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Abstract: Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-
CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological
evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more
than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances
in which vaccination is not accessible or in individuals with compromised immune systems, drugs
can provide additional protection. Targeting host signaling pathways is recommended due to their
genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop
compounds that are effective against different viral variants as well as against newly emerging virus
strains. In recent years, the globe has experienced climate change, which may contribute to the
emergence and spread of infectious diseases through a variety of factors. Warmer temperatures
and changing precipitation patterns can increase the geographic range of disease-carrying vectors,
increasing the risk of diseases spreading to new areas. Climate change may also affect vector
behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate
change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic
diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived
products, which have been used in traditional medicine for treating pathological conditions, offer
structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-
derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-
effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than
50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse
structures and bioactive molecules that are candidates for new drug development. Combining these
therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the
genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic
gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit
cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational
efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication.
Moreover, viruses manipulate host cells’ epigenetic machinery to ensure productive viral infections.
Environmental factors, such as natural products, may influence epigenetic modifications. In this
review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-
spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and
RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
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1. Introduction
1.1. The Viral Life Cycle

Viruses represent a special category of organisms as they are unable to carry out
essential life processes such as metabolism and reproduction, making them completely
dependent on host cells for replication and rendering them obligate intracellular para-
sites [1]. The basic architecture of a virus includes a genome enclosed in a protective protein
envelope called a capsid [2]. The viral genome can consist of either DNA or RNA oligonu-
cleotides, which can be either single-stranded or double-stranded. The type of genetic
material a virus carries has significant implications for its replication strategy and overall
life cycle. For example, DNA viruses (e.g., herpes simplex virus (HSV)) generally replicate
in the nucleus of the host cell using the host’s DNA and RNA synthesis machinery. In
contrast, RNA viruses (such as influenza A virus (IAV)) usually replicate in the cytoplasm
and therefore must encode or carry their own RNA polymerase to replicate their genome.
In addition, some RNA viruses, called retroviruses (such as human immunodeficiency
virus (HIV)), can reverse-transcribe their RNA genome into DNA, which is then integrated
into the host genome—a unique feature of this category of viruses [3].

The viral genome encodes structural and nonstructural proteins. Structural proteins
are self-assembled after their synthesis to form a highly structured, typically geometrically
symmetric capsid [4]. Capsid proteins can assemble into a variety of different structures
depending on the virus, but most capsids fall into one of two categories: icosahedral or
helical [5,6]. Additional complex layers are added in certain viruses that have an additional
lipid bilayer, called the envelope, which is extracted from the host cell membrane during
viral assembly and release [7]. Viral nonstructural proteins (NSPs) encoded by the viral
genome are not part of the viral particle or virion but play a key role in the viral life
cycle. These proteins contribute to a variety of functions, including viral replication and
assembly [8,9], the modulation of host immune responses [10], and the manipulation of the
cellular environment to favor viral reproduction [11,12].

Viruses can cause a wide range of diseases, from trivial to life-threatening. They are the
causative agents of common illnesses such as the common cold (rhinoviruses) and IVA, but
they can also cause serious diseases such as HIV/acquired immunodeficiency syndrome
(AIDS), Ebola hemorrhagic fever, and COVID-19 disease caused by SARS-CoV-2 [13,14].
The manifestation of these diseases depends largely on the host’s immune response to viral
infection and the extent of tissue damage caused by viral replication and cell death.

Some viruses are exclusively adapted to humans, whereas others, known as zoonotic
viruses, can also infect animal hosts [15]. Viruses such as IVA, measles, and SARS-CoV-2
are transmitted through the respiratory tract by droplets that are emitted when an infected
person coughs, sneezes, or talks and can then be inhaled by a susceptible person, resulting
in infection [16,17]. Other viruses, such as norovirus and rotavirus, are transmitted orally by
the ingestion of contaminated food or water or by direct contact with the feces of an infected
person [18]. Direct contact can result in viral transmission, either between people, as with
HIV and hepatitis B (HBV) and C (HCV), which are transmitted through sexual contact,
needle sharing, or at birth [19,20], or from animals to people, as exemplified by rabies virus,
which is transmitted through the bite of an infected animal [21]. In addition, some viruses
are transmitted by vectors, usually blood-sucking insects. For example, DENV Zika (ZIKV)
and yellow fever viruses are transmitted to humans through mosquito bites [22–24].

After invading the host, viruses navigate to their target tissues and begin invading
cells through various mechanisms. A virus’ preference for specific tissues is determined by
a combination of factors, including the interaction between the virus’ surface proteins and
certain receptors on the host cell. For example, the SARS-CoV-2 virus interacts with the
angiotensin converting enzyme 2 (ACE2) receptor through its spike protein [25], and IVA
hemagglutinin binds to α-2,6-linked sialic acids on host cells [26,27]. Microenvironmental
conditions, such as the pH level, can also influence this process. For example, pH-induced
conformational changes in IVA hemagglutinin are critical for the ability of viruses to enter
cells [28]. In addition, the activation of inactive viral protein binding after cleavage by tissue-
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specific secreted proteases may also play an important role in facilitating viral invasion [29].
After attachment, some viruses, such as polio, IVA, and SARS-CoV-2, undergo endocytosis,
activating various mechanisms that allow for the release of the viral genome into the
cytoplasm of the cell [25,30,31]. Conversely, some enveloped viruses, such as HIV, can fuse
their envelope to the host cell membrane and release their genome into the cytoplasm [3].
Within the cell, the viral genome manipulates the host machinery to replicate and generate
new viral particles that are released by budding or after host cell lysis, allowing for the
infection of new host cells and transmission to new hosts.

1.2. Host Signaling and Virus Life Cycles

A virus’ life cycle involves multiple series of events in which it relies on its host’s
activities to effectively infect the host cell. During viral infection, a multitude of host
components assume pivotal roles in either aiding or impeding the virus’s capacity to
successfully carry out its life cycle. Host factors as chemicals, proteins, or cellular machinery
that are intrinsic to the host organism have the ability to interact with viral components,
thereby influencing the process and outcomes of infection. These factors have the potential
to either facilitate viral infection and dissemination or initiate a defensive response to
restrict viral infection.

Within the different host factors, signaling molecules draw a lot of attention due to
their role in regulating viral life cycles. Host signaling pathways have been acknowledged
as therapeutic targets in cancer and viral infections, with tyrosine kinases (TKs) being
profoundly explored, and many TK inhibitors (TKIs) have been approved by the FDA for
cancer treatment [32–34].

To combat viral infections, an integrated strategy that combines immunizations and
antiviral drugs is needed. Targeting host enzymes rather than viral targets is appealing
due to their genetic stability [35]. As observed with cancer [36], the simultaneous inhibition
of several host enzymes or pathways might improve viral resistance. Such a strategy may
prompt the development of new technologies to combat current and future viral pandemics.
For example, while DENV is resistant to viral protein-targeting drugs, it is susceptible to
kinase inhibitors, such as sunitinib and erlotinib [37].

Usually, virus variants are developed due to a lack of proofreading during gene
replication or through the recombination of gene segments between co-infecting strains.
Although coronavirus possesses some proofreading activity, which may reduce variant
occurrence, a number of variants with greater infectivity and immune evading abilities
have evolved within months from the primal emergence [38].

Protein kinases play a crucial role in viral infections. Protein phosphorylation is also
important in the life cycle of different viruses [39]. Numerous viruses induce or inhibit
protein phosphorylation at many different stages of signal transduction pathways from the
plasma membrane to the nucleus [40,41]. Phosphorylation might affect protein’s stability,
activity, and crucial interactions with other cellular and viral proteins, which play a part
in regulating virus infectivity. Viruses such as Epstein-Barr virus (EBV) [42], HCV [42],
and SARS-CoV-2 [42] promote mitogen-activated protein kinase (MAPK) phosphorylation.
Protein phosphorylation changes have been observed during viral propagation for viral
replication. MAPK and ERK-2, for example, phosphorylate the HIV protein p6 at a specific
site (Thr 23). Additional viruses seem to activate the MAPK pathway, including DENV [43],
coronavirus [44], Venezuelan equine encephalitis virus (VEEV) [45], and enterovirus 71
(EV71) [46], which rely on activated p38 for their replication. Activated p38α interacts with
the N-terminal region of HCV’s core protein and subsequently phosphorylates it, promoting
HCV core protein oligomerization, which is an essential step for viral assembly [47].

Viral infection is associated with an increased production of cytokines, called a cy-
tokine storm. During a cytokine storm, various inflammatory cytokines are produced
at much higher levels than normal. This overproduction of cytokines leads to a positive
feedback loop on other immune cells, allowing more immune cells to reach the site of injury,
which can lead to organ damage. Among the most notable clinical conditions associated
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with cytokine storms is acute respiratory distress syndrome (ARDS), which is responsible
for a significant number of deaths from SARS-CoV-2. Intracellular cell signaling pathways
like MAPK p38 mediate the cytokine storm that the virus triggers, which eventually results
in immunopathology [48].

MAPK p38 inhibitors exhibited a broad-spectrum antiviral effect against a variety
of viruses [47]. In HCV, p38 inhibitors disrupted the MAPK p38α-HCV core protein
interaction, efficiently impaired HCV assembly, and prevented normal HCV replication.
Similarly, severe fever with the thrombocytopenia syndrome virus (SFTSV), HSV-1, or
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also activate p38 MAPK,
and p38 inhibitors effectively inhibit their replication [47]. Furthermore, many viruses
utilize protein phosphorylation to regulate signaling in order to prevent apoptosis and
enhance cellular survival and proliferation [49]. c-Jun N-terminal kinase (JNK) signaling
influences the replication of some viruses. JNK inhibition, for example, suppresses HSV,
HIV, and rotavirus replication [50].

Host receptor tyrosine kinases can serve as entry receptors for some viruses. For
example, the tyrosine kinase AXL facilitates the entrance of filoviruses such as EBOV [51].
The epidermal growth factor receptor (EGFR) is a host factor that is frequently required
by viruses [52]. Human cytomegalovirus (HCMV) and adeno-associated virus serotype 6
(AAV6) use EGFR as a co-receptor for entry [53,54].

Other receptor tyrosine kinases were implicated in regulating virus replications. The
IAV lifecycle is regulated by nerve growth factor receptors (TrkA), human epidermal
growth factor receptor 2 (HER2), and platelet-derived growth factor receptor (PDGFR).
Tyrphostin AG879, which inhibits TrkA/HER2 signaling, and A9, which targets the PDGFR
pathway, were efficient in inhibiting IAV [55]. AP2-associated protein kinase I (AAK1), a
member of the numb-associated kinase (NAK) family, and a clathrin-mediated endocytosis
regulator are among the other host kinases implicated in the SARS-CoV-2 lifecycle [56].
HCV, DENV, and EBOV infections require the kinases AAK1 and cyclin G-associated
kinase (GAK) [57]. Two FDA-approved drugs, sunitinib, and erlotinib, inhibit AAK1 and
GAK activity in cultured cells, blocking HCV intracellular trafficking. The combination of
sunitinib and erlotinib decreases mortality and morbidity in mice models of DENV and
EBOV infection [37]. These findings illustrate the potential of a repurposed, host-targeted
approach to combating emerging viruses. Interestingly, the kinase inhibitor baricitinib,
which is used to treat rheumatoid arthritis (RA) [58] and inhibits the Janus kinase/signal
transducers and activators of transcription (JAK/STAT), additionally blocks NAK and
AAK1 kinases [59] and exhibited anti-viral activity in COVID-19 patients [60]. Taken
together, multiple host kinases regulate viral life cycles; therefore, inhibitors of key kinases
might have antiviral properties.

This review focuses on epigenetic modifications of host proteins caused by viral infec-
tion. Moreover, we examined the ability of plant-derived substances to exhibit epigenetic
modification activity and consequently their ability to block virus propagation. Plants are
a rich source of pharmaceuticals that may be exploited to treat a wide range of human
and animal illnesses. Newman et al. (2020) analyze all approved therapeutic drugs for
all conditions from 1981 to 2019 and anti-tumor activity from 1946 to 2019. The authors
emphasize in their review that a large number of developed drugs, including anti-infective
agents, are derived from natural products [61].

As a result, in this review, we investigate the use of plant-derived bioactive compounds
that influence epigenetic processes as potential broad-spectrum anti-viral agents.

1.3. Epigenetic Modifications

Epigenetics has a key role in cell differentiation, genomic imprinting, and X-chromosome
inactivation. In healthy subjects, the epigenetic memory which dictates cell differentiation
is acquired in one’s early life and maintained across one’s life; to this aim, a multitude of
enzymes, which are regulated by several environmental stimuli (i.e., food intake, chemicals,
stress, activators of the immune system, viruses, etc.), are employed. The loss of one’s
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epigenetic memory can occur during life as it is associated with aging and may lead to
susceptibility to diseases [62].

Epigenetics can be both inherited and reversible; it modulates gene expression without
any changes in DNA sequences. These modifications can be influenced by environmental
factors, such as diet, stress, and exposure to toxins, as well as by changes in gene expression
during development. Epigenetic modifications include DNA methylation, histone remod-
eling, the utilization of alternative histone variants, modifications of histone tails, and
the expression of noncoding RNAs, including miRNAs [63]. These activities are together
known as epigenetic regulations [64].

1.3.1. DNA Methylation

The most studied epigenetic mechanism is DNA methylation at cytosine residues
(5mC); it consists of the addition of a methyl group to the carbon-5 of cytosine in the CpG
dinucleotide, catalyzed by DNA methyltransferase enzymes (DNMTs) [65].

DNA methylation is carried out by the 5-cytosine DNMT enzyme using S-adenosylmet
hionine (SAM) as a methyl donor. In mammals, DNA methylation may occur at cytosines
all over the genome [65]. However, in somatic cells, more than 98% of DNA methylation
occurs in the vicinity of CpG dinucleotides.

DNA methylation has various impacts on gene expression. Generally, when the
promoter is non-methylated, the gene expression is switched on (Figure 1A), while if
methylation occurs at the promoter level, transcription factors cannot interact at the pro-
moter region and the gene is silenced (Figure 1B). Outside of the promoter sequence, DNA
methylation can have different effects on gene expression according to the location of
methylated CpGs (Figure 1B). Typically, DNA methylation is removed during the zygote
formation and subsequently restored in the embryo at the time of implantation [66]. DNA
methylation is essential for proper development and cell differentiation [67,68].
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Figure 1. DNA methylation and its modulation of gene expression. Transcription factors recognize
gene promoter and bring RNA polymerase to transcript the gene (A); DNA methylation at CpG
island switch on/off gene according to the locus where methylation occurs (B).

DNA methylation is maintained during replication by DNMT1, while DNMT3a,
DNMT3b, and DNMT3c are responsible for de novo methylation and respond to environ-
mental factors. Stress, viruses, bioactive compounds, chemicals, etc., can modulate the
activity of DNMTs, leading to a change in the methylome across life. On the other hand,
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ten-to-eleven translocation (TET) proteins demethylate 5mC to 5-hydroxymethylcytosine
(5hmC), leading to physiological and pathological events [69]. These changes in DNA
methylation can affect gene expression, thus contributing to the development and pro-
gression of diseases and aging. These changes in DNA methylation at specific genes can
be used to quantify the biological age of individuals; subjects can exhibit negative age
acceleration, leading to a young and healthy biological age or positive age acceleration,
which is associated with various diseases [70]. Moreover, defects in DNA methylation are
closely associated with cancer. To date, all examined tumor samples studied show a global
reduction in DNA methylation [71].

1.3.2. Histone Modifications

Histone modifications are post-translational modifications (PTMs) to histone proteins
that include methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation.
PTMs on histones result in an altered chromatin structure. The chromatin structure af-
fects the accessibility of the DNA to transcription and replication machineries; histone
dynamicity depends on a complex family of enzymes which add functional groups (i.e.,
acetyl, methyl, phosphate, etc.) to histone tails opening and closing chromatin as well as
regulating gene expression. PTMs, such as the addition of acetyl groups to the positive
charge of amino acids at the histone tails, mask the electrostatic interaction between DNA
and amino acids and relax wrapped DNA to guarantee the accessibility of the complex
protein machinery required for gene transcription. Generally, the impact of the other
functional groups (i.e., methyl, phosphate, etc.) on the chromatin structure depends on the
position and the number of groups (i.e., methyl) bound to amino acid residues at histone
tails (Figure 2).
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histones (left); acetylation of histone N-terminal tails facilitates the transcription initiation (right).

The enzymes involved in histone modifications are histone acetyltransferases (HATs),
which relax the chromatin structure, while histone deacetylases (HDACs) remove acetyl
groups, leading to chromatin condensation and transcriptional repression. There are five
groups of HATs, which have been named after their functions: Guanine nucleotide-binding
protein G(t) subunit alpha-1 (GNAT1), MYST, transcription initiation factor TFIID 250 kDa
subunit (TAFII250), transcription coactivators CREB binding protein (P300/CBP), and
nuclear receptor coactivators like ACTR [72].
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An imbalance in histone acetylation is associated with carcinogenesis and the devel-
opment of other diseases. HDACs, like HATs, play important roles in a variety of cellular
processes involving histone H3 and H4. To date, at least four classes of HDACs have been
discovered. Class I HDACs include 1, 2, 3, and 8, and class II HDACs include 4, 5, 6, 7,
9, and 10. Sirtuins (SIRTs) are class III enzymes that require NAD+ cofactors and include
SIRTs 1–7. The class IV enzyme, which contains only HDAC11, has features of both class I
and class II. In cancer cells, the inhibition of HDAC has a significant effect on apoptosis,
cell cycle arrest, and differentiation. HDAC inhibitors are being investigated as anticancer
agents [73].

Histone methyltransferases (HMTs) can add more than one methyl group to each
residue, leading to transcriptional repression or activation; histone demethylases (HDMs)
remove methyl groups with a different impact on gene expression. Transcription silencing
is also under the control of polycomb group (PcG) proteins, which regulate the chromatin
structure; polycomb repressive complex 1 (PCR1) is a histone ubiquitin ligase that modifies
histone H2A, while polycomb repressive complex 2 (PCR2) is a histone methyltransferase
which transfers methyl groups to specific amino acid residues of histone H3 [74].

Histone tail acetylation at lysine residues has been implicated in increased gene
expression in general. However, histone tail methylation activates or represses gene
expression depending on which residue is methylated. Examples for such modifications
have been found on all four histones (H2A, H2B, H3, and H4). H3 and H4 acetylation are
linked to active chromatin, while methylations have numerous functions. For example,
histone methylation can affect gene expression.

Histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation
(H3K27me3) are involved in the repression of gene activity [75]. In contrast, histone 3 lysine
24 trimethylation (H3K4me3) actively marks actively transcribed chromatin [76].

1.3.3. RNA Modifications

RNA transcripts undergo various modifications at the single-nucleotide level, with
more than 100 such modifications having been found. These modifications are notably
prevalent in transfer RNAs (tRNAs) and other non-coding RNAs (ncRNAs). It has been
demonstrated that several of these modifications play a role in regulating the activity
of ncRNAs [77]. The range of epitranscriptomic modifications, with a primary focus
on methylations, observed on eukaryotic messenger RNAs (mRNAs) is comparatively
narrower than that observed on non-coding RNAs (ncRNAs).

1.3.4. miRNA

Non-coding microRNAs (miRNAs) are involved in the post-transcriptional control
of gene expression [78]. Several classes of miRNAs have been identified in all cells. MiR-
NAs, involved in regulating gene expression, are small single-stranded RNAs about
20 ribonucleotides long, possessing the reverse complement of another protein-coding
gene’s mRNA transcript. They are transcribed by RNA polymerase II, translocated to
the cytosol, then further processed by Dicer and incorporated in the RNA-induced si-
lencing complex (RISC). The miRNA–RISC complex binds the Argonaute protein family
and together they interact with 3′-UTR regions of mRNAs; this step leads to translational
repression by the degradation of the mRNA [79] (Figure 3). The miRNAs are involved in
the regulation of cellular homeostasis and play a role in several diseases due to their ability
to silence gene expression.
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miRNAs can act as epigenetic modulators by targeting the key enzymes responsible
for epigenetic machinery, such as DNMTs, HDACs, and HMTs [80–82]. Furthermore, epige-
netic machinery, such as DNA methylation, RNA modification, and histone modification,
regulate miRNA expression. The miRNA–epigenetic feedback loop is formed by a recip-
rocal relationship between miRNAs and epigenetic control. Some miRNAs were found
to regulate DNMT3a and DNMT3b, as well as methylation-related proteins involved in
de novo methylation [83]. For example, miR-148 targets DNMT3b [84]. Members of the
miR-29 family were also shown to target DNMT3a and DNMT3b [85].

1.4. Viral Infections and Epigenetic Modifications

Research on the human epigenome is becoming increasingly important in cancer,
immunology, and infectious diseases [86,87]. Viruses that infect animal cells were shown
to cause epigenetic changes, and epigenetic processes influence the majority of virus–cell
interactions [88].

After entering the nucleus, viral DNA starts the replication process in close proximity
to subnuclear structures known as pro-myelocytic leukemia nuclear bodies (PML-NBs).
The PML-NBs serve as aggregation sites for many proteins associated with heterochro-
matic repression. These proteins facilitate the deposition of repressive heterochromatin
on viral DNA, thereby repressing viral transcription. In absence of viral de-repression
functions, viral episomal DNA contains repressive chromatin marks and has no active
histone marks [89].

Certain DNA viruses, such as HSV and HBV, use viral proteins that disperse or
degrade components of PML-NBs to prevent viral gene silencing [90].
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When the HSV enters the nucleus, viral DNA exists in a “naked” state, lacking his-
tones. The viral DNA undergoes rapid epigenetic repression, primarily through the action
of Daxx-ATRX and HIRA-loaded H3.3 associated with repressive H3K9me3 marks. The
inhibition of HSV-1 is neutralized by a two-step process. First, the viral protein VP16
facilitates the recruitment of host proteins, resulting in the formation of a complex that
subsequently recruits HDMs, including lysine-specific demethylase 1 (LSD1) and members
of the Jumonji domain 2 (JMJD2) family. This recruitment process serves to remove repres-
sive H3K9 marks from viral early promoters. The VP16 complex additionally recruits the
methyltransferases Set1 and MLL1, facilitating the activation of H3K4me3 modifications
on histone H3 associated with viral DNA. This enables the manifestation of the early viral
protein ICP0, which coordinates the subsequent phase of de-repression. The ICP0 protein
facilitates the stepwise elimination of the repressive histone modifications H3K9me3 and
H3K27me3 throughout the viral DNA genome, enabling successful infection [90]. Recent
research therefore supports the notion that PML-NBs play a critical role in the epigenetic
suppression of viral DNA.

By inserting their DNA into euchromatic regions of the host cell genome, retroviruses
seem to evade epigenetic regulation. This is apparent from the fact that the epigenetic
suppression connected to unintegrated retroviral DNA is reminiscent of that found in
mutant DNA viruses devoid of necessary defensive mechanisms. Viruses can use epigenetic
suppression to enter a regulated, latent state when they infect host cells that are at least
momentarily nonpermissive. This can result in the formation of viral reservoirs, which
have so far been shown to be unbreakable. It has been suggested that host cells employ the
idea of epigenetic repression as an inherent immune response against DNA viruses [91].

In an alternative hypothetical situation, it is possible that viruses use epigenetic
repression as an approach to suppress their own gene expression. This could potentially
promote the development of latent infections and prevent the production of immunogenic
viral proteins [92].

On the other hand, it is well known that epitranscriptomic modifications tend to
enhance the functionality of viral messenger RNAs (mRNAs). Consequently, both DNA
and RNA viruses have evolved mechanisms to optimize the extent of these modifications on
their transcribed genetic material. There are reports of four epitranscriptomic modifications
that affect viral gene expression. These modifications include N6-methyladenosine (m6A),
5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and 2′O-methylation of the ribose moiety
of all four ribonucleosides (collectively referred to as Nm). Viral RNAs have significantly
increased amounts of m6A, m5C, and Nm residues compared with those of cellular mRNAs
expressed in infected cells [77,79]. The amount of m5C in viral RNAs was found to be
14–30 times higher compared with that in cellular poly(A)+ RNA. The high prevalence of
m6A, m5C, Nm, and possibly ac4C modifications on viral RNAs suggests that viral RNAs
have adapted to enhance the incorporation of these epitranscriptomic modifications into
their transcripts. This observation strongly implies that these modifications play a crucial
role in facilitating various stages of the viral replication cycle [93].

HDACs that remove acetyl groups from histone proteins and alter gene expression
result in interferences with viral replication. Thus, HDAC inhibitors have been shown to
be promising antiviral drugs. While there are several synthetic HDAC inhibitors on the
market, there are also natural bioactive compounds that have HDAC inhibitory action and,
consequently, anti-viral activity.

Of note, SARS-CoV-2 infection raised the levels of the methylated histones H3K9me3
and H3K27me3 in A549 cells [94]. ORF8 encodes the SARS-CoV-2 protein, which acts as
a histone mimic of the ARKS motifs in histone H3 to impair host cell epigenetic control.
ORF8, linked with chromatin, disturbs histone post-translational modification regulation
and increases chromatin compaction. Interestingly, SARS-CoV-2 without ORF8 is linked to
a lower severity of COVID-19 [94] (Figure 4).
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the expression and activity of DNMTs. In addition, viral infection affects global histone modifications
and modulates the expression and activity of HAT and HDAC. Viral infection also modulates the
expression of miRNA, which is required to evade immune response and to promote viral replication.

1.5. Virus Infection Promotes Epigenetic Modifications in the Immune System and Host Genes

To survive and replicate in their host, viruses must use mechanisms to bypass the
immune system. Some virus families engage the immune system through a variety of
epigenetic mechanisms. The H3N2 IAV, for example, demonstrated the ability to block
the host’s innate immune response by interfering with gene expression. Other cancer-
causing animal viruses frequently impair cellular epigenetic mechanisms by reducing
tumor suppressor genes and activating viral or host cell oncogenes.

Interferons (IFNs) serve as crucial anti-viral mediators as they stimulate interferon-
stimulated genes (ISGs) and consequently trigger pathogen-driven immune responses [95,96].
During infection, viruses develop antagonistic mechanisms that neutralize certain ISG
effectors [97]. IFN and innate immune responses are regulated by epigenetic modifications
and chromatin remodeling complexes. H3K27me3 levels increased in MERS-CoV-infected
cells while H3K4me levels decreased, indicating the antagonistic mechanisms targeting the
IFN innate immune response [98]. Differential histone mark occupancy at ISG promoters
indicated that promoter regions had additional H3K4me monomethylation than repressive
H3K27me3 marks, favoring accessible chromatin and promoting active transcription and
ISG expression [99]. As DNA methylation and histone modifications govern ACE2 expres-
sion, DNMT1, HAT1, HDAC2, and KDM5B are possible viral targets for modulating the
host immune response [100].

Virus-mediated epigenetic modifications have additionally been linked to cancer
induction. The HBV is linked with HCC together with abnormal DNA methylation
in the host genome. HBV-infected cells and tumors exhibit greater levels of DNMT1,
DNMT3a, and DNMT3b. HBV X antigen (HBXAg) has been reported to induce DNMT1
and DNMT3a expression. HBXAg has demonstrated effective transcription repression from
CpG-methylated E-cadherin and p16INK4A gene regulatory elements.

Human papillomavirus (HPV) strains HPV16 and 18 have been linked to the devel-
opment of cervical carcinoma. A keratinocyte cell line with HPV16 episomes has been
shown to have a lower level of E-cadherin [101]. This downregulation requires the on-
coprotein HPV-E7, which was reversible following treatment with the DNMT inhibitor
5-aza-deoxycytidine [101]. Furthermore, E7 has been demonstrated to alter DNMT1 lev-
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els [101], bind directly to DNMT1, and participate in DNA methyltransferase activity [102].
E7 also stimulates the expression of the H3K27 methyltransferase EZH2 [103]. Interestingly,
the gene p16INK4A, which is typically suppressed by EZH2 via H3K27me3 in cycling cells
and is commonly hyper-methylated in cancer, is frequently overexpressed in HPV-positive
carcinoma [104] (Figure 4).

Simian vacuolating virus 40 (SV40) is a polyomavirus that infects both monkeys and
humans. It is also suspected to induce epigenetic modifications in host cells. SV40, like HPV,
is linked to RASSF1 promoter DNA methylation, with the presence of SV40 large T-antigen
(Tag) sequences correlating with high levels of DNA methylation [105]. Furthermore, the
expression of large T antigens upregulates DNMT1, promoting DNA methyltransferase
activity and genomic methylation [106] (Figure 4).

Adenoviruses undergo a lytic rather than a dormant life cycle, and the viral oncopro-
tein small E1A was shown to reduce histone 3 lysine 18 acetylation (H3K18Ac) and block
the transcription of multiple genes [107].

Interestingly, the FDA authorized a variety of epigenetic modifiers as DNMT inhibitors
(azacytidine, decitabine) and HDAC inhibitors (vorinostat, romidepsin, belinostat, panobi-
nostat) [108]. Decitabine and 5-aza-2-deoxycytidine (5-azadC) are nucleoside-based DNMT
inhibitors widely used for reducing inflammation and IFN response in macrophages [109].
Notably, decitabine has recently been incorporated in a clinical study for the treatment of
COVID-19 pneumonia and ARDS (CTI: NCT04482621).

1.6. Viral Infection Affects Host miRNA Expression

In response to viral infection, the expression levels of host miRNAs vary. These
up/downregulated miRNAs directly or indirectly target the viral genome to regulate viral
replication and to modulate the innate immune system during viral infection [110].

A recent discovery highlights the critical function of miRNAs in viral infection and dis-
ease progression. Consequently, numerous researchers have been engaged in investigating
the potential utilization of these microRNAs (miRNAs) as diagnostic or therapeutic instru-
ments. Modulating the expression of microRNAs (miRNAs) in the context of anti-viral
therapy has proven to be a challenging endeavor due to the inherent variability exhib-
ited by these molecules under diverse circumstances. A recent study presented evidence
supporting the possibility of using eight distinct miRNAs (miR-122, miR-155, miR-223,
miR-150, miR-199, miR-149, miR-29, and miR-let7) to serve as biomarkers for HIV, HCV, or
HIV/HCV co-infection [111]. Some of above-mentioned miRNAs, such as members of the
miR-29 family, are targeting DNMT3a and DNMT3b [85] (Figure 4).

The most prevalent miRNA in the liver is miR-122 [112], which accounts for 60–70% of
the total miRNA in hepatocytes. Numerous studies have revealed that miR-122 is needed
for HCV and HIV replication in infected cells [113–115].

The MiR-223 expression is downregulated during IAV and HBV infection, as well as in
inflammatory bowel disease, type 2 diabetes, leukemia, and lymphoma [116]. A growing
body of data shows that miR-223 has a role in controlling inflammation and preventing
collateral damage during infection. Granzyme B, IKK, and STAT3 [116] are all validated
targets for miR-223 that have impacts on inflammation and infection. miRNA-223 can also
target viruses directly, such as HIV [115]. Recently, miR-223 was shown to be increased in
HIV/HCV co-infection, although its significance in co-infection remains unknown [115].
Furthermore, during SARS-CoV infection, miRNA-223-3p was identified as a host miRNA
involved in the control of the lung inflammatory response mediated by the envelope (E)
protein [117]. Inhibiting miRNA-223 in infected animals using antisense RNAs resulted in
alterations in the expression of host components implicated in inflammation (cytokines,
chemokines, the nucleotide-binding domain, leucine-rich-containing family, and pyrin do-
main containing 3 (NLRP3) inflammasome) as well as the resolution of pulmonary edema
ion transporter cystic fibrosis transmembrane conductance regulator (CFTR). These find-
ings demonstrate the role of miRNA-223 in the control of SARS-CoV-induced pathogenic
processes and support the therapeutic potential of miRNA inhibition [117]. Interestingly,
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most viruses produce their own ncRNAs, which bind with proteins essential for their activ-
ity and stability. These ncRNAs control viral replication, persistence, host immune evasion,
and cellular transformation [118]. Herpesvirus saimiri encodes HSUR 1, an uracil-rich
ncRNA with a sequence complementarity to miR-27. Binding to HSUR 1 triggers miR-27
cleavage, activating T cells during HSV infection [119–121].

2. Plant-Derived Anti-Viral Activity

Although vaccines are used to combat certain viruses, antiviral therapy is still a
common approach [122]. Interest in herbal products with antiviral activity has increased
significantly, and in recent years, more than 50% of approved antiviral drugs have been
produced from herbal sources [123,124]. Indeed, they are particularly rich in compounds
with a great structural diversity.

Plant-derived compounds offer a wide range of chemical structures and bioactive
molecules, increasing the likelihood of discovering novel antiviral compounds. This ap-
proach is consistent with the increasing importance of sustainable and environmentally
friendly drug discovery and development. Plant-derived compounds can exhibit a broad
spectrum of activity, reduce drug resistance, and provide a multi-target approach that
increases the efficacy of antiviral therapies. Combining these therapies with conventional
antiviral drugs could lead to synergistic effects and improved treatment outcomes. How-
ever, extensive preclinical and clinical studies are still needed to determine the safety and
efficacy of plant-based epigenetic modulators as antiviral therapies. Plant-derived products
are mainly essential oils (EOs), extracts, and isolated compounds that have been extensively
studied for their antiviral properties against different viral strains [125,126].

EOs and extracts from different plant families such as Lamiaceae, Myrtaceae, Aster-
aceae, Brassicaceae, Rutaceae, Apiaceae, and Geraniaceae were found to be highly effective
(Table 1). Among them, the essential oils of Illicium verum Hooker f. and Rosmarinus
officinalis L. were extremely effective against HSV-1 with IC50 values of 1 and 0.18 µg/mL,
respectively [127,128]. In addition, Cymbopogon citratus (DC.) Stapf, Cananga odorata (Lam.)
Hook.f. & Thomson, and C. nardus (L.) Rendle showed great efficacy against HIV with
IC50 values of 0.61, 0.60, and 1.2 µg/mL, respectively [129,130]. Finally, Eucalyptus globulus
Labill. proved to be highly effective against Coxsackie virus B3 with an IC50 of 0.7 µg/mL.

As for the plant extracts listed in Table 2, most of them showed strong antiviral activity.
For example, extracts of Schinus terebinthifolia Raddi and Quercus persica Jaub. & Spach
inhibited HSV-1 with an IC50 of 0.21 and 0.26 µg/mL, respectively [129].

Comparing the data reported in Tables 1 and 2, herbal EOs and extracts are more
effective than pure isolated compounds in some cases. EOs are usually complex mixtures
of volatile secondary metabolites such as terpenes, alcohols, ethers, aldehydes, ketones, or
esters. The extracts are also complex mixtures of organic compounds that are extracted
depending on the polarity and solvent used. Consequently, the activity of EOs and extracts
is not due to a single component but may be associated with the synergistic action of two
or more components with antiviral activity.

Herbal products exert their antiviral activity with different modes of action. They
may inhibit virus attachment, penetration, and entry into the host cell or inhibit other
intercellular cell signaling pathways [131]. Other modes of action include the disruption of
the viral life cycle or inhibition of other essential enzymes for viral reproduction [132].

A wide range of compounds are found in plants and their extracts, some of which
have been isolated and tested to identify the main contributors to antiviral activity. Most
of them belong to the classes of polyphenols, terpenes, or alkaloids. In some cases, the
compounds have shown strong potential against several viruses.

Among the terpenes, raoulic acid purified from Raoulia australis Hook. F. purified
extract showed antiviral activity against five virus strains, i.e., HRV2, HRV3, CB3, CB4,
and EV71 (IC50 values of <0.1, 0.19, 0.33, 0.40, and <0.1 µg/mL, respectively) [133]. In
addition, farnesol, β-eudesmol, and carvacrol showed great potency against HSV-1 with
IC50 values of 0.25, 3.5, and 6 µg/mL, respectively [127]. The classes of polyphenols and
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flavonoids contain the most compounds with antiviral activity. For example, chebulagic
acid, a tannin derived from Terminalia chebula Retz, was effective against viruses that use
glycosaminoglycans for entry such as HCMV, HCV, DENV-2, and RSV, showing IC50 values
of 25.50, 12.16, 13.11, and 0.38 µM, respectively [134]. Baicalein, belonging to the flavonoid
class, potently suppressed HCMV and HSV1, and the IC50 were determined to be 2.2 and
5 µM, respectively [135,136].

Finally, alkaloids, which are small nitrogen-containing molecules, have a molecu-
lar basis of specificity and the ability to act on multiple viruses with different mecha-
nisms of action [123]. Among them, tetrandrine and cepharanthine showed strong po-
tential against HcOV (IC50 values of 0.33 µM and 0.83 µM, respectively), while berberine
was effective against HCMV, HSV1, and HSV2 (IC50 values of 2.65, 6.77, and 5.04 µM,
respectively) [137–139].

Table 1. Plant-derived essential oils (EOs) with antiviral activity.

Plant Plant Part Main Bioactive
Constituents Virus IC50

a SI b Mode of Action References

Aloysia citriodora Palau
(Verbenaceae) nr

geranial (18.9%), neral
(15.6%), limonene (10.7%),

1,8-cineole (5.0%),
spathulenol (4.7%),

geraniol (2.7%)

Yellow fever
virus 19.4 µg/mL 2.6 nr c [140]

Artemisia kermanensis
Podlech (Compositae) aerial parts

α-thujone (13.8%),
camphore (10.2%),
β-thujone (6.2%),

p-Mentha-1,5-dien-8-ol
(4.4%)

HSV-1 0.004% 66.4 nr [128]

Ayapana triplinervis
(Vahl) R.M.King &

H.Rob. (Compositae)
aerial parts

thymohydroquinone
dimethyl ether (87.1%),
α-phellandrene (2.0%),

β-selinene (1.9%)

ZIKV 38 µg/mL 12.5
inhibitor of

internalization
process

[141]

Cananga odorata (Lam.)
Hook.f. & Thomson

(Annonaceae)
nr

benzyl salicylate (49.3%),
benzyl benzoate (18.7%),

linalool (16.6%),
α-gurjunene (7.1%)

HIV-1 0.60 µg/mL nr nr [129]

Cinnamomum
zeylanicum Blume

(Lauraceae)
leaves eugenol (nr) H1N1 <3.1 µL/mL >4 intercellular [142]

Citrus × bergamia
Risso & Poit.
(Rutaceae)

fruit peel

(–)-linalyl acetate (nr),
(–)-linalool (nr),

(+)-limonene (nr),
γ-terpinene (nr), β-pinene

(nr), α-pinene (nr),
α-terpinene (nr)

H1N1 <3.1 µL/mL >5 intercellular [142]

Cymbopogon citratus
(DC.) Stapf (Poaceae) nr

cis-citral (59.2%), β-pinene
(22.5%), cis-verbenol
(6.1%), nerol (5.0%)

HIV-1 0.61 µg/mL 1.1 nr [129]

Cymbopogon flexuosus
(Nees ex Steud.)

W.Watson (Poaceae)
grass geranial (nr), neral (nr) H1N1 <3.1 µL/mL >4 nr [142]

Cymbopogon nardus (L.)
Rendle (Poaceae) nr nr HIV-1 1.2 mg/mL nr nr [130]

Dysphania ambrosioides
(L.) Mosyakin &

Clemants
(Amaranthaceae)

aerial parts

cis-ascaridole (60.3%),
m-cymene (22.2%),
α-terpinene (1.8%),

thymol (1.1%)

Coxsackie virus
B4 21.7 µg/mL 74.3 nr [143]

Eucalyptus caesia
Benth. (Myrtaceae) aerial parts

1,8-cineole (40.2%),
p-cymene (14.1%),

γ-terpinene (12.4%),
α-pinene (7.7%),

terpinen-4-ol (5.6%)

HSV-1 0.007% 38.8 nr [128]
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Table 1. Cont.

Plant Plant Part Main Bioactive
Constituents Virus IC50

a SI b Mode of Action References

Eucalyptus globulus
Labill. (Myrtaceae) leaves

1,8-cineole (nr),
α-pinene (nr) H1N1 <50 µL/mL >0.5 intercellular [129]

1,8-cineole (68.0%),
globulol (5.4%),

trans-pinocarveol (4.6%),
α-pinene (3.7%)

Coxsackie virus
B3 0.7 mg/mL 22.8 intercellular [144]

Fortunella margarita
Lour. Swingle

(Rutaceae)
fruits

terpineol (55.5%),
τ-carveol (5.5%), limonene
(1.7%), muurolene (5.5%),

cadinene (2.0%)

H5N1 6.8 µg/mL nr nr [145]

Illicium verum Hooker
f. (Schisandraceae) fruits (E)-anethole (80.0%) HSV-1 1 µg/mL 160 intercellular [127]

Lallemantia royleana
(Benth.) Benth.

(Lamiaceae)
aerial parts

(E)-pinocarvyl acetate
(26.0%), pinocarvone

(20.0%), verbenone (7.1%),
(E)-β-ocimene (4.1%),

(E)-carveol (5.3%),
3-thujen-2-one (5.1%),

pulegone (4.4%),
(Z)-carveol (3.5%),

linalool (3.4%)

HSV-1 0.011% 6.4 intercellular [146]

Lavandula officinalis
Chaix (Lamiaceae) flowers linalyl acetate (nr),

linalool (nr) H1N1 <3.1 µL/mL >8 intercellular [129]

Lippia alba (Mill.)
N.E.Br. ex Britton &

P.Wilson
(Verbenaceae)

nr

carvone (39.7%),
limonene (30.6%),

bicyclosesquiphellandrene
(8.9%), piperitenone

(4.5%), piperitone (2.8%),
β-bourbonene (1.7%)

Yellow fever
virus 4.3 µg/mL 30.6

intercellular
and

intracellular
[140]

Lippia graveolens
Kunth (Verbenaceae) nr

carvacrol (56.8%),
o-cymene (32.2%),
γ-terpinene (3.7%)

HSV-1 99.6 µg/mL 7.4 intercellular

[147]

ACVR-HHV-1 55.9 µg/mL 13.1 intercellular

Bovine viral
diarrhoea virus 78 µg/mL 7.2 intracellular

Respiratory
syncytial virus 68 µg/mL 10.8 intercellular

Bovine herpes
virus 2 58.4 µg/mL 9.7

intercellular
and

intracellular

Melaleuca alternifolia
(Maiden & Betche)
Cheel (Myrtaceae)

leaves nr HSV-1 13.2 µg/mL 43 intracellular [148]

Mentha suaveolens
Ehrh. (Lamiaceae) leaves

piperitenone oxide (86.8%),
α-cubebene (2.1%),

pulegone (1.4%), limonene
(1.4%),

caryophyllene (1.3%)

HSV-1 5.1 µg/mL 67 intracellular [149]

Osmunda regalis L.
(Osmundaceae) aerial parts

hexahydrofarnesyl acetone
(11.8%),

2,4-di-t-butylphenol
(6.8%), phytol (6.5%),
neophytadiene (4.6%),
1-octadecene (4.4%),

1-eicosene (4.4%),
1-hexadecene (4.1%)

Coxsackie virus
B4 2.2 µg/mL 789.8 nr [150]

Pelargonium graveolens
L’Hér. (Geraniaceae)

flowering
aerial parts

citronellol (nr),
geraniol (nr) H1N1 <3.1 µL/mL >21 intercellular [129]

Pulicaria vulgaris
Gaertn. (Compositae) aerial parts

thymol (50.2%),
p-menth-6-en-2-one

(carvotanacetone, 20.2%),
thymol isobutyrate

(16.9%), menthan-2-one
(4.3%)

HSV-1 0.001% 1 intercellular [146]

Rosmarinus officinalis L.
(Lamiaceae) aerial parts

α-pinene (23.9%),
verbenon (15.4%),
camphor (11.0%),
p-cymene (7.5%),
3-octanone (5.6%)

HSV-1 0.006% 46.1 nr [128]
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Table 1. Cont.

Plant Plant Part Main Bioactive
Constituents Virus IC50

a SI b Mode of Action References

eucaliptol (50.6%),
camphor (13.3%),
α-pinene (10.1%),
β-pinene (7.7%),
camphene (4.6%)

HIV-1 0.18 µg/mL 3.6 nr [129]

Salvia desoleana Atzei
& V.Picci (Lamiaceae) aerial parts

linalyl acetate (30.2%),
germacrene D (18.7%),

α-terpinyl acetate (16.8%),
1,8-cineole (10.2%), linalool

(5.1%)

Acyclovir-
resistant
HSV-2

28.6 µg/mL 55.2
intercellular

and
intracellular

[151]

Satureja hortensis L.
(Lamiaceae) aerial parts

carvacrol (32.4%),
γ-terpinene (32.0%),

thymol (10.0%), p-cymene
(6.6%), α-pinene (4.3%)

HSV-1 0.008% 32.2 nr [128]

Sinapis arvensis L.
(Brassicaceae) flowers

cubenol (14.3%), 2-phyenyl
isothiocyanate (7.5),

dimethyl trisulfide (5.2%),
thymol (4.6%),

δ-cadinene (3.4%)

HSV-1 0.035% 1.5 intercellular [146]

Thymbra capitata (L.)
Cav. (Lamiaceae) aerial parts

cinnamaldehyde (nr),
carvacrol (nr)

HSV-1 17.6 µg/mL 6.0 intercellular
[152]

HSV-2 18.6 µg/mL 6.9 intercellular

Thymus vulgaris L.
(Lamiaceae)

aerial parts

1,8-cineole (nr), terpenyl
acetate (nr), borneol (nr) H1N1 <3.1 µL/mL >4 intercellular [142]

thymol (37.8%), iso-thymol
(23.2%), γ-terpinene

(13.2%), β-caryophyllene
(4.2%), linalool (3.3%)

HIV-1 1.30 1.6 nr [129]

Zataria multiflora Boiss.
(Lamiaceae) aerial parts

thymol (33.1%), carvacrol
(25.9%), p-cymene (11.3%),

α-pinene (3.9%)
HSV-1 0.003% 55.4 nr [128]

a IC50, half maximal inhibitory concentration; b SI, selectivity index; c nr, not reported.

Table 2. Plant-derived extracts with antiviral activity.

Plant Plant
Part Extract Main Bioactive

Constituents Virus IC50
a SI b Mode of Action References

Agrimonia pilosa Ledeb.
(Rosaceae)

whole
plant

ethanol
extract nr c H1N1,

HV A-B 0.5–1 µg/mL nr block uncoating
process [153]

Aloe vera (L.) Burm.f.
(Xanthorrhoeaceae) leaf Gel nr HSV-1 5% nr replication

inhibitor [154]

Arachis hypogaea L.
(Leguminosae)

peanut
skin

ethanol
extract nr H1N1 1.3 µg/mL 5.2 early stages of

infection inhib. [155]

Avicennia marina
(Forssk.) Vierh.
(Acanthaceae)

leaf methanol
extract

nr
HSV-1 9 µg/mL 9.1 viral replication

inhib.
[156]

HIV 15 µg/mL 5.2 interference with
replication cycle

Centella asiatica (L.)
Urb. (Apiaceae) leaf

water extract
nr

HIV 36 µg/mL
nr immunomodulatory

effect
[157]alcoholic

extract HIV 8 µg/mL

Combretum
adenogonium Steud. ex

A.Rich.
(Combretaceae)

root water/ethanol
extract nr HIV-1 24.7 µg/mL nr protease inhibitor [158]

Copaifera reticulate
Ducke (Leguminosae)

stem,
bark

and leaf
water/ethanol

extract
phenolics, alcohols,

organic acids HSV-2 50 µg/mL nr block virus
attachment [159]

Cornus canadensis L.
(Cornaceae) leaf water/ethanol

extract

tellimagrandin I and
other hydrolysable

tannins
HSV-1 9 µg/mL nr virus absorption

inhibitor [160]

Embelia ribes Burm.f.
(Primulaceae) fruit ethylacetate

extract embelin H1N1 0.2 µg/mL 32 block virus entry [161]
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Table 2. Cont.

Plant Plant
Part Extract Main Bioactive

Constituents Virus IC50
a SI b Mode of Action References

Epimedium koreanum
Nakai (Berberidaceae) bark water extract nr HSV 0.20 µg/mL 23.5 immunomodulatory

effect [162]

Equisetum giganteum L.
(Equisetaceae)

root and
stem

water/ethanol
extract

phenolics, alcohols,
organic acids HSV-2 18 µg/mL nr block virus

attachment [159]

Eupatorium perfoliatum
L. (Compositae)

aerial
part

hydroalcoholic
extract nr H1N1 7 µg/mL 52 viral attachment

inhibitor [163]

Euphorbia hirta L.
(Euphorbiaceae)

aerial
part

methanol
extract

nr
HIV-1 38 µg/mL

nr RT inhib. [164]
HIV-2 22 µg/mL

Ficus religiosa L.
(Moraceae) bark methanol

extract nr HSV-2 5.2 µg/mL 31.1 nr [165]

Hemidesmus indicus L.
Br. ex Schult.

(Apocynaceae)
root water/methanol

extract

2-hydroxy-4-
methoxybenzaldehyde

(0.41 mg/g),
3-hydroxy-4-

methoxybenzalde-
hyde

(0.16 mg/g)

HSV-1 66.8 µg/mL

nr anti-ER
α-glucosidase

inhib.

[166]
2-hydroxy-4-

methoxybenzaldehyde
(0.41 mg/g),
3-hydroxy-4-

methoxybenzalde-
hyde

(0.16 mg/g)

HSV-2 70.6 µg/mL

Jatropha multifida L.
(Euphorbiaceae) stem water extract nr H1N1 25 µg/mL nr block virus entry [167]

Paeonia lactiflora Pall.
(Paeoniaceae) root ethanol

extract nr H1N1 0.016 mg/mL 13.5 block several
stages of infection [168]

Pedilanthus
tithymaloides (L.) Poit.

(Euphorbiaceae)
leaf methanol

extract

2-(3,4-dihydroxy-
phenyl)-5,7-

dihydroxy-chromen-4-
one or

luteolin

HSV-2 48.5 µg/mL 9.0
NF-κB signalling

pathway
modulation

[169]

Prunella vulgaris L.
(Lamiaceae) flowers water extract nr HIV 0.8 µg/mL nr

early post-virus
binding

interference
[170]

Prunus dulcis (Mill.)
DA Webb (Rosaceae)

almond
skin

methanol/HCl
extract nr HSV-1 0.04 mg/mL nr block virus entry [171]

Quercus brantii Lindl.
(Fagaceae) fruit chloroform

extract nr HSV-1 2.9 µg/mL nr block virus entry [172]

Quercus persica Jaub. &
Spach (Fagaceae) fruit water/ethanol

extract nr HSV-1 0.26 µg/mL nr attachment inhib. [162]

Rhus aromatica Aiton
(Anacardiaceae)

root/stem
bark water extract gallic acid HSV-1 0.0005% nr nr [173]

Rhus aromatica Aiton
(Anacardiaceae)

root/stem
bark water extract gallic acid HSV-2 0.0043% nr nr [173]

Schinus terebinthifolia
Raddi

(Anacardiaceae)
bark water/ethanol

extract
condensed tannins

(catechin, 5.4 mg/L) HSV-1 0.21 µg/mL <49.0 virucidal effect [174]

Solanum melongena L.
(Solenaceae) peel ethanol/HCl

extract

delphinidin-3-
rutinoside

(90.3–115.0 µg/mg),
chlorogenic acid

(24.5–60.7 µg/mg)

HSV-1 83.4 µg/mL nr
reduction of viral

protein
expression

[175]

Strychnos pseudoquina
A. St.-Hil.

(Loganiaceae)
stem
bark

ethyl acetate
extract nr HSV-1 5.29 µg/mL nr

interference with
various step of

virus cycle
[176]

Strychnos pseudoquina
A. St.-Hil.

(Loganiaceae)
stem
bark

ethyl acetate
extract nr HSV-2 6.55 µg/mL nr

interference with
various step of

virus cycle
[176]

Tanacetum parthenium
(L.) Sch.Bip.

(Compositae)

aerial
parts

water/ethanol
extract

chlorogenic acid,
flavonoids (aglycones

and glycosylated
flavonoids),

parthenolide

HSV-1 3.1 µg/mL nr viral replication
inhib. [177]
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Table 2. Cont.

Plant Plant
Part Extract Main Bioactive

Constituents Virus IC50
a SI b Mode of Action References

Taxodium distichum (L.)
Rich. (Cupressaceae)

cone,
leaf, stem water extract nr H1N1 0.05 mg/mL 5.6 block virus entry [178]

Vachellia nilotica (L.)
P.J.H. Hurter & Mabb.

(Leguminosae)
bark methanol

extract nr HSV-2 4.71 µg/mL 30.6 block virus
attachment [179]

Vachellia nilotica (L.)
P.J.H. Hurter & Mabb.

(Leguminosae)
bark methanol

extract nr HPV-16 1.80 µg/mL 32.6 block virus
attachment [179]

Vachellia nilotica (L.)
P.J.H. Hurter & Mabb.

(Leguminosae)
bark methanol

extract nr
HSV-2

acyclovir
resistant

6.71 µg/mL 21.5 block virus
attachment [179]

Vigna radiata (L.)
R.Wilczek

(Leguminosae)
sprout methanol/HCl

extract nr HSV-1 7.62 µg/mL nr virucidal effect [180]

a IC50, half maximal inhibitory concentration; b SI, selectivity index; c nr, not reported.

This review focuses on plant-derived substances exhibiting anti-viral activity by
targeting host functions and in particular, the epigenome machinery.

2.1. Andrographolide

Andrographolide (AGL), has been used in traditional medicine for millennia to cure
a range of diseases, such as colds, flu, and malaria [181,182]. AGL contains many sub-
stances that have an antiviral effect [181,182]. AGL inhibited HIV, HSV-1, HBV, HCV, ZIKV,
Chikungunya virus (CHIKV), and IAV [183]. AGL and its analogues reduce ZIKV and
DENV infections and have been linked to a decrease in HSPA1A expression and an increase
in PGK1 protein expression [184]. Foot-and-mouth disease (FMD) is caused by the FMD
virus (FMDV) and has a detrimental impact on livestock all over the world. FMDV was
suppressed by AGL in BHK-21 cells. AGL reduced FMDV 3Cpro activity as monitored
in an intracellular protease assay. Furthermore, AGL greatly inhibited the 3Cpro’s inter-
feron (IFN) antagonistic effect by inhibiting the expression of interferon-stimulating genes
(ISGs) [185]. AGL prevents EBV reactivation in EBV-positive cancer cells by suppressing
EBV lytic genes, most likely via histone modifications such as H3-K9 modification and
H3-K27 methylation [186]. AGL has been shown to prevent infections of DENV [184], ZIKV,
and other arboviruses [187]. AGL and its derivative showed significant activity against
IAV including the H5N1 avian IVA both in vitro and in vivo [188]. Moreover, IVA-induced
inflammation was inhibited by AGL in a murine model through the NF-κB and JAK-STAT
signaling pathways [189].

AP has shown promising results in treating liver diseases, including viral hepatitis,
liver injury, liver fibrosis, fatty liver, and liver cancer. However, clinical applications of AP
are rare due to its poor solubility and low bioavailability.

AP activity mediated the modulation of miRNA. Specifically, MiR-377, which controls
heme oxygenase-1 (HO-1), was significantly decreased by AP-induced nuclear factor
erythroid 2-related factor 2 (Nrf2) activity.

In addition, AP downregulates miR-433 which modulates the glutathione cysteine
ligase. On the other hand, AP upregulates miR-17 and miR-224 which regulate the ex-
pression of thioredoxin. Moreover, AP upregulates miR-181a which regulates glutathione
peroxidase [190].

2.2. Apigenin

Apigenin (4′,5,7-trihydroxyflavone) is a flavone found in a variety of plants, including
medicinal plants [191]. Apigenin displayed a potent HDAC inhibitor activity in human
prostate cancer PC-3 cells, specifically decreasing HDAC1 and HDAC3 activity [192]. It
also increased the global acetylation of histones H3 and H4 and directed histone H3 hy-
peracetylation to the p21/WAF1 promoter [192]. Furthermore, molecular studies revealed
that apigenin enhances acetylated H3, particularly in the p21WAF1/CIP1 promoter region,
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leading to upregulating p21WAF1/CIP1 transcription [193]. Moreover, apigenin inhibited
the expression of miR-155, one of the miRNAs induced by virus infections, which resulted
in an increase in SHIP-1 expression and thus impacted anti-tumor immune responses in
the bone marrow (BM) and tumor microenvironment (TME) [194].

Apigenin exhibited antiviral properties against IAV, human rhinovirus (HRV), HSV,
enterovirus, HBV, HCV, EV71, and SARS-CoV-2 [195–198]. Its anti-viral activity is at-
tributed, in part, to the inhibition of HDAC activity and chromatin remodeling [192,199].
Apigenin, linalool, and ursolic acid showed a strong anti-viral activity towards coxsack-
ievirus B1 (CVB1) [200]. Apigenin reduced the expression of miRNAs like miR-103, whose
overexpression is linked to glucose intolerance, by hindering miR-103’s maturation and
preventing ERK from phosphorylating the TRBP (trans-activating response RNA-binding
protein) [201].

In addition, apigenin also reduces miR-122 levels in vitro [202]. Because miR-122
overexpression is essential for HCV and HIV replication [113–115], apigenin may have
anti-HIV and -HCV efficacy by downregulating miR-122.

2.3. Baicalein

Baicalein is a flavonoid derived from the roots of Scutellaria baicalensis Georgi., a tradi-
tional Chinese medicinal herb [203]. It has been investigated for its anti-viral properties
against a variety of viruses, including HBV [204], HIV [205], DENV [206], and HSV-1 [207].
Baicalein was reported to inhibit DNMT and HDAC and thereby influence epigenetic
modifications [208,209]. Baicalein inhibited HDAC-1/8, causing growth suppression and
differentiation induction in AML cell lines. Baicalein might activate HDAC-1 degradation
mediated by the ubiquitin-proteasome pathway, thereby increasing histone H3 acetyla-
tion [208]. Additionally, baicalein regulates HDAC activity by upregulating the levels of
miR-3,178 [210]. Later, an experimental analysis revealed that HDAC10 is a target gene
of miR-3,178 [209]. Furthermore, when exposed to high glucose concentrations, baicalin
controlled the N6-adenosine-methyltransferase (METTL3)/hexokinase domain containing
1 (HKDC1)/JAK2/STAT1/caspase-3 pathway in liver cancer cells [209]. Baicalein exerts a
potent antiviral activity against DENV. It exhibits activity against DENV adsorption and
the intracellular replication of DENV-2 [206].

2.4. Berberine

Berberine (BBR) is a quaternary ammonium salt of the protoberberine group of ben-
zylisoquinoline alkaloids found in plants such as Berberis vulgaris L. [211], which exhibited
anticancer activity by affecting epigenetic regulation and AMPK activation [212]. Berberine
has exceptional anticancer effects via affecting the enzyme involved in histone acetylation
and methylation in acute myeloid leukemia (AML) cell lines [213] and the suppression of
SIRT1 deacetylases in a p53-dependent manner [214]. Berberine inhibited miR-21 expres-
sion and promoted integrin β4 (ITGβ4) and programmed cell death 4 (PDCD4) protein
expression in colon cancer cell lines. The overexpression of miR-21 reduced the anti-cancer
effects of berberine on cancer cells [215].

BBR was reported to influence multiple biological activities, including anticancer,
anti-inflammatory, and anti-viral activities [216]. BBR targets multiple steps of the viral
life cycle, rendering it an excellent candidate for use in innovative anti-viral drugs and
therapies. BBR was discovered to inhibit viral replication by targeting specific interactions
between a virus and its host. BBR binds to DNA, inhibiting DNA synthesis and reverse
transcriptase activity. It was shown to inhibit the replication of HSV [217], HCMV [218],
HPV [219], DENV [220], HIV [221], HCV [222], and SARS-CoV-2 [223]. BBR exhibited
anti-viral effects on IAV both in vitro and in vivo [224]. BBR possess the ability to control
the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are all necessary
for viral replication. Furthermore, BBR has been reported to enhance the host immune
response, leading to viral clearance.
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Protein phosphorylation is crucial in the infection cycle of many viruses [39], affecting
cellular protein’s stability, activity, interaction with other proteins, and infectivity. Viruses
like EBV [42], HCV [42], SARS-CoV-2, DENV [43], and others [44–46], rely on MAPK
p38 for replication, suggesting that MAPK p38 inhibitors may exhibit broad-spectrum
anti-viral activity.

Varghese et al. discovered that BBR significantly reduces MAPK activity. The p38
mitogen-activated protein kinases (p38), extracellular signal-regulated kinases (ERK), and
JNK signaling pathways are all significantly blocked by BBR, which specifically targets
the ERK signaling pathway, resulting in a significant decrease in virion production. The
reduction in viral protein expression following BBR treatment is most likely due to a
decrease in virus-induced signaling. BBR treatment has no effect on virus entry or viral
replicas’ enzymatic activity [225].

Additionally, it has been shown that BBR has the ability to suppress p38 MAPK
activity in the context of HBV infection. The virion of HBV comprises a genome consisting
of partially double-stranded relaxed circular DNA (rcDNA). Upon infecting a cell, this
rcDNA is transformed into covalently closed circular DNA (cccDNA) in the nucleus. MAPK
p38 activity plays a crucial role in the preservation of HBV covalently closed circular DNA
(cccDNA) within infected cells [226]. The cccDNA functions as a molecular scaffold for
the transcription of RNA molecules, such as mRNAs and pregenomic RNAs (pgRNAs).
In the course of HBV’s life cycle, RT facilitates the conversion of the pregenomic RNA
(pgRNA) into a partially double-stranded form of viral DNA known as relaxed circular
DNA (rcDNA) within the viral capsid. The suppression of p38 MAPK activity has been
associated with a decrease in the synthesis of HBV surface antigen (HBsAg), secretion
of HBV e-antigen (HBeAg), and replication of HBV. The potential of BBR to effectively
suppress the activity of MAPK presents a promising opportunity for the development of a
novel antiviral drug targeting HBV infection.

2.5. Betulinic Acid

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid found in the bark
of various plant species, most notably the white birch (Betula pubescens Ehrh.) [227]. BA
is capable of inducing apoptosis in tumor cells by directly activating the mitochondrial
apoptosis pathway via a p53- and CD95-independent mechanism [228]. A computational
approach demonstrated that BA has the capacity to alter HDAC6 and HDAC10 activ-
ities [229]. Furthermore, BA exhibited an anti-cancer activity that is mediated through
cannabinoid receptors (CBs). BA functions as both a CB1 antagonist and a CB2 agonist [230].

BA was used for the treatment of various viral diseases [157]. BA has demonstrated
activity in inhibiting DENV-2 NS5 polymerase [231]. Furthermore, BA exhibited an in-
hibitory effect on HBV replication [232]. Interestingly, the C-3 esterification of BA led to the
discovery of Bevirimat, an HIV-1 maturation inhibitor patented by Sanofi-Aventis.

2.6. Butyric Acid

Butyric acid is a fatty acid derived from multiple vegetable sources that have anti-
cancer activity through several pathways, including its influence on epigenetic machineries.
Butyrate, alone or in combination with other drugs, including nicotinamide (NA), was
shown to have anticancer activity in vivo [233]. Butyric acid exerts its anti-tumor effect by
increasing HDAC expression and activity, which is accompanied by an upregulation of
miR-203 promoter methylation [233].

Butyrate inhibited HBV replication and cell proliferation by inhibiting SIRT-1 expres-
sion in hepatoma cells. Specially, butyrate inhibited HBx protein expression, HBV-DNA,
and hepatitis B surface antigen (HBsAg) [234].

2.7. Cardamonin

Cardamonin (CDN) is a natural chalcone isolated from the seeds of Alpinia katsumadai
Hayata [235]. CDN has been shown to have a variety of pharmacological activities, including
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anticancer and anti-inflammatory properties [236]. It was recently revealed that CDN has
anti-viral activity against the human coronavirus HCoV-OC43. CDN exhibits significant
efficacy in reducing HCoV-OC43-induced cytopathic effects. CDN suppressed HCoV-OC43
infection by promoting the p38 MAPK signaling pathway and having therapeutic potential
against other human coronaviruses [236].

2.8. Cordycepin

Cordycepin is a nucleotide analog derived from Cordyceps mushrooms [237]. In SNU719
cells, cordycepin treatment enhanced BAF chromatin remodeling complex subunit 7A
(BCL7A) methylation while suppressing demethylation [238]. Cordycepin promoted
methylation at EBV genomic sites near its Fp/Qp promoters. These findings indicate
that cordycepin enhances DNMT3 activation, hence increasing the methylation of both
genomic and EBV DNA loci in SNU719 cells [238], causing reduced EBV replication [239].
Cordycepin was also shown to have anti-SARS-CoV-2 replication activity [239].

Cordycepin shows anti-viral activities that are attributable to its ability to inhibit
several protein kinases [237]. Cordycepin, an adenosine derivative, differs from adenosine
in that its ribose lacks an oxygen atom in the 3′ position [240]. Several research groups have
reported that cordycepin has anti-viral activity against several viruses including IAV, plant
viruses, HIV, murine leukemia virus, EBV [241–245], and COVID-19 [246].

2.9. Corosolic Acid

Corosolic acid (CA) is a triterpene acid isolated from Lagerstroemia speciose L. [247].
This bioactive molecule is prevalent in foods such as guava, loquat, and olive, and has
anti-inflammatory, anti-metabolic syndrome, and anti-neoplasic properties [248]. CA is
implicated in the regulation of DNA methylation and histone H3 methylation. CA mod-
ulates CpG methylation sites, resulting in altered gene expression in treated cells [249].
Furthermore, CA inhibits the production and activity of epigenetic modulatory proteins,
suggesting its capacity to prevent prostate carcinogenesis [250]. Furthermore, CA sig-
nificantly increased the expression of acetylated histone H3 lysine 27 (H3K27ac) at the
Nrf2 promoter, while decreasing histone H3 lysine 27 trimethylation (H3K27Me3) [251].
Moreover, its anti-viral activity against a number of viruses has been reported [248].

2.10. Curcumin

Curcumin, the major bioactive in turmeric, is a polyphenol with anti-inflammatory and
anti-cancer activities [252]. Curcumin has been demonstrated to be a powerful epigenetic
regulator with multiple effects on HDAC expression and activity. Curcumin decreased the
expression of HDAC1, HDAC3, and HDAC8 proteins, as well as histone acetyltransferase
p300, while enhancing the acetylation of Ac-histone H4 protein [253]. Curcumin was
shown to reduce HAT activity and has been proposed as a potential DNMT and HDAC
inhibitor [254].

Curcumin reduced the amount of HBsAg and the number of cccDNA copies, resulting
in the inhibition of HBV replication, which was accompanied by a decrease in the acetylation
level of cccDNA-bound histone H3 and H4 [255]. An MiRNA array revealed that miR-
350, miR-17-2-3p, let 7e-3p, miR-1224, miR-466b-1-3p, miR-18a-5p, and miR-322-5p were
downregulated by curcumin while miR-122-5p, miR-3473, miR-182, and miR-344a-3p were
upregulated [256]. Overall, the curcumin-modified miRNAs had an impact on a number of
signaling pathways, such as Wnt, NK-κB, MAPK, inflammatory response genes, and viral
transmission [257].

Studies have shown that curcumin can inhibit the replication of various viruses,
including HBV [255], HIV [258], and IAV [259]. It exerts its anti-viral effects by interfering
with viral replication processes and by modulating the epigenetic regulation of genes
involved in viral infection [255]. Curcuma longa L. (CLL) extract inhibits the transcription
of the HBV X (HBx) gene through a p53-mediated pathway, with no cytotoxicity to liver
cells. These results highlight CLL extract as an efficient natural product with anti-HBV
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activity [260]. Curcumin interfered with the binding activity of activator protein-1 (AP-1) in
HeLa cells, resulting in the decreased transcription of HPV-18 genes [261]. The transcription
factor AP-1 regulates epithelial tissue-specific gene expression in almost all HPV types.
Because it changes apoptosis and lowers viral genes, these results suggest that curcumin
may be a good choice for treating highly oncogenic HPV infections. Curcumin may also
work against viruses by changing how viruses enter cells, how viral protease enzymes
work, and how host cells communicate with each other [262]. Curcumin and its analogs
could also stop the growth of ZIKV, CHIKV, VSV, CVB3, EV71, RSV, HSV-2, KSHV, and
HAdV [263]. Curcumin has been shown to either directly or indirectly stop the replication
of viruses by changing the immune response of the host, which leads to the removal of the
viruses [264] (Figure 5).
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Curcumin is known to strongly stop the production of several proinflammatory cy-
tokines that cause the “cytokine storm” that occurs in some viral infections. New in silico
docking studies have confirmed that curcumin may be a good candidate for helping with
the acute symptoms of SARS-CoV-2 infection [265]. Moreover, a human study in Pakistan
evaluated the efficacy and safety of an oral curcumin-quercetin supplement plus standard
care vs. standard care alone in outpatients with early-stage COVID-19. The study found
that the curcumin-quercetin group had a significantly higher viral clearance (18/25 (72.%))
compared to that of the control group [266]. In addition, curcumin-quercetin reduced acute
COVID-19 symptoms in a group compared to a control group [266].

2.11. Ellagic Acid

Ellagic acid (EA) is a ubiquitous phenolic molecule isolated from a variety of fruits
and vegetables and is well known for its anti-cancer effect [267]. This bioactive substance
has been demonstrated to effectively induce HDAC activity. Human adipogenic stem cells
treated with EA showed a substantial increase in HDACs’ gene expression. EA also sup-
presses adipocyte differentiation through coactivator-associated arginine methyltransferase
1 (CARM1)-mediated chromatin modification. This compound also inhibited adipocyte
growth and differentiation by increasing histone arginine methylation [268], resulting in
an increase in acetylated histone through epigenetic alterations mediated by coactivator-
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associated CARM1 inhibition. CARM1 inhibition was shown to limit H3R17 methylation,
resulting in decreased H3K9 acetylation and HDAC9 dissociation [268]. Ellagic acid and
other plant-derived substances strongly bound with the multiple targets of the SARS-CoV-2
receptors, inhibiting viral entry, attachment, binding, replication, transcription, maturation,
packaging, and spread [269].

2.12. Epigallocatechin Gallate

Epigallocatechin gallate (EGCG) is the most abundant catechin in tea leaves, compris-
ing 50–80% of the total catechins [270]. EGCG was recognized as the primary contributor
to the numerous health benefits associated with green tea [270], including a reduction in
the symptoms of infectious diseases [271].

EGCG binds to various targets and exerts its influence on the activity of diverse
enzymes and signal transduction pathways [272]. Studies with animal models and various
cancer cell lines have shown that EGCG and other catechins modulate the activity of
DNMTs [273]. Fang et al. suggested that EGCG inhibited DNMT activity, resulting in
the reactivation of methylation-silenced genes [274]. In fact, EGCG can reduce DNA
methylation through the direct inhibition of the activity of DNMT 1, DNMT 3a, and DNMT
3b, by directly binding to the active site within the enzyme [273]. In contrast, Lee et al.
provided an alternative mechanism to explain the DNMT inhibition induced by EGCG.
Their studies revealed that DNA methylation was primarily inhibited in vitro through
competitive inhibition by promoting the formation of SAH (S-adenosylhomocysteine).
Based on this mechanism, EGCG causes a reduction in the intracellular concentration of
SAM (S-adenosylmethionine), which is the universal methyl donor, while simultaneously
increasing the concentration of SAH. Importantly, SAH acts as a feedback inhibitor for
various methylation reactions that depend on SAM. Thus, the modulation of SAM and SAH
levels by EGCG contributes to the inhibition of DNMT activity and other SAM-dependent
enzymes such as methyltransferases (MTases) [273,275,276].

EGCG also regulates histone modifications by inhibiting the activity of HDACs [275]
and consequently inducing changes in gene expression patterns. The inhibition of HDAC
activity by EGCG results in a decrease in HDAC enzyme activity and consequently leads
to increased levels of acetylation on histone proteins both globally and at specific regions.
In human colon cancer cell lines, EGCG inhibited HDAC1, HDAC2, and HDAC3 expres-
sion [277]. In addition, EGCG inhibited HAT activity [278]. EGCG has been demonstrated
to prompt the increased acetylation of lysine 14 and 9 (on histone H3) and lysine 12, 5,
and 16 (H3-Lys and H4-Lys) levels [279]. In addition, EGCG can increase the acetylation
of histones H3K9/14ac and H3ac, as well as the concomitant hypermethylation of active
H3K4me3 and restrictive H3K9me3 chromatin proteins [280]. Furthermore, in cancer cell
lines, EGCG inhibits DNMT’s activity and reactivates methylation-silenced genes, such as
p16INK4a and retinoic acid receptor beta (RARβ) [281]. Moreover, a recent report showed
a potential effect of EGCG in modulating NAD+ levels and thereby the activity of SIRT
proteins [282].

EGCG has also been implicated as a potential modulator of miRNAs by regulating
the expression levels of epigenetic modifiers or viral proteins. EGCG has been reported
to decrease the levels of let-7e-5p, miR-103a-3p, miR-151a-5p, miR-195-5p, miR-222-3p,
miR-23a-3p, miR-23b-3p, miR-26a-5p, miR-27a-3p, miR-29b-3p, miR- 3195, miR-3651, miR-
4281, miR-4459, miR-4516, miR-762, and miR-125b-5p [283]. Another study showed that
EGCG enhances the expression of miR-3663-3p, miR-1181, miR-3613-3p, miR1281, and
miR-1539, while decreasing miR-221-5p, miR-374b, miR-4306, miR-500a-5p, and miR590-
5p in human dermal papilla cells [284] and miR-140-3p and miR-221 in melanoma and
hepatoma cell lines, respectively [285,286]. The anti-viral properties of EGCG have been
demonstrated for a wide range of virus families, including Retroviridae, Orthomyxoviridae,
and Flaviviridae. Furthermore, the molecule affects the replication cycle of DNA viruses
such as HBV, HSV, and AdV [287]. Particularly, EGCG has been shown to inhibit the
replication of several viruses, including IAV, HBV, HCV, HSV-1 and HSV-2, HPV, ZIKV, and
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SARS-CoV-2 [288–294]. EGCG showed an anti-proliferative effect in the HPV-16-associated
cervical cancer cell line CaSki via the arrest of the cell cycle in the G1 phase, leading
to programmed cell death [295]. Interestingly, EGCG and other catechins from green
tea are effective against HPV-mediated lesions of the cervix. The US Food and Drug
Administration (FDA) has approved Veregen®, a topical ointment with 15% green tea
extract or sinecatechins, to treat genital warts that are caused by HPV infection [292,296].

EGCG also exerts anti-viral activity by modulating miRNA expression, such as up-
regulating miR-548m expression. Reports found miR-548m binding sites in the 3′UTR of
CD81 mRNA′. This suggests that miR-548m may lower the expression of CD81, which
would make HCV less likely to infect cells. These results suggest that EGCG may act as an
anti-HCV drug by increasing the expression of miR-548m while decreasing the expression
of the CD81 receptor required for HCV infection [291]. In addition, miR-194 has been
reported to prevent HCV entry by targeting CD81 receptors [297].

The liver-specific miR-122 [112] is the most abundant miRNA in the liver, accounting
for 60–70% of the total miRNA in hepatocytes. Many investigations have found that miR-
122 is required for HCV replication in infected cells [113–115]. EGCG (and also resveratrol)
modulates the expression levels of miR-122 and thus might exert an anti-HCV effect via
this mechanism. IAV infection caused a significant decrease in micro-RNA let-7 expression
in host cells that normally regulate the expression of type I interferon required for the
host cells’ anti-viral activity. The overexpression of let-7 increased the expression of the
interferon and effectively inhibited the IAV infection. EGCG upregulates the expression of
let-7 and thereby has the potential to exhibit anti-influenza activity [202] (Figure 6).
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Figure 6. Anti-viral activity of EGCG against IAV, HPV, and HCV viruses. HCV replication dependent
on host CD81 and host miR-122. EGCG upregulated miR-548m expression, which in turn regulates
CD81 expression and downregulates miR-122 (also mediated by other bioactive substances such as
resveratrol) to exert anti-HCV activity. IAV infection caused a significant decrease in microRNA let-7
expression which is required for regulating expression of type I interferon. EGCG and other bioactive
substances, such as quercetin, upregulate let-7 to increase interferon expression and effectively inhibit
IAV infection.
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2.13. Galangin

Galangin is a naturally occurring flavonoid found in honey that is also an active
ingredient in galangal, a spice used in traditional Chinese medicine [298]. This natural
compound appears to effectively inhibit HDAC activity. In SH-SY5Y human neuroblastoma
cells, treatment with galangin increased endogenous HDAC1-mediated deacetylation inde-
pendently of DNA methylation status and subsequently decreased histone H3 acetylation
in BACE1 promoter regions [299].

Galangin upregulates miR-455-5p to modulate the regulatory subunit 12A of protein
phosphatase 1 (PPP1R12A). This effect suppresses the activation of the MAPK and the
phosphoinositide 3-kinases/protein kinase B (PI3K/AKT) pathways, controlling cancer
cell survival and metastasis [300]. Galangin showed significant antiviral activity against
HSV-1 and CoxB1 [301].

2.14. Garcinol

Garcinol is a polyisoprenylated benzophenone isolated from the peel of the Garcinia indica
Choisy fruit [302]. Garcinol has anti-cancer, anti-inflammatory, and antioxidant proper-
ties [101]. In tumor cells, it primarily inhibits the NF-κB and Janus kinase (JAK)/STAT3
transcription factors [302]. Garcinol has been shown to decrease the HAT activity of p300
and pCAF in vitro and in vivo [303]. As a result, garcinol was discovered to be a potent
inducer of apoptosis and to affect global gene expression in HeLa cells [303]. The chemical
structure of garcinol shows some similarities with curcumin (β-diketone, phenol). Garcinol
has shown significant anticancer activity by targeting NF-κB, 5-lipoxygenase (5- LOX), and
STAT proteins [304,305]. In addition, garcinol is a well-documented HAT inhibitor and thus
plays an important role in the epigenetic regulation of gene expression [306]. Garcinol is uti-
lized in Ayurvedic medicine for the treatment of infections and edema [307,308]. Garcinol
downregulated miR-21, miR-494, miR-495, and miR-1977 in pancreas cancer cells [309] and
upregulated the expression of miR-453, miR-128, miR-1280, and miR-720 [310]. In breast
cancer cells, garcinol can induce the expression of the tumor suppressor miRNAs let-7a,
let-7e, let-7f, miR-200b, and miR-200c both in vitro and in vivo [311]. A recent report pro-
vided evidence for the ability of garcinol to inhibit HIV-1 reverse-transcriptase-associated
ribonuclease H [312].

2.15. Genistein

Genistein is a naturally occurring isoflavone isolated from the plant Genista tincto-
ria [313] and is well known for its potential chemotherapeutic action against a variety of
cancer cells. Studies on HAT and HDAC activity revealed that genistein reduces HDAC
while increasing HAT activity [313]. In prostate cancer cell lines, a chromatin immunopre-
cipitation analysis with multiple antibodies revealed the enrichment of acetylated histones
H3, H4, and H3 di- and tri-methylated lysine 4 after incubation with genistein [314]. Fur-
thermore, genistein inhibited the phosphorylation of serine 10 and the methylation of
lysine 9 in the promoter regions of several genes, including wingless-related integration site
(Wnt5a), as well as induced the secretion of frizzled-related protein 5 (Sfrp5), and frizzled-
related protein 2 (Sfrp2) [315]. Moreover, the genistein treatment significantly inhibited
miR-223 expression and upregulated the F-box and WD repeat domain-containing 7 (Fbw7)
proteins which act as a tumor suppressor gene. Moreover, the downregulation of miR-223
inhibited cell growth and induced apoptosis in PC cells [316]. In addition, other miR-223
targets, such as granzyme B, IκB kinases (IKKs), and signal transducer and activator of tran-
scription 3 (STAT3), are expected to be affected by genistein and thereby modulate immune
response [116]. Interestingly, miR-223 expression is downregulated during IAV, HBV [116],
HCV, HIV [115], and SARS-CoV infections [117]. Thus, it is reasonable to speculate that the
antiviral activity of genistein might be mediated by the regulation of miR-223.
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2.16. Ginkgolic Acid

Ginkgolic acid (GIA) is a phenolic acid found in Ginkgo biloba L. with neuropro-
tective, antimicrobial, and antitumor properties [317]. Ginkgo biloba has been used in
traditional Chinese medicine since at least the 11th century BC to treat various ailments,
such as dementia, asthma, bronchitis, and kidney and bladder diseases. Ginkgolic acid
is a potent multitarget inhibitor of key enzymes in the biosynthesis of proinflammatory
substances [317].

Ginkgolic acid impairs SUMOylation by blocking the formation of an E1-SUMO
thioester complex by binding directly to E1 [318]. SUMOylation is a process by which small
ubiquitin-related modifier proteins (SUMO) covalently bind to specific lysine residues in tar-
get proteins, thereby regulating various aspects of protein function, including transcription,
subcellular localization, DNA repair, and the cell cycle [319].

JMJD2A, a member of the Jumonji domain 2 (JMJD2) family, is the histone demethylase
responsible for the accumulation of SUMO-2/3. JMJD2A is SUMOylated at lysine 471 by
Kaposi’s sarcoma-associated herpesvirus (KSHV) K-bZIP, a viral SUMO-2/3-specific E3
ligase, in a SUMO-interacting motif (SIM)-dependent manner. SUMOylation is required
for the stabilization of chromatin association and gene transactivation by JMJD2A [320].
Recently, ginkgolic acid was reported to inhibit HSV-1 by disrupting the virus’ structure,
blocking fusion, and inhibiting viral protein synthesis [321]. Moreover, ginkgolic acid is
a powerful antiviral that can inhibit three types of fusion proteins, such as those from
HIV, EBOV, IVA, and EBV. Moreover, ginkgolic acid inhibited HIV protease activity in a
concentration-dependent manner. In addition, treatment with ginkgolic acid inhibited HIV
infection in PBMCs in a concentration-dependent manner [322].

2.17. Glycyrrhizic Acid

Glycyrrhizic acid (GA) is a triterpene isolated from the roots and rhizomes of licorice
(Glycyrrhiza glabra L.)) [323]. GA is the principal bioactive ingredient of licorice with anti-
viral [324], anti-inflammatory, and hepatoprotective effects [325]. The licorice plant is native
to Europe and Asia and has been used for centuries in traditional medicine. Ancient docu-
mentations from China, India, and Greece stated that it was traditionally used to alleviate
the symptoms of viral respiratory tract infections and hepatitis [323]. Licorice is known
for its ability to inhibit the viral replication of various viruses including HBV, HCV, IAV
H1N1, and HIV, as reviewed by Zhong et al. [326]. Licorice extract containing glycyrrhiza
inhibited the replication of Newcastle disease virus (NDV) and was non-toxic in an embry-
onic egg assay [327]. Glycyrrhizin exhibited antiviral activity by affecting cellular signaling
pathways and increasing the expression of nitrous oxide synthase (NOS) [328]. In vitro
studies revealed it also has anti-viral activity against SARS-related coronavirus, respiratory
syncytial virus (RSV), arboviruses, vaccinia virus (VACV), and vesicular stomatitis virus
(VSV) [329,330]. In animal studies, treatment with glycyrrhizin reduced mortality and the
viral activity of HSV, encephalitis, and IAV pneumonia [329]. In addition to its antiviral
effect, glycyrrhizin also showed anti-inflammatory effects caused by the decreased release
of IL -6 from macrophages, resulting in a reduced induction of cytokine storms [331]. In
addition, high concentrations of licorice in RAW264.7 mouse macrophage cells inhibited
LPS-induced nitric oxide production in a concentration-dependent manner [332].

Presumably by controlling the expression of the NF-κB and PI3K signaling path-
ways, glycyrrhizin’s anti-inflammatory impact may be obtained [333]. Glabridin licorice
(Glycyrrhiza glabra) contains significant amounts of the isoflavan glabridin, which demon-
strated anti-inflammatory and neuro- and cardioprotective activities in addition to distinct
anti-cancer properties (growth inhibition as well as anti-angiogenic and anti-metastatic
effects [334–336]. Glabridin suppressed cancer stem-cell-like features in hepatocellular
carcinoma cells by the upregulation of miR-148a that targets SMAD2 (mothers against
decapentaplegic homolog 2) associated with the inhibition of TGF (transforming growth
factor)-β/SMAD2 signaling [337,338]. Interestingly, miR-148 also targets DNMT3b [84].
In addition, glabridin inhibited the angiogenesis of breast tumors by the upregulation of
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miR-520a [339]. The expression of NF-κB was blocked by the upregulation of miR-520a
in glabridin-treated breast cancer cells, which was accompanied by the inhibition of NF-
κB/IL-6/STAT-3 signaling. Host signaling pathways regulated by glabridin are essential for
viral infections and viral diseases. Glycyrrhizic acid exhibited anti-viral activity [340,341].
It inhibits HSV-1, HSV-2, VZV, HCMV, ZIKV, IAV, EBV, HIV, EBOV, and SARS-CoV-2 by
varying mechanism of actions [342].

2.18. Grifolin

Grifolin is an adenosine derivative isolated from the fresh fruiting bodies of the fungus
Albatrellus confluens (Alb. & Schwein.) Kotl. & Pouz. [343]. Grifolin was shown to suppress
tumor cell lines’ proliferation. Grifolin inhibited Bcl-2 expression while increasing Bax
expression [343]. Grifolin reduced Elk1 transcription as well as its binding to the DNMT1
promoter region. The mRNA levels of pTEN and Timp2 are likewise increased by griforolin.
Grifolin’s anti-tumor effects may be exerted by ERK1/2-Elk1-DNMT1 signaling’s epigenetic
activation of metastasis-inhibitory genes [344].

2.19. Oleacein

Oleacein, a secoiridoid [345], is the most prominent phenolic compound in Olea
europaea L. (olive). This substance exhibited anti-cancer activity against multiple myeloma
cell lines (NCI-H929, RPMI-8226, U266, MM1s, and JJN3) and was found to be an effective
epigenetic modulator. Oleacein was reported to downregulate several class I/II HDACs
both at the mRNA and protein level; conversely, no effect on global DNA methylation was
associated with this compound [346,347]. Oleacein inhibited the proliferation of numerous
melanoma cell lines [348]. It has been shown that oleacein can stop HIV-1 infection,
replication, and the production of the viral core antigen p24 [349].

2.20. Organosulfur Chemicals

Organosulfur chemicals (OSC) are a group of compounds found in garlic (Allium
sativum L.). More than thirty sulfur-containing compounds have been identified so far [350].
Garlic extracts were found to have broad-spectrum anti-viral activity [351]. Conversely, the
mechanism by which these extracts or their purified constituents exert anti-viral activity
may differ depending on the virus strains and viral lifecycle, which includes viral entry,
fusion, replication, assembly, and virus–host-specific interactions [352]. Furthermore, one
of the possible activities of garlic extracts and bioactive moieties that may combat viral
infections resides in its immunomodulatory properties.

Garlic has been used as an ethnomedicinal herb to cure infectious diseases for ages [353].
It has been utilized to treat a variety of illnesses in African traditional medicine, including
sexually transmitted diseases, Mycobacterium tuberculosis (TB), respiratory tract infec-
tions, and wounds [354,355]. Garlic was shown to have effects against viral infections in
humans, animals, and plants. In addition to garlic extracts or powders, purified bioactive
components from garlic also exhibited anti-viral activity. As an example, alliin (S-allyl-
L-cysteine sulfoxide), which is the most abundant sulfur compound found in fresh and
dry garlic [356], is rapidly converted into allicin (diallyl thiosulfinate) by alliinase en-
zymes when fresh garlic is chopped, minced, crushed, or chewed [356,357]. Allicin is the
primary component responsible for its anti-viral activity [358,359], immunomodulatory
characteristics [360], anti-inflammatory [361] and antioxidant [362] activities, and other
pharmacological properties. Allicin is very unstable and breaks down into other OSCs,
such as andajoen, vinyl dithiins, diallyl disulfide (also known as garlicin or DADS), di-
allyl trisulfide (also known as allitridin or DATS), and diallyl disulfide (also known as
DAS). In vivo, allicin can interact with cellular thiols such as glutathione and L-cysteine to
form S-allyl mercapto glutathione (SAMG) and S-allyl mercaptocysteine (SAMC) [363,364].
These compounds may be responsible for structural changes in pathogen proteins [357].
Preclinical in vitro and in vivo studies have shown that allicin-derived OSCs such as ajoene,
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allitridine, garlicin, and DAS have antiviral [365–369], immunostrengthening [370–372],
and other therapeutic activities [363,373,374].

2.21. Orobol 7-O-d-Glucoside

Orobol 7-O-d-glucoside (O7G) isolated from banaba Lagerstroemia speciosa L.
(Lythraceae) [375] was tested for its anti-viral efficacy against eight different strains of
HRV, a cause of common viral respiratory tract disease [375]. O7G displayed anti-viral
activity against HRV A and B, as well as species resistance to pleconaril, a potent capsid
inhibitor of HRVs [376].

2.22. Orsaponin

Orsaponin (OSW-1) is a natural substance derived from the bulbs of the plant Or-
nithogalum saundersiae which has anti-proliferative and anti-cancer properties [377]. En-
teroviruses (EV) use oxysterol-binding protein (OSBP) as a host lipid transport protein [378].
Several studies have shown that OSW-1 binds to one of the two identified OSBP ligand-
binding sites and exerts prophylactic antiviral activity against all enteroviruses tested,
including EV71, coxsackievirus A21 (CVA21), and HRV-B [379,380].

2.23. Plitidepsin

Plitidepsin is a cyclic depsipeptide isolated from the Mediterranean marine tunicate
Aplidium albicans [381]. Plitidepsin is made and sold as alpidine, a drug that has been
approved for a limited number of uses to treat multiple myeloma. Its target is eukaryotic
translation elongation factor 1A (eEF1A) [382]. This cellular component is necessary for
enzymes to move aminoacyl-tRNAs to the ribosome. It has also been found to be an
important host factor in the replication of many viruses, such as RSV and gastroenteritis
coronavirus [383]. In an in vitro and in vivo investigation, White and colleagues discovered
that plitidepsin had anti-viral efficacy against SARS-CoV-2 via inhibiting eEF1A [384].
Plitidepsin was shown in vitro to be 27.5 times more potent than remdesivir in Vero E6 cells.
In two animal models, plitidepsin treatment lowered SARS-CoV-2 replication and protected
against the SARS-CoV-2 B.1.1.7 variant as well as lung inflammation [384,385]. A phase
I/II clinical trial for the use of plitidepsin in the treatment of COVID-19 (NCT04382066)
was conducted.

2.24. Pterostilbene

Pterostilbene (3,5-dimethoxy-4-hydroxystilbene) is a bioactive chemical found in
grapes and several berries, mainly blueberries [386]. Pterostilbene altered gene expression
in breast cancer cells, which are mediated by epigenetic mechanisms such as HDAC modi-
fications [387]. It inhibits SIRT1 and regulates cell proliferation, apoptosis, stress response,
metabolism, cellular senescence, and cancer [387,388].

Interestingly, a recent report demonstrated that resveratrol and pterostilbene inhibit
SARS-CoV-2 replication in human primary bronchial epithelial cells [389].

2.25. Quercetin

Quercetin is a flavonoid found in many medicinal plants and food products [390].
This compound has a variety of biological properties, including anticancer activity, through
several modes of action. Quercetin, alone or in combination with other drugs, promotes
epigenetic modifications. It enhances histone H3 acetylation via FasL overexpression, the
activation of HAT, and the inhibition of HDAC activities [391]. Furthermore, quercetin
reduced HMT activities, particularly HMT-H3K9 activity [213]. In addition, quercetin was
reported to reduce the expression of miRNA, such as that of miR-146a [392], a regulator
of HIV replication [393], and NF-κB signaling which is associated with anti-inflammation
activity [394]. MiR-16, miR-217, and miR-145 were also modulated by quercetin [395–397].

Quercetin was shown to inhibit the replication of several viruses, including IAV H1N1,
IVA H3N2, HBV, HCV, DENV, poliovirus, rhinovirus, CHIKV, MERS-CoV, HSV 1/2, EBV,
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RSV, Arbovirus, EBOV, HIV, Japanese encephalitis virus (JEV), hAdV, enterovirus (EV),
ZIKV, NDV, Mayaro virus (MAYV), and SARS-CoV-2 [197,293,398–400]. It can modulate
DNA methylation and histone acetylation [401]. Moreover, it has been reported to activate
SIRT1 and exhibit anti-viral effects against several viruses [402]. Quercetin attenuates
HCV production [403] and inhibits the propagation of HSV-1 [398]. IAV infection causes a
significant decrease in microRNA let-7 expression in host cells that normally regulate the ex-
pression of type I interferon required for host cells’ anti-viral activity. Quercetin upregulates
the expression of let-7 and thereby has the potential to exhibit anti-IVA activity [202].

2.26. Raoulic Acid

Raoulic acid isolated from Raoulia australis [133] has shown possible anti-viral activity
against coxsackievirus B3 (CVB3) and coxsackievirus B4 (CVB4), as well as HRV types A
and B [133].

2.27. Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene) is a bioactive molecule isolated by Saiko et al. [404]
from the roots of white hellebore (Veratrum grandiflorum Loes.). More than 50 plant species
contain this bioactive substance, including grapes, apples, blueberries, plums, and peanuts.
It has been intensively researched for its health benefits against a variety of diseases,
including cancer [405]. Resveratrol treatment increased p21 expression in Caski cells
via the inhibition of HDAC [406]. HDAC activity is decreased by resveratrol in a dose-
dependent manner [407]. Pterostilbene is a phytoalexin dimethyl ether molecule that is
a dimethoxylated derivative of resveratrol [408]. Interestingly, resveratrol is known to
activate SIRT1 [409]. Despite the fact that research into the potential of SIRT1 activators’
anti-viral activities is continuously being conducted, it is important to keep in mind that
this field is still in its infancy and that specific natural compounds that directly activate
SIRT1 and have anti-viral effects are not yet well established.

Over 100 scientific documents have implicated miRNAs in resveratrol’s health-promoting
activity. For example, in human colon cancer cells, resveratrol significantly decreased the
levels of miR-17, miR-21, miR-25, miR-92a-2, miR-103-1, and miR-103-2 [410]. Meanwhile,
in lung tumors, resveratrol led to an upregulation of miR-200c [411].

Resveratrol intake in humans for six months increased miR-21, miR-181b, miR-663,
and miR-30c, while reducing inflammatory cytokines like IL-6, CCL3, IL-1β, and TNF-α.
This reduction was mediated by the TLR and NF-κB signaling pathways [412].

Resveratrol showed anti-viral properties [413]. It inhibit HSV infection in vitro and
in vivo [414], but also inhibit beta-corona viruses such as MERS-COV and SARS-CoV-2 [415].
Resveratrol inhibited SARS-CoV-2 replication in Vero cells and Vero E6 cells, with IC50
values of 4.48 µM and 11.42, respectively [416]. It also inhibited SARS-CoV-2 Mpro activity,
suggesting resveratrol as a potential therapeutic target [417].

An HSV-2 infection was regulated by resveratrol-induced increased histone acetyla-
tion [418]. Varicella-zoster virus (VZV) replication in vitro was reduced by resveratrol in a
dose- and time-dependent manner. The inhibited activation of the IE62 gene by resveratrol
was accompanied by a reduction in infections of both wild-type and DNA polymerase
mutants with acyclovir-resistant VZV [419,420]. Furthermore, resveratrol exhibits activity
against VEEV [421], EBV [422], CBV [423], and RSV. Resveratrol was shown to regulate
TLR3 expression, inhibit the TIR domain containing adaptor molecule (TRIF) signaling
pathway, and induce M2 receptor expression following RSV infection [424]. There is grow-
ing evidence showing that HBV can alter the expression levels of all SIRT proteins, an
NAD+-dependent deacetylate. All SIRTs, in turn, regulate HBV replication through a
cascade of molecular mechanisms. In addition, several studies suggest that targeting SIRTs
with appropriate drugs is a potential treatment strategy for HBV infection [425]. Resveratrol
also stops the replication of RSV in human bronchial epithelial cells by activating SIRT1
and increasing the release of TNF-α, which promotes cell death [402].
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2.28. Silibinin

Silibinin is a flavonolignan derived from milk thistle [426] and has powerful anticancer
effects, targeting multiple checkpoints, including epigenetic processes such as HDAC
activity. Silibinin was shown to inhibit the expression of HDAC2 and HDAC3 proteins,
as well as HDAC1, HDAC6, SET domain proteins (SETD1A, D4, D6), and lysine-specific
demethylases (KDM 5B, 5C, and 4A) are some of these [315]. Silibinin also inhibited the
expression of HDAC1-2 in DU145 and PC3 human prostate cancer cell lines [56].

Enhanced Lys27 trimethylation on H3 (H3K27me3) [427], the inhibited activity of
DNMTs, and increased global DNA hypomethylation [428–430] were also caused by silib-
inin in different test systems. Moreover, silibinin decreased the expression of miR-21 and
miR-155 [431]. Recent studies have documented the antiviral activities of silibinin against
several viruses, including the flaviviruses (HBV and DENV), togaviruses (CHIKV and
MAYV), IVA, HIV, and HBV [432].

2.29. Silvestrol

Silvestrol, isolated from Aglaia plants [433], has been shown to target eukaryotic initia-
tion factor-4A (eIF4A), an RNA helicase whose activity is required to unravel RNA secondary
structures in the 5’-untranslated region (5′-UTRs) and facilitate translation initiation [434].
Silvestrol showed activity against EBOV, ZIKV, CHIKV, and coronaviruses [435–437]. A
study by Mueller and others [438] found that silvestrol stopped the translation of MERS-
CoV and HCoV-229E viral mRNA in MRC-5 human embryonic lung fibroblasts. Further-
more, silvestrol stops the production of MERS-CoV structural and nonstructural proteins
(N, nsp8) and the creation of viral replication and transcription complexes in PBMCs [438].
More research has shown that the synthetic rocaglate CR-31-B (-) can stop the replication of
HCoV-229E and SARS-CoV-2 in both in vitro and ex vivo settings [439,440].

2.30. Sulforaphane

Sulforaphane (1-isothiocyanato-4(methylsulfinyl)butane) (SFN) is an isothiocyanate
present mostly in cruciferous vegetables including broccoli, cabbage, brussel sprouts, and
radishes [441]. In breast cancer cells, SFN significantly reduced HDAC activity [442] and
increased the expression of acetylated histones H3 and H4 [442]. Moreover, SFN enhanced
the expression of the anti-oncogene proteins dual-specificity phosphatase 4 (DUSP4) and
cyclin-dependent kinases (CDKs), which are associated with the downregulation of the
HDAC5 and HDAC11 genes in the hepatocarcinoma HepG2 cell line [443]. A further
benefit of SFN is that it increases let-7 expression, which may have anti-IAV effects [202].
Moreover, SFN inhibits HCV [444] and DENV replication by the enhancement of anti-viral
interferon response through Nrf2-mediated HO-1 induction and the inhibition of DENV
protease [445]. In addition, SFN inhibited the in vitro replication of six strains of SARS-
CoV-2, including Delta and Omicron, and the seasonal coronavirus HCoV-OC43 [446].
SFN inhibited SARS-CoV-2 replication in vitro and in vivo, and when administered to
K18-hACE2 mice, it significantly decreased the viral load, reduced lung injury, and reduced
immune cell activation, suggesting its potential use as a prevention or treatment agent for
coronavirus infections [446].

In addition, SFN and remdesivir interacted synergistically to inhibit coronavirus
infection in vitro [447]. SFN treatment diminished immune cell activation in the lungs [446]
possibly mediated by the overexpression of let-7 which regulates immune response in
infected cells [202]. SFN anti-viral activity was exhibited both in vitro and in vivo by
interfering with viral replications as well as modulating the inflammatory immune response
and leading to a decreased viral load.

2.31. Tanshinone IIA

Tanshinone IIA is a natural bioactive compound found in Salvia miltiorrhiza Bunge’s
rhizome [448]. Wang et al. investigated tanshinone IIA’s role in epigenetic modifications,
demonstrating its effect on HDAC modification [449]. This bioactive molecule decreased
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the enzymatic activity of HDACs. Tanshinone IIA significantly reduced the protein levels
of HDAC1, HDAC3, and HDAC8 by lowering mRNA expression [449].

Tanshinone IIA was reported to be an inhibitor of MAPK p38 [450]. MAPK p38
is explored by many viruses for their efficient replications [47]. Natural products that
inhibit MAPK p38 activity might be a good candidate to exhibit broad-spectrum anti-viral
activity [450], including DENV [43], coronavirus [44], VEEV [45], EV71 [46], SFTSV, HSV-1,
and SARS-CoV-2 [47,450].

2.32. Ursolic Acid

Ursolic acid (3-beta-3-hydroxy-urs-12-ene-28-oic-acid) is a triterpenic acid found in
ginseng (Panax Ginseng C. A. Meyer), rosemary (Rosmarinus officinalis L.), apple peel, pear,
cranberry, and plum (Prunus domestica L.) [451]. It has been extensively studied for its
chemopreventive and chemotherapeutic effects on a variety of malignancies. Ursolic acid
significantly reduces the expression of various epigenetic regulatory factors, including
HDAC1, HDAC2, HDAC3, and HDAC8 (Class I), as well as HDAC6 and HDAC7 (Class
II) [452]. Zhao et al. (2012) reported an anti-CMV effect of ursolic acid which was signifi-
cantly stronger than that of ganciclovir [453].

2.33. Withaferin A

Withaferin A (WFA) is a steroidal lactone derived from the plant Withania somnifera
(L.) Dunal [454], known for its anticancer properties and ability to target several cancer
hallmarks such as cell proliferation, migration, invasion, and angiogenesis, as well as the
epigenetic process [454]. WFA displayed chemopreventive benefits by reversing epigenetic
alterations via the downregulation of HDAC1 protein levels [454]. Furthermore, WFA,
alone or in combination with SFN, significantly reduced HDAC1 expression at both the
mRNA and protein levels [455]. WFA with SFN decreased the HMT activity, but enhanced
the HAT activity [455].

WFA as well as other plant-derived substances exhibited a high potential in modu-
lating the main protease (Mpro) activity and cytokine storm in COVID-19 infection [456].
Moreover, WFA has the potential to attenuate the neuraminidase (NA) of H1N1 IVA. The
docking results of [456] predicted the high binding affinity of WFA toward NA [457].

3. Conclusions and Future Directions

In this review, we narrowed our study to activity against 20 main viruses, and we
reviewed 33 significant bioactive compounds (Table 3 and Figure 7) that had anti-viral and
epigenetic-altering properties.
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Table 3. Anti-viral activity of plant bioactive substances.

Name Structure Anti-Viral Activity and Mode of Action

Andrographolide
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Table 3. Cont.

Name Structure Anti-Viral Activity and Mode of Action
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Corosolic acid  

 

Alters CpG methylation sites, resulting in al-
tered gene expression [249].  

Increases the expression of acetylated histone 
H3 lysine 27 (H3K27ac), while decreasing his-
tone H3 lysine 27 trimethylation (H3K27Me3) 

[251]. 
Exhibits anti-viral activity against a number 

of viruses [248]. 

Curcumin 
 

Decreases the expression of HDAC1, HDAC3, 
HDAC8, and histone acetyltransferase p300 

while enhancing the expression of Ac-histone 
H4 protein [253]. 

Reduces HAT activity and inhibits DNMT 
[254]. 

Inhibition of HBV replication was attributed 
to a decrease in the acetylation level of 

cccDNA-bound histone H3 and H4 [255].  
Downregulates miR-350, miR-17-2-3p, let 7e-

3p, miR-1224, miR-466b-1-3p, miR-18a-5p, 
and miR-322-5p. 

Upregulates miR-122-5p, miR-3473, miR-182, 
and miR-344a-3p [256].   

Inhibits the replication of various viruses, in-
cluding HBV [255], HIV [258], IAV [259], 
HPV-18 [261], ZIKV, CHIKV, VSV, CVB3,  

EV71, RSV, HSV-2, KSHV, and HAdV [263].  

Ellagic acid  

 

Increases HDACs’ gene expression and his-
tone arginine methylation [268].  

Decreases H3K9 acetylation and HDAC9 dis-
sociation [268]. 

Inhibits SARS-CoV-2 viral entry and replica-
tion [269].  

Increases HDACs’ gene expression and histone arginine
methylation [268].

Decreases H3K9 acetylation and HDAC9 dissociation [268].
Inhibits SARS-CoV-2 viral entry and replication [269].

Epigallocatechin
gallate (EGCG)
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Inhibits the activity of DNMT 1, DNMT 3a, 
DNMT 3b [273], and HDACs [275] and down-
regulates the expression of HDAC1, HDAC2, 

and HDAC3 [277]. Inhibits HAT activity 
[278]. 

Decreases the levels of let-7e-5p, miR-103a-3p, 
miR-151a-5p, miR-195-5p, miR-222-3p, miR-

23a-3p, miR-23b-3p, miR-26a-5p, miR-27a-3p, 
miR-29b-3p, miR-3195, miR-3651, miR-4281, 

miR-4459, miR-4516, miR-762, and miR-125b-
5p [283].  

Induces the expression of miR-3663-3p, miR-
1181, miR-3613-3p, miR1281, miR-1539, miR-

221-5p, miR-374b, miR-4306, miR-500a-5p, 
miR590-5p miR-140-3p, and miR-221 [284] 

[285,286]. 
Inhibits the replication of IAV, HBV, HCV, 
HSV-1 and HSV-2, HPV, ZIKV, and SARS-

CoV-2 [288–294].  
Upregulates miR-548m and inhibits miR-122 
expression, which modulates HCV infectivity 

[291].  
Upregulates let-7 to increase interferon ex-

pression and inhibit IAV infection [202].  

Galangin 

 

Inhibits HDAC activity [299] and upregulates 
miR-455-5p [300].  

Exhibits antiviral activity against HSV-1 and 
CoxB1 [301]. 

Garcinol 

 

Decreases HAT activity of p300 and pCAF 
[303].  

Downregulates miR-21, miR-494, miR-495, 
and miR-1977 [309].  

Upregulates miR-453, miR-128, miR-1280 and 
miR-720, let-7a, let-7e, let-7f, miR-200b, and 

miR-200c [311].  
Inhibits HIV-1 reverse-transcriptase-associ-

ated ribonuclease H [312]. 

Inhibits the activity of DNMT 1, DNMT 3a, DNMT 3b [273], and
HDACs [275] and downregulates the expression of HDAC1,

HDAC2, and HDAC3 [277]. Inhibits HAT activity [278].
Decreases the levels of let-7e-5p, miR-103a-3p, miR-151a-5p,

miR-195-5p, miR-222-3p, miR-23a-3p, miR-23b-3p, miR-26a-5p,
miR-27a-3p, miR-29b-3p, miR-3195, miR-3651, miR-4281,

miR-4459, miR-4516, miR-762, and miR-125b-5p [283].
Induces the expression of miR-3663-3p, miR-1181, miR-3613-3p,

miR1281, miR-1539, miR-221-5p, miR-374b, miR-4306,
miR-500a-5p, miR590-5p miR-140-3p, and miR-221 [284–286].

Inhibits the replication of IAV, HBV, HCV, HSV-1 and HSV-2, HPV,
ZIKV, and SARS-CoV-2 [288–294].

Upregulates miR-548m and inhibits miR-122 expression, which
modulates HCV infectivity [291].

Upregulates let-7 to increase interferon expression and inhibit
IAV infection [202].
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miR590-5p miR-140-3p, and miR-221 [284] 
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Upregulates miR-548m and inhibits miR-122 
expression, which modulates HCV infectivity 

[291].  
Upregulates let-7 to increase interferon ex-

pression and inhibit IAV infection [202].  

Galangin 

 

Inhibits HDAC activity [299] and upregulates 
miR-455-5p [300].  

Exhibits antiviral activity against HSV-1 and 
CoxB1 [301]. 

Garcinol 

 

Decreases HAT activity of p300 and pCAF 
[303].  

Downregulates miR-21, miR-494, miR-495, 
and miR-1977 [309].  

Upregulates miR-453, miR-128, miR-1280 and 
miR-720, let-7a, let-7e, let-7f, miR-200b, and 

miR-200c [311].  
Inhibits HIV-1 reverse-transcriptase-associ-

ated ribonuclease H [312]. 

Inhibits HDAC activity [299] and upregulates miR-455-5p [300].
Exhibits antiviral activity against HSV-1 and CoxB1 [301].
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Nutrients 2023, 15, x FOR PEER REVIEW 38 of 62 
 

 

Epigallocatechin gallate 
(EGCG) 

 

Inhibits the activity of DNMT 1, DNMT 3a, 
DNMT 3b [273], and HDACs [275] and down-
regulates the expression of HDAC1, HDAC2, 

and HDAC3 [277]. Inhibits HAT activity 
[278]. 

Decreases the levels of let-7e-5p, miR-103a-3p, 
miR-151a-5p, miR-195-5p, miR-222-3p, miR-

23a-3p, miR-23b-3p, miR-26a-5p, miR-27a-3p, 
miR-29b-3p, miR-3195, miR-3651, miR-4281, 

miR-4459, miR-4516, miR-762, and miR-125b-
5p [283].  

Induces the expression of miR-3663-3p, miR-
1181, miR-3613-3p, miR1281, miR-1539, miR-

221-5p, miR-374b, miR-4306, miR-500a-5p, 
miR590-5p miR-140-3p, and miR-221 [284] 

[285,286]. 
Inhibits the replication of IAV, HBV, HCV, 
HSV-1 and HSV-2, HPV, ZIKV, and SARS-

CoV-2 [288–294].  
Upregulates miR-548m and inhibits miR-122 
expression, which modulates HCV infectivity 
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Decreases HAT activity of p300 and pCAF 
[303].  

Downregulates miR-21, miR-494, miR-495, 
and miR-1977 [309].  

Upregulates miR-453, miR-128, miR-1280 and 
miR-720, let-7a, let-7e, let-7f, miR-200b, and 

miR-200c [311].  
Inhibits HIV-1 reverse-transcriptase-associ-

ated ribonuclease H [312]. 

Decreases HAT activity of p300 and pCAF [303].
Downregulates miR-21, miR-494, miR-495, and miR-1977 [309].
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Genistein 

 

Reduces HDAC while increasing HAT activ-
ity [313].  

Inhibits miR-223 and miR-223 expression 
[316] which is involved in regulation of im-

mune response and viral infections [115,116] 
[117]. 

Ginkgolic acid 

 

Impairs protein SUMOylation [318]. 
Inhibits HSV-1, HSV-2, VZV, HCMV, ZIKV, 

IAV, EBV, HIV, EBOV, and Coronavirus 
COVID-19 [342]. 

Glycyrrhizic acid 

 

Inhibits replications of various viruses includ-
ing HBV, HCV, IAV H1N1, HIV [326], NDV 
[327], SARS-CoV-2 [458–460], RSV, VACV, 

HSV [329], and VSV [329,330]. 
Exhibits anti-inflammatory effects, decreasing 

IL-6 release [331] by regulating NF-κB and 
PI3K signaling pathways [333].  

Inhibits viral replication of various viruses 
including HBV, HCV, IAV H1N1, and HIV 

[326]. 

Grifolin 

 

Reduces Elk1 transcription as well as its bind-
ing to the DNMT1 promoter region ]146[ . 
Modulates ERK1/2-Elk1-DNMT1 signaling 

[344]. 

Oleacein 

 

Downregulates several class I/II HDACs 
[346,347]. 

Exhibits antiviral effect against HIV-1 [349]. 

Plitidepsin 

 

Targets the eukaryotic translation elongation 
factor 1A (eEF1A) [382]. 

Exhibits anti-viral activity against RSV, gas-
troenteritis coronavirus [383], and SARS-CoV-

2 [384,385]. 

Reduces HDAC while increasing HAT activity [313].
Inhibits miR-223 and miR-223 expression [316] which is involved
in regulation of immune response and viral infections [115–117].

Ginkgolic acid
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Exhibits anti-inflammatory effects, decreasing 

IL-6 release [331] by regulating NF-κB and 
PI3K signaling pathways [333].  

Inhibits viral replication of various viruses 
including HBV, HCV, IAV H1N1, and HIV 

[326]. 

Grifolin 

 

Reduces Elk1 transcription as well as its bind-
ing to the DNMT1 promoter region ]146[ . 
Modulates ERK1/2-Elk1-DNMT1 signaling 

[344]. 

Oleacein 

 

Downregulates several class I/II HDACs 
[346,347]. 

Exhibits antiviral effect against HIV-1 [349]. 

Plitidepsin 

 

Targets the eukaryotic translation elongation 
factor 1A (eEF1A) [382]. 

Exhibits anti-viral activity against RSV, gas-
troenteritis coronavirus [383], and SARS-CoV-

2 [384,385]. 

Impairs protein SUMOylation [318].
Inhibits HSV-1, HSV-2, VZV, HCMV, ZIKV, IAV, EBV, HIV, EBOV,

and Coronavirus COVID-19 [342].
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mune response and viral infections [115,116] 
[117]. 
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Inhibits HSV-1, HSV-2, VZV, HCMV, ZIKV, 

IAV, EBV, HIV, EBOV, and Coronavirus 
COVID-19 [342]. 
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Inhibits replications of various viruses includ-
ing HBV, HCV, IAV H1N1, HIV [326], NDV 
[327], SARS-CoV-2 [458–460], RSV, VACV, 

HSV [329], and VSV [329,330]. 
Exhibits anti-inflammatory effects, decreasing 

IL-6 release [331] by regulating NF-κB and 
PI3K signaling pathways [333].  

Inhibits viral replication of various viruses 
including HBV, HCV, IAV H1N1, and HIV 

[326]. 

Grifolin 

 

Reduces Elk1 transcription as well as its bind-
ing to the DNMT1 promoter region ]146[ . 
Modulates ERK1/2-Elk1-DNMT1 signaling 

[344]. 

Oleacein 

 

Downregulates several class I/II HDACs 
[346,347]. 

Exhibits antiviral effect against HIV-1 [349]. 

Plitidepsin 

 

Targets the eukaryotic translation elongation 
factor 1A (eEF1A) [382]. 

Exhibits anti-viral activity against RSV, gas-
troenteritis coronavirus [383], and SARS-CoV-

2 [384,385]. 

Inhibits replications of various viruses including HBV, HCV, IAV
H1N1, HIV [326], NDV [327], SARS-CoV-2 [458–460], RSV, VACV,

HSV [329], and VSV [329,330].
Exhibits anti-inflammatory effects, decreasing IL-6 release [331]

by regulating NF-κB and PI3K signaling pathways [333].
Inhibits viral replication of various viruses including HBV, HCV,

IAV H1N1, and HIV [326].

Grifolin
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Reduces Elk1 transcription as well as its bind-
ing to the DNMT1 promoter region ]146[ . 
Modulates ERK1/2-Elk1-DNMT1 signaling 

[344]. 

Oleacein 

 

Downregulates several class I/II HDACs 
[346,347]. 

Exhibits antiviral effect against HIV-1 [349]. 

Plitidepsin 

 

Targets the eukaryotic translation elongation 
factor 1A (eEF1A) [382]. 

Exhibits anti-viral activity against RSV, gas-
troenteritis coronavirus [383], and SARS-CoV-

2 [384,385]. 

Reduces Elk1 transcription as well as its binding to the DNMT1
promoter region [461].

Modulates ERK1/2-Elk1-DNMT1 signaling [344].

Oleacein
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IL-6 release [331] by regulating NF-κB and 
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Inhibits viral replication of various viruses 
including HBV, HCV, IAV H1N1, and HIV 

[326]. 

Grifolin 

 

Reduces Elk1 transcription as well as its bind-
ing to the DNMT1 promoter region ]146[ . 
Modulates ERK1/2-Elk1-DNMT1 signaling 

[344]. 

Oleacein 

 

Downregulates several class I/II HDACs 
[346,347]. 

Exhibits antiviral effect against HIV-1 [349]. 

Plitidepsin 

 

Targets the eukaryotic translation elongation 
factor 1A (eEF1A) [382]. 

Exhibits anti-viral activity against RSV, gas-
troenteritis coronavirus [383], and SARS-CoV-

2 [384,385]. 

Downregulates several class I/II HDACs [346,347].
Exhibits antiviral effect against HIV-1 [349].

Plitidepsin

Nutrients 2023, 15, x FOR PEER REVIEW 39 of 62 
 

 

Genistein 

 

Reduces HDAC while increasing HAT activ-
ity [313].  

Inhibits miR-223 and miR-223 expression 
[316] which is involved in regulation of im-

mune response and viral infections [115,116] 
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Impairs protein SUMOylation [318]. 
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IAV, EBV, HIV, EBOV, and Coronavirus 
COVID-19 [342]. 
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Inhibits replications of various viruses includ-
ing HBV, HCV, IAV H1N1, HIV [326], NDV 
[327], SARS-CoV-2 [458–460], RSV, VACV, 

HSV [329], and VSV [329,330]. 
Exhibits anti-inflammatory effects, decreasing 

IL-6 release [331] by regulating NF-κB and 
PI3K signaling pathways [333].  

Inhibits viral replication of various viruses 
including HBV, HCV, IAV H1N1, and HIV 

[326]. 

Grifolin 

 

Reduces Elk1 transcription as well as its bind-
ing to the DNMT1 promoter region ]146[ . 
Modulates ERK1/2-Elk1-DNMT1 signaling 

[344]. 

Oleacein 

 

Downregulates several class I/II HDACs 
[346,347]. 

Exhibits antiviral effect against HIV-1 [349]. 

Plitidepsin 

 

Targets the eukaryotic translation elongation 
factor 1A (eEF1A) [382]. 

Exhibits anti-viral activity against RSV, gas-
troenteritis coronavirus [383], and SARS-CoV-

2 [384,385]. 

Targets the eukaryotic translation elongation factor 1A
(eEF1A) [382].

Exhibits anti-viral activity against RSV, gastroenteritis
coronavirus [383], and SARS-CoV-2 [384,385].
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Pterostilbene 

 

Modulates HDAC activity and inhibits SIRT1 
[387,388].  

Inhibits SARS-CoV-2 replication [389] 

Quercetin 

 

Enhances histone H3 acetylation, activates 
HAT, and inhibits HDAC activities [391].  

Inhibits HMT [213].  
Inhibits miR-146a expression [392], a regula-

tor of HIV replication [393], and miR-16, miR-
217, and miR-145 [395–397]. 

Inhibits replication of IAV H1N1, IVA H3N2, 
HBV, HCV, DENV, poliovirus, rhinovirus, 

CHIKV, MERS-CoV, HSV 1/2, EBV, RSV, Ar-
bovirus, EBOV, HIV, Japanese encephalitis vi-
rus, hAdV, enterovirus, ZIKV, NDV, MAYV, 

and SARS-CoV-2 [197,293,398–400]. 
Activates SIRT1 which resulted in inhibition 

of HCV [403] 
Upregulates let-7 which restores anti-viral im-
mune response and thus exhibits anti-IVA ac-

tivity [202]. 

Resveratrol 

 

Inhibits HDAC [406,407] and activates SIRT1 
[409].  

Decreases the levels of miR-17, miR-21, miR-
25, miR-92a-2, miR-103-1, and miR-103-2 [410] 

and upregulates miR-200c [411]. 
In a human study, it increased miR-21, miR-
181b, miR-663, and miR-30c, while reducing 
inflammatory cytokines like IL-6, CCL3, IL-

1β, and TNF-α [412]. 
Inhibits HSV infection [414], beta-corona vi-
ruses such as MERS-COV and SARS-CoV-2 

[415], Varicella-zoster virus (VZV) wild-type 
and DNA polymerase mutants with acyclo-

vir-resistant VZV [419,420], VEEV [421], EBV 
[422], CV [423], and RSV. 

SIRT proteins regulate HBV replication and 
thus SIRT modulators such as resveratrol are 
suitable as to be used against HBV and RSV 

infections [402,425]. 

Silibinin 

 

Inhibits the expression of HDAC1, HDAC2, 
HDAC3, HDAC6, SET domain proteins 

(SETD1A, D4, D6), and lysine-specific deme-
thylases (KDM 5B, 5C, 4A) [315].  

Inhibits DNMTs [428–430].   

Modulates HDAC activity and inhibits SIRT1 [387,388].
Inhibits SARS-CoV-2 replication [389]

Quercetin
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Decreases the levels of miR-17, miR-21, miR-
25, miR-92a-2, miR-103-1, and miR-103-2 [410] 

and upregulates miR-200c [411]. 
In a human study, it increased miR-21, miR-
181b, miR-663, and miR-30c, while reducing 
inflammatory cytokines like IL-6, CCL3, IL-

1β, and TNF-α [412]. 
Inhibits HSV infection [414], beta-corona vi-
ruses such as MERS-COV and SARS-CoV-2 

[415], Varicella-zoster virus (VZV) wild-type 
and DNA polymerase mutants with acyclo-

vir-resistant VZV [419,420], VEEV [421], EBV 
[422], CV [423], and RSV. 

SIRT proteins regulate HBV replication and 
thus SIRT modulators such as resveratrol are 
suitable as to be used against HBV and RSV 

infections [402,425]. 

Silibinin 

 

Inhibits the expression of HDAC1, HDAC2, 
HDAC3, HDAC6, SET domain proteins 

(SETD1A, D4, D6), and lysine-specific deme-
thylases (KDM 5B, 5C, 4A) [315].  

Inhibits DNMTs [428–430].   

Enhances histone H3 acetylation, activates HAT, and inhibits
HDAC activities [391].

Inhibits HMT [213].
Inhibits miR-146a expression [392], a regulator of HIV

replication [393], and miR-16, miR-217, and miR-145 [395–397].
Inhibits replication of IAV H1N1, IVA H3N2, HBV, HCV, DENV,
poliovirus, rhinovirus, CHIKV, MERS-CoV, HSV 1/2, EBV, RSV,

Arbovirus, EBOV, HIV, Japanese encephalitis virus, hAdV,
enterovirus, ZIKV, NDV, MAYV, and SARS-CoV-2

[197,293,398–400].
Activates SIRT1 which resulted in inhibition of HCV [403]

Upregulates let-7 which restores anti-viral immune response and
thus exhibits anti-IVA activity [202].
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Table 3. Cont.

Name Structure Anti-Viral Activity and Mode of Action
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Not all bioactive substances that alter epigenetic modifications were reported to
have anti-viral activity. On the other hand, other bioactive substances exhibited anti-viral
activity without any evidence of epigenetic effects. This suggests that epigenetic pathways
might contribute to the anti-viral effect of these bioactive compounds, but are not the
exclusive mechanisms explaining their action. This missing information will need to be
evaluated experimentally.

We have shown that a variety of bioactive compounds can modulate epigenetic modifi-
cations such as DNA methylation, histone modifications, and miRNA expression. Bioactive
substances such as EGCG, apigenin, curcumin, quercetin, berberine, resveratrol, genistein,
silibinin, and sulforaphane were particularly interesting for their complex effect on differ-
ent epigenetic pathways. Some bioactive substances, such as ellagic acid, tanshinone IIA,
selenium, cordyceptin, grifolin, andrographolide, ursolic acid, corosolic acid, and betulinic
acid, can affect just one epigenetic mark, while others, such as EGCG, showed activities on
all epigenetic features.

It should be noted that not all bioactive chemicals that influence the activity of epi-
genetic mediators have been evaluated for anti-viral activity. Others showed anti-viral
efficacy but without a definite mechanism of action. Some bioactive substances showed
anti-viral activity against a limited number of viruses, whilst others were efficient in inhibit-
ing a wide range of viruses. Some bioactive substances have a broad-spectrum anti-viral
activity, inhibiting both RNA and DNA viruses. Among all the compounds, curcumin
and glycyrrhizic acid are especially notable. Glycyrrhizic acid inhibited 80% and 65% of
the DNA and RNA viruses (respectively) reviewed. Curcumin also inhibited 70% and
55% of the DNA and RNA viruses (respectively) examined. Others have been reported
to inhibit just a few viruses, which may be connected to the mechanism of action of such
bioactivesubstances which target a specific protein or enzyme required by the particular
virus. Alternatively, the bioactive-specific antiviral activity was neither examined nor
evaluated against other viruses. This does not indicate a lack of activity, but rather a lack of
experimental evidence.

Our analysis showed that several bioactive agents exhibited a broad spectrum of an-
tiviral activities against both RNA and DNA viruses. For example, baicalin, sulforaphane,
apigenin, ginkgolic acid, andrographolide, EGCG, resveratrol, berberine, quercetin, cur-
cumin, and glycyrrhizic acid showed inhibitory effects on 5, 5, 9, 11, 12, 13, 13, 14, 17, and
18 distinct viruses, respectively.

Furthermore, we observed that many bioactive anti-viral compounds exhibited anti-
viral activity against RNA viruses but had little or no effect against DNA viruses. This is
especially evident in the case of sulforaphane, silvestrol, orsaponin, plitidepsin, and raoulic
acid which inhibited only RNA viruses and had no impact on any of the DNA viruses
evaluated. Similarly, the majority of viruses inhibited by apigenin and baicalein were RNA
viruses. This may indicate that the above bioactive agents may directly or indirectly affect
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the enzymes found in RNA viruses such as RT or the RNA-dependent RNA polymerase
(RdRp) activity.

Substances in natural products have shown epigenetic modifying activity and can
affect the replication of various viruses. These plant-derived epigenetic modifiers alter
gene expression by targeting the epigenome, reversible DNA/protein modification, and
chromatin remodeling. Viruses rely on epigenome modification to ensure successful
replication, latency, or escape from the immune response system. The reversal of the
epigenome by plant-derived bioactive substances could result in blocking the virus’ life
cycle, disrupting latency, and activating the immune response to fight viral infections.

The use of epigenetic modifiers as a means to combat viral infections has several
advantages. As epigenetic modifications play an essential role in controlling viral gene
expression, it is possible to block the replication and expression of a variety of viruses by
targeting these modifications. This approach is applicable against both DNA and RNA
viruses, making it a viable tool to combat a broad spectrum of viral diseases.

Because host epigenetic mechanisms are less susceptible to mutation, the likelihood of
developing resistance is low, allowing for longer antiviral efficacy. Some viral infections,
such as HSV and HIV, can lead to latent infections in host cells, making them difficult to
eradicate. Epigenetic manipulations have the potential to reactivate dormant viruses so that
they can be targeted and eliminated by the immune system or antiviral therapies. Focusing
on epigenetic pathways may therefore offer a potential approach to overcome viral latency
and eliminate the virus completely. Epigenetic therapies might be used in the future in
conjunction with standard antiviral drugs or vaccines to increase their efficacy. By altering
host factors, epigenetic therapies can create a hostile environment for viral replication and
make viruses more susceptible to the direct antiviral effects of conventional drugs.

This synergy may improve therapeutic outcomes and minimize the possibility of
treatment failure. The treatment of viral infections via epigenetic signaling pathways
presents some unique difficulties. The mechanisms of epigenetic regulation are complicated
and not fully understood. This makes it difficult to develop safe and effective drugs that
target epigenetic mechanisms. In addition, epigenetic mechanisms control gene expression
in all cells, not just those infected with viruses. This means that plant-based agents with
epigenetic targets must focus on the epigenetic processes involved in viral replication.

Most natural products have been shown to be safe and well tolerated in animal studies,
but further clinical studies are needed to confirm their safety and efficacy in humans. These
natural products represent a promising new class of antiviral agents because they target
different steps in the viral life cycle, reducing the likelihood of viruses developing resistance.
Although there is no guarantee that natural products will be effective against all unknown
viruses, it is likely that their ability to act on host functions will make them effective in
combating future viral infections.

The bioavailability of natural products in humans is a complicated issue that is influ-
enced by elements such as the properties of the compound, the route of administration, and
individual physiology. The therapeutic potential of natural products is limited because they
are often less bioavailable than synthetic drugs. However, there are many ways to improve
the bioavailability of natural products, such as advanced delivery systems or focusing on
specific tissues.

Further clinical studies are needed to confirm their safety and efficacy. Innovative
in vitro and in vivo studies are among the avenues for exploring natural products with
broad antiviral activity. The discovery of novel natural product derivatives with enhanced
antiviral activity and improved bioavailability is a promising avenue of research. The
development of innovative natural product delivery technologies, such as nanocarriers,
could overcome the bioavailability issues faced by most plant-derived bioactive substances.
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