CIS procedure concerning the intermediate state includes
all single excitations, starting from all the HF determinants of the single ionized state that
are characterized by one hole in all possible configurations within the system. Basically,
in our CI expansion, we do include all of the single excitations from multi-reference states,
where the hole is positioned in all system’s occupied orbitals. Within this approach, we
actually include more terms in the CI expansion than meant in the standard CIS procedure
of quantum chemistry. Moreover, in the final state, we perform single electron excitations,
starting from all the configurations with two holes in all possible orbital positions, thus
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including in the CI expansion determinants e.g., with three holes and one electron excited
in the virtual orbital within the active space. Therefore, in the final decay states, by our CIS
procedure, we include more determinants than only considering single excitations from the
reference state. The inclusion of double excitations beyond this modified CIS typically does
not increase the accuracy of the Auger spectra simulations, while significantly increasing
the computational cost.

Table 2. Auger state energies in a.u. for different core-hole configurations. E1 is the single-
configuration HF energy; E2 is calculated by using single-excitation Configuration Interaction (CIS)
with an active space up to the 27th excited state with respect to the relevant configuration. In E3

active space was increased to include up to 63 molecular orbitals. Ionization energies (in eV) at the
same level of theory are also reported in parenthesis for each Auger state.

Auger State E1 E2 E3

1a−1
1 −203.705 (562.0) −204.168 (549.4) −204.268 (546.6)

1b−1
1 −203.853 (557.9) −204.373 (543.8) −204.482 (540.8)

2a−1
1 −203.854 (557.9) −204.373 (543.8) −204.482 (540.8)

However, the most difficult part is the treatment of the continuum wavefunction.
Experience tells us that a major source of error is due to the poor representation of the
continuum orbital, which is typically expanded using plane-waves. Our approach over-
come this problem by the use of the model Hamiltonian with projected potential defined in
Equation (19). The construction of its scattering stationary states inside the space spanned
by the orthonormal wave functions {χ̃

α~k}, as defined in Equation (17), is obtained by the
numerical solution of the LS Equation (22). The analytic expressions of the elements of
the matrix representative of the transition operator (23) while using HGF can be obtained
from the knowledge of those relative to Vπ

α and Ĝ0. In order to improve the theoretical
reproduction of the experimental Auger spectra, we finally diagonalize the interchannel
Hamiltonian (24), which includes the coupling among the various decay channels, each
one being described by a wave function that takes into account, at CIS level of theory, the in-
trachannel correlation effects. The diagonalization of the interchannel coupling between
interacting channels redistributes the decay probability among independent channels.

In Figures 2–4, we plot the K− LL Auger spectra of ozone that was calculated with
the decoupled channel approach, in which the intermediate states are characterized by
single inner-shell vacancies in the K = 1a1, 1b1, 2a1 molecular orbitals and the final states
by two vacancies in all possible valence orbitals. In particular, the green line represents
80 principal decay channels using HF level of theory, while the black, red, and blue lines
represent simulations with 20, 70, and 140 final states, respectively, using CIS level of
theory. In these calculations, the active space consists of 27 molecular orbitals, which means
that, at the CIS level, the hole can be created in any of the occupied orbitals, and while
the electrons can populate up to the 27-th virtual molecular orbital. In Table 3, we report
the total K − LL Auger decay rates from the 1a1, 1b1, 2a1 core-hole intermediate states
as a function of the number of final states included in the calculations. The calculated
transition energies, partial and total decay rates of the K− LL Auger processes are reported
in Table A1 (K = 1a1), Table A2 (K = 1b1), and Table A3 (K = 2a1) of the Appendix
A, respectively, along with the final state orbital occupations for the 20 brightest final
states. We notice that the K − LL Auger transition spectra in Figures 3 and 4 are almost
identical, and the total Auger probability does not differ significantly, being 2.9127 × 10−3

