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We theoretically investigate the superfluid-normal-state Berezinskii-Kosterlitz-Thouless transition in a binary

mixture of bosonic atoms with Rabi coupling under balanced densities. We find the nonmonotonic behav-

ior of the transition temperature with respect to the intercomponent coupling and amplification of the transi-

tion temperature for finite values of Rabi coupling, but for small intracomponent couplings. We develop the

Nelson-Kosterlitz renormalization-group equations in the two-component Bose mixture and obtain the Nelson-

Kosterlitz criterion modified by a fractional parameter, which is responsible for half-integer vortices, and by

Rabi coupling. Adopting the renormalization-group approach, we clarify the dependence of the Berezinskii-

Kosterlitz-Thouless transition temperature on the Rabi coupling and the intercomponent coupling. Analysis of

the first and second sound velocities also reveals the suppression of quasicrossing of the two sound modes with

a finite Rabi coupling in the low-temperature regime. Our results for a two-dimensional binary Bose superfluid

contribute to the understanding of a broad range of multicomponent quantum systems such as two-dimensional

multiband superconductors.

PACS numbers: 67.10.Ba, 67.10.Fj, 67.85.Bc, 67.85.De, 67.85.Fg, 67.85.Hj

The Berezinskii-Kosterlitz-Thouless (BKT) transition is

one of the most striking phenomena that occur in a two-

dimensional (2D) superfluid realized in thin films of 4He [1–

16], ultracold atoms in a planar geometry [17–38] or in a

spherical bubble trap [39–42], and exciton-polariton systems

[43–50]. The BKT transition originates from unbindings of

vortex-antivortex pairs, and a proliferation of free vortices and

antivortices [51–53]. It was first experimentally observed in

thin 4He films [11] and later also in superconducting films

[54–58], ultracold atomic gases [17–19, 22, 23, 28–33, 36],

and exciton-polariton systems [48, 49]. A BKT transition

to electron-hole superfluidity in 2D atomic double layers has

been also predicted and is under current investigation [59, 60].

A stark contrast to three-dimensional (3D) superfluidity is a

discontinuous jump of the superfluid density at the BKT tran-

sition temperature in a 2D superfluid [53, 61–67]. It also leads

to a jump of the second sound velocity, which was experi-

mentally measured recently with a 39K atomic gas [36]. To

theoretically investigate the BKT transition, there are mainly

two approaches. One is universal relations which are valid in

the vicinity of the BKT transition temperature [22, 23, 68–

70]. The other approach is to use the Nelson-Kosterlitz (NK)

renormalization group (RG) equations, which are responsible

for RG flows of the vortex fugacity and the phase stiffness

associated with the superfluid density [53]. An advantage of

the RG approach is that it is also valid in the low-temperature

regime.

In contrast to a single-component Bose gas, a multicompo-

nent Bose mixture has significant qualitative differences such

as the Andreev-Bashkin entrainment effect between different

species [38, 71–77], the emergence of fractional circulation

of vorticity [78–95], and the modification of the NK criterion

[96, 97]. There are also several theoretical analyses of the

BKT transition in a bilayer XY model [98, 99], which has

similarities to 2D binary Bose mixtures, and a Monte Carlo

simulation in a binary Bose mixture with finite Rabi coupling

[100]. Finite Rabi coupling makes half-quantized vortices,

which are vortices in one of the two components of the Bose

atoms, topologically unstable but makes vortex molecules,

which consist of two vortices of both components with pos-

itive or negative charges, stable. Reference [100] proposed

that the topological excitations that induce the BKT transition

are also replaced with vortex molecule-antimolecule pairs in-

stead of vortex-antivortex pairs. Renormalization group anal-

ysis taking into account these distinct topological excitations

is crucial to predict physical quantities such as sound veloci-

ties and provide a coherent understanding of multicomponent

superfluidity.

In this Letter, we consider a 2D atomic Bose gas con-

fined in a quadratic region of area L2, at temperature T , and

with a chemical potential µ across the BKT transition tem-

perature through the RG approach. The bosonic gas is char-

acterized by atoms with two hyperfine components in their

energy-level spectrum. In addition to the usual intraspecies

(g = g11 = g22 > 0) and interspecies (g12) contact inter-

actions, atoms in different hyperfine states interact via an ex-

ternal coherent Rabi coupling of frequency ωR(≥ 0), which

drives an exchange of atoms between the two components.

The presence of the Rabi coupling implies that only the total

numberN = N1+N2 of atoms is conserved, withNa=1,2 be-

ing the number of atoms in the ath hyperfine component. The

existence and stability of the ground state with balanced densi-

ties N1 = N2 were extensively discussed in Refs. [101, 102].

We focus on the balanced and uniform ground state through-

out this Letter.

Our two-component Bose-atom systems are a counterpart
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to strongly coupled multiband superconductors in which all

the partial condensates are close to the Bose-Einstein conden-

sation regime. The Rabi coupling corresponds in multiband

superconductors to the Cooper-pair exchange among different

bands and even in the case of multiband systems, it is the to-

tal number of carriers that is conserved, with redistribution of

densities among the bands depending on the parameter config-

uration and on the renormalization of the chemical potential

[103–105]. Hence, the present investigation of Rabi coupled

bosons can shed light on the BKT transition and collective

modes in 2D multiband superconductors, a growing field of

study for their fundamental interest and quantum technology

applications [106].

We first examine the two branches of elementary excita-

tions, which are related to Rabi coupling and intercomponent

coupling. To consider the BKT transition, we develop NK

RG equations in the two-component Bose gas. We point out

that the NK criterion that provides the BKT transition temper-

ature is modified due to the fractional parameter. The frac-

tional parameter is also responsible for the half circulation of

vorticity in a population-balanced binary Bose mixture. With

finite Rabi coupling, on the other hand, the NK criterion re-

duces to the one in the single-component case related to the

formation of vortex molecule-antimolecule pairs. This mod-

ification of the NK criterion is also consistent with previous

theoretical predictions based on Monte Carlo analysis under

balanced densities [100]. We investigate the dependence of

the BKT transition temperature on Rabi coupling and inter-

component coupling. It shows a nonmonotonic behavior with

respect to the intercomponent coupling and amplifies the max-

imum transition temperature for each value of Rabi coupling.

Finally, we determine the first and second sound velocities

across the BKT transition temperature. We confirm the jump

of the second sound velocity at the BKT transition tempera-

ture. At low temperatures, in particular, finite Rabi coupling

is found to hinder quasicrossing behavior due to the presence

of a gapped mode, in contrast to the single-component super-

fluids [65, 107–111].

The Bogoliubov spectrum of elementary excitations in a

uniform system has two branches given by [101, 102]

E
(−)
k =

√

εk [εk + 2 (µ+ ~ωR)], (1)

E
(+)
k =

√

εk (εk + 2A) +B, (2)

with εk = ~2k2/(2m) and m being the atomic mass. We set

η = g12/g, and the two parameters appearing in Eq. (2) are

A =
1− η

1 + η
(µ+ ~ωR) + 2~ωR, (3)

B = 4~ωR

[

1− η

1 + η
(µ+ ~ωR) + ~ωR

]

. (4)

At the mean-field level, for the uniform ground state with bal-

anced densities, the chemical potential µ reads [101, 102]

µ =
1 + η

2
gn− ~ωR , (5)

where n = N/L2 is the 2D total number density of bosons.

The uniform ground state with balanced densities, charac-

terized by n1 = n2 = n/2, is stable under the conditions

g + g12 > 0 and (g − g12)n+ 2~ωR > 0 [101, 102], namely,

−1 < η < 1 + 2~ωR/(gn) with g > 0. By using Eq. (5),

parameters A and B become A = gn(1 − η)/2 + 2~ωR and

B = 4~ωR [gn(1− η)/2 + ~ωR]. For small wavenumbers,

the elementary excitations in Eqs. (1) and (2) read E
(−)
k =

cB~k and E
(+)
k =

√
B + εkA/

√
B, showing explicitly that

the mode E
(−)
k is gapless while the mode E

(+)
k is gapped (if

ωR 6= 0). Notice that cB = [gn(1 + η)/(2m)]1/2 is the Bo-

goliubov speed of sound for the uniform system. For η = 1,

one recovers the familiar expression cB =
√

gn/m.

By adopting Landau’s approach [112], at finite temperature

T , the superfluid density of the system is given by

n(0)
s (T ) = n− n(−)

n (T )− n(+)
n (T ), (6)

where

n(±)
n (T ) = −1

2

∫

d2k

(2π)2
~2k2

2m
f ′

T (E
(±)
k ) (7)

is the thermally activated normal density due to the elemen-

tary excitations. In the formula, f ′
T (E) is the derivative

with respect to E of the Bose distribution function fT (E) =
1/[eE/(kBT ) − 1], with kB being the Boltzmann constant.

It is important to stress that the superfluid density obtained

in Eq. (6) does not take into account the formation of quan-

tized vortices. The bare superfluid density n
(0)
s (T ) goes to

zero at a critical temperature that is larger than Tc, the critical

temperature of the BKT phase transition induced by the un-

binding of vortex-antivortex pairs and the proliferation of free

quantized vortices described by NK RG equations [51, 52]. In

a single-component 2D Bose gas, the NK RG equations are

given by [53, 113–115]

∂lK(l)−1 = 4π3y(l)2, ∂ly(l) = [2− πK(l)] y(l), (8)

with K(l) ≡ ~2n
(l)
s (T )/(mkBT ) = J(l)/(kBT ), J(l) =

~2n
(l)
s (T )/m being the phase stiffness, and y(l) ≡

exp[−µv(l)/(kBT )], where µv(l) is the vortex chemical po-

tential at the dimensionless scale l. The BKT critical temper-

ature T
(0)
c can be obtained by using the NK criterion which

provides a fixed point of Eqs. (8) [53]. According to this cri-

terion, T
(0)
c is given by the implicit formula

kBT
(0)
c =

π~2

2m
ns(T

(0)
c ) . (9)

In a binary Bose mixture with balanced densities αa=1,2 =
na/n = 1/2; in contrast, we can obtain the following set of

NK RG equations [100, 113–115]

∂lK(l)−1 = 4π3Θ(ωR)y(l)
2, (10a)

∂ly(l) = [2− πΘ(ωR)K(l)] y(l), (10b)
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where Θ(x) is the Heaviside step function with Θ(0) = 1/2.

It can be derived from the microscopic Lagrangian as in the

single-component case. For the details of the derivation, see

the Supplemental Material [115]. The RG equations (10) give

the modified NK criterion

kBTc =
π~2

2m
Θ(ωR)ns(Tc) (11)

at the BKT critical temperature Tc. This NK criterion (11)

is consistent with the Monte Carlo analysis in Ref. [100]. To

calculate the RG flow, we use the initial conditions K(0) =

~2n
(0)
s (T )/(mkBT ) and µv(0) = π2Θ(ωR)J(0)/4 [116–

119], where n
(0)
s (T ) is calculated using Eq. (6) with Eqs. (1),

(2), and (7). The maximum value of the RG scale is related to

the system size as lmax = ln (L/ξ), with ξ = ~/
√

2mg(n/2)
being the vortex core size. Here, we note that the higher-order

derivative terms in the XY model can lead to corrections in

the initial conditions for the RG flow. Indeed, it has been

pointed out that the higher-order corrections are important for

quantitatively accurate predictions of the BKT transition in

XY models in particular for a small vortex chemical potential

[120]. In our model of a binary Bose mixture, such a higher-

order term of the superfluid velocity can arise and determine

a quantitative change in our results with a small vortex chem-

ical potential as well. In this Letter, however, since they are

expected to produce moderate quantitative changes, we do not

consider the effects of the spin-wave excitations on the vortex

excitations, which will be the subject of a future investigation

including the functional RG analysis [120, 121].

The modification of the NK criterion in the absence of Rabi

coupling reflects the half circulation of vorticity. Indeed, the

circulation of vorticity is given by [100]

κ ≡
∮

ds · vs =
~

m

∮

ds · |ψ1|2∇θ1 + |ψ2|2∇θ2

|ψ1|2 + |ψ2|2
,

(12)

with ψa=1,2 being the ath complex bosonic field, where vs is

the superfluid velocity associated with the superfluid phase

θa=1,2, and s is the vector along the closed path enclos-

ing vortices. With fractional parameters αa = na/n, for

instance, each of the circulations for vortices (ψ1, ψ2) ∼
(
√
n1e

±iθ0 ,
√
n2), with θ0 = arctan (y/x), is given by

κ1 = ±2πα1~/m [100]. For a population-balanced sys-

tem n1 = n2 = n/2; in particular, α1,2 = 1/2 gives

rise to half vortices. In the presence of Rabi coupling, on

the other hand, topological defects that lead to a BKT tran-

sition are replaced with vortex molecule-antimolecule pairs

instead of vortex-antivortex pairs [78, 81, 100]. The forma-

tion of vortex molecule pairs modifies the RG equations as in

Eqs. (10), which recover the ones for the single-component

case in Eqs. (8).

Figure 1 shows the renormalized superfluid fraction com-

puted with Eqs. (10) for g̃ = mg/~2 = 0.1 and η = 0
with L/ξ = 200. Figure 1(a) displays the results with

ω̄R = ~ωR/(n~
2/m) = 0, 0.1, 1.0. The horizontal axis is

the dimensionless temperature kBT/(n~
2/m) = 2π/(nλ2T ),
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FIG. 1. Renormalized superfluid fraction calculated with Eqs. (10)

for g̃ = mg/~2 = 0.1 and η = 0. (a) displays the results

with L/ξ = 200 and ω̄R = ~ωR/(n~
2/m) = 0.0, 0.1, 1.0.

The horizontal axis is the dimensionless temperature 2π/(nλ2
T ) =

kBT/(n~
2/m). The gray dashed curve stands for the superfluid

fraction in a single-component Bose gas with g̃ = 0.1 calculated

with Eqs. (8). The thin dotted curves represent the bare superfluid

fraction given by Eq. (6). The thin solid line and thin dotted line

stand for kBT = π~2ns(T )/(4m) and kBT = π~2ns(T )/(2m),
respectively. (b) shows the 3D plot of the superfluid fraction as a

function of the temperature and Rabi coupling.

with λT = [2π~2/(mkBT )]
1/2 being the thermal wavelength.

The thin dotted curves stand for the bare superfluid fraction

given by Eq. (6). Due to the finite size, the discontinuity

of the renormalized superfluid fraction in the thermodynamic

limit L → ∞ is smeared and altered to a continuous drop

[115]. In the single-component case plotted by the dashed

curve, the superfluid fraction intersects with the thin dotted

line for kBT = π~2ns/(2m) at the BKT transition tem-

perature as in Eq. (9) in the thermodynamic limit. In con-

trast, in a population-balanced binary Bose mixture, the su-

perfluid fraction should intersect with the thin solid line for

kBT = π~2ns/(4m) in the absence of Rabi coupling at the

BKT transition temperature as in Eq. (11) in the thermody-

namic limit. With finite Rabi coupling, on the other hand,

the superfluid fraction intersects with the thin dotted line for

kBT = π~2ns/(2m) at the BKT transition temperature in the

thermodynamic limit as in the single-component Bose gas. A

larger value of Rabi coupling shifts the transition temperature

to a higher one. Figure 1(b) shows a 3D plot of the renormal-

ized superfluid fraction as a function of the Rabi coupling and

the temperature.

Figure 2 shows the phase diagram and the BKT transi-

tion temperature. In Fig. 2(a), the curves represent the η
dependence of the BKT transition temperature in the ther-

modynamic limit with g̃ = 0.1 and ω̄R = 0, 0.1, 0.5. The

shaded region below the transition temperature is the super-

fluid phase with a finite superfluid density for each of the

values of Rabi coupling, while the system is in the normal

phase above that temperature. We can observe that, as η in-

creases from −1, the transition temperature first increases.

Near η = 1+ 2~ωR/(gn), it reaches a maximum for each ω̄R

and changes to a gradual decrease. In particular, at ω̄R = 0, as

displayed in Fig. 2(a), the BKT transition temperature is sym-

metric with respect to η and reaches its maximum at η = 0.

This is a natural consequence of the two symmetric excitation
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FIG. 2. Phase diagram of the binary Bose mixture and the BKT tran-

sition temperature to intercomponent coupling η and Rabi coupling

ω̄R. The curves in (a) represent the BKT transition temperature for

g̃ = 0.1 and ω̄R = 0.0, 0.1, 0.5, below which the system is super-

fluid (SF). Above the transition temperature, it turns into a normal

(N) phase with the vanishing superfluid fraction. The gray dotted

curve in (a) represents the boundary at η = 1 + 2~ωR/(gn). The

vertical thin lines represent η = 1 + 2~ωR/(gn) for each Rabi cou-

pling above which the population-balanced ground state changes to

the polarized phase. For η < −1, the population-balanced ground

state is unstable. The two dashed curves in (b) represent the bound-

aries of the stable region of the ground state with balanced densi-

ties at η = −1 and η = 1 + 2~ωR/(gn), respectively. (c) shows

the maximum value of the BKT transition temperature scaled by the

transition temperature in the single-component case Tmax
c /T

(0)
c , with

g̃ = 0.01, 0.1, 0.5.

spectra E
(±)
k =

√

εk [εk + gn (1∓ η)] for ωR = 0. Figure

2(b) displays a 3D plot of the BKT transition temperature as a

function of η and ω̄R. It shows the monotonic increase of the

transition temperature with increasing Rabi coupling ω̄R. This

behavior can be explained by the behavior of the energy gap

in E
(+)
k due to the Rabi coupling. As one increases the Rabi

coupling, the gap size also increases, and the normal density

n
(+)
n in Eq. (7) decreases, while n

(−)
n is unaffected. This re-

sults in an increase of the superfluid density in Eq. (6), thereby

leading to an enhancement of the BKT transition temperature

according to Eq. (11) by replacing the renormalized super-

fluid density with the bare one, which is a good approxima-

tion at low temperatures as illustrated in Fig. 1(a). The maxi-

mum value of the transition temperature scaled by the one in

the single-component case is shown in Fig. 2(c) with varying

Rabi coupling. It monotonically increases by increasing ω̄R.

Figure 2(c) also reveals that the ratio Tmax
c /T

(0)
c is promi-

nently enhanced as one decreases the intra-coupling strength

g̃. This behavior comes from monotonically increasing the
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FIG. 3. First and second sound velocities c1,2 scaled by the Bogoli-

ubov velocity cB for g̃ = 0.1 and L/ξ = 200. The intercoupling is

set to be η = 0 in (a) and η = 0.5 in (b). The dashed curves corre-

spond to ω̄R = 0.0, while the solid curves correspond to ω̄R = 1.0.

The thin dotted curves represent c1,2 in a single-component Bose gas

for g̃ = 0.1. The low-temperature behavior is magnified in (c) and

(d). The insets in (c) and (d) illustrate the elementary excitations

E
(±)
k . The solid curves stand for E

(−)
k , while the dotted and dashed

curves represent E
(+)
k for ω̄R = 0.0 and ω̄R = 1.0, respectively.

critical temperature T
(0)
c in the single-component Bose gas

faster than Tmax
c by increasing g̃.

The propagation of sound waves occurs in a fluid due to

density fluctuations, and the sound velocity is determined by

thermodynamic properties. In a superfluid, in addition to the

density wave, there is another collective mode associated with

the entropy fluctuations originating from the no-entropy flow

in superfluids. The collective mode of the entropy wave is

called the second sound [65, 111, 122–124]. The first and

second sound velocities c1,2 are the roots of Landau’s two-

fluid equation c4 − (v2s + v2L)c
2 + v2T v

2
L = 0, where vT ,

vs, and vL are the isothermal, adiabatic, and Landau veloci-

ties, respectively, calculated from the free energy [65, 115].

Figure 3 illustrates the first and second sound velocities for

g̃ = 0.1 and η = 0, 0.5 with ω̄R = 0.0, 1.0. The upper branch

is the first sound velocity c1, and the lower branch is identi-

fied as the second sound velocity c2, which survives as long

as the superfluid fraction is finite. Finite Rabi coupling in-

creases the critical temperature, as shown in Fig. 1, and al-

lows the second sound to be present up to a higher temper-

ature. At the low-temperature limit in the absence of Rabi

coupling, using the linear dispersions E
(+)
k ≃ c+~k, with

c+ = [(1 − η)gn/(2m)]1/2, and E
(−)
k ≃ cB~k, one finds

vT = vs = cB and vL = [(c−2
+ + c−2

B )/(c−4
+ + c−4

B )]1/2 =

[(1−η)/(1+η2)]1/2cB [115]. For η = 0 as shown in Fig. 3(a),

in particular, the first and second sound velocities coincide

with each other, c1 = c2 = vT = vs = vL = cB. The low-

temperature behavior is shown in Fig. 3(c). With 0 < η < 1
in the low-temperature regime without Rabi coupling, one ob-

serves c1 = vs = vT = cB and c2 = vL < cB, indicat-

ing that the sound modes are identified as the density mode
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and entropy mode, respectively, as illustrated by the dashed

curves in Fig. 3(d). As one increases the temperature, the two

branches exhibit a quasicrossing at which the density mode

and entropy mode start to mix as in the case of the single-

component 2D Bose gas plotted with the thin dotted curves

in Fig. 3 or a 3D Bose gas [65, 111]. In contrast, the solid

curves in Fig. 3 imply that finite Rabi coupling suppresses the

quasicrossing, as shown in Fig. 3(d), which is distinct from a

single-component 2D Bose gas. This behavior can be under-

stood by the presence of a gapped mode. With finite Rabi cou-

pling, E
(+)
k is gapped out, as shown in the insets in Figs. 3(c)

and 3(d), and most thermally excited bosons occupy only the

gapless mode E
(−)
k ≃ cB~k. Then, the major difference from

the single-component case is only the additional prefactor 1/2
in Eqs. (7) which affects the Landau velocity. Consequently,

the Landau velocity is found to be identical to the Bogoliubov

velocity, which also coincides with the adiabatic velocity at

zero temperature [115]. It results in the suppression of qua-

sicrossing at a low temperature. The temperature at which

the quasicrossing occurs characterizes the temperature above

which the second sound can be detected by a density probe

[64, 110, 125, 126]. From an experimental point of view,

the suppression of quasicrossing at finite temperature implies

that the second sound mode is sensitive to a density probe

even in the low-temperature regime, which can be tested with

ultracold-atom experiments [76, 125].

In summary, we investigated BKT transition in a Rabi-

coupled binary Bose mixture under balanced densities. We

have derived the NK RG equations for a binary Bose mix-

ture and pointed out that the NK criterion is subject to change

due to the fractional parameter and the Rabi coupling, con-

sistent with the Monte Carlo simulation [100]. Based on the

obtained RG equations, we clarified the whole behavior of

the BKT transition temperature with respect to the Rabi cou-

pling and intercomponent coupling. We found a nonmono-

tonic behavior of the transition temperature in terms of the in-

tercomponent coupling and showed the maximum transition

temperature for each value of Rabi coupling finding regimes

of parameters resulting in an amplification of the transition

temperature. Finally, we have studied the first and second

sound velocities in this binary Bose mixture. We confirmed

the jump in the second sound velocity as well as the super-

fluid density at the BKT transition temperature and eluci-

dated the quasicrossing behavior of the two sound modes in

the low-temperature regime. Our obtained NK criterion is

consistent with the prediction based on Monte Carlo analy-

sis for the population-balanced case [100]. On the other hand,

Monte Carlo analysis has also predicted a double-step struc-

ture of the superfluid density in the population-imbalanced

case [100, 101, 127–129]. A challenging open problem is

to obtain a consistent result through the RG analysis in this

population-imbalanced Bose mixture, extending the approach

investigated in this work [121].
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vortex lattices in two-species Bose-Einstein condensates, Phys.

Rev. A 85, 043613 (2012).

[87] M. Eto and M. Nitta, Vortex trimer in three-component Bose-

Einstein condensates, Phys. Rev. A 85, 053645 (2012).

[88] M. Eto and M. Nitta, Vortex graphs as N-omers and CPN−1

skyrmions in N-component Bose-Einstein condensates, Euro-

phys. Lett. 103, 60006 (2013).

[89] M. Cipriani and M. Nitta, Crossover between Integer and Frac-

tional Vortex Lattices in Coherently Coupled Two-Component

Bose-Einstein Condensates, Phys. Rev. Lett. 111, 170401

(2013).

[90] M. Cipriani and M. Nitta, Vortex lattices in three-component

Bose-Einstein condensates under rotation: Simulating color-

ful vortex lattices in a color superconductor, Phys. Rev. A 88,

013634 (2013).

[91] D. S. Dantas, A. R. P. Lima, A. Chaves, C. A. S. Almeida, G. A.
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Supplemental Material for ”Berezinskii-Kosterlitz-Thouless phase transition with Rabi-coupled
bosons”

Derivation of Nelson-Kosterlitz renormalization group equations

A single-component weakly-interacting Bose gas is described by the Lagrangian density

L = i~ψ∗∂tψ − ~
2

2m
|∇ψ|2 − g

2
|ψ|4, (S1)

with ψ(r, t) the complex bosonic field, m the atomic mass, and g the interaction strength. To address the BKT physics, we

employ Popov’s treatment: ψ(r, t) = ψ̃(r, t)eiθ(r) assuming a time-independent phase θ(r) as a slowly varying field and

ψ̃(r, t) as a fast field of the superfluid phase [S1, S2]. By integrating out the fast variable ψ̃, the Euclidean action associated

with the formation of vortices is given by

S[θ] = ~

∫

d2r
K

2
(∇θ)2 , (S2)

where K = ~2ns/(mkBT ) = J/(kBT ) with J = ~2ns/m the phase stiffness and ns the superfluid density [S2]. Practically,

Eq. (S2) can be obtained just by regarding the quasicondensate density as a uniform superfluid density n = |ψ̃|2 = ns and

inserting it into Eq. (S1). In the presence of vortices, the XY model in Eq. (S2), which is equivalent to a Coulomb gas apart from

the analytic spin-wave contribution, can be mapped to the sine-Gordon model described by [S3, S4]

SsG[φ] =
~

2π2K

∫

d2r (∇φ)
2 − 2~y

α2

∫

d2r cos (2φ), (S3)

with φ(r) the analytic real field for the Coulomb gas, y ≡ exp[−µv/(kBT )] the dimensionless parameter characterizing the

strength of the cosine potential corresponding to the vortex fugacity where µv is the vortex chemical potential, and α the short-

range cutoff [S3, S4, S5]. To develop RG equations, we consider a correlation function [S3]

R(r1 − r2) =
〈

eiφ(r1)e−iφ(r2)
〉

=
1

Z

∫

Dφeiφ(r1)e−iφ(r2)e−SsG[φ]/~, (S4)

where Z =
∫

Dφexp [−SsG[φ]/~] is the partition function. Neglecting the cosine potential in Eq. (S3), we get R0(r1 − r2) =
exp[−πKF (r1 − r2)/2] with F (r) = ln (|r|/α). Perturbative expansion in terms of y up to O

(

y2
)

results in

R(r1 − r2) = R0(r1 − r2)

[

1 +
y2

2α4

∑

σ=±1

∫

d2r′

∫

d2r′′e−2πKF (r′
−r

′′)
[

eπσKG(r1,r2;r
′,r′′) − 1

]

]

, (S5)

with G(r1, r2; r
′, r′′) = F (r1 − r

′) − F (r1 − r
′′) + F (r2 − r

′′) − F (r2 − r
′). Assuming |r| = |r′ − r

′′| ≪ |r′ + r
′′|/2,

Eq. (S5) reduces to

R(r1 − r2) = R0(r1 − r2)

[

1 +
y2

πα4

π2K2

4
F (r1 − r2)

∫

r>α

d2rr2e−2πKF (r)

]

. (S6)

Defining the effective strength Keff by R(r) = exp[−πKeffF (r)/2], it is given by

K−1
eff = K−1 + 4π3y2

∫ ∞

1

dxx3−2πK , (S7)

with a dimensionless length scale x = r/α up to O
(

y2
)

. Splitting the spatial integral at a boundary b = edl = 1 + dl and

introducing

K̃−1 = K−1 + 4π3y2
∫ b

1

dxx3−2πK , ỹ = yb2−πK , (S8)

one obtains

K−1
eff = K̃−1 + 4π3ỹ2

∫ ∞

1

dxx3−4πK̃ , (S9)
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which is equivalent to Eq. (S7) after rescaling x → x/b. The set of equations (S8) leads to the NK RG equations (8) with

K(l) = ~2n
(l)
s /(mkBT ) and y(l) = exp[−µv(l)/(kBT )] where µv(l) is the vortex chemical potential at the dimensionless

scale l [S3, S4, S5]. The BKT critical temperature T
(0)
c can be obtained by the NK criterion (9) which provides a fixed point of

Eqs. (8) [S5, S6].

A binary Bose mixture is described by

L =
∑

a=1,2

[

i~ψ∗

a∂tψa −
~2

2m
|∇ψa|2 −

g

2
|ψa|4

]

− g12|ψ1|2|ψ2|2 + ~ωR [ψ∗

1ψ2 + ψ∗

2ψ1] . (S10)

With the transformation ψa=1,2(r, t) = ψ̃a(r, t)e
iθa(r), by integrating out ψ̃a, the Euclidean action of a binary Bose mixture

relevant to the formation of vortices is given by

S[θ1, θ2] = ~

∫

d2r

[

K1

2
(∇θ1)

2 +
K2

2
(∇θ2)

2

]

, (S11)

in the absence of Rabi coupling ωR = 0 with Ka=1,2 = αaK = Ja/(kBT ) where Ja = αaJ is the phase stiffness of each

component with αa = na/n the fractional parameter. As in the single-component XY model, the binary XY model (S11) can

be mapped to the binary sine-Gordon model

SsG[φ1, φ2] =
~

2π2

∫

d2r

[

1

K1
(∇φ1)

2 +
1

K2
(∇φ2)

2

]

+
2~

α2

∫

d2r [y1 cos (2φ1) + y2 cos (2φ2)] . (S12)

We can follow a similar manner in the single-component case to derive the RG equations. Up to O
(

y21 , y
2
2

)

, for the symmetric

case α1 = α2 = 1/2 with y1 = y2 = y, it provides a set of NK RG equations [S3, S4, S7]

∂lK(l)−1 = 2π3y2a, ∂ly(l) =
[

2− π

2
K(l)

]

y(l), (S13)

which are Eqs. (10) for ωR = 0.

In the presence of Rabi coupling, the two components are coupled as

Lθ = −J1
2

(∇θ1)
2 − J2

2
(∇θ2)

2
+ 2~ωR

√
n1n2 cos (θ1 − θ2). (S14)

It provides the equations of motion

J1∇
2θ1 = 2~ωR sin (θ1 − θ2), J2∇

2θ2 = −2~ωR sin (θ1 − θ2). (S15)

This set of equations of motion leads to domain wall solutions which are metastable states with a finite Rabi coupling [S8].

Inserting the equations of motion (S15) into the Lagrangian (S14), we obtain the optimized Lagrangian

Lopt
θ = −2J1

2
(∇θ1)

2
+ const. +O

(

∇
4
)

, (S16)

for n1 = n2 = n/2. The action associated with the optimized Lagrangian (S16) is equivalent to Eq. (S2) in the single-component

case because 2J1 = J . Note that the effective phase stiffness as a coefficient of −(∇θ1)
2/2 in Eq. (S16) is replaced with J1

instead of 2J1 in the absence of Rabi coupling ωR = 0 because the two phases are no longer coupled. This is consistent with

Eqs. (S13). As a result, neglecting the higher-order derivatives of O
(

∇
4
)

and following the procedure mentioned above, we

restore the RG equations identical to the ones in the single-component case. Taking into account Eqs. (S13) in the absence of

Rabi coupling, we can write the RG equations as in Eqs. (10).

Finite size effect on the superfluid density

Figure S1 shows the renormalized superfluid fraction with varying system size length L in a Rabi-coupled binary Bose

mixture. In the thermodynamic limitL→ ∞, the renormalized superfluid density is finite below the BKT transition temperature,

while it discontinuously drops to zero at the BKT transition temperature, which is determined by the NK criterion (11). As

mentioned in the main text, Fig. S1 indicates that a finite system size smears the discontinuous drop.
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FIG. S1. Finite size effects on the renormalized superfluid fraction with ω̄R = 0.1, η = 0.0, and g̃ = 0.1. The black dotted thin line represents

kBT = π~2ns(T )/(2m).

Thermodynamics and sound velocities

The isothermal, adiabatic, and Landau velocities are given by

vT =

√

1

m

(

∂P

∂n

)

T

, vs =

√

1

m

(

∂P

∂n

)

s

, vL =

√

nsTs2

nncV
, (S17)

respectively with

P = −
(

∂F

∂L2

)

N,T

, s =
1

mN

(

∂F

∂T

)

N,L2

, cV = T

(

∂s

∂T

)

N,L2

, (S18)

the pressure, the entropy per mass unit, and the specific heat at constant volume respectively. In a 2D single-component Bose

gas, the free energy F at the mean-field level is given by [S9]

F =
gN2

2L2
+ L2kBT

∫

d2k

(2π)2
ln
[

1− e−Ek/(kBT )
]

, (S19)

with the Bogoliubov spectrumEk =
√

εk(εk + 2gn). The first term is free energy at zero temperature. The second term involv-

ing thermal excitations represents the thermal contribution at a finite temperature. In the phononic regime at low temperatures,

the linear dispersion Ek = cB~k with cB =
√

gn/m gives analytic expressions of the free energy and the normal density as

F

N
=
gn

2
− ζ(3)

2π~2
(kBT )

3

nc2B
, nn = −

∫

d2k

(2π)2
~2k2

2m
f ′

T (Ek) =
3ζ(3)

2π~2
(kBT )

3

mc4B
, (S20)

with ζ(x) the Riemann zeta function [S9, S10]. At zero temperature, Eqs. (S17) with Eqs. (S18) and (S20) lead to

c1 = vT = vs = cB, c2 = vL =
cB√
2
. (S21)

In a two-component Bose mixture, the free energy F at the mean-field level is given by

F =
1 + η

4

gN2

L2
− ~ωRN + L2kBT

∫

d2k

(2π)2

[

ln
(

1− e−E
(−)
k

/(kBT )
)

+ ln
(

1− e−E
(+)
k

/(kBT )
)]

. (S22)

In the phononic regime at low temperatures without Rabi coupling ωR = 0, E
(−)
k = cB~k with cB =

√

(1 + η)gn/(2m) and

E
(+)
k = c+~k with c+ =

√

(1 − η)gn/(2m) provide

F

N
=

1 + η

2

gn

2
− ~ωR − ζ(3)

2π~2
(kBT )

3

n

(

1

c2+
+

1

c2B

)

, nn = n(+)
n + n(−)

n =
3ζ(3)

2π~2
(kBT )

3

2m

(

1

c4+
+

1

c4B

)

, (S23)
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which results in

vT = vs = cB, vL =

√

c−2
+ + c−2

B

c−4
+ + c−4

B

=

√

1− η

1 + η2
cB, (S24)

at zero temperature. For −1 < η ≤ 0, vL ≥ vs leads to c1 = vL and c2 = vs. For 0 < η < 1, vL < vs leads to c1 = vs and

c2 = vL. With a finite Rabi coupling ωR > 0, on the other hand, the thermal contribution associated with the gapped branch

E
(+)
k vanishes at zero temperature. Then, the free energy and normal density are given by

F

N
=

1 + η

2

gn

2
− ~ωR − ζ(3)

2π~2
(kBT )

3

nc2B
, nn =

3ζ(3)

2π~2
(kBT )

3

2mc4B
. (S25)

The thermal part of free energy is identical to the one in the single-component case while the normal density is half of that

in the single-component case in Eqs. (S20) because of the prefactor 1/2 in Eqs. (7). As a result, the sound velocities at zero

temperature change to

c1,2 = vT = vs = vL = cB, (S26)

at any value of inter-component coupling η. The difference from the single-component case in Eqs. (S21) is ascribed to the

modification of the normal density in Eqs. (S25).
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