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Abstract: The development of process-driven systems and the advancements in digital twins
have led to the birth of new ways of monitoring and analyzing systems, i.e., digital process twins.
Specifically, a digital process twin can allow the monitoring of system behavior and the anal-
ysis of the execution status to improve the whole system. However, the concept of the digi-
tal process twin is still theoretical, and process-driven systems cannot really benefit from them.
In this regard, this work discusses how to effectively exploit a digital process twin and proposes an
implementation that combines the monitoring, refinement, and enactment of system behavior. We
demonstrated the proposed solution in a multi-robot scenario.
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1. Introduction

Process-driven systems have emerged for organizing and managing complex work-
flows within various domains. These systems are based on the concept of modeling a
system’s processes to enable the optimization of the operations and better control over the
activities [1]. At the heart of process-driven systems is business process management [2],
which involves the identification, analysis, and improvement of business processes to
enhance overall performance. Specifically, business process models can be exploited to
express the system workflow, communication, tasks, and data required to achieve the goal
in a unique model [3].

In this domain, the advancements of digital twins (DTs), i.e., virtual replicas of a
system acting in a real environment, are opening up new possibilities for advanced system
monitoring, analysis, and optimization. Indeed, a DT gathers flows of data collected from
the environment and provides a reliable replica of a system. It can be used to represent,
simulate, and predict changes in the physical system to foster decision making and provide
the opportunity to apply preventive actions for optimizing system behavior [4].

With the creation of DTs for process-driven systems, also referred to as digital process
twins (DPTs), organizations gain valuable insights into their operations, enabling them
to make decisions, optimize their performance, and predict possible outcomes based on
the data coming from both the process model and the physical system [5]. Therefore, a
DPT can both permit developers and end-users to interpret the behavior of a system and
facilitate the interpretation and analysis of data. At the same time, a DPT can allow the
exploration of various designs and operational alternatives related to the behavior of the
whole system [6].

The application of DTs is spreading in a variety of fields, especially in the domains of
IoT and robotic systems [7]. The convergence of DTs with model-driven techniques, which
leverage business processes to define the behavior of IoT and robotic
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systems [8–10], makes them a suitable target for the application of DPTs. Indeed, con-
sidering the execution perspective, IoT and robotic devices function in real-world scenarios
that may involve several errors not considered during system modeling. In such scenarios,
the DPT can be exploited to enhance the whole system by providing the developers with a
reliable representation of the system devices’ execution.

Nevertheless, although the application of DPTs is promising, current solutions mainly
focus on conceptual aspects and lack effective ways of virtually representing a system and
its operational process [11].

This paper aimed to fill the gap between the concept of DPTs and their practical
implementation in physical systems. The aim was to enable developers to effectively utilize
the functionalities of a DPT to enhance physical systems. In line with this objective, we
conducted an investigation into existing DT concepts, exploring their potentialities and
limitations. This led to the proposal of the novel concept of an executable DPT (xDPT). An
xDPT enriches the monitoring and analysis functionalities of a DPT with the possibility of
actively driving the execution of the entire system. Our solution comprises a methodology
guiding the application and construction of xDPTs. Additionally, it provides developers
with a comprehensive toolset to not only monitor and analyze a system’s behavior but also
drive its operations. As a result, our contribution opens up new possibilities for enhanced
process-driven system management and optimization.

We obtained concrete evidence of the benefits brought by our solution through a
demonstrative multi-robot scenario. The solution relied on (i) BPMN collaboration di-
agrams [12] for representing the system; (ii) the FAME framework [13] for refining and
enacting the process model; and (iii) a business model animator and a 3D simulator for
monitoring the system’s execution to show the xDPT in a unique interface.

This work was based on the approach presented in [5] and extended its scope as fol-
lows:

1. We present and discuss the concept of xDPT and how it can be used to actually execute
a process-driven system.

2. We illustrate the concepts and technologies supporting the application of an xDPT to
IoT and robotic systems.

3. We present the implementation and application of an xDPT in a multi-robot scenario.

The rest of the paper is structured as follows: Section 2 discusses different definitions
of the DT and DPT concepts to identify current limitations and present the novel concept of
an xDPT. Section 3 presents the xDPT in an IoT and robotic context. Section 4 implements
the xDPT in a multi-robot scenario running in a warehouse. Section 5 discusses approaches
in the literature for exploiting DTs in IoT and robotic systems. Finally, Section 6 concludes
the paper and explores directions for future works.

2. Towards Executable Digital Process Twins

To better understand how the concept of a DPT can be integrated with process-driven
systems, this section introduces the emerging trends for the application of the DT concept
in different contexts and scenarios. We first introduce the application of DTs to distributed
and interactive organizations, leading to the emerging concept of digital process twins.
Then, we present the application of DTs for directly implementing industrial devices,
referred to as executable digital twins. Finally, we propose a concept that combines these
two DT types, introducing the executable digital process twin, which aims to enhance
process-driven systems.

2.1. Digital Process Twin

The concept of the DT is evolving to include system information models that describe
the properties and relationships of all data and information required to achieve a task, as
well as the elements and connections of organizational systems, to understand the factors
affecting a decision and to predict decision outcomes [14]. In the literature, this concept is
referred to as a DPT [15]. Notably, DPTs are considered part of a wider concept, known
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as the digital twins of an organization [14]. DPTs still generate many concerns among
organizations trying to figure out the benefits they bring to the whole system and how to
overcome challenges such as implementing real-time changes and developing the DPT to
reflect these changes [16]. To overcome these concerns, Becker et al. [17] prescribed a set of
criteria to provide clarification and suggestions regarding emerging DPTs. Specifically, a
DPT should involve:

• Multiple and interdependent processes;
• Agents capable of making choices, learning from experience, and achieving goals;
• Models showing different aspects of the organization;
• Simulation and prediction capabilities to understand how the organization might

behave when it faces different situations.

Indeed, a DPT can be seen as a digital replica of the business processes of an organiza-
tion. Therefore, it enables runtime monitoring, analysis, simulation, and improvements,
providing an extension to the current state of the art in process modeling and mining [18].
Moreover, DPTs are more effective when applied to organizational contexts described by
an enterprise architecture modeling language, such as BPMN [12]. Riss et al. [19] evaluate
the characteristics and benefits of using a DPT in these contexts. By exploiting a continuous
data flow, the DPT shows the real-time performance of its actual counterpart and associates
the process with the current behavior of the entities. Additionally, the collection of data
on past behavior enables simulations and predictions of future process behavior under
changed conditions. Notably, when the DPT is applied to a process-driven system, we refer
to it as DPT.

2.2. Executable Digital Twin

Traditional DTs serve as simulation and predictive tools to enable engineers and
developers to optimize performance, conduct simulations, and predict failures without
risking damage to the actual physical object. However, DTs remain separate entities, only
influencing their real-world counterparts through insights and adjustments [20]. To bring
the DT closer to the physical side, Hartmann and Van der Auweraer [21] introduced the
concept of an Executable Digital Twin (xDT) for the application of DTs in industrial contexts.
Indeed, an xDT aims to bridge the gap between a DT and the corresponding execution
on the physical side. It can be seen as a specific DT whose models can be executed by
dedicated execution engines both in simulation environments and in physical devices.

The core goal of exploiting xDT is to support the whole lifecycle of a system, from
its design to the analysis steps. Therefore, an xDT is a high-fidelity simulation model
that expands its applications beyond the design and validation phases to also manage
in-operation and service phases [22]. Currently, xDTs are proposed for industrial scenarios
as self-contained, executable, digital representations of a specific behavior of a physical
device [23], with the aim of testing configurations that can be complex to recreate in real
life, validating the system dynamics, and predicting future behaviors [24]. Indeed, the
main goal of an xDT is to deploy the digital twin itself into the physical world, enabling
the knowledge contained in the digital representation to create value for the physical
counterpart directly.

2.3. Executable Digital Process Twin

Currently, with the rising adoption of business processes for specifying and driving the
behavior of distributed systems [8–10], it becomes increasingly evident that the application
of DPTs is essential to enhance the whole system. Indeed, the ability to monitor, analyze,
and understand the complex behavior of process-driven systems makes DPTs the key to
gaining insight into processes and improving their decision-making skills. Therefore, a
DPT of a process-driven system should combine a virtual representation of each participant
with the representation of the process itself. This combined representation shows the
interdependencies between the participants and the process [25].
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Nevertheless, a DPT capable of virtually representing an organizational system and
its operational processes is still a theoretical concept and is far away from reality [11].
Therefore, there is a need to understand how it is possible to exploit DPTs, and in particular
DPTs, not only for performing monitoring and analysis steps but also for executing the
whole system. In this regard, the process should serve both as a DPT, for performing
monitoring and analysis steps, and as an xDT, for enacting and controlling the whole
system’s execution. We refer to the application of an xDT in a process-driven organizational
context as an executable digital process twin (xDPT).

Notably, since the reference organization is built upon a process model, the proposed
xDPT is known in advance. Therefore, it does not need to rely on techniques for process
discovery from streams of logs, which currently are not mature enough to allow the
discovery of processes representing collaborative distributed systems [11,26]. The authors
of Figure 1 present an overview of an xDPT representing a process-driven organization. The
workflow of this organization is described in BPMN, whose semantics will be detailed in
Section 3. Specifically, the xDPT receives real-time event logs from the running organization
and allows direct monitoring by marking the status of the system in the running process.
Moreover, it can exploit existing process mining techniques to check the conformance of the
executed behavior [27], to provide an enriched view over multiple system perspectives [28],
and to store historical data to predict process evolution [29]. Finally, the process driving the
system behavior can be refined and deployed into the organization. Summing up, Table 1
compares DPT, xDT, and xDPT to show the characteristics and potentiality of applying an
xDPT. In particular, the comparison is made with respect to their distinctive features of
(i) representing the system behavior (representation), (ii) knowing in advance the model
defining the system behavior (prior knowledge), (iii) simulating and predicting future states
of the system (prediction), (iv) improving the system at run-time (improvements), and
(v) deploying the behavioral model in the physical system (deployment). Notably, features
supported by a DT are represented by a check mark, while unsupported features are
indicated by a cross symbol.

Executable Digital Process Twin

Monitoring

Process-driven
Organization

Real-time Event Logs

Process Deployment

RefinementAnalysis

Conformance
checking

Multi-perspective
analysis

Predictive
mining

1

Figure 1. Overview of the functionalities of an executable digital process twin.

Table 1. Comparison of the three types of DTs.

DPT xDT xDPT

Representation 3 7 3

Prior knowledge 7 3 3

Prediction 3 3 3

Improvements 7 7 3

Deployment 7 3 3

3. Supporting Executable Digital Process Twins for IoT and Robotic Systems

The development of xDPTs can enhance the application of business processes for
specifying the behavior of IoT and robotic systems [8,9]. Therefore, we reduce the principles
of Becker et al. [17] closer to this application domain. Indeed, a DTO of a process-driven
IoT and robotic system should involve the following:
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• Multiple and cooperative processes representing the cooperative behavior of the devices;
• Devices capable of achieving a mission by making autonomous decisions;
• A combination of different visualizations of the system’s execution;
• Simulation and prediction capabilities to understand how the devices might behave

when different conditions (e.g., space, time, resources) are changed.

At the same time, we aim to bring these concepts closer to the actual system execution.
Therefore, this section introduces the methodologies enabling the implementation of an
xDPT that combines the representation, monitoring, analysis, enactment, and refinement of
IoT and robotic systems’ behavior.

3.1. Representing an xDPT

The representation of the behavior of IoT and robotic systems can be supported by
the adoption of the BPMN standard [12]. Indeed, it is a well-established notation for
modeling the behavior of complex systems. It is easy to interpret and is compliant with the
implementation of the system [9]. Moreover, BPMN models can be exploited to directly
execute the system, thus shifting the focus of the system development from code-centric
approaches to model-driven ones [30].

More in detail, BPMN is an OMG standard notation that provides different diagrams
for modeling business activities [31]. Among the others, collaboration diagrams are the
most suited for representing different perspectives of the systems altogether, such as the
control flow, communication, and data manipulation [32,33]. More in detail, a collaboration
diagram consists of a collection of pools, which contain processes. A process consists
of activities, gateways, and events connected to each other by means of sequence flows,
i.e., edges. Activities are represented as rectangles and are tasks to be performed within
a process. Gateways, represented as diamonds, are used to control the execution flow of
a process by managing parallel activities and choices. Events, represented as circles with
possible symbols inside, represent something that can happen at the beginning, during, or
at the end of the process execution. Finally, data objects are information that can be input
or output with respect to activities and events.

Therefore, BPMN can be exploited to faithfully model the system behavior, thus being
suitable for representing an xDPT.

3.2. Enacting and Refining an xDPT

The representation of the system behavior using the BPMN standard enables a direct
system execution based on the modeled process. Indeed, BPMN models can be enacted
to drive the system’s execution, thus easing the development of IoT and robotic systems.
Specifically, the model enactment can be achieved by exploiting a model-to-code approach
or a direct model execution.

In the model-to-code approaches, such as the ones proposed in [34,35], the BPMN model
is translated into code that can be injected into the devices. Therefore, the developer can
specify the behavior of the devices via BPMN and automatically translate it into executable
code. Differently, the approaches that exploit a direct model execution [13,36,37], use a
BPMNengine capable of receiving the model, interpreting its elements, and, consequently,
driving the behavior of the devices. Notably, the model-to-code and the direct model
execution approaches can be complementary, based on the computational capabilities of
the devices or on the requirements of the whole system.

Moreover, the concept of DT states that any changes to the DT must be reflected in
the actual behavior [38]. This requirement can be achieved by exploiting a direct model
refinement and enactment. Indeed, a developer can dynamically change the behavior of the
system by refining the existing process model and deploying the updated version into the
BPMN-driven system. This approach allows for enhancing the devices’ behavior, according
to the evolution of the system.
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3.3. Monitoring an xDPT

The monitoring feature of an xDPT is in charge of showing at runtime the current
status of the system. Based on the BPMN model used to represent and drive the system
execution, it is possible to highlight in the process the activities that devices are performing.
Indeed, concerning the execution semantics, BPMN relies on the notion of token
(Section 7.1.1 [12]). A token traverses, from a start event, the sequence edges of the process
and passes through its elements, enabling their execution, and an end event consumes it
when it terminates. The distribution of tokens in the process elements refers to an execution
state; therefore, the process execution is defined in terms of state evolution, as described
in [32]. The concept of tokens flowing through a process model is very useful for checking
if the modeler’s intentions are reflected in how the process is actually performed [39].
Several tools [40–43] implement token simulators to show the evolution of the system
and effectively track the interplay between control flow, data handling, and exchange of
messages, specifically in complex scenarios [32]. The main goal is to detect undesired
executions, where, e.g., a control flow is blocked, and deduce the cause beyond them by
possibly checking the values of the involved data [41]. Therefore, the integration of a token
simulator enables debugging facilities on the top of a BPMN diagram to help the developer
easily understand and debug the underlying system.

Moreover, since we aim to apply the concept of xDPT to systems capable of moving
and interacting with the environment, the xDPT should also integrate realistic monitoring
of the system. Indeed, to provide a comprehensive visualization of the system (real or
simulated) executions, a 3D simulator can be used to visualize how the devices act in the
environment and interact with each other.

The main objective of 3D simulators is to provide a low-cost, yet effective test bed of the
targeted system [44]. Therefore, thanks to the capability of faithfully representing a complex
system, a simulator can enable research activities that would not happen without them,
due to limited resources or financial restrictions [45], but can also be exploited to study the
impact, in terms of wireless signal overload and security, before its real deployment [46].
In general, a simulator provides developers with a graphical user interface showing how
the system is performing in order to help them enhance its whole execution.

Finally, the advantage of combining this visualization with process monitoring is the
possibility of concurrently seeing the realistic execution of the system behavior and the
visualization of the corresponding states of the involved devices.

3.4. Analyzing an xDPT

The continuous flow of data from the physical system enables an xDPT to show the
real-time performance of its counterpart. Therefore, the xDPT can serve for performing
real-time analysis, as well as simulations and predictions of future process behavior under
changed conditions [17].

The analysis of real-time event logs produced during the execution of the system
allows for reducing the delay between the time when the event has happened in the real
world and when useful information is obtained [47]. IoT and robotic systems can benefit
from the analysis of a stream of data by exploiting streaming process mining techniques.
These can enrich the systems with adaptability features by capturing dynamic behaviors
and accommodating changes related to the environment [48].

Other approaches exploit event logs simulated or produced during system execution
to predict future evolutions of the system [29,49]. Specifically, the combination of event logs
produced both by the executed process and by the data perceived by the devices allows the
application of process mining techniques to continuously improve processes and respond
to changes [50]. Considering the security aspect, IoT and robotic systems have an impact
both on the surrounding environment and on other devices. Hence, a detailed analysis of
system security could fix a vulnerable device before it can infect others while supporting
the predictive detection of attacks and misbehavior [51].
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Summing up, Figure 2 shows the features of an xDPT for BPMN-driven IoT and
robotic systems. Specifically, the enacted BPMN process can be monitored by utilizing
tokens to mark the current status of the system and a 3D simulator to concurrently provide
a realistic visualization of the ongoing processes. Process mining techniques enable the
analysis of real-time event logs. Finally, the process can be refined to update and enhance
the system behavior.

Executable Digital Process Twin

Monitoring

BPMN-driven
System

Real-time Process Logs

Process Deployment

Refinement

ro
bo

t_
1

1

ro
bo

t_
2

1

Analysis
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t_
1

ro
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t_
2

Figure 2. Proposed features of an xDPT for IoT and robotic systems.

4. PROWIN: An xDPT for Robotic Systems

To effectively support a developer in the application of an xDPT to an IoT and robotic
system, we propose the PROWIN tool, a unique view of the system execution that imple-
ments the features of an xDPT. This section first describes the MRS scenario, and then the
implementation of the PROWIN tool is described to better explain how to combine different
technologies to develop an xDPT applied to the MRS scenario. Notably, the integration of
the analysis component in the xDPT is out of the scope of this work.

4.1. Robotic Scenario

The scenario used to demonstrate the capabilities of the PROWIN tool involves a
MRS operating in a warehouse setting. The MRS consists of two ground robots working
collaboratively to perform various tasks. One of the robots, referred to as the Inspector,
has the responsibility of inspecting the warehouse and providing detailed reports on
the goods and the overall status of the warehouse. While executing its tasks within the
warehouse, the Inspector may encounter obstacles that hinder its movement and disrupt
the inspection process.

To overcome the obstacles, the Inspector robot triggers the intervention of another
robot known as the Remover. The Remover robot is specifically designed and equipped to
reach the identified obstacle and effectively remove it from the Inspector’s path. Once the
Remover robot successfully eliminates the obstacle, it notifies the Inspector robot, allowing
it to resume the warehouse inspection. This coordinated effort between the Inspector and
Remover robots ensures the smooth progression of the inspection tasks, improving overall
efficiency and productivity in the warehouse environment.

4.2. Implementation

To represent the xDPT of the scenario, we followed the guidelines presented in [9].
This resulted in the BPMN collaboration diagram depicted in Figure 3, where each robot is
represented as a pool. The Inspector starts its mission with a call activity that corresponds
to the exploration of the place. During this mission, it can find an obstacle blocking its way.
This event is handled by an event sub-process in which the robot computes the obstacle
position, sends it as a signal event, and, finally, moves to an idle state waiting for a free path.
Once the exploration of the whole warehouse is finished, the robot performs the reporting
of the warehouse status, by means of a script task, and ends its execution. Meanwhile, the
Remover robot is triggered by a signal start event when the Inspector sends the position of
an obstacle. So, it first reaches the position, represented as a call activity, and then performs
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the script task corresponding to the obstacle removal. Its mission ends with the sending of
a signal stating a free path.

R
em

ov
er

GoTo
Remove
Obstacle

In
sp

ec
to

r
Explore

Report
Warehouse

Status

Compute
Obstacle
Position

free pathno available path obstacle found

obstacle position

obstacle found

obstacle position

free path

Figure 3. MRS mission in a warehouse scenario.

The enactment of the MRS collaboration is driven by the FAME framework [13].
It is a framework for specifying and enacting MRS missions driven by BPMN collaboration
diagrams. Specifically, each robot of the collaboration is built upon the ROS framework.
Indeed, ROS is one of the most famous and used open-source frameworks for programming
robots. It provides an abstraction layer on top of which developers can build robotics
applications. Exploiting the FAME framework, it is possible to embed in each robot a
BPMN engine capable of interpreting the model and drive the behavior of the robot.
This allows an MRS fully driven by the enactment of the BPMN collaboration.

Once the process model is sent to the ROS network, the BPMN collaboration is split
based on the robots in the system. Therefore, each robot receives the process model cor-
responding to the mission it should perform and exploits the built-in BPMN engine to
interpret the BPMN elements and consequently perform a mission. During the system
execution, the BPMN engines share with the PROWIN tool real-time event logs representing
the current element enacted by the engine. Notably, the connection between the ROS net-
work and PROWIN is enabled by the ros2 web bridge (https://github.com/RobotWebTools/
ros2-web-bridge, accessed on 3 February 2023), i.e., a package that exposes the messages
exchanged in the ROS network, so that it is possible to access robotic data from a web
interface.

To monitor the system execution, we make use of the bpmn-token-simulator (https://
github.com/bpmn-io/bpmn-js-token-simulation, accessed on 30 January 2023) to highlight
in the process model the activities performed by the devices. The usage of a token simulator
enables a graphical visualization of the system execution status on top of the BPMN process
model, giving a precise understanding of its behavior. Indeed, this tool shows the system
evolution in terms of token flow that states which activity is currently performed. Moreover,

https://github.com/RobotWebTools/ros2-web-bridge
https://github.com/RobotWebTools/ros2-web-bridge
https://github.com/bpmn-io/bpmn-js-token-simulation
https://github.com/bpmn-io/bpmn-js-token-simulation
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as presented in Section 3, this monitoring can be enriched with realistic visualization of the
physical system. Therefore, the visualization of the running MRS is implemented with the
Gazebo simulator (https://gazebosim.org, accessed on 16 December 2022). It is the reference
simulator for systems developed in ROS and is commonly used to visualize systems
showing how the devices act in the environment. Indeed, it permits testing applications
rapidly and in a safe, yet realistic, environment. Moreover, Gazebo is embedded in the
ROS architecture as a node; therefore, developers can use the same code for controlling the
robots in both real and simulated environments.

Finally, to effectively support the refinement of the xDPT, PROWIN provides an addi-
tional interface for updating the MRS behavior by exploiting a BPMN modeler capable of
directly communicating with the ROS network. Indeed, this component is composed of a
web-based BPMN modeler (https://bpmn.io, accessed on 10 February 2023) that allows
the manipulation of the current process model and is directly connected with the MRS
so that the developer can easily change the robotic mission by updating the model and
deploying it into the BPMN-driven MRS.

The proposed solution is depicted in Figure 4, showing that the PROWIN tool provides
both a unique interface that combines the monitoring of the system evolution in terms of
token flow, data values, and message interactions and the visualization of realistic robots
acting in the environment and interacting with each other, and a modeling interface for
applying changes to the process and thus to the MRS behavior.

Figure 4. The PROWIN architecture.

https://gazebosim.org
https://bpmn.io


Big Data Cogn. Comput. 2023, 7, 139 10 of 14

5. Related Works

In the literature, DPTs are just presented theoretically [11], whereas the implementation
of DTs for IoT and robotic systems is increasingly popular [7,15]. Among all the application
scenarios, in industrial contexts, effective collaboration between humans and autonomous
devices is crucial to enhance the productivity of the entire system. Specifically, DTs have
the potential to give real-time status on devices’ performances, as well as production
line feedback [7].

Most works exploit 3D environments to create a DT that faithfully shows the physics
of system devices and simulates possible execution outcomes. In particular, DTs can
be developed to effectively train machine learning algorithms before deploying them
into devices [52], thus integrating autonomous devices with efficient decision-making
and problem-solving skills [53,54]. The combination of a 3D environment and a robotic
application can additionally enable the analysis of system performance as well as the
graphical verification of the robot’s behavior [55]. Differently, a realistic reproduction of the
system exploiting augmented reality enables developers to interact with the system and
monitor the corresponding actions in real-time [56]. Moreover, the realistic reproduction of
an industrial production line allows the simulation of system behavior without the risk of
financial loss in the real production line [57].

Focusing on the monitoring of the system behavior, a DT should clearly and un-
ambiguously specify and represent current and expected device behavior. Therefore, the
monitoring of the system operation by constructing a DT from the data collected in real-time
gives reasons for the effects of interventions, including those that have not been observed
before [58]. More in detail, a DT representing the system behavior can be exploited to
detect and resolve anomalies [59] and enhance the operational efficiency while performing
a what-if analysis to simulate the hypothetical situation in preparation for the possible
change of the external factors [60], but can also be combined with model-driven solutions
to develop and maintain digital twin infrastructures to automatically link the physical
side with the digital one [61]. Moreover, if the physical system is driven by processes, it
is possible to exploit processes to easily create the behavioral DT and allow the runtime
synchronization between the digital and physical parts [25].

In summary, the existing literature proposes different approaches regarding the realis-
tic representation of the physical system and the monitoring of system behavior, but lacks a
unified solution that effectively integrates them. Our work improves the state-of-the-art
by proposing the novel concept of xDPT, which combines the monitoring, analysis, and
refinement of the physical system behavior and is supported by the PROWIN tool to show
how to apply it in a multi-robot case study.

6. Conclusions

Considering the spread of process-driven systems, this paper presents the novel con-
cept of executable digital process twins to effectively enable the monitoring, analysis, and
refinement of such systems. In this regard, we analyze the concept of both the digital twin
of an organization and of the executable digital twin to underline their advantages and
limitations, thus showing how process-driven systems can benefit from their combination.
Moreover, we illustrate how to implement an xDPT in a cooperative multi-robot scenario.
The implementation results in the PROWIN tool implementing the monitoring of the ex-
ecuted system from the process and the physical perspectives. The tool also allows the
deployment of a refined process model into the robots, thus enabling the synchronization
between the physical and the digital systems. Finally, we assess the tool in a BPMN-driven
MRS deployed in a warehouse.

6.1. Discussion

The definition and the implementation of an xDPT result from the need to integrate
DTs in process-driven systems. Specifically, when creating a DPT solely based on real-time
event logs, process mining techniques are applied to discover and analyze the system’s
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execution. However, existing techniques often lack adequate solutions for distributed
scenarios involving multiple entities, such as IoT devices and robots [26]. Consequently,
process models derived from current process discovery techniques may not faithfully
represent the dynamic nature of the running system, rendering them unsuitable for direct
system enhancement. On the other hand, when the system’s execution is driven by a
pre-defined process, the refinements made to the DPT can be readily utilized to enhance
the system. In such cases, where the process is known in advance, the modifications and
optimizations applied to the DPT can be employed to improve the system’s performance
and capabilities. This targeted approach allows for more effective integration of the DPT
with the underlying process-driven system, enabling valuable insights and enhancements
to be directly derived from the DPT.

Additionally, the case study we presented is from a warehouse management scenario.
Notably, the application of an xDPT can enhance different fields that already benefit from
the application of DTs, such as healthcare, smart cities, and agriculture [62]. For instance,
the integration of IoT devices and robots in healthcare has led to the development of
advanced solutions, such as wearable monitoring devices and surgical robots. Similarly,
their collaboration in smart cities can be exploited to optimize transportation and public
services. Finally, in agriculture, IoT devices and robots enhance crop productivity and
sustainability, reducing manual labor and increasing efficiency. Moreover, the increas-
ing utilization of BPMN-driven approaches in IoT and robot development makes these
systems well-suited for the application of xDPTs. This integration will further enhance
system efficiency, monitoring capabilities, and decision making, regardless of the specific
application scenario.

6.2. Future Work

In future research, we plan to integrate the PROWIN tool with process mining tech-
niques to enhance the analysis capabilities of the xDPT. Indeed, the integration of process
mining techniques will enable us to discover hidden patterns, bottlenecks, and inefficiencies
in the execution of processes within the xDPT. We will explore methods for automatically
extracting process models from event logs and aligning them with the represented process
models. This integration will provide a complete view of the system’s behavior, allowing
for more accurate simulations, predictions, and optimizations. Moreover, we plan to ex-
plore the integration of predictive analytics techniques. By leveraging historical event logs
and combining them with machine learning algorithms, we can develop predictive models
that anticipate future system behavior, enabling decision making and preventive actions.

Author Contributions: All authors of this manuscript have equal contributions in conceptualization.
Methodology, S.P. and L.R.; software, S.P. and L.R.; validation, S.P. and L.R.; investigation, S.P.;
resources, S.P.; writing—original draft preparation, S.P.; writing—review and editing, S.P., B.R., L.R.
and F.T.; supervision, B.R., L.R. and F.T.; project administration, F.C.; funding acquisition, F.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by PNRR MUR project ECS_00000041-VITALITY.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code is available from the authors. The corresponding author will
provide the code on request.

Conflicts of Interest: The authors declare no conflict of interest.



Big Data Cogn. Comput. 2023, 7, 139 12 of 14

Abbreviations
The following abbreviations are used in this manuscript:

MRS Multi-Robot System
BPMN Business Process Model and Notation
ROS Robot Operating System 2
DTO Digital Twin of an Organization
xDT Executable Digital Twin
DPT Digital Process Twin
xDPT Executable Digital Process Twin
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