a.u. and 2.9485 × 10−3 a.u. (see Table 3, third column), respectively. This result is obtained,
despite the symmetry of the intermediate state is different, as the initial hole created
upon photoionization belongs to different irriducible representation of the C2v symmetry
group. This is interpreted as the effect of the inclusion of the single excitations from the
reference states in the description of the orbital wavefunctions, which results in the quasi-
relocalization of the core-hole into one of the two symmetry-equivalent oxygen atoms,
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despite the HF orbitals being optimized starting from a hole “delocalized” in each of the
molecular orbitals. By analyzing Table 2, we conclude that the gain in energy to relocalize
the core-hole in one of the oxygen atoms due to the interaction among all the configurations
(≈900) appearing in the CIS expansion, is about 17 eV (see the difference in a.u. between
the energy of the states in column E1, which is the Hartree–Fock value, and the value in
column E3, which is the energy value after CIS with 63 orbitals in the active space).
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Figure 2. K − LL Auger spectrum of ozone, where K = 1a1. Green line: HF level of theory with
80 independent final states, obtained by diagonalization of the multichannel Hamiltonian (24).
The black, red, and blue lines represent the spectral lineshape obtained with an active space of 27
molecular orbitals and a number of 20, 70, 140 independent final channels, respectively.

At variance, the total K − LL Auger probability for an initial hole in the deepest
K = 1a1 molecular orbital is lower independent of the number of final channels used (see
Table 3). We notice that the use of CIS to treat the orbital wavefunctions has large impact
on the accuracy of the Auger decay rate and peak position, showing a large blueshift with
respect to the HF values in excess of 10 (see Figure 2) to 20 eV (see Figures 3 and 4).

Table 3. Total K− LL Auger decay rates of the three different intermediate states 1a1, 1b1, 2a1 using
CIS with an active space that includes up to 27 molecular orbitals for 20, 70, and 140 final channels.
The data are reported in ×103 a.u.

Number of Channels

Auger State 20 70 140

1a−1
1 1.4321 2.1208 2.6241

1b−1
1 1.9824 2.4548 2.9127

2a−1
1 1.9957 2.4644 2.9485

The Auger lines, peaked at the transition energies calculated as by Equation (10),
were broadened by Lorentzian functions, whose widths were obtained from Equation (10).
Finally, we convolved the theoretical lineshape with a Gaussian having full width at half
maximum (FWHM) of 0.1 eV in order to take the finite resolution of the experimental
set-up and the vibrational broadening into account.

We observe that, by increasing the number of non interacting final channels, from
20 (black lines) to 70 (red lines) and 140 (blue lines), the partial probability of Auger decay
of course redistributes among different channels, and also the total probability changes
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significatively, moving, e.g., from 1.4321× 10−3 a.u. to 2.6241 × 10−3 a.u. for the K = 1a−1

Auger state (see Table 3).
Finally, in Figure 5, we compare our ab-initio calculations with the experimental data

of Ref. [10] that were recorded at a photon energy of 536.7 eV, finding an overall good
agreement. We stress that the experimental data refer to a spectator transition O1s→ σ∗,
which is a process similar (not exactly the same) to that one we considered here. Auger
lineshapes were broadened by a convolution with a 0.8 eV Gaussian function. These large
observed linewidths have been attributed to both the dissociative character of the final
states and nuclear vibrations.
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Figure 3. K − LL Auger spectrum of ozone, where K = 1b1. Green line: HF level of theory with
80 independent final states, obtained by diagonalization of the multichannel Hamiltonian (24). Black,
red, and blue lines represent the spectral lineshape obtained with an active space of 27 molecular
orbitals and a number of 20, 70, and 140 independent final channels, respectively.
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Figure 4. K − LL Auger spectrum of ozone, where K = 2a1. Green line: HF level of theory with
80 independent final states, obtained by diagonalization of the multichannel Hamiltonian (24). Black,
red, and blue lines represent the spectral lineshape obtained with an active space of 27 molecular
orbitals and a number of 20, 70, and 140 independent final channels, respectively.
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Figure 5. A comparison between the K− LL (K = 1a1) Auger experimental spectrum of ozone (black
line) [10] and our first-principles simulation (green line) obtained with an active space of 27 molecular
orbitals and 140 independent final channels. Our lineshapes were convolved via 0.8 eV Gaussian
function to achieve the experimental broadening.

3.3. The Autoionization Spectrum of Ozone

In this section, we deal with the resonant autoionization spectrum of ozone following
the photo-electronic excitation O1s→ σ∗. These results have been obtained at the ground
state geometry, disregarding the nuclear motion.

The transition energy of this process is 538.39 eV for the two OT atoms related by
C2v symmetry operations and 543.73 eV if the excitation involves the central oxygen
atom OC. Indeed, while molecular orbitals were obtained by carrying out CI on HF
optimized symmetry orbitals, which are thus delocalized all over ozone, the core-hole
almost relocalizes in OT and OC upon CI.

