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A B S T R A C T

This work proposes a polynomial-augmented radial basis function (RBF) collocation method with polyharmonic
to solve the advection–diffusion–reaction (ADR) equations associated with the percolation process for espresso
extraction. Numerical methods for solving these equations are useful for many applications where we have
chemical reactions and transport in a porous medium. Polynomial augmentation in RBF collocation is useful
when it is also necessary to approximate the derivatives, to overcome the stagnation error problem. Moreover,
the polyharmonic RBF avoids the hassle of determining the shape parameter. The proposed meshless method
allows for discretising the ADR equations and obtaining a numerical solution used to evaluate the efficiency of
the extraction process in espresso coffee; this method can be easily generalised to higher dimensions or more
complex domains. The numerical results have been compared to measurements carried out in the laboratory.
1. Introduction

Coffee is one of the most popular drinks after milk and tea, and
the espresso coffee industry is increasingly attentive to environmental
sustainability. A significant problem, in espresso extraction, is to max-
imise the beverage quality and minimise the raw material. To this aim,
the Extraction Yield (EY) is used in the coffee industry to evaluate the
efficiency of the extraction process [1]. The EY is equal to the ratio
between the mass of solubles extracted and transported into the cup
and the mass of coffee powder, hence it is a dimensionless value. The
EY can be computed from the Total Dissolved Solids (TDS) divided by
the brew ratio. The TDS can be obtained by properly drying a small
amount of espresso coffee and weighing the residue made of solids, or
by using a refractometer; in fact, the TDS is the ratio between the mass
of dissolved substances and the mass of the beverage. Finally, the brew
ratio is obtained by dividing the mass of the dry coffee powder used in
the preparation by the mass of the liquid beverage. We recall that the
Specialty Coffee Association in the brewing chart [1] refers to 18%–22%
as the optimal range for the EY; larger values lead to coffee having too
bitter and astringent taste (over-extraction); whereas lower ones lead to
coffee whose taste is too acidic and sweet (under-extraction). Indicators
EY and TDS have been extensively studied: the studies in [2,3] exploit
TDS for a comparison between different extraction methods; in [4], the
TDS is chosen as an extraction efficiency indicator for different roasting
degrees and grinding levels of espresso, American and Turkish brewing;
the research in [5–7] exploit TDS and EY to observe the consequences
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on the extraction of variation of water pressure, grinding level and
temperature gradient on the espresso coffee. Furthermore, [8] uses the
TDS to investigate the concentration of chemicals in espresso while de-
creasing the quantity of coffee powder in three different filter baskets.
Although there are many studies on the relationship between these
indicators and coffee chemistry, only recently mathematical models
have been considered in the coffee extraction. In [9], the EY is com-
puted by a uni-dimensional percolation model. This model is also used
in [10] for computing the TDS, moreover, the used numerical scheme
guarantees the positivity of the solution and mass conservation. This
solving strategy is also used in [11] and the model has been generalised,
to deal with multiple chemical species. Like all uni-dimensional models,
they are simple but only consider average quantities calculated over
the entire domain or parts of it [12]. A more refined three-dimensional
model, considering the main percolation processes that occur during
the espresso extraction, has been proposed in [13,14].

In this work we propose a simple tool useful for the coffee industry
to evaluate the EY. In particular, following the idea in [9,15,16],
the percolation model discards the initial imbibition phase and an
ADR equation is coupled with a diffusion equation. Initially, each
grain is supposed wet, and the equations describe the mass trans-
port and the dissolution of species, occurring during the extraction
process. These equations are extensively used for modelling real-life
phenomena [17,18], but their analytical solutions are usually unknown
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because such models are very complex. To compute the numerical
solution of such kinds of equations, it is fundamental to use efficient
numerical schemes such as those based on upwind finite difference
schemes and the Runge–Kutta ones. Lately, various alternatives have
been proposed such as the one in [19], where an operator splitting
method is used to construct an algorithm to solve both fast and slow
reaction problems, that occur during bimolecular reactive processes in
porous media. Moreover, [20,21] propose an explicit method that is
unconditionally stable and preserves the positivity, while [22] uses a
local radial basis function (RBF) method for studying Turing systems
and bacterial chemotaxis processes, dealing with domains with a com-
plex shape and large-scale problems. Finally, [23,24] use RBFs together
with finite difference to calculate the approximate solution of one and
two-dimensional time-fractional stochastic Sine–Gordon equation.

In [10,11], the involved equations are discretised by finite differ-
ences. Instead, in this work we use the RBFs in the collocation method
for discretising the percolation model. The reason for this choice comes
from the fact that the so-called meshless methods operate with nodes
rather than meshes. Hence, the proposed discretisation technique does
not require grid generation, and its generalisation to two or three-
dimensional cases is immediate. Moreover, meshless methods are more
appropriate than finite differences or finite element methods, in the
case of very large mesh deformation and moving discontinuities. In
particular, the polynomial-augmented polyharmonic spline of expo-
nent 3 is the RBF chosen in this article. Thus, the main advantages
of the proposed technique are the independence from the mesh and
the independence from the shape parameter. The proposed scheme
can be easily generalised to greater dimensions, as it is a meshfree
method, so it only needs the nodes’ information, on the other hand,
preconditioning techniques must be used because the ill-conditioning
of the RBF interpolation matrix when we have a large number of nodes.
In addition, to evaluate the capacity of the proposed scheme in the
prediction of the EY, the numerical results have been compared with
the EY values measured in the laboratory, and the used samples of
espresso coffee have been collected by considering various conditions
for the extraction.

The article is organised as follows. Section 2 describes the con-
sidered percolation model. In Section 3 the numerical approximation
scheme used for the solution of the mathematical model is presented.
Section 4 describes the laboratory tests performed for measuring the
EY, the numerical results obtained with the proposed method, and a
comparison between numerical and measured values. Finally, future
developments are discussed in Section 5.

2. The percolation model

The espresso coffee extraction is obtained when the pressurised
hot water seeps through the tamped coffee powder contained in the
filtering basket. During the percolation process, the chemical sub-
stances contained in the coffee powder, that have been previously
roasted, are dissolved by the water that seeps through the void spaces
between the coffee grains. In detail, at the beginning, in the imbibition
phase, the water flowing through the powder, under the only effect of
gravity, penetrates the grains by capillarity and dissolves the chemical
substances. Subsequently, during the extraction phase, the dissolved
materials are transported into the cup by pressurised hot water. The
high pressure of the water is necessary to overcome the resistance
opposed by the compact porous medium.

We note that the substances, contained in the larger grains, are
only partially dissolved and most of the dissolved chemicals come from
the smaller grains [12]. Therefore, the mathematical model for the
description of the dynamics occurring in the coffee extraction has to
be capable of describing the transport of chemicals from the interior of
the grains to their external surfaces, their dissolution into the liquid,

and the transport process due to the fluid flow through the coffee pod.

2 
In the following, for the reader’s convenience, we briefly discuss the
adopted model.

Both the solid and the liquid phases, and the main physico-chemical
processes are considered during the modelling of the espresso coffee
extraction. These are the diffusion and the advective transport of
chemicals in the liquid phase, and the only diffusion phenomena of the
species within each grain of the solid phase.

Here the coffee powder is approximated through spheres of two
distinct radii 𝑎𝑏 and 𝑎𝑓 , for boulders (coarse grains) and fines (fine
grains), respectively. This assumption is because grinding machines
produce coffee powder with a bimodality feature of its granulometry,
see Section 4.1 for details. The extraction is affected by the dimension
of the grains, in particular: 𝑖) it affects the porosity of the medium since
boulders and fines create the coffee pod, that is the porous medium
where the percolation takes place; 𝑖𝑖) it affects the dissolution rate of
the species, because the sizes of the grains, i.e., their radii, influence
the time during which chemicals are subject to diffusive transport in
grains. We suppose that the coffee pod is a cylinder of height 𝐿 and
circular base of radius 𝑅0, and that the vertical axis is oriented such
that the cylinder has the upper base in 𝑧 = 0 and the lower base in
𝑧 = 𝐿.

We know that the water flows predominantly along the vertical
axis, so we can describe the coffee extraction by a uni-dimensional
model, considering only the vertical direction. On the other hand, the
dissolution processes for chemicals in the solid phase occur predomi-
nantly along the radial direction, therefore, a uni-dimensional model,
along the radial direction for each fixed 𝑧-level, can be used to describe
the dynamics of the solid phase. In more detail, along the vertical
direction, we model the transport and the inter-grain flow, while along
the radial direction, we model the intra-grain transport. Let 𝑐𝑓 and
𝑐𝑏 be the concentration of the chemicals contained in the fine and
big grains, respectively. The concentration of substances dissolved and
transported by the water is denoted by 𝑐𝑙 and is called the liquid
phase concentration. Thus, we are assuming a common behaviour for
different chemical substances. Note that this simplification is not a
problem for our purpose: the calculation of EY. See [11,13] for models
dealing with different species.

Let 𝜏 > 0 be the percolation time, the dynamics of the concentration
𝑐𝑙(𝑧, 𝑡), 𝑧 ∈ (0, 𝐿), 𝑡 ∈ (0, 𝜏), of chemicals in the liquid phase is described
by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1 − 𝜙) 𝜕𝑐
𝑙

𝜕𝑡
(𝑧, 𝑡) −𝐷𝜕2𝑐𝑙

𝜕𝑧2
(𝑧, 𝑡) + 𝑞 𝜕𝑐

𝑙

𝜕𝑧
(𝑧, 𝑡) = 𝑏𝑓𝐺𝑓 (𝑧, 𝑡) + 𝑏𝑏𝐺𝑏(𝑧, 𝑡),

−𝐷𝜕𝑐𝑙

𝜕𝑧
(0, 𝑡) + 𝑞𝑐𝑙(0, 𝑡) = 0,

−𝐷𝜕𝑐𝑙

𝜕𝑧
(𝐿, 𝑡) = 0,

𝑐𝑙(𝑧, 0) = 0,

(1)

here 𝜙 is the local volume fraction occupied by grains, 𝑞 is the Darcy
lux, and 𝐷 is the effective diffusivity. In particular, 𝜙 is given by

= 𝜙𝑓 + 𝜙𝑏, 𝜙𝑓 = 𝑏𝑓 𝑎𝑓

3
, 𝜙𝑏 = 𝑏𝑏 𝑎

𝑏

3
,

where 𝑏𝑓 and 𝑏𝑏 are the so-called Brunauer–Emmett–Teller parame-
ters [25], hence 𝜙𝑓 and 𝜙𝑏 are the volume fractions associated with
fines and boulders, respectively. In (1), in addition to the advective
term and the diffusive term, there are also 𝐺𝑓 and 𝐺𝑏, which are the
reactive terms that connect the dynamics of liquid and solid species and
will be described in the following. The boundary condition at the inlet
(𝑧 = 0) corresponds to no flux of solubles across the inlet; the boundary
condition at the outlet (𝑧 = 𝐿) corresponds to no diffusive flux at the
outlet. A null concentration in the liquid phase is imposed as initial

condition.
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The dynamics of the concentrations of chemicals in the solid phase,
at level 𝑧 ∈ (0, 𝐿), are modelled by the following initial–boundary value
problems for the two different kinds of grains considered 𝑠 = 𝑓, 𝑏:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝑐𝑠

𝜕𝑡
(𝑟, 𝑧, 𝑡) =

𝐷𝑔

𝑟2
𝜕
𝜕𝑟

(

𝑟2 𝜕𝑐
𝑠

𝜕𝑟
(𝑟, 𝑧, 𝑡)

)

,

−𝐷𝑔
𝜕𝑐𝑠

𝜕𝑟
(0, 𝑧, 𝑡) = 0,

−𝐷𝑔
𝜕𝑐𝑠

𝜕𝑟
(𝑎𝑠, 𝑧, 𝑡) = 𝐺𝑠(𝑧, 𝑡),

𝑐𝑠(𝑟, 𝑧, 0) = 𝑐0,

(2)

where 𝑡 ∈ (0, 𝜏), 𝑟 ∈ (0, 𝑎𝑠), 𝑐0 is the initial solid concentration and
𝐷𝑔 is the diffusivity and is assumed to be independent of particle size.
In particular, we suppose the grains have spherical symmetry, so in
problem (2) we have the diffusion equation in spherical coordinates
for the transport. We highlight that 𝑐𝑠 = 𝑐𝑠(𝑟, 𝑧, 𝑡), this means that we
have one problem of type (1), which for each 𝑧-level is coupled with
two problems of kind (2), one for the solid concentrations 𝑐𝑓 and the
other for 𝑐𝑏. The terms 𝐺𝑠 give the coupling, modelling the transfer of
the chemicals from the grains into the liquid. In particular, for 𝑠 = 𝑓, 𝑏
we have

𝐺𝑠(𝑧, 𝑡) = 𝑘𝑟𝑐𝑠(𝑎𝑠, 𝑧, 𝑡) max
(

𝑐𝑠(𝑎𝑠, 𝑧, 𝑡) − 𝑐𝑙(𝑧, 𝑡), 0
)

⋅max
(

𝑐sat − 𝑐𝑙(𝑧, 𝑡), 0
)

,

(3)

where 𝑘𝑟 is the reaction rate, 𝑐sat is the concentration at saturation of
the liquid, and max(𝑥, 0) is the continuous, non-differentiable function
that selects the maximum non-negative argument. Because of the high
non-linearity of Formula (3), particular attention is necessary for its
solution, see [9–11,26] for a wide discussion. The coupled problems (1)
and (2) determine the complete mathematical model for the unknown
concentrations 𝑐𝑙 , 𝑐𝑓 , 𝑐𝑏. From the solutions of problem (1)–(2) we
obtain the EY using the following formula

𝐸𝑌 =
𝑞

𝜙𝑠𝜌𝐿 ∫

𝜏

0
𝑐𝑙(𝐿, 𝑡)𝑑𝑡, (4)

here 𝜌 denotes the coffee grain density, see [10] for a detailed
erivation of this formula.

. Numerical approximation

In this section, we illustrate the used approximation scheme for
roblem (1)–(2). In particular, the spatial derivatives are approximated
ia RBFs. In more detail, in Section 3.1 we present the RBF approx-
mation and introduce the matrix notation that will be useful in the
ollowing section. Then, in Section 3.2 we describe the numerical
cheme adopted in the discretisation of problem (1)–(2).

.1. Matrix form of the RBFs interpolation system

RBFs are powerful tools in the approximation of functions, including
olutions of partial differential equations. Let 𝜑 ∶ R+ → R be an
BF and let 𝑥𝑥𝑥𝑗 ∈ R𝑑 , 𝑗 = 1, 2,… , 𝑛, be scattered nodes, then we can
pproximate the function 𝑓 ∶ 𝛺 ⊂ R𝑑 → R at the point 𝑥𝑥𝑥 ∈ 𝛺 with

̃(𝑥𝑥𝑥) =
𝑛
∑

𝑗=1
𝜆𝑗𝜑

(

‖𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑗‖
)

≡
𝑛
∑

𝑗=1
𝜆𝑗𝜑𝑗 (𝑥𝑥𝑥), (5)

where 𝜆𝑗 are unknown coefficients which can be determined by impos-
ng the interpolation conditions 𝑓 (𝑥𝑥𝑥𝑖) = 𝑓 (𝑥𝑥𝑥𝑖), 𝑖 = 1, 2,… , 𝑛. This leads

to the following linear system

⎛

⎜

⎜

⎝

𝜑1(𝑥𝑥𝑥1) … 𝜑𝑛(𝑥𝑥𝑥1)
⋮ ⋮

𝜑1(𝑥𝑥𝑥𝑛) … 𝜑𝑛(𝑥𝑥𝑥𝑛)

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⎛

⎜

⎜

⎝

𝜆1
⋮
𝜆𝑛

⎞

⎟

⎟

⎠

⏟⏟⏟

=
⎛

⎜

⎜

⎝

𝑓 (𝑥𝑥𝑥1)
⋮

𝑓 (𝑥𝑥𝑥𝑛)

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏟⏞⏞⏞⏟

, (6)
𝐴 𝜆𝜆𝜆 𝑓𝑓𝑓 b

3 
whose solution is:

𝜆 = 𝐴−1𝑓𝑓𝑓. (7)

Note that, for positive definite RBFs the matrix 𝐴 is guaranteed to be
non-singular for distinct node points [27]. In the following, we refer
to 𝐴 as the RBF interpolation matrix associated with the interpolation
nodes 𝑥𝑥𝑥𝑗 , 𝑗 = 1, 2,… , 𝑛.

Therefore, if  is a linear operator, then from Eq. (5) we have

𝑓 (𝑥𝑥𝑥) =
∑𝑛

𝑗=1 𝜆𝑗𝜑𝑗 (𝑥𝑥𝑥) =
(

𝜑1(𝑥𝑥𝑥),… ,𝜑𝑛(𝑥𝑥𝑥)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑎𝑎(𝑥𝑥𝑥)

𝜆𝜆𝜆 =

= 𝑎𝑎𝑎(𝑥𝑥𝑥)𝐴−1𝑓𝑓𝑓,

(8)

where, in the last equality, we exploited equation (7). Let 𝑝 ∈ N,

𝑚 =
(

𝑝 + 𝑑
𝑑

)

,  = {𝑝𝑗 (𝑥𝑥𝑥) ∶ 𝑗 = 1, 2,… , 𝑚} be a basis of the space of

polynomials in 𝑥𝑥𝑥 ∈ R𝑑 , with real coefficients, of degree at most 𝑝. We
note that 𝑚 is the dimension of the polynomial space. In addition, we
require that the discretised basis  is orthogonal to the RBF coefficients
𝜆, that is:
𝑛
∑

𝑗=1
𝜆𝑗𝑝𝑘(𝑥𝑥𝑥𝑗 ) = 0, 𝑘 = 1, 2,… , 𝑚. (9)

Then, we can consider the following approximation of 𝑓 :

𝑓 (𝑥𝑥𝑥) =
𝑛
∑

𝑗=1
𝜆𝑗𝜑𝑗 (𝑥𝑥𝑥) +

𝑚
∑

𝑗=1
𝜇𝑗𝑝𝑗 (𝑥𝑥𝑥). (10)

As before, if we denote with 𝑃𝑖𝑗 = 𝑝𝑗 (𝑥𝑥𝑥𝑖) and 𝜇𝜇𝜇 = (𝜇1, 𝜇2,… , 𝜇𝑚)𝑇 ,
imposing the interpolation conditions 𝑓 (𝑥𝑥𝑥𝑖) = 𝑓 (𝑥𝑥𝑥𝑖), 𝑖 = 1, 2,… , 𝑛, and
he orthogonality conditions (9), we obtain:
(

𝐴 𝑃
𝑃 𝑇 0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐴̂

(

𝜆𝜆𝜆
𝜇𝜇𝜇

)

=
(

𝑓𝑓𝑓
000

)

, (11)

hose solution is
(

𝜆𝜆𝜆
𝜇𝜇𝜇

)

= 𝐴̂−1
(

𝑓𝑓𝑓
000

)

. (12)

owever, we have to require that 𝑃 has full rank. This is a condition on
he nodes to be unisolvent for polynomials of degree 𝑝, which is always
rue in R for distinct points. Under this condition, the invertibility of 𝐴̂
s guaranteed as shown in [28,29]. In the following, we refer to 𝐴̂ as the
olynomially augmented RBF (PA-RBF) interpolation matrix associated
ith the interpolation nodes 𝑥𝑥𝑥𝑗 , 𝑗 = 1, 2,… , 𝑛.

Thus, applying the operator  to 𝑓 , exploiting relation (12) and
sing the following notation

(𝑥𝑥𝑥) = (𝑝1(𝑥𝑥𝑥),… ,𝑝𝑚(𝑥𝑥𝑥)),

e obtain:

𝑓 (𝑥𝑥𝑥) =
(

𝑎𝑎𝑎(𝑥𝑥𝑥) 𝑝𝑝𝑝(𝑥𝑥𝑥)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏𝑏𝑏(𝑥𝑥𝑥)

(

𝜆𝜆𝜆
𝜇𝜇𝜇

)

=

= 𝑏𝑏𝑏(𝑥𝑥𝑥)𝐴̂−1
(

𝑓𝑓𝑓
000

)

= (𝑏𝑏𝑏(𝑥𝑥𝑥)𝐴̂−1)1∶𝑛𝑓𝑓𝑓,

(13)

here the notation (⋅)1∶𝑛 denotes the first 𝑛 components of the vector
⋅). Therefore, Eqs. (8) and (13) allow us to approximate the action of
he operator  on the function 𝑓 in the point 𝑥𝑥𝑥 as a linear combination
f the values of 𝑓 in the nodal points.

.2. Numerical scheme

Let  = {𝑧𝑗}𝑗=0,1,…,𝑁 ⊆ [0, 𝐿] be a set of distinct discretisation nodes
long the vertical direction, such that 𝑧0 = 0 and 𝑧𝑁 = 𝐿. Let 𝑧−1

e a node in a left neighbourhood of 0 and 𝑧𝑁+1 be a node in a right
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Fig. 1. Graphical representation of points in ̄.
F
k
t

neighbourhood of 𝐿, we choose ̄ =  ∪ {𝑧−1, 𝑧𝑁+1} as the set of the
interpolation nodes. In Fig. 1, we show the points of  in blue, and the
points of ̄ ⧵ in red.

Similarly, for 𝑠 = 𝑏, 𝑓 , let 𝑠 = {𝑟𝑠𝑘}𝑘=0,1,…,𝑀𝑠 ⊆ [0, 𝑎𝑠] be a set
of distinct discretisation nodes along the radial direction in fines and
boulders, we use ̄𝑠 = 𝑠∪{𝑟𝑠−1, 𝑟

𝑠
𝑀𝑠+1} as the set of interpolation nodes

in the radial direction, where 𝑟𝑠−1 is a point in a left neighbourhood of
0 and 𝑟𝑠𝑀𝑠+1 in a right neighbourhood of 𝑎𝑠.

Let 𝑍 and 𝑅𝑠, 𝑠 = 𝑓, 𝑏, be the PA-RBF interpolation matrices
associated with the interpolation nodes ̄ and ̄𝑠, respectively. We
note that these matrices satisfy equations of the form (11) and 𝑑 = 1.
Thus, for a fixed time 𝑡, if we collect in the vector 𝑐𝑐𝑐𝑙(𝑡) the values of
the liquid concentration 𝑐𝑙(𝑧, 𝑡) calculated at the points of ̄, that is
𝑐𝑙(𝑡) =

(

𝑐𝑙(𝑧𝑗 , 𝑡)
)

𝑗=−1,0,…,𝑁+1, the analogue of Eq. (13) for the liquid
concentration 𝑐𝑙, is:

𝑐𝑙(𝑧, 𝑡) =
(

𝑏𝑏𝑏(𝑧)𝑍−1)
−1∶𝑁+1 𝑐𝑐𝑐

𝑙(𝑡). (14)

Similarly, for fixed 𝑡 and 𝑧, if we collect the values of the solid
concentrations 𝑐𝑠(𝑟, 𝑧, 𝑡), 𝑠 = 𝑓, 𝑏, calculated at the points of ̄𝑠 in the
vectors 𝑐𝑐𝑐𝑠(𝑧, 𝑡), that is 𝑐𝑐𝑐𝑠(𝑧, 𝑡) =

(

𝑐𝑠(𝑟𝑠𝑘, