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ON THE RELATIVE CATEGORY IN THE BRAKE ORBITS PROBLEM

D. CORONA — R. GIAMBÒ — F. GIANNONI — P. PICCIONE

Dedicated to the memory of Edward Fadell and Sufian Husseini

ABSTRACT. In this paper dedicated to the memory of Edward Fadell and Sufian Hus-
seini we show how the notion of Lusternik Schnirelmann relative category can be used
to study a multiplicity problem for brake orbits in a potential well which is homeomor-
phic to the N–dimensional unit disk. The estimate of the relative category of the set
of chords with endpoints on the (N − 1)–unit sphere was shown to the third author by
Fadell and Husseini while he was visiting the University of Wisconsin at Madison.

1. Introduction

Algebraic Topology plays a fundamental role in many areas of Mathematics. In
the specific case of Calculus of Variations, Algebraic Topology provides a number of
topological invariants that can be used to give lower estimates of the number of solutions
to variational problems. Typically, the definition of such invariants uses appropriate
variants of (relative) homology/cohomology theory or, as in the case of the celebrated
Lusternik–Schnirelman category which has a lower bound in terms of the cuplength,
they can be estimated using homological/cohomological techniques. Recall that the
Lusternik–Schnirelman category of a topological space X , denoted by cat(X), is the
minimal integer k ∈ N

⋃
{+∞} such that X admits a covering formed by k closed

contractible subsets. The reader will find many examples of topological invariants and
their use in Nonlinear Analysis in [6] and in the references therein.
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Many of such topological invariants have a relatively straightforward definition, but
possess an extremely high level of complexity as far as explicit calculations are con-
cerned. A prototypical example of such situation is given by the Lusternik-Schnirelman
relative category, that is the central notion of the present paper. Let us adopt the con-
vention in [7, Definition 3.1] and give the following:

DEFINITION 1.1. Let X be a topological space and let Y be a closed subset of X . A
closed subset F of X has relative category equal to k ∈ N, and we write catX,Y (F ) =

k, if k is the minimal positive integer such that there exists a family (Ai)
k
i=0 of open

subsets of X such that F ⊂
k⋃

i=0

Ai, F ∩ Y ⊂ A0, and such that for all i = 0, . . . , k

there exists a continuous map hi : [0, 1]×Ai → X with the following properties:

(1) hi(0, x) = x, ∀x ∈ Ai, ∀i = 0, . . . , k;

(2) for every i = 1, . . . , k:
(a) there exists xi ∈ X \ Y such that hi(1, Ai) = {xi};
(b) hi

(
[0, 1]×Ai

)
⊂ X \ Y ;

(3) if i = 0:
(a) h0(1, A0) ⊂ Y ;
(b) h0(τ,A0 ∩ Y ) ⊂ Y, ∀ τ ∈ [0, 1].

It is fairly obvious that, for a general triple (X,Y, F ) of topological spaces, an
explicit calculation of catX,Y (F ) can be extremely difficult to perform. In case X is
the set of chords with extreme points on the (N−1)–dimensional sphere SN−1, and Y is
the set of the constant chords on SN−1, this number plays a key role for the multiplicity
of brake orbits of a natural Hamiltonian system in a potential well homeomorphic to an
N -dimensional unit disk.

Edward Fadell and Sufian Husseini gave important contributions in the study of
these topological invariants, and developed tools that allowed estimates of their value,
which contributed also to Critical Point theory. The interested reader can find mentions
of these contributions in [6] and the references therein.

In particular, Fadell and Husseini provided an estimate of the relative category of
the set of chords with endpoints on the (N−1)–dimensional sphere modulo the constant
curves. This was obtained using by an ingenious calculation, that was shown to the third
author of the present paper while he was visiting the University of Wisconsin-Madison
in 1991. Such a calculation is described in Proposition 2.1, and it was recently used in
[13] for the proof of the Seifert conjecture about multiple brake orbits, and also in other
recent multiplicity results (see, e.g., [3, 5]).

2. The estimate of the relative category

In this section we discuss the estimate on the relative category of (C,C0), where C

and C0 are defined below.
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Let 2 ≤ N ∈ N, DN the unit disk in the Euclidean space RN , and SN−1 = ∂DN .
Let R be the reversing map Rx(s) = x(1− s), defined in the set of curves x : [0, 1] →
DN . With a slight abuse of notation we will denote by R also the equivalence relation
induced in the set of paths in the disk. Fix σ ∈ ]0, 1[ and set

C = {γ : [0, 1] → DN , γ(t) = (1− t)x1 + tx2, x1, x2 ∈ SN−1},(2.1)

Cσ = {γ ∈ C : |γ(1)− γ(0)| ≤ σ},(2.2)

and

C0 = {γ ∈ C : γ(t) = x ∈ SN−1 ∀t ∈ [0, 1]}.(2.3)

Moreover for any A ⊂ C we set
Ã = A/R.