In Figure 6, we plot the behavior of both the resonant and direct contributions to the
spectrum as a function of the autoionized electron kinetic energy. The plotted lineshapes
have been obtained after convolution with Lorentzian functions, whose width is provided
by our ab-initio calculations (see Equation (10)), and by a further convolution with 1 eV
FWHM Gaussian profile to take into account the nuclear broadening and the dissociative
nature of the excited states of ozone. In particular, the red and blue lines represent CIS
calculations of the resonant autoionization spectra of ozone, in which a core-hole is created
upon excitation from the molecular symmetry orbital that is almost localized in one of
the two oxygen atoms (OT) related by symmetry operations. In green we plot the spectral
lineshape for a core-hole created in the symmetry orbital almost localized in the central
oxygen atom (OC), whose atomic orbital of 1s character (corresponding to the 1a−1 molecu-
lar symmetry orbital) is lower in energy than the other two 1s oxygen orbitals (1b−1, 2a−1).
In these simulations, 140 final states have been included.
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Figure 6. O1s→ σ∗ autoionization spectrum of ozone. Red, blue lines: CIS lineshapes with 140 final
states obtained upon diagonalization of the multichannel Hamiltonian (24). The core-hole belongs to
molecular symmetry orbitals, which are optimized using HF and extend all over the ozone molecule.
However, upon CI the hole relocalizes in one of the two oxygen atoms (OT) related by symmetry
operations (see inset). Green line: the spectral lineshape for a core-hole relocalized after the CIS
procedure in the central oxygen atom OC.

3.4. Core-Hole Orbital Symmetry and Localization

In Auger experiments, core-electrons are extracted from a localized inner orbital of
one particular oxygen. In our previous calculations, core-hole localization was obtained by
including single excitations starting from HF molecular symmetry orbitals. This means
that, at HF level, molecular orbitals were optimized by assuming that the core-hole is
“delocalized” over the ozone molecule. Core-hole localization was basically achieved by
adding part of the dynamical correlation neglected by HF via CIS procedure.

However, it is interesting (and actually more representative of what actually happens
in experiments) to show the K− LL Auger spectrum that was obtained by optimizing the
molecular orbitals starting from an atomic core-hole completely localized in one of the
two OTs, equivalent by C2v symmetry operation (thus using atomic orbitals to kick-off
the self-consistent HF optimization, breaking the orbital symmetry). Indeed the holes,
which are created upon primary ionization in localized atomic sites, favor intra-atomic
more than inter-atomic transitions. This difference in the HF kick-off orbitals reflects into
the final spectrum plotted in Figure 7 (black line), obtained at the same level of theory
as in previous calculations (red line) with initial core holes delocalized in the molecular
symmetry orbitals. In particular, the spectral intensity of the highest energy peaks is quite
modified by core-hole localization.
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Figure 7. K− LL Auger spectrum of ozone obtained from CIS calculations after convolution with both
Lorentzian functions having the theoretical widths and with 1 eV full width at half maximum (FWHM)
Gaussian functions to reproduce the combined effect of the finite resolution of the spectrometer
and of the nuclear vibrations. Black line: HF orbitals optimized starting from an atomic core-hole
localized in one of the two OT oxygen centers. Red line: HF orbitals are optimized with the initial
core-hole “delocalized” in the molecular symmetry orbitals. Calculations were carried out with an
active space of 27 molecular orbitals and 140 independent final channels, including the interchannel
coupling (24).

4. Conclusions

In this work, a first-principles method for the calculation and interpretation of core-
electron spectra of ozone has been described. This method is based on Fano’s theory of
decay, due to the interaction between discrete and continuum states. We discussed this
theoretical framework in the general case of several continua interacting with several
quasi-bound states, explicitly including the boundary conditions that are appropriate to
the study of Auger emission.

Our approach uses a model Hamiltonian with a projected potential represented
in terms of L2-functions in order to achieve a relevant reduction in the computational
effort required by the application of the theory. The spectral properties of this projected
Hamiltonian are such that the subspace of the scattering eigenstates significant for the
physical problem is finite and isomorphous to the subspace of the functions that were used
for representing the potential energy operator. Furthermore, the many-body problem can
be reduced to an effective single-particle problem, in which the scattering states can be
obtained from the solution of a projected Lippmann–Schwinger equation with the proper
boundary condition.

The wave functions of the bound and continuum orbitals have been expanded onto a
L2 Gaussian basis set, which includes decontracted diffuse functions, therefore reducing
the Schrödinger equation to a matrix equation. The calculation of mono and bielectronic
integrals (and of the transition matrix elements between discrete and continuum states with
non-orthonormal orbitals) is carried out numerically on the basis of analytical expressions.
Furthermore, we introduced the effects of interactions among final decay states along with
the many-body interaction within the remaining ionic system in order to accurately assess
the partial decay rates into different channels.

Finally, the analytic expression of the autoionization and Auger cross sections has been
applied to predict the ozone radiationless decay lineshape as functions of the kinetic energy
of the emitted electron. These Auger lineshapes have been broadened with a Lorentzian
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profile, whose width is a direct result of our ab-initio calculations. We also included “a
posteriori” the specific features of the incident radiation, of the electron spectrometer,
and of the effects of nuclear motion in the framework of the Born-Oppenheimer approxi-
mation by convolution with a Gaussian profile, finding a good agreement with available
experimental data.

The effect of electronic correlation and the influence of core-hole localization on the
Auger peak energy positions and intensities have been also analyzed, finding different
spectral properties when the HF molecular orbitals are optimized, starting from a core-hole
localized in a specific oxygen atom that favors intra-atomic transitions. While localiza-
tion breaks the symmetry of the molecular orbitals, which is afterwards recovered by
multi-configuration expansion of the wavefunctions, intensity and energy peak both dif-
fer from those obtained by delocalizing the inner-hole on the two symmetry-equivalent
oxygen centers.

Our method is applicable to molecular systems, owing to the polycentric nature of the
basis functions and to the fact that all of the integrals that are involved in the calculation
of the Auger matrix elements are analytical, cost-effective, and easily programmable.
Moreover, it is possible to take into account the effects of interaction among the final
channels without resorting to numerical integration on the energy, as foreseen by Fano’s
formulae. Finally, the possibility of obtaining continuum wave functions also makes the
method useful for studying other scattering problems, such as photoionization, internal
conversion, electron–atom and electron–molecule scattering, and so on.
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Appendix A. The Auger Spectrum of Ozone

Table A1. Auger spectrum of ozone with a primary hole localized in the 1a−1
1 molecular orbital.

First column: double occupancy of the final transition states. Second: Auger transition energy (Eα,
eV). Third column: partial Auger probabilities (Γα, units: a.u. × 10−3) according to Equation (10).
The theory used is CIS with an active space of 27 orbitals.

Trans. State Occ. Trans. En. Trans. Prob.

2.00 | 2.00 | 1.97 | 1.59 | 1.42 | 1.64 | 0.09 | 1.71 495.17 0.1100
0.39 | 2.00 | 1.94 | 1.65 | 1.60 | 0.13 | 1.86

2.00 | 2.00 | 1.58 | 1.63 | 1.77 | 1.86 | 0.37 | 1.69 467.14 0.1818
0.15 | 2.00 | 1.58 | 1.67 | 1.84 | 0.25 | 1.61

2.00 | 2.00 | 2.00 | 1.95 | 1.63 | 1.53 | 0.19 | 1.38 502.3 0.0879
0.34 | 2.00 | 1.99 | 1.89 | 1.59 | 0.17 | 1.34

2.00 | 2.00 | 2.00 | 1.96 | 1.70 | 1.62 | 0.14 | 1.39 506.25 0.0767
0.54 | 2.00 | 1.99 | 1.90 | 1.68 | 0.05 | 1.01

2.00 | 2.00 | 1.99 | 1.94 | 1.80 | 1.53 | 0.34 | 1.21 500.02 0.0804
0.21 | 2.00 | 1.99 | 1.89 | 1.46 | 0.24 | 1.40

2.00 | 2.00 | 2.00 | 1.96 | 1.94 | 1.78 | 0.06 | 1.50 506.065 0.0697
0.55 | 2.00 | 1.98 | 1.31 | 1.91 | 0.03 | 0.98

2.00 | 2.00 | 1.99 | 1.93 | 1.74 | 1.54 | 0.14 | 1.44 506.03 0.0761
0.53 | 2.00 | 1.99 | 1.88 | 1.65 | 0.06 | 1.12

2.00 | 2.00 | 2.00 | 1.88 | 1.67 | 1.49 | 0.21 | 1.90 503.195 0.0596
0.18 | 2.00 | 1.98 | 1.33 | 1.70 | 0.12 | 1.55

2.00 | 2.00 | 1.69 | 1.67 | 1.45 | 1.83 | 0.19 | 1.79 476.33 0.0352
0.44 | 2.00 | 1.61 | 1.77 | 1.73 | 0.15 | 1.67

2.00 | 2.00 | 1.99 | 1.90 | 1.47 | 1.35 | 0.17 | 1.81 502.25 0.0693
0.26 | 2.00 | 1.97 | 1.73 | 1.50 | 0.27 | 1.58

2.00 | 2.00 | 2.00 | 1.98 | 1.36 | 1.22 | 0.03 | 1.95 508.36 0.0705
0.30 | 2.00 | 1.99 | 1.82 | 1.59 | 0.03 | 1.74

2.00 | 2.00 | 2.00 | 1.96 | 1.46 | 1.52 | 0.10 | 1.97 504.16 0.0518
0.54 | 2.00 | 1.99 | 1.67 | 1.21 | 0.11 | 1.47

2.00 | 2.00 | 2.00 | 1.98 | 1.94 | 1.13 | 0.02 | 1.54 512.03 0.0553
0.59 | 2.00 | 2.00 | 1.98 | 1.93 | 0.01 | 0.89

2.00 | 2.00 | 1.34 | 1.59 | 1.78 | 1.86 | 0.30 | 1.87 453.39 0.1166
0.29 | 2.00 | 1.41 | 1.76 | 1.72 | 0.27 | 1.81

2.00 | 2.00 | 1.99 | 1.73 | 1.67 | 1.59 | 0.09 | 1.77 503.62 0.0466
0.44 | 2.00 | 1.97 | 1.68 | 1.25 | 0.05 | 1.77

2.00 | 2.00 | 1.99 | 1.87 | 1.80 | 1.67 | 0.28 | 1.42 496.73 0.0512
0.28 | 2.00 | 1.99 | 1.63 | 1.50 | 0.26 | 1.31

2.00 | 2.00 | 2.00 | 1.95 | 1.95 | 1.49 | 0.49 | 1.83 502.45 0.0416
0.16 | 2.00 | 1.99 | 1.35 | 1.84 | 0.06 | 0.90

2.00 | 2.00 | 1.99 | 1.82 | 1.81 | 1.67 | 0.21 | 1.61 500.80 0.0432
0.23 | 2.00 | 1.99 | 1.60 | 1.59 | 0.27 | 1.21

Total Transition Probability (Γ) 1.4321× 10−3 A.U.
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Table A2. Auger spectrum of ozone with a primary hole localized in the 1b−1
1 molecular orbital.

First column: double occupancy of the final transition states. Second: Auger transition energy (Eα,
eV). Third column: partial Auger probabilities (Γα, units: a.u. × 10−3) according to Equation (10).
The theory used is CIS with an active space of 27 orbitals.

Trans. State Occ. Trans. En. Trans. Prob.

2.00 | 2.00 | 2.00 | 1.99 | 1.98 | 1.92 | 0.04 | 1.93 510.751 0.2255
0.03 | 2.00 | 1.99 | 1.98 | 1.87 | 0.03 | 0.24

2.00 | 2.00 | 2.00 | 2.00 | 1.97 | 1.90 | 0.03 | 1.86 510.17 0.1713
0.08 | 2.00 | 1.99 | 1.98 | 1.10 | 0.02 | 1.07

2.00 | 2.00 | 2.00 | 1.98 | 1.46 | 1.58 | 0.05 | 1.89 502.71 0.1755
0.38 | 2.00 | 1.98 | 1.80 | 1.19 | 0.03 | 1.67

2.00 | 2.00 | 2.00 | 1.98 | 1.36 | 1.22 | 0.03 | 1.95 502.79 0.1453
0.30 | 2.00 | 1.99 | 1.82 | 1.59 | 0.03 | 1.74

2.00 | 2.00 | 2.00 | 1.97 | 1.49 | 1.94 | 0.03 | 1.78 504.44 0.1286
0.33 | 2.00 | 1.99 | 1.98 | 1.56 | 0.02 | 0.90

2.00 | 2.00 | 2.00 | 1.99 | 1.97 | 1.09 | 0.02 | 1.90 510.93 0.1439
0.07 | 2.00 | 2.00 | 1.98 | 1.94 | 0.02 | 1.03

2.00 | 2.00 | 2.00 | 1.97 | 1.84 | 1.29 | 0.02 | 1.95 508.79 0.1289
0.18 | 2.00 | 1.99 | 1.96 | 1.09 | 0.02 | 1.69

2.00 | 2.00 | 2.00 | 1.97 | 1.84 | 1.03 | 0.02 | 1.98 509.47 0.1359
0.19 | 2.00 | 2.00 | 1.97 | 1.16 | 0.01 | 1.82

2.00 | 2.00 | 2.00 | 1.99 | 1.98 | 1.81 | 0.04 | 1.10 504.35 0.1162
0.17 | 2.00 | 1.99 | 1.88 | 1.93 | 0.04 | 1.09

2.00 | 2.00 | 2.00 | 1.98 | 1.91 | 1.67 | 0.07 | 1.62 503.07 0.0798
0.33 | 2.00 | 1.99 | 1.52 | 1.82 | 0.03 | 1.07

2.00 | 2.00 | 2.00 | 1.92 | 1.87 | 1.69 | 0.02 | 1.92 503.99 0.0706
0.25 | 2.00 | 1.98 | 1.32 | 1.20 | 0.01 | 1.83

2.00 | 2.00 | 2.00 | 1.98 | 1.94 | 1.67 | 0.02 | 1.68 504.29 0.0608
0.29 | 2.00 | 1.98 | 1.52 | 1.86 | 0.01 | 1.06

2.00 | 2.00 | 2.00 | 1.98 | 1.94 | 1.13 | 0.02 | 1.54 506.46 0.0554
0.59 | 2.00 | 2.00 | 1.98 | 1.93 | 0.01 | 0.89

2.00 | 2.00 | 2.00 | 1.94 | 1.79 | 1.10 | 0.01 | 1.81 504.77 0.0777
0.47 | 2.00 | 1.99 | 1.59 | 1.65 | 0.01 | 1.64

2.00 | 2.00 | 1.91 | 1.62 | 1.55 | 1.65 | 0.29 | 1.83 472.09 0.0856
0.32 | 2.00 | 1.65 | 1.50 | 1.65 | 0.22 | 1.80

2.00 | 2.00 | 1.99 | 1.84 | 1.77 | 1.16 | 0.42 | 1.95 497.19 0.0339
0.28 | 2.00 | 1.96 | 1.59 | 1.23 | 0.04 | 1.76

2.00 | 2.00 | 1.73 | 1.70 | 1.70 | 1.57 | 0.34 | 1.91 467.51 0.0790
0.15 | 2.00 | 1.62 | 1.44 | 1.62 | 0.30 | 1.90

2.00 | 2.00 | 1.99 | 1.60 1.88 | 1.54 | 0.25 | 1.67 499.45 0.0032
0.18 | 2.00 | 1.99 | 1.83 | 1.87 | 0.05 | 1.15

2.00 | 2.00 | 1.68 | 1.70 | 1.68 | 1.68 | 0.19 | 1.68 468.17 0.0622
0.51 | 2.00 | 1.70 | 1.70 | 1.53 | 0.18 | 1.78

2.00 | 2.00 | 1.99 | 1.88 | 1.86 | 1.81 | 0.22 | 1.54 491.23 0.0032
0.37 | 2.00 | 1.73 | 1.62 | 1.74 | 0.14 | 1.09

Total Transition Probability (Γ) 1.9824× 10−3 A.U.
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Table A3. Auger spectrum of ozone with a primary hole localized in the 2a−1
1 molecular orbital. First

column: double occupancy of the final transition states. Second: Auger transition energy (Eα, eV).
Third column: partial Auger probabilities (Γα, units: a.u. × 10−3) according to Equation (10). Last
row: total decay rate. The theory used is CIS with an active space of 27 orbitals.

Trans. State Occ. Trans. En. Trans. Prob.

2.00 | 2.00 | 2.00 | 1.99 | 1.98 | 1.92 | 0.04 | 1.93 510.07 0.2515
0.03 | 2.00 | 1.99 | 1.98 | 1.87 | 0.03 | 0.24

2.00 | 2.00 | 2.00 | 2.00 | 1.97 | 1.90 | 0.03 | 1.86 510.17 0.1693
| 0.08 | 2.00 | 1.99 | 1.98 | 1.10 | 0.02 | 1.07

2.00 | 2.00 2.00 | 1.98 | 1.46 | 1.58 | 0.05 | 1.89 502.71 0.1708
0.38 | 2.00 | 1.98 | 1.80 | 1.19 | 0.03 | 1.67

2.00 | 2.00 | 2.00 | 1.98 | 1.36 | 1.22 | 0.03 | 1.95 502.79 0.1478
0.30 | 2.00 | 1.99 | 1.82 | 1.59 | 0.03 | 1.74

2.00 | 2.00 | 2.00 | 1.97 | 1.49 | 1.94 | 0.03 | 1.78 504.44 0.1290
0.33 | 2.00 | 1.99 | 1.98 | 1.56 | 0.02 | 0.90

2.00 | 2.00 | 2.00 | 1.97 | 1.84 | 1.29 | 0.02 | 1.95 508.79 0.1401
0.18 | 2.00 | 1.99 | 1.96 | 1.09 | 0.02 | 1.69

2.00 | 2.00 2.00 | 1.99 | 1.97 | 1.09 | 0.02 | 1.90 510.92 0.1443
0.07 | 2.00 | 2.00 | 1.98 | 1.94 | 0.02 | 1.03

2.00 | 2.00 2.00 | 1.97 | 1.84 | 1.03 | 0.02 | 1.98 509.46 0.1225
0.19 | 2.00 | 2.00 | 1.97 | 1.16 | 0.01 | 1.82

2.00 | 2.00 | 2.00 | 1.99 | 1.98 | 1.81 | 0.04 | 1.10 504.35 0.1091
0.17 | 2.00 | 1.99 | 1.88 | 1.93 | 0.04 | 1.09

2.00 | 2.00 | 2.00 | 1.98 | 1.91 | 1.67 | 0.07 | 1.62 503.06 0.0797
0.33 | 2.00 | 1.99 | 1.52 | 1.82 | 0.03 | 1.07

2.00 | 2.00 | 2.00 | 1.92 | 1.87 | 1.69 | 0.02 | 1.92 503.99 0.0808
0.25 2.00 | 1.98 | 1.32 | 1.20 | 0.01 | 1.83

2.00 | 2.00 | 2.00 | 1.98 | 1.94 | 1.13 | 0.02 | 1.54 506.45 0.0552
0.59 | 2.00 | 2.00 | 1.98 | 1.93 | 0.01 | 0.89

2.00 | 2.00 | 2.00 | 1.98 | 1.94 | 1.67 | 0.02 | 1.68 504.28 0.0610
0.29 | 2.00 | 1.98 | 1.52 | 1.86 | 0.01 | 1.06

2.00 | 2.00 | 2.00 | 1.94 | 1.79 | 1.10 | 0.01 | 1.81 504.77 0.0663
0.47 | 2.00 | 1.99 | 1.59 | 1.65 | 0.01 | 1.64

2.00 | 2.00 | 1.91 | 1.62 | 1.55 | 1.65 | 0.29 | 1.83 472.09 0.0878
0.32 | 2.00 | 1.65 | 1.50 | 1.65 | 0.22 | 1.80

2.00 | 2.00 | 1.99 | 1.84 | 1.77 | 1.16 | 0.42 | 1.95 497.19 0.030
0.28 | 2.00 | 1.96 | 1.59 | 1.23 | 0.04 | 1.76

2.00 | 2.00 | 1.99 | 1.60 | 1.88 | 1.54 | 0.25 | 1.67 499.45 0.0033
0.18 | 2.00 | 1.99 | 1.83 | 1.87 | 0.05 | 1.15

2.00 | 2.00 | 1.73 | 1.70 | 1.70 | 1.57 | 0.34 | 1.91 467.51 0.0799
0.15 | 2.00 | 1.62 | 1.44 | 1.62 | 0.30 | 1.90

2.00 | 2.00 | 1.68 | 1.70 | 1.68 | 1.68 | 0.19 | 1.68 468.17 0.0637
0.51 | 2.00 | 1.70 | 1.70 | 1.53 | 0.18 | 1.78

2.00 | 2.00 | 1.99 | 1.88 | 1.86 | 1.81 | 0.22 | 1.54 491.23 0.0032
0.37 | 2.00 | 1.73 | 1.62 | 1.74 | 0.14 | 1.09

Total Transition Probability (Γ) 1.9957× 10−3 A.U.
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