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The Bardeen and Hayward spacetimes are here considered as standard configurations of spherically
symmetric regular black holes. Assuming the thermodynamics of such objects to be analogous to
standard black holes, we compute the island formula in the regime of small topological charge and
vacuum energy, respectively for Bardeen and Hayward spacetimes. Late and early-time domains are
separately discussed, with particular emphasis on the island formations. We single out conditions
under which it is not possible to find out islands at early-times and how our findings depart from
the standard Schwarzschild case. Motivated by th fact that those configurations extend Reissner-
Nordström and Schwarzschild-de Sitter metrics through the inclusion of regularity behavior at r = 0,
we show how the effects of regularity induces modifications on the overall entanglement entropy.
Finally, the Page time is also computed and we thus show which asymptotic values are expected
for it, for all the configurations under exam. The Page time shows slight departures than the
Schwarzschild case, especially for the Hayward case, while the Bardeen regular black hole turns out
to be quite indistinguishable from the Schwarzschild case.
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I. INTRODUCTION

Black Holes (BHs) are currently among the most in-
triguing objects in the universe. Understanding the
physics behind them will shed light toward possible de-
partures from Einstein’s gravity as BHs are domains
of strong gravity where quantum gravity effects are ex-
pected to appear. The advancement of a new era based
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on BH precision astronomy [1] is currently undergoing as
certified by the gravitational wave detection [2] and by
the impressive discovery of BH shadows [3]. Specifically,
the presence of matter satisfying reasonable energy con-
ditions inevitably leads to singularities, as shown by Pen-
rose and Hawking singularity theorems [4, 5]. This fact
arises for those theories fulfilling the equivalence princi-

ple, and therefore in particular for general relativity.

In addition, among all possible theoretical studies on
BHs, the information paradox clearly represents a major
issue of quantum gravity [6] and, more broadly, of gen-
eral relativity and effective theories of fields. In particu-
lar, Hawking’s radiation turns out to be thermal, namely
the entanglement entropy outside a BH will consistently
increase [7]. This occurrence is in contrast with quantum
mechanics. There, entanglement entropy might eventu-
ally reach zero as it approaches the end of its evapora-
tion, i.e., as a consequence of the pure states at the end
of evaporation.

To prompt this issue, one can investigate the Page
curve [8, 9], that displays the entanglement entropy time
evolution, leaving de facto open the caveat of how the
Page curve can be reproduced for the entanglement en-
tropy of Hawking radiation. This ensures how to solve
the problem of information loss quantum field theories in
gravitational contexts, i.e., in curved spacetimes. Follow-
ing Page’s treatment, a restoration of unitarity, involving
entropy decreasing after the Page time [6, 8, 9], can be
found. This appears essential in conclusively solving the
information paradox. Thus, a physical mechanism fueling

the Page curve to exist could represent a key to guaran-
tee the Page process to occur. To this end, it has been
recently proposed that the Page curve arises from the ef-
fect of peculiar islands [10–13]. To better clarify what
islands are, it is possible to note that as Hawking radia-

http://arxiv.org/abs/2304.06593v1
mailto:orlando.luongo@unicam.it
mailto:stefano.mancini@unicam.it
mailto:paolo.pierosara@studenti.unicam.it


2

tion state is employed within a region, R, outside the BH,
the density matrix of R is commonly defined by taking
the partial trace over the systems in R. This procedure
is motivated by the fact that, in so doing, one works out
the complementary region of R and, so, based on the
prescription of the minimal quantum extremal surface
[14–16], certain regions in R, called islands, i.e., I(⊂ R),
should be excluded from the states as they are traced
out.

The subsequent strategy underlying the above pre-
scription implies that one first extremizes the generalized
entropy to locate the extremal points. Those, indeed,
indicate the island locations and therefore the entropy
minimum value becomes the fine-grained entropy of ra-
diation [10–13]. The interest toward the concept of island
increases as the same generalized entropy can be found
adopting the replica method applied to the gravitational
path integral [17, 18] and, moreover, the island formula
can be understood by combining the AdS/BCFT corre-
spondence and the brane world holography [19–34].

As above stated, it is widely-believed that BH singu-
larities occur at a classical level, although they can be
resolved by introducing a complete theory of quantum
gravity. In this respect, to classically heal the presence
of singularities, Bardeen was the first to introduce the
concept of a regular BH (RBH) [35]. Such an object ex-
hibits asymptotic flatness and a non-singular center in
a static spherical symmetry and, later, has been demon-
strated to arise as a genuine solution of Einstein’s gravity
[36]. The idea behind this RBH configuration involves a
magnetic monopole source in the context of nonlinear
electrodynamics [37]. Consequently, other RBH models
were proposed and, remarkably, the Hayward solution
was introduced, appearing as static and spherically sym-
metric, fulfilling the information-loss paradox [38]. The
use of RBHs appears nowadays not only speculative. In-
deed, they have been assumed to model neutron stars,
featuring quasi-periodic oscillations. Other approaches
certified that one cannot exclude topological charge ef-
fects as well as non-zero vacuum energy at r = 0 as it
appears in the Hayward solution.

As those objects exhibit horizons, it is plausible to use
these configurations to investigate how the island formula
works. In this paper, we therefore describe the early and
late-time approximations to evaluate the island formula.
To do so, we do not resort to holographic correspondence,
but rather we show that the entanglement entropy due
to Hawking radiation follows the Page curve once islands
are involved. We compute this adopting two main space-
times configurations, namely Bardeen and Hayward met-
rics. We thus investigate the effects of topological charge
first and vacuum energy in computing the island formula.
We evaluate the regions of the islands for small topologi-
cal and vacuum energy contrubition, without limiting the
analyses at large radii, but considering instead the overall
domain where islands can arise. Once the aforementioned
approximations of early and late-times are taken into ac-
count, we check how the Page curves are reproduced. The

corresponding results deviate than the simplest cases of
Schwarzschild and Reissner-Nordström as consequence of
the presence of corrective terms within the RBH metrics.
Physical consequences of our recipe are also discussed.
The paper is structured as follows. In Sect. II, the ba-

sic motivations behind the use of Bardeen and Hayward
metrics are reported. In Sect. III, the Bardeen metric
is critically analyzed, ending up with the corrections to
entropy at late and early-times. The same is performed
in Sect. IV, where the same is reported for the Hayward
spacetime. The Page time is therefore studied in Sect.
V. Finally, in Sect. VI, we report our conclusions and
perspectives.

II. ISLANDS, HAWKING RADIATION AND

RBH

In view of BH Hawking radiation, limited within a re-
gion denoted as R, the density matrix of R is typically
determined by taking a partial trace over the comple-
mentary region R. Adopting the recipe of the minimal
quantum extremal surface, as outlined in Refs. [39–41],
certain systems lying on R are known as islands, I(⊂ R).
Those can be excluded from the systems that are traced
out, leading to the subsequent entanglement entropy, in
R, effectively determined by the systems in R ∪ I.
Thus, the Hawking radiation entanglement entropy

reads

S(R) = min

{

ext

[

Area(∂I)

4GN
+ Smatter(R ∪ I)

]}

, (1)

in which the prescription of the quantum extremal sur-
face has been used1.
In the above relation, Smatter(R∪I) denotes the entan-

glement entropy of the matter fields in the region R ∪ I,
whereas Area(∂I) is the area of the extremal surface that
forms the boundary of the region I. Afterwards, the is-
land rule was derived by using the replica method for
the gravitational path integral, and so as one applies the
replica trick [21, 42, 43] to gravitational theories, one
gets fixed boundaries due to the replica geometries. It is
therefore possible to show that the same rule, as above,
can be found though the replica trick as the quantum ex-
tremal surface prescription is involved. This makes the
concept of islands much more robust and so the island
conjecture is expected to be applicable to all BHs [44–
46].
As thermodynamics for a magnetically charged RBH

appears to be equivalent than BHs for a fixed charge
[47], we here conjecture as a plausible assumption that
thermodynamics of RBHs is the same than BHs.

1 This formula allows for computing entanglement entropy of
Hawking radiation in R since it employs the systems in R ∪ I,
thus not tracing away systems in the island regions.
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So that, motivated by the above point, we study the
effect of islands within the context of RBHs and stress
this could be possible as horizons and asymptotically flat-
ness are respected in such regular metrics. Specifically,
our islands are determined for the simplest approaches
describing compact objects [48], namely involving spher-
ically symmetric, non-rotating metric. As a byproduct,
we study how the island formula is expected to be modi-
fied than Schwarzschild and Reissner-Nordström metrics
through the inclusion of regularity behavior at r = 0.
Hereafter we shall consider

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2) , (2)

the spacetimes to use, being adaptable to our RBH solu-
tions since f(r) is the unknown smooth function. By sin-
gling it out, it is possible to define the kind of RBH under
exam. The original idea, developed by Bardeen in 1968,
was to find f(r) out to mime the Reissner-Nordström
metrics, employing a charge but without singularity.
Below, we focus on Bardeen and Hayward solutions,

motivating them since they provide topological charges
and vacuum energy at r = 0.

III. ISLANDS FROM THE BARDEEN METRIC

The Bardeen metric [35, 36] represents a solution of
Einstein’s field equations. It appears as non-rotating BH
with topological charge. The solution is based on find-
ing a solution to Einstein-Maxwell equations describing
a magnetically-charged BH looking similar to the tra-
ditional Reissner-Nordström BH solution, but without
singularity at r = 0.
Looking at Eq. (2), we thus write

f(r) = 1−
2Mr2

(r2 + q2)3/2
, (3)

where q and M are the charge and mass of the magnetic
monopole, respectively. The limiting case, namely the
Schwarzschild BH, is clearly recovered as q → 0.
This spacetime solution could be somehow reinter-

preted as quasi-Kerr solution [49], since as it has been
stated in Ref. [50], the Bardeen metric is equivalent to
the Kerr one only in its rotating version2.
Following Ref. [36], we can shift to Kruskal-like coor-

dinates3

2 The rotation is obtained through the Newman-Janis algorithm.
By this property, several rotating RBHs may be found through
the Newman-Janis algorithm.

3 The procedure is the same performed in Kruskal coordinates.
Since the BH is not the Schwarzschild one, we cannot claim that
the coordinate change is exactly Kruskal, but rather a Kruskal re-
placement on a RBH solution, leading to the concept of Kruskal-
like coordinates.

The procedure is to work out the tortoise coordinate

r∗ =

∫

grrdr =

∫

1

f(r)
dr , (4)

with the Finkelstein-like coordinates defined by the
shifts:

u = t− r∗ , v = t+ r∗ , (5)

allowing one to define the infinitesimal coordinates du =
dt−grrdr, dv = dt+grrdr, and the subsequent spacetime,
rewritten by

ds2 = −f(r)dudv + r2dΩ2 , (6)

where dΩ is the usual angular part of a given spherically-
symmetric spacetime, i.e., dΩ2 ≡ dθ2 + sin θ2dφ2.
The Kruskal-like coordinates are written by defining

[51]

U = −e−κ+t+κ+r∗ , V = eκ+t+κ+r∗ , (7)

where κ+ in the surface gravity calculated at the outer
horizon. So to compute it, we get the “+” root of gtt = 0,
which according to Ref. [52] can be written as4 κ± =
f ′(r±)

2 .
The metric can be finally recast under the useful form

prompted by

ds2 = −W 2(r)dUdV + r2dΩ2 , (8)

with

W 2(r) = f(r)
e−2κ+r∗

κ2
+

, (9)

where the weight function W (r) represents the Jacobian
to pass from one set of coordinates to another.
It is now necessary to work out horizons from the

Bardeen spacetime so, given the analytic expression for
the metric, the horizons results from

1−
2Mr2

(r2 + q2)3/2
= 0 , (10)

showing two positive distinct solutions5, say r− and r+,
where as usual we conventionally require r− < r+.
Motivated by the fact that topological charges are

small as numerically found, Eq. (10) can be easily solved
under the prescription of small q. It is remarkable to note
that we do not require large distances but small charges,

4 The “ + ” root implies that the corresponding radius is larger
than the other root(s).

5 Any unphysical negative solution is clearly discarded into com-
putation, consisting to non-relevant terms that do not contribute
to the horizon computation.
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i.e., we do not limit our treatment to large radii, but we
expand around small q, implying q/r ≪ 1, up to the third
order in q/r, since r > 0. Thus, we have

f(r) ≈ 1−
2M

r
+

3Mq2

r3
=

r3 − 2Mr2 + 3Mq2

r3
. (11)

From Eq. (4), we yield to

r∗ = r −
∑

j

Bj log(r − rj) , (12)

having defined the auxiliary functions

Bj =
M

rj

(2r2j − 3q2)

(4M − 3rj)
, with j = 1, 2, 3. (13)

where the rj ’s are the roots of r3j − 2Mr2j + 3Mq2 = 0.

Thus, we have

r∗ ≈ r −B1 log(r − r1) (14)

−B2 log(r − r2)−B3 log(r − r3) ,

where r1 and r2, corresponding to j = 1; 2, are the afore-
mentioned positive roots, discarding de facto the nega-
tive radius obtained by f(r) = 0, that turns out to be a
unphysical solution.

We have now all the ingredients to compute the en-
tropy contribution without and with islands, as we report
in the incoming subsection.

A. Entropy without islands

The formula in Eq. (1) can be sorted out by means
of the renormalizeed Newton’s constant, GN,r, under the
form

1

4GN,r
→

1

4GN
+

1

ǫ2
, (15)

where ǫ is the cutoff scale used in the configuration that
we intend to write up. In particular, following Refs. [51,
53], we invoke

b+ = (tb, b) , (16a)

b− = (−tb + i
π

κ+
, b) , (16b)

a+ = (ta, a) , (16c)

a− = (−ta + i
π

κ+
, a) , (16d)

where b± are the boundaries of the entanglement region
R and a± the boundaries of the island. Following Refs.
[51, 53], in the configuration without island the entropy
is simply given by

Smatter =
c

3
log d(b+, b−) , (17)

where c is the central charge, as in [53]. The latter, in
the Kruskal-like coordinates, Eq. (8), can be written as

Smatter =
c

6
log [W (b−)W (b+)(U(b−)− U(b+))(V (b+)− V (b−))]

=
c

6
log

[

W 2(b)(eκ+tb+κ+r∗(b) + e−κ+tb+κ+r∗(b))(eκ+tb+κ+r∗(b) + eκ+tb+κ+r∗(b)
]

=
c

6
log

[

4W 2(b)e2κ+r∗(b)) cosh2(κ+tb)
]

.

(18)

The corresponding behaviors at both late and early-times
can be therefore analysed. Specifically, the behavior
at late-times appears particularly interesting as the en-
tropy could increase indefinitely eventually violating the
Bekenstein bounds. Actually, for tb ≫ 1, Eq. (18) gives

Smatter ∼
c

3
κ+tb , (19)

which, as above anticipated, diverges leaving the infor-
mation paradox unsolved. As possible solution, we then
include islands and check whether their inclusion would

modify the corresponding entropy behavior.

B. Entropy with islands

As above stated, we here include islands to check
whether they modify the corresponding entropy behav-
ior. Thus, for the sake of simplicity, we here limit our
study on one island only, in agreement with previous find-
ings, see e.g. [51, 53]. Hence, we easily get
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Smatter =
c

3
log

[

d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)

d(a+, b−)d(a−, b+)

]

=
c

3
log d(b+, b−)d(a+, a−)

+
c

3
log

[

(U(b+)− U(a+))(V (a+)− V (b+))(U(b−)− U(a−))(V (a−)− V (b−))

(U(b−)− U(a+))(V (a+)− V (b−))(U(b+)− U(a−))(V (a−)− V (b+))

]

.

(20)

Using

Sgen =
2πa2

GN
+ Smatter , (21)

in analogy to previous literature, see e.g. [51], we get

Sgen =
2πa2

GN
+

c

6
log

[

24W 2(b)W 2(a)e2κ+(r∗(a)+r∗(b)) cosh2(κ+tb) cosh
2(κ+ta)

]

+
c

3
log

[

cosh (κ+(r∗(a)− r∗(b)))− cosh (κ+(ta − tb))

cosh (κ+(r∗(a)− r∗(b))) + cosh (κ+(ta + tb))

]

.

(22)

The early-time behavior can be compared with late-
times. In the former case, we assume ta, tb ≪ r+. Fur-
ther, we note that if at least one island exists, its place
might be close to r = 0 since, at early-times, the entan-
glement entropy turns out to be small.
Bearing this in mind, one has

cosh (κ+(r∗(a)− r∗(b))) ≫ cosh (κ+(ta − tb)) , (23a)

cosh (κ+(r∗(a)− r∗(b))) ≫ cosh (κ+(ta + tb)) , (23b)

and rewriting Eq. (22) as

Sgen ≈
2πa2

GN
+

c

6
log

[

24W 2(b)W 2(a)e2κ+(r∗(a)+r∗(b)) cosh2(κ+tb) cosh
2(κ+ta)

]

≈
2πa2

GN
+

c

6
log[W 2(a)e2κ+r∗(a)] + functions of b only

=
2πa2

GN
+

c

6
log[f(a)] + functions of b only. (24)

we can now extremize Sgen with respect to a. This yields
4πa
GN

+ c
6
f ′(a)
f(a) = 0 or, more explicitly

4πa

GN
+

c

6

2M
(

a3 − 2aq2
)

(a2 + q2)
(

(a2 + q2)
3/2 − 2a2M

) = 0 . (25)

Expanding up to the third order in a, we get

a ≈

√

q3

cMGN

6πq3 − cMGN

2M − 3q
. (26)

The island, therefore, cannot form as the the Newton’s
constant contribution dominates over the third order

topological term . In order to guarantee it, then, one
requires

q <

(

cMGN

6π

)
1
3

, (27)

putting a stringent limit to the bounds over q that are
allowed in the case of Bardeen RBH, with c ≥ 0.
The same procedure can be carried out studying late-

times. Here we assume ta, tb ≫ b which allow us to make
the following approximation,see also [52],

d(a+, a−) ≈ d(b+, b−) ≈ d(a±, b∓) ≪ d(a±, b±) , (28)
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which leads to

Smatter ≈
c

3
log [d(a+, b+)d(a−, b−)] . (29)

After some algebra this can be rewritten as

Smatter =
c

3
log

∣

∣

∣

∣

1

κ+

√

f(a)f(b)e−2κ+(a∗+b∗)
[

e2κ+a∗ + e2κ+b∗ − 2eκ+(a∗+b∗) cosh (ta − tb)
]

∣

∣

∣

∣

, (30)

where a∗ = r∗(a) and b∗ = r∗(b) have been defined.
Again, maximizing with respect to ta, we can get

max
ta

Smatter =
2c

3
log

∣

∣

∣

∣

eκ+a∗ − eκ+b∗

κ+

∣

∣

∣

∣

+
c

6
log

∣

∣

∣
f(a)f(b)e−2κ+(a∗+b∗)

∣

∣

∣
,

(31)

where ta = tb ≡ t and so, in this case, we need to find
out the island position, by maximizing with respect to a
Sgen.

Hence, we set ∂aSgen = ∂a

(

2πa2

GN
+maxta Smatter

)

=

0, resulting in

4πa

GN
+

c

6

[

f ′(a)− 2κ+

f(a)

]

+
2c

3

κ+e
κ+a∗

f(a)(eκ+a∗ + eκ+b∗)
= 0 .

(32)
We now assume that the island is located very close, but
outside the horizon, which means a ≈ r+ and a > r+.
This allows us to expand f(a) around r+ as

f(a) ≈ f(r+) + f ′(r+)(a− r+) = 2κ+r+
a− r+
r+

, (33)

since f(r+) = 0 and f ′(a) ≈ f ′(r+) = 2κ+. From Eq.
(4) we get

a∗ ≈
∫ a 1

2κ+(r − r+)
dr =

1

2κ+
log

a− r+
r+

, (34)

using dr = r+d
(

r−r+
r+

)

.

Consequently, the a equation, Eq. (32), acquires the
form

4πr+
GN

+
c

3

√

a−r+
r+

r+
a−r+
r+

(√

a−r+
r+

+ eκ+b∗

) ≈ 0 , (35)

and so, keeping the leading term in (a − r+) only, we
write

4πr+
GN

+
c

3

e−κ+b∗

√
r+

√
a− r+

≈ 0 , (36)

whose solution, squaring the last expression, provides the
island position as

a ≈ r+ +

(

GNc

12πr+

)2
1

r+
e−2κ+b∗ , (37)

that manifestly depends on b only.

We can then plug the tortoise coordinates, Eq. (14),
into e−2κ+b∗ , giving

a ≈ r+ +

(

GNc

12πr+

)2
1

r+
e−2κ+b(b − r1)

2κ+B1(b − r2)
2κ+B2(b− r3)

2κ+B3 , (38)

and then we end up with inserting the above value for a
in the expression for the generalized entropy, Eq. (22).
Thus, recalling that we are studying the late time be-

havior of the solutions, we consider the following approx-
imations

cosh (κ+(ta + tb)) ≈ 2 cosh (κ+ta) cosh (κ+tb) , (39a)

cosh (κ+(ta + tb)) ≫ cosh (κ+(a∗ − b∗)) (39b)

and, using the definition for t with the additional require-
ment t ≫ b ≫ r+, we can rewrite Eq. (22) as
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Sgen =
2πa2

GN
+

c

6
log [W 2(b)W 2(a)] +

c

3
log

∣

∣

∣

∣

1− 2e−κ+(b∗−a∗)

1 + eκ+(a∗−b∗−2t)

∣

∣

∣

∣

+
2c

3
κ+b∗ (40)

=
2πa2

GN
+

c

6
log [W 2(b)W 2(a)] +

c

3
log

∣

∣

∣
−2e−κ+(b∗−a∗) − eκ+(a∗−b∗−2t)

∣

∣

∣
+

2c

3
κ+b∗ ,

where we computed the logarithm expansion and used
cosh (κ+(a∗ − b∗)) ≈ 1

2e
κ+(a∗−b∗).

We note that the time dependence of this entropy
evolves exponentially, i.e., at late-times it becomes con-
stant. The corresponding value reads

Sgen =
2πa2

GN
+

c

6
log [W 2(b)W 2(a)]+

+
c

3
log

∣

∣

∣
−2e−κ+(b∗−a∗) − 1

∣

∣

∣
+

2c

3
κ+b∗ ,

(41)

representing the asymptotic value of the entropy entering
the Hawking entropy.

Finally, for a−r+
r+

= ǫ ≪ 1 we have

W 2(a) =
f(a)

κ2
+

e2κ+a∗ , (42)

that can be approximated by

W 2(a) ≈
2r+κ+

κ2
+

ǫ exp

[

−2κ+
1

2κ+
log ǫ

]

=
2r+
κ+

. (43)

At leading order in ǫ, we have

Sgen ≈
2πr2+
GN

+
c

6
log [

2r+
κ+

W 2(b)] +
2c

3
κ+b∗

=
2πr2+
GN

+
c

6
log

[

2r+
κ3
+

f(b)e2κ+b∗

]

,

(44)

where, using Eqs. (3) and (14), we can get

Sgen ≈
2πr2+
GN

+
c

6
log

[

2r+
κ+

(

1−
2Mb2

(b2 + q2)3/2

)]

+

+
2c

3
κ+

[

b−
M(−3q2 + 2r21)

(4M − 3r1)r1
log (b − r1)−

M(−3q2 + 2r22)

(4M − 3r2)r2
log (b − r2)−

M(−3q2 + 2r23)

(4M − 3r3)r3
log (b− r3)

]

. (45)

The aforementioned expression refers to the total entropy
composed by the standard Hawking part summed with
the island correction. The behavior of our finding is
therefor compared with the standard Schwarzschild case
[53] in Tab. I, II and III.

IV. THE HAYWARD SPACETIME

More recently, the need of extending the Schwarzschild
de-Sitter solution, including into a regular configuration
a vacuum energy term led to introducing the Hayward
solution [38]. This regular configuration resembles the
physical interpretation of the Bardeen one, prompting a
central flatness. As stated above, the corresponding lapse
function for such a RBH implies a specific matter energy-
momentum tensor that is de Sitter at the core. Again, at
asymptotic distances, it recovers Minkowski. The extra-
parameter responsible for flatness, hereafter Λ can be

identified with a magnetic charge for a given non-linear
electrodynamic theory, so that Hayward metric becomes
a solution of such classes of theories as well as Bardeen
one [54].

In the Hayward RBH the function f(r) in Eq. (2) takes
the form

f(r) = 1−
2Mr2

r3 + 2MΛ2
, (46)

where, again M , is the point-like mass of the RBH,
whereas Λ is intimately related to the constant termmim-
icking vacuum energy.

In analogy to the Bardeen case, we perform below the
same computation to get the Hawking entropy correc-
tions without and with islands.
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A. Islands from the Hayward spacetime

As the derivation in Sec. III is valid for every spher-
ically symmetric and static metric, we can immediately
write

a ≈ r+ +

(

GN c

12πr+

)2
1

r+
e−2κ+b∗ , (47)

and

Sgen ≈
2πr2+
GN

+
c

6
log

[

2r+
κ3
+

f(b)e2κ+b∗

]

. (48)

In this case though, the tortoise coordinate can be exactly
computed to give

r∗ = r − 2M

3
∑

j=1

Hj log(r − rj) , (49)

having defined

Hj =
rj

4M − 3rj
, with j = 1, 2, 3 . (50)

in this case the rj ’s denote the positive roots of the poly-
nomial 2MΛ2 − 2Mr2j + r3j . In order to ensure the pres-
ence of at least one event horizon we need to impose
Λ ≤ 4

3
√
3
M , because otherwise the discriminant of the

polynomial is negative resulting in one negative root and
two complex roots.

We can use Eq. (49) to obtain

a ≈ r++

(

GN c

12πr+

)2
1

r+
(b− r1)

H1 (b− r2)
H2 (b− r3)

H3 ,

(51)
and

Sgen ≈
2πr2+
GN

+
c

6
log

[

2r+
κ3
+

(

1−
2Mb2

b3 + 2MΛ2

)

e2κ+b∗

]

+
2cκ+

6

[

b− 2M

(

r1 log (b− r1)

4M − 3r1
+

r2 log (b − r2)

4M − 3r2
+

r2 log (b− r3)

4M − 3r3

)]

.

(52)

Formally both solutions, Eq. (45) and Eq. (52), ap-
pear similar. Moreover, the result above found appears
compatible with previous findings, see e.g. [55]. However,
the physical mechanisms behind the aforementioned re-
sults is extremely different, leading to corrections that
look like different as well. The above computed entropy
clearly deviates from the Bardeen case. Analogy and dif-
ferences are prompted in Tab. I, II and III where we
define

δS ≡
∆S

SSchwarz.
=

SB;H − SSchwarz.

SSchwarz.
. (53)

Schwarzschild Bardeen Hayward

q = 0.005 Λ = 0.05
Sgen 26.91746 27.19917 27.16725
δS 0 0.01046577 0.009279884

q = 0.01 Λ = 0.1
Sgen 26.91746 27.19774 27.06968
δS 0 0.01041237 0.005654933

q = 0.015 Λ = 0.15
Sgen 26.91746 27.19534 26.90579
δS 0 0.01032337 0.0004338177

TABLE I. Values generated from Eq. (45) and Eq. (52)
choosing M = G = c = 1and b = 10

Schwarzschild Bardeen Hayward

q = 0.005 Λ = 0.05
Sgen 30.57981 30.86149 30.82505
δS 0 0.00921124 0.008019731

q = 0.01 Λ = 0.1
Sgen 30.57981 30.85995 30.71373
δS 0 0.009160889 0.004379252

q = 0.015 Λ = 0.15
Sgen 30.57981 30.85738 30.52656
δS 0 0.009076965 0.001741265

TABLE II. Values generated from Eq. (45) and Eq. (52)
choosing M = G = c = 1 and b = 50

Schwarzschild Bardeen Hayward

q = 0.005 Λ = 0.05
Sgen 34.86887 35.15051 35.10875
δS 0 0.008077054 0.006879337

q = 0.01 Λ = 0.1
Sgen 34.86887 35.14885 34.9812
δS 0 0.008029439 0.003221389

q = 0.015 Λ = 0.15
Sgen 34.86887 35.14608 34.76658
δS 0 0.007950076 0.002933656

TABLE III. Values generated from Eq. (45) and Eq. (52)
choosing M = G = c = 1 and b = 100
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V. THE PAGE TIME

We previously studied the entropy behavior of our sys-
tem both at early and late-times. We saw that initially
it increases linearly in time (see Eq. (19)) but, when
enough radiation is emitted, an island is formed and the
entropy remains constant as in Eq. (45). The time at
which this transition happens is called Page time. More
generally the Page time is defined as the time when the
entropy becomes constant and it is usually indicated by
tPage, and estimated imposing that the entropy in the

configuration without island is equal to that with island.
We thus perform this computation here, starting from

Eqs. (19) and (45) and imposing

c

3
κ+tPage ≈

2πr2+
GN

, (54)

obtaining a Page time of the form

tPage ≈
6πr2+
cGNκ+

, (55)

where we only kept the Bekenstein-Hawking term, i.e.
2πr2+
GN

, for the sake of simplicity.
Recalling how to set the BH temperature up by

TBH =
κ+

2π
, (56)

and assuming the regular configuration provides the same
temperature, as motivated by recent studies, see e.g. [56],
we thus take TBH = TRBH, with the latter the corre-
sponding effective temperature for RBHs.
In Tab. IV, we report some numerical results for the

Page time in our spacetime configurations. A particular
attention has been devoted to the relative variation with
respect to the Schwarzschild spacetime, i.e.,

δt ≡
∆t

tS
=

tB;H − tS
tS

. (57)

As emphasized above, the presented numerical results
show that there is no clear evidence in favor of discrepan-
cies occurring for RBHs than BHs. This means that the
thermodynamics, as well as islands, are comparable to
standard solutions, see e.g. [57]. Significant departures
are found in the context of Hayward solution, whereas
the Bardeen spacetime does not show significant changes
compared with Schwarzschild. This implies that the in-
clusion of regular behaviors does not seem to influence
the Page time and, consequently, the net island forma-
tion.

VI. FINAL OUTLOOKS AND PERSPECTIVES

We studied how the presence of non-singular regions
for RBH configurations influences the island formula. To

Schwarzschild Bardeen Hayward

q = 0.005 Λ = 0.05
tpage 150.7964 150.7964 150.891
δt 0 1.171946×10−10 0.0006273523

q = 0.01 Λ = 0.1
tpage 150.7964 150.7964 151.1792
δt 0 1.875313×10−9 0.002538055

q = 0.015 Λ = 0.15
tpage 150.7964 150.7964 151.6743
δt 0 9.49575×10−9 0.005821291

TABLE IV. Table of indicative values generated from Eq. (55)
with the above choices of free parameters andM = G = c = 1.
The numerics involved into computations reflect the need of
small changes and unspecified Λ terms. The most significant
departures from the Schwarzschild case are found for Hayward
spacetime, while in the Bardeen configuration, the outcomes
appear to be negligibly small.

do so, we worked out the Bardeen and Hayward space-
times and evaluated the corresponding thermodynamics
of such objects, computing the island formula for both
those metrics.
We distinguished two main cases, i.e., late and early-

times, where we approximated the corresponding solu-
tions. We emphasized in which regions the islands can
exist, underlying how the effects of topological charge and
vacuum energy influence the overall result. We pointed
out our findings in the regime of arbitrary radii with small
topological charge and unspecified vacuum energy mag-
nitudes.
As those configurations are matchable with compact

objects, we compared our outcomes with respect to the
Reissner-Nordström and Schwarzschild-de Sitter BHs.
We thus compared the effects of regularity behavior at
r = 0 of our solutions with predictions made from the
free terms, q and Λ. We also computed the Page time,
emphasizing its asymptotic values in time and compared
with previous findings. Our results indicated that the
effects due to regular configurations that we investigated
appeared to be more evident by tuning the free parame-
ters of our RBHs, especially for the Hayward case. The
Bardeen spacetime, on the contrary, did not depart sig-
nificantly from the Schwarzschild BH. Hence, if from the
one hand it appeared evident that the presence of non-
singular behavior modified the entropy contribution to
islands, on the other hand the predicted changes induced
by regular solutions did not significantly modify the out-
comes got in the case of the Schwarzschild BH.
In view of our results, it appears evident to investigate

other RBHs for the island formula, including the effects
of rotation and/or working out non linear electrodynamic
contributions to the lapse function, with the aim of com-
paring them with those obtained for singular spacetimes.
Moreover, the task of using regular solution with compact
object is still debated, so the need of working out rotat-
ing solutions and/or those providing quadrupole terms
would appear interesting for future works. Further, as
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future development we will focus on metrics, exhibiting
horizons, that however may also show unphysical island
regions.
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