Note that C̃ is homeomorphic to (SN−1 × SN−1)/Z2 where the action of Z2 on the
product SN−1 × SN−1 is given by S(A,B) = (B,A).

Our aim is to prove the following result.

PROPOSITION 2.1. Let C and C0 be defined as in (2.1) and (2.3), respectively. Then

(2.4) catC̃,C̃0
(C̃) ≥ N.

REMARK 2.2. In our case, property (2b) of Definition 1.1 is essential to guarantee
that the relative category of C̃ is at least N . Indeed, if we did not require (2b) in the
definition of relative category we would have catC̃,C̃0

(C̃) ≤ cat(C̃) ≤ 3, where the last
inequality has been proved in [15].

The proof of Proposition 2.1 will be performed using singular cohomology theory
and the cup product (see e.g. [28]) with Z2 coefficients which, for each topological pair
(X,Y ), will be denoted by Hq(X,Y ) at any dimension q ≥ 0. We will also exploit
another cohomological invariant, called the relative cuplength, whose definition is the
following.

DEFINITION 2.3. The number cuplength(X,Y ) is the largest positive integer k for
which there exists α0 ∈ Hq0(X,Y ) (q0 ≥ 0) and αi ∈ Hqi(X), i = 1, . . . , k such that

qi ≥ 1, ∀ i = 1, . . . , k,

and
α0 ∪ α1 ∪ . . . ∪ αk ̸= 0 in Hq0+q1+...+qk(X,Y ),

where ∪ denotes the cup product.

Recall that, if Y ̸= ∅, the absolute cuplenght of X is the largest positive integer k
for which there exists αi ∈ Hqi(X), i = 1, . . . , k such that

qi ≥ 1, ∀i = 1, . . . , k,

and
α1 ∪ . . . αk ̸= 0 in Hq1+...+qk(X).
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PROOF OF PROPOSITION 2.1. The proof is divided into four steps.
Step 1. catC̃,C̃0

(C̃) ≥ cuplength(C̃ \ C̃0, C̃σ \ C̃0) + 1.
Assume that catC̃,C̃0

(C̃) = k < +∞. Since C̃0 is not a retract of C̃, it is k ≥ 1.
Take A0, A1, . . . , Ak open subsets as in definition 1.1, and let

ır : Ar → C̃ \ C̃0, ȷr : (C̃ \ C̃0, ∅) → (C̃ \ C̃0, Ar)

be inclusion maps. By property (2) of Definition 1.1, ı∗r : Hq(C̃ \ C̃0) → Hq(Ar) is the
zero constant map for any q ≥ 1 and any r ≥ 1. Then, since the sequence

. . . −→ Hqr (C̃ \ C̃0, Ar)
ȷ∗r−→ Hqr (C̃ \ C̃0)

ı∗r−→ Hqr (Ar) −→ . . .

is exact, then ȷ∗r is surjective if qr ≥ 1. Then for any αr ∈ Hqr (C̃ \ C̃0), if qr ≥ 1, there
exists βr ∈ Hqr (C̃ \ C̃0, Ar) such that ȷ∗r(βr) = αr.

Since C̃0 ⊂ A0, A0 is open and C̃0 is closed, there exists σ ∈ ]0, 1[ such that
C̃σ ⊂ A0. Moreover by property (3b) of Definition 1.1, σ can be chosen sufficiently
small so that, up to consider a projection on C̃0, a homotopy ĥ0 can be built such that
ĥ0(τ, C̃σ) ⊂ C̃σ, ∀τ ∈ [0, 1], (while, obviously, ĥ0(1, A0) ⊂ C̃σ).

Now consider the inclusion maps

ȷ0 : (C̃, C̃σ) → (C̃, A0), ı0 : (A0, C̃σ) → (C̃, C̃σ),

and the (exact) sequence

. . . −→ Hq0(C̃, A0)
ȷ∗0−→ Hq0(C̃, C̃σ)

ı∗0−→ Hq0(A0, C̃σ) −→ . . .

Since ı∗0 : Hq0(C̃, C̃σ) → Hq0(A0, C̃σ) is the constant zero map, then ȷ∗0 is surjective
and for any α0 ∈ Hq0(C̃, C̃σ) there exists β0 ∈ Hq0(C̃, A0) such that ȷ∗0(β0) = α0.

Since C̃0 is a strong deformation retract of C̃σ and since σ < 1, by excision property
(recalling that C̃σ ⊂ A0) we have that for every α̂0 ∈ Hq0(C̃ \ C̃0, C̃σ \ C̃0) there exists
β̂0 ∈ Hq0(C̃ \ C̃0, A0 \ C̃0) such that

ȷ∗0(β̂0) = α̂0,

where ȷ0 : (C̃ \ C̃0, C̃σ \ C̃0) → (C̃ \ C̃0, A0 \ C̃0) is the inclusion map.
Since Ai are open sets, we have

β̂0 ∪ β1 ∪ . . . ∪ βk ∈ Hq0+q1+...+qk(C̃ \ C̃0, (A0 \ C̃0) ∪A1 ∪ . . . ∪Ak) =

Hqo+q1+...+qk(C̃ \ C̃0, C̃ \ C̃0) = 0.

Moreover, by the naturality of the cup product (see [28]) we have (denoting by ȷ the
inclusion map)

α̂0 ∪ α1 ∪ . . . ∪ αk = ȷ∗(β̂0 ∪ β1 ∪ . . . ∪ βk) = ȷ∗(0) = 0,

proving that cuplength(C̃ \ C̃0, C̃σ \ C̃0) < k.
Step 2. cuplength(C̃ \ C̃0, C̃σ \ C̃0) = cuplength(Xσ, Yσ), where

Xσ = {[γ] ∈ C̃ : |γ(1)− γ(0)| ≥ σ}, Yσ = {[γ] ∈ C̃ : |γ(1)− γ(0)| = σ}.



RELATIVE CATEGORY AND MULTIPLE BRAKE ORBITS 5

This is straightforward, once one gets the existence of H ∈ C0([0, 1]× C̃ \ C̃0, C̃ \ C̃0)

such that H(0, x) = x ∀x ∈ C̃ \ C̃0, H(τ, x) = x, ∀x ∈ Xσ, ∀τ ∈ [0, 1], and

H(1, C̃ \ C̃0) = Xσ, H(1, C̃σ \ C̃0) = Yσ.

Step 3. cuplength(Xσ, Yσ) = cuplength(E, ∂E), where E is the closed unit disk
bundle over the manifold PN−1 and ∂E its boundary.
This is an immediate consequence of the fact that (Xσ, Yσ) is homeomorphic to (E, ∂E).

Step 4. cuplength(E, ∂E) ≥ N − 1.

To prove this, let us observe that

Hq(DN−1, ∂DN−1) =

0, if q ̸= N − 1,

Z2, if q = N − 1.

Denoting by π the canonical projection of E in PN−1, thanks to the contractibility of
DN−1 we see that

(2.5) π∗ : Hq(E) → Hq(PN−1) is an isomorphism ∀q ≥ 0.

Since we are considering Z2–coefficients there are not problems with orientation, and
by [28, Corollary 5.7.18] the fiber bundle pair ((E, ∂E),PN−1, (DN−1, ∂DN−1), π)

has a unique orientation cohomology class ζN−1 with dimension N − 1. Then, by
Thom isomorphism Theorem (see [28, Theorem 5.7.10]) the homomorphism

Φ : H1(PN−1) → Hq+N−1(E, ∂E)

given by Φ(z) = π∗(z) ∪ ζN−1 is an isomorphism for any q ≥ 0. From this fact and
from (2.5) we deduce that

cuplength(E, ∂E) ≥ cuplength(E).

Finally, using (2.5) and standard results in literature (see e.g. [28]),

cuplength(E) = cuplength(PN−1) = N − 1. □

From a critical point theorist’s perspective, it would be extremely interesting to have
a proof of Proposition 2.1 that does not rely on sophisticated algebraic topological tools,
like the Thom Isomorphism Theorem. For instance, one could try to adapt Rabinowitz’s
estimate of the category of the projective space (see [25, Section 3]). We recall that
argument here for the reader’s convenience.

PROPOSITION 2.4. Let PN−1 denote the (N − 1)–dimensional real projective
space. Then cat(PN−1) ≥ N .

The proof of Proposition 2.4 is carried out in different steps, each of which as its
own interest. In order to pave the way, let us give the following
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DEFINITION 2.5. Let E be a normed vector space and F ⊂ E be a closed nonempty
subset with 0 ̸∈ F . We say that F has order 1 (ordF = 1) if F ∩ (−F ) = ∅. We say
that F has order p (ordF = p) if p is the minimum natural number such that there exist
p closed subsets F1, . . . , Fp of order 1 that verify ∪p

i=1Fi ⊃ F . We set ord (∅) = 0.

REMARK 2.6. From the above definition, it is easy to see that if A and B are two
closed subsets that do not contain the zero, if A ⊂ B then ord A ≤ ord B.

PROPOSITION 2.7. The sphere of dimension N−1 has order at least N+1, namely

ord(SN−1) ≥ N + 1.

PROOF. Let us consider F1, . . . , Fm closed sets that covers SN−1. Assume that
m ≤ N and ordFi = 1, for each i = 1, . . .m − 1. To obtain the thesis, it will be
sufficient to show that ordFm ≥ 2.

Consider now the maps ϕi : S
N−1 → R defined by:

(2.6) ϕi(u) =
d(u,−Fi)

d(u, Fi) + d(u,−Fi)
, i = 1, . . . ,m− 1 (m ≤ N).

Since Fi ∩ (−Fi) = ∅, we have that each ϕi is continuous. Note that

ϕi(u) = 1, ∀u ∈ Fi,(2.7)

ϕi(u) = 0, ∀u ∈ −Fi.(2.8)

Also, let us define Φ: SN−1 → Rm−1 ⊂ RN−1 as

(2.9) Φ(u) = (ϕ1(u), . . . , ϕm−1(u)).

From Borsuk-Ulam Theorem, there exists u ∈ SN−1 such that

(2.10) Φ(u) = Φ(−u).

As a consequence, we have that

(2.11) u /∈ Fi, ∀i = 1, . . . ,m− 1.

Indeed, recalling that ordFi = 1 for each i = 1, . . . ,m − 1, if u ∈ Fi, then
−u /∈ Fi, so

ϕi(u) = 1 ̸= 0 = ϕi(−u),

which is a contradiction. As a consequence, since F1, . . . , Fm cover SN−1, we have
that both u and −u belong to Fm, hence ordFm ≥ 2, and we are done. □

LEMMA 2.8. Consider K ⊂ E, K closed, 0 /∈ K, K symmetric w.r.t. the origin
(that is, x ∈ K ⇒ −x ∈ K). Then,

(2.12) ord K ≤ N + 1 ⇐⇒ ∃F1, . . . , FN closed sets with

Fi ∩ −Fi = ∅,
N⋃
i=1

Fi ∪
N⋃
i=1

(−Fi) = K.
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PROOF. Assume ordK ≤ N + 1. Then there exists F1, . . . , FN+1 closed sets of
order 1 that covers K. We get

(2.13) K ⊂ F1 ∪ (−F1) ∪ F2 ∪ (−F2) . . . ∪ FN ∪ (−FN )

Indeed, if x ∈ K, x /∈
N⋃
i=1

Fi and x /∈
N⋃
i=1

(−Fi) then x ∈ FN+1 and x ∈ (−FN+1),

which is absurd since ordFN+1 = 1.

Let us now prove the converse. Since any Fi is closed and Fi ∩ −Fi = ∅, for any
i = 1, . . . , N there exists and open set Ai including Fi such that Ai ∩ (−Ai) = ∅. Let
us consider

(2.14) F ∗
N+1 : = K \ (

N⋃
i=1

Ai), F ∗
i = Ai, i = 1, . . . , N,

that are N+1 closed sets that cover K. Clearly ord Fi = 1 for any i = 1, . . . , N . Then
to conclude the proof it suffices to prove that F ∗

N+1 has order 1 whenever ordK > N .
We first note that F ∗

N+1 ̸= ∅. If not, ∪N
i=1Ai ⊃ K, so ∪N

i=1Ai ⊃ K which implies
ordK ≤ N .

Moreover, F ∗
N+1∩(−F ∗

N+1) = ∅. Indeed if there exists x ∈ F ∗
N+1 and x ∈ −F ∗

N+1

we have

(2.15) x /∈
⋃

Ai, x /∈
⋃

Fi, −x /∈
⋃

Ai, −x /∈
⋃

Fi

which is absurd. □

For any B ⊂ E denote by B̃ the quotient space with respect to the equivalence
relation x ∼ y if and only if x = y or x = −y. In B̃ consider the distance between
equivalent classes:

d([u,−u], [v,−v]) = min{|u− v|, |u+ v|}.

THEOREM 2.9. Consider S ≡ SN = {x ∈ RN+1 : ∥x∥ = 1}. Let K ⊂ S be
closed and symmetric with respect to the origin. Then, ordK ≤ catS̃ K̃ + 1.

PROOF. Let F̃1, . . . , F̃N be closed and contractible sets that cover K̃.
We are going to show that for every F̃i, setting Fi := π−1(F̃i), where π(x) = [x] =

{x,−x}, there exists a close set F i
0 such that

(2.16) Fi = F i
0 ∪ (−F i

0), F i
0 ∩ (−F i

0) = ∅.

This suffices to conclude the proof, since it implies that K can be covered by N closed
sets as in Lemma 2.8, so ordK ≤ N + 1.

Therefore, let F̃ be a closed and contractible set and F = π−1(F̃ ). Since F is
contractible in S̃ there exists a continuous map Φ̃ : [0, 1]× F̃ → S̃ such that

(2.17) Φ̃(0, ũ) = ũ, ∀ũ ∈ F̃ ,



8 D. CORONA — R. GIAMBÒ — F. GIANNONI — P. PICCIONE

(2.18) Φ̃(1, ũ) = ũ0, ∀ũ ∈ F̃ .

Now the uniform continuity of Φ̃ says that

(2.19) ∃δ > 0: |t− t′| < δ =⇒ d(Φ̃(t, ũ), Φ̃(t′, ũ)) ≤ 1

Now define

(2.20) Φ(t, u) : = v ∈ Φ̃(t, ũ),

Since S has radius 1 we have ∥v − u∥ ≤ 1 and the map Φ is continuous and such that

Φ(t,−u) = −Φ(t, u),(2.21)

π(Φ(t, u)) = Φ̃(t, π(u)),(2.22)

Φ(0, u) = u, Φ(1, u) ∈ {u0 − u0}.(2.23)

Then we can set

F0 = {u ∈ F : Φ(1, u) = u0},(2.24)

−F0 = {v : − u ∈ F0} = {v ∈ F : Φ(1, v) = −u0},(2.25)

proving (2.16). □

REMARK 2.10. From Theorem 2.9 and Proposition 2.7 we get catPN
(PN ) ≥ N+1

where PN is the N–dimensional projective space.

3. An application: Bos’ theorem revisited

A celebrated result by Lusternik and Schnirelman [22], dated 1934, see also [16],
gives the existence of at least N distinct double normals (1) in a convex subset of RN

with nonempty interior and with regular boundary. In 1963, W. Bos extended this re-
sult to the case of orthogonal geodesic chords in a convex subset of an N -dimensional
Riemannian manifold (see Theorem 3.1 below).

Let us formally state this result. Let (M, g) be a Riemannian manifold with dim(M) =

N ≥ 2 and let Ω ⊂ M be an open subset with smooth boundary ∂Ω; Ω = Ω
⋃

∂Ω

will denote its closure. Orthogonal geodesic chords in Ω, OGCs for short, are non-
costant geodesics γ : [a, b] → Ω that start and arrive orthogonally to ∂Ω and such that
γ
(
]a, b[

)
⊂ Ω. Note that in this way the notion of principal chord in RN endowed with

the Euclidean metric is extended to any Riemannian manifold.

THEOREM 3.1 W. BOS, 1963, [1]. Let (MN , g) be a Riemannian manifold and
let Ω ⊂ M be an open subset with ∂Ω a hypersurface of class C2. Assume that Ω =

Ω
⋃
∂Ω is convex (2), and homeomorphic to an N -dimensional disk. Then, there are at

(1) i.e. chords with endpoints on the boundary and speed orthogonal to it.
(2) i.e. geodesics starting tangentially at the boundary dot not enter inside Ω for small values of the affine

parameter.
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least N geometrically distinct orthogonal geodesic chords in Ω (namely having different
images)

Bos’s original proof employed a shortening method, due to Byrckoff, to build a flow
in the space of paths with free endpoints on the boundary of the disk, along which the
geodesic energy functional decreases. The topological invariant used in Bos’ argument
is the notion of relative cycles of the space of chords modulo constant chords.

We will give here an alternative proof of this result, using the notion of relative
Lusternik and Schnirelmann category and the estimate given in Proposition 2.4.

SKETCH OF THE PROOF OF THEOREM 3.1 For the variational setup, we use an
approach based on the notion of geodesic with obstacle, introduced in [23], and the
pseudo-gradient theory of Palais, given in [24]. In our situation, the obstacle is given
by the boundary of Ω. We set:

M =
{
x ∈ H1

(
[0, 1],Ω

)
: x(0), x(1) ∈ ∂Ω

}
,

and for x ∈ M we introduce a space of admissible vector fields along x, by setting:

(3.1) V−
x =

{
ξ ∈ H1

(
[0, 1], TM

)
: ξ(s) ∈ Tx(s)M,

ξ(0) ∈ Tx(0)(∂Ω), ξ(1) ∈ Tx(1)(∂Ω),

g
(
ξ(s), νx(s)

)
≤ 0 when x(s) ∈ ∂Ω

}
,

where νp is the outward pointing unit normal to ∂Ω at p ∈ ∂Ω. Roughly speaking,
elements of V− are vector fields Vx along curves x in Ω with the property that Vx(s)

points inwards whenever x(s) ∈ ∂Ω. The geodesic action functional F : M → R is
defined by:

(3.2) F(x) =
1

2

∫ 1

0

g(ẋ, ẋ) ds.

We say that x ∈ M is a critical curve for the geodesic with obstacle problem if:

(3.3)
∫ 1

0

g
(
ẋ, D

dsξ
)
ds ≥ 0, ∀ ξ ∈ V−

x ,

where D
ds denote covariant differentiation along x. Note that the derivative of F is given

by:

(3.4) dF(x)ξ =

∫ 1

0

g
(
ẋ, D

dsξ
)
ds.

Nonconstant curves x ∈ M satisfying (3.3) are called geodesic with obstacle in Ω, and
using (3.4) it is not hard to see that such curves are paths that arrive orthogonally to ∂Ω

at the endpoints, and they satisfy the geodesic equation when they lie in Ω.
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Moreover, in ∂Ω, a geodesic with obstacle satisfies a certain nonlinear second order
equation involving a Lagrange multiplier. Geodesics with obstacle are, roughly speak-
ing, curves having possibly low regularity (say, C1, or more precisely W 2,∞), that are
made up by portions that either lie on the boundary ∂Ω (the contact set with ∂Ω), or
that are geodesics segments contained in the interior Ω. While geodesics with obstacle
with prescribed boundary conditions can be found in any compact Riemannian manifold
with smooth boundary, arbitrary Riemannian manifolds with boundary may not contain
any true orthogonal geodesic chord. A very elementary counterexample is depicted in
Bos’ paper [1], who considers a simple triangular shaped region inR2 with non-convex
rounded corners. In this case, the lack of OGCs, i.e., segments orthogonal to the bound-
ary at both endpoints, is immediately verified by inspection. A precise description of
geodesics with obstacles can be found in [14, 23]. The point here is that when ∂Ω is
convex, then geodesics with obstacle in Ω only touch the boundary at their endpoints,
and therefore they are true orthogonal geodesic chords. Thus, finding orthogonal geo-
desic chords is the same as finding points x ∈ M satisfying (3.3).

The search of critical points of F is done using the pseudo-gradient approach of
Palais, [24]. More precisely, the pseudo-gradient of F is a vector field in M such that F
is uniformly strictly decreasing along each one of its flow line, outside any prescribed
neighborhood of the set of critical points.

The construction of this vector field following the ideas of Palais in [24] is one of the
key points of the proof. It is a local argument, which is made global using partition of
unity. Standard completeness arguments and the convexity assumption yield a Palais-
Smale condition for the corresponding flow, which allows the proof of the classical
deformation lemmas for the sublevels of F .

This is where the topological part of the proof takes place. Recall the backwards
reparameterization map R : M → M, which defines a Z2-action on M (R2 = Id) and
observe that both the functional F and the notion of criticality are R–invariant. This
says that the variational problem can be cast in the quotient space M̃ = M/R; in this
space one considers the subsets C̃ = C/R and C̃0 = C0/R, where C is the set of chords
in Ω and C0 is the set of trivial (i.e., constant) chords in Ω. The notion of chord in Ω

is defined using a homeomorphism between Ω and the standard unit disk in RN . By
Proposition 2.1 we have

catC̃,C̃0
(C̃) ≥ N.

Let D denote the class of all closed R-invariant subsets of C; for all i = 1, . . . , N ,
define:

Γi =
{
D ∈ D : catC̃,C̃0

(D̃) ≥ i
}
.
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Let us denote by H the set of homotopies of C into M, i.e., the set of all continuous
maps h : [0, 1]× C → M, and let us define:

ci = inf
D∈Γi
h∈H

sup
{
F
(
h(1, x)

)
: x ∈ D

}
, i = 1, . . . , N.

Let us observe that 0 ≤ ci ≤ sup
x∈C

F(x), and that c1 ≤ c2 ≤ . . . ≤ cN . Moreover,

c1 > 0, for otherwise it would be possible to find a closed R-invariant subset D ⊂ M

with catC̃,C̃0
(D̃) ≥ 1 that could be deformed by an element h ∈ H that fixes the

points of C0 to a subset of M that consists of curves lying in ∂Ω. Moreover, using
standard minimax arguments, one sees that each ci is a critical value of F and, assuming
the existence of only finitely many critical points of F , the sequence (ci) is strictly
increasing. Thus, there must be at least N critical values, and it is an easy observation
that they correspond to pairwise geometrically distinct orthogonal geodesic chords in
Ω. □

4. The relative category in the brake orbits problem

Guided by the proof of Theorem 3.1, it has been recently obtained the proof of a
conjecture due to H.Seifert on the number of brake orbits for a natural Hamiltonian sys-
tem, see reference [13]. The notion of brake orbit is strictly related to that of orthogonal
geodesic chord. Let us illustrate briefly a Lagrangian formulation of the brake orbits
problem.

Let M̂ be an N -dimensional manifold with M̂ of class C3 representing the config-
uration space of some dynamical systems and ĝ a Riemannian metric of class C2. Let
V : M̂ → R be a C2–function, representing the potential energy of some conservative
force acting on the system. One looks for periodic solutions x : [0, T ] → M̂ of the
following Lagrangian system:

(4.1) D
dt ẋ = −∇V (x),

where D
dt denotes the covariant derivative of the Levi–Civita connection of ĝ for vector

fields along x, and ∇V is the gradient of V . Solutions of (4.1) satisfy the conservation
law of the energy 1

2g(ẋ, ẋ) + V (x) = E, where E is a real constant called the energy
of the solution x. It is a classical problem to give estimate of the number of periodic
solutions of (4.1) having a fixed value of the energy E. This problem has been, and
still is, the main topic of a large amount of literature, also for more general autonomous
Hamiltonian systems, see for instance [17, 18, 19, 21, 26] and the references therein.
Among all periodic solutions of (4.1), historical importance is given to a special class
called brake orbits; these are “pendulum-like” solutions that oscillate with constant
frequency along a trajectory that joins two distinct endpoints lying in V −1(E).

A very famous conjecture due to H. Seifert, see [27], originally formulated under
analytic regularity assumptions, asserts that, given a Lagrangian system as in (4.1), if
the sublevel V −1

(
]−∞, E]

)
is homeomorphic to an N–dimensional disk and E is a
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regular value for V , then there should exist at least N geometrically distinct brake orbits.
This estimate is known to be sharp, i.e. there are examples of analytic Lagrangian
systems having energy sublevels homeomorphic to an N -disk and admitting exactly
N geometrically distinct brake orbits. Along the recent years, partial proofs of Seifert’s
conjecture have appeared in the literature, see for instance [12, 14, 18, 20, 30, 31, 32]. In
particular, [18] contains a proof of the Seifert’s conjecture for Euclidean metrics, when
the potential is assumed even and convex. In [12], Seifert’s conjecture is proved in the
case N = 2. In [14], the conjecture is proved for perturbations of radial potentials.
When the E-sublevel V −1

(
]−∞, E]

)
has the topology of the annulus, the multiplicity

of brake orbits is studied in [9] and [10]. Finally, in [13] the authors give a proof of the
following result.

THEOREM (SEIFERT’S CONJECTURE ON BRAKE ORBITS). Let E be a regular
value of the potential V , and assume that the sublevel V −1

(
]−∞, E]

)
is homeomor-

phic to the N–dimensional disk. Then, the Lagrangian system (4.1) admits at least N
geometrically distinct brake orbits of energy E.

It is now a well established fact, see [8, 11], that fixed energy brake orbits for the
system (4.1) correspond to OGCs in a domain Ω contained in the interior (and diffeo-
morphic to) the corresponding energy sublevel of the potential V . The metric in Ω,
which is usually called the Jacobi metric, is conformal to g, and it makes ∂Ω strongly
concave.

The central result of [13] gives a lower bound on the number of orthogonal geodesics
in Riemannian strongly concave disk (3) , and satisfying a technical, nevertheless mild,
additional geometric assumption. Namely, it is assumed that there exists some point
in Ω through which there exists no geodesic with both endpoints on ∂Ω, and which is
either tangent to ∂Ω at both endpoints, or tangent to ∂Ω at one endpoint and orthogonal
to ∂Ω at the other. Such assumption has a technical nature, and it is possibly inessential
for the validity of the result on the number of orthogonal geodesic chords in arbitrary
Riemannian disks with strongly concave boundary. The central result in [13], that en-
tails a proof of Seifert’s conjecture, can be formulated as follows. Let F be the energy
functional defined by (3.2).

THEOREM 4.1. Let (MN , g) be Riemannian manifold, and let Ω ⊂ M be an open
subset with ∂Ω a hypersurface of class C2. Suppose that Ω is strongly concave and
homeomorphic to an N–dimensional disk. Assume also that there exists a positive M0

such that F−1
(
[0,M2

0 ]
)

contains all the “chords” in Ω with endpoints in ∂Ω, and
that there exists some point in Ω through which there exists no geodesic γ such that
F(γ) ≤ M2

0 , with both endpoints on ∂Ω, and which is either tangent to ∂Ω at both
endpoints, or tangent to ∂Ω at one endpoint and orthogonal to ∂Ω at the other.

(3) Strong concavity means that the geodesics that start tangentially to the boundary remain on the interior
of the disk in a neighbourhood of the tangent point
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Then, there are at least N geometrically distinct (4) orthogonal geodesic chords in
Ω.

In order to obtain a proof of Seifert’s conjecture, one proves that the Jacobi metric
satisfies all the assumptions of Theorem 4.1.

Let us discuss a sketch of the proof of Theorem 4.1, which is obtained by a re-
finement of the proof of Theorem 3.1, using the same topological invariant given by
the relative category of the space of chords modulo the constant chords. The essential
difference from the convex case treated in Theorem 3.1 is that the critical points of F
as defined in (3.3) (i.e. the geodesics with obstacle) may touch the boundary of Ω, and
therefore may not be true orthogonal geodesic chords. The strong concavity property
plays an essential role here, because it yields that geodesics with both endpoints on the
boundary of Ω cannot remain uniformly close to ∂Ω. Note that this property does not
hold in Bos’ counterexample [1].

As in the case of the proof of Theorem 3.1, one defines a class of infinitesimal
admissible variations, denoted by V−, as in (3.1), and also a subclass of V− denoted by
V+. Elements of V+ satisfy the additional requirement of changing their direction near
∂Ω: Vx ∈ V+ points inward when x touches ∂Ω, and outward when x is at a certain
(prescribed) small distance from ∂Ω.

As in Theorem 3.1, a path in Ω will be called V−-critical when it is fixed by the flow
of every local vector field in the class V−. However, in the nonconvex case, there are
V−-critical curves that are not OGCs, but rather curves that belong to the more general
class of the geodesics with obstacle.

The set of V−-critical paths that are not OGCs is denoted by Z−. Remarkably, the
strong convavity assumption implies in particular that geodesics with obstacle that are
orthogonal to ∂Ω at the endpoints and that have bounded length, the contact set with
∂Ω consists of a uniformly bounded number of disjoint intervals and isolated points.

Using the two classes V− and V+ described above, one constructs a global flow on
M, which plays the role of the flow of a pseudo-gradient vector field (see [24]) for the
geodesic action functional. The pseudo-gradient field is constructed locally in two dis-
tinct regions of the space of admissible paths whose mutual distance is strictly positive,
and then made global using convex linear combinations. Reference [24] provides the
basic tools for the globalization of local flows, using partitions of unity.

One of the main technical parts of the proof of Theorem 4.1 consists in the con-
struction of a special set Λ∗ of paths that satisfies the following properties:

(4) two orthogonal geodesic chords γ1, γ2 : [0, 1] → Ω are geometrically distinct if γ1
(
[0, 1]

)
̸=

γ2
(
[0, 1]

)
.
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• Λ∗ is invariant by the pseudo-grandient flow, and the geodesic action functional
is strictly decreasing along the inward pointing flow lines that are near the en-
trance of Λ∗ (5);

• Λ∗ contains in its interior all the geodesics with obstacle that are orthogonal to
∂Ω at both endpoints;

• Λ∗ does not contain true OGCs;
• Λ∗ is topologically trivial, meaning that it can be continuously retracted to a

set of curves lying entirely on ∂Ω, through a retraction that fixes the constant
curves. Roughly speaking, this implies that points in Z− are not counted in
the minimax argument, and therefore the topological invariant, i.e., relative
Lusternik–Schnirelman category employed in the minimax argument gives a
lower bound for true OGCs.

The global flow is defined using homotopies associated to the infinitesimal variations in
V+ in Λ∗, to the more general variations in V− far from Λ∗, and with convex combina-
tions near the entrance set of Λ∗. The technical geometric assumption of Theorem 4.1
mentioned above is used to construct the continuous retraction of Λ∗ onto a set of curves
lying in ∂Ω.

Once the pseudo-gradient flow and the set Λ∗ have been defined, the proof of Theo-
rem 4.1 follows standard general ideas from minimax theory. By the above construction,
the fixed points of our flow that lie outside of Λ∗ are OGCs. The minimax procedure
detects a number of points fixed by the flow (outside Λ∗) which is greater than or equal
to the Lusternik-Schnirelman relative category of a set which again has the topology
of the quotient space (SN−1 × SN−1)/R, where R(A,B) = (B,A) (category relative
to the diagonal of SN−1 × SN−1). Such number is greater or equal to N , as proved
in Proposition 2.1. Since the set Λ∗ can be continuously retracted to a set consisting
of curves lying in the boundary of Ω, geodesics with obstacle do not contribute to the
count of those fixed points detected by minimax. This implies that the strongly concave
Riemannian N -disk under consideration possesses at least N distinct OGCs, proving
our desired result.

This multiplicity result can be proved even for the more general Hamiltonian sys-
tems of classical type. A Hamiltonian system is said of classical type if it is even and
strictly convex with respect to the generalized momenta, i.e. if it can be written as

H(q, p) = K(q, p) + V (q),

where K(q, ·) : RN → R is even and strictly convex for each q. This kind of Hamilton-
ian were introduced in [29], where A. Weinstein proved the existence of a brake orbit

(5) Given a semi-group (ϕt)t≥0 of homeomorphisms of a topological space X , and given a subset
Y ⊂ X which is ϕt-invariant for all t, the entrance of Y is the set of the x ∈ Y such that there exists δx > 0

such that ϕt(x) ̸∈ Y for any t ∈] − δx, 0[. In our concrete setting, the entrance set of Λ∗ is denoted by Γ∗

and it is defined in [13], cf. formula (5.9).



RELATIVE CATEGORY AND MULTIPLE BRAKE ORBITS 15

for Hamiltonian systems of classical type. While the brake orbits of a natural Hamil-
tonian system can be identified with the OGCs of a disk endowed with a Riemannian
metric, for Hamiltonian systems of classical type the disk has to be endowed with a
Finsler metric, as it has been proved in [4]. As a consequence, the multiplicity of OGCs
in Finsler manifold with boundary, studied in [2], plays a central role in this extension.

The proof of existence of N geometrically distinct brake orbits for a 2N–dimensional
Hamiltonian system of classical type is given in [5] and it follows the same scheme of
the proof of Theorem 4.1, but some technicalities arise due to the lack of regularity of
the Finsler metric on the zero section of the tangent bundle.
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[5] D. CORONA AND R. GIAMBÒ, Multiple brake-orbits for Hamiltonian systems of classical type, in
preparation

[6] E. FADELL AND S. HUSSEINI, Relative cohomological index theories, Adv. Math. 64 (1987), 1–31.
[7] G. FOURNIER AND M. WILLEM, Multiple solutions of the forced double pendulum equation, Ann. Inst.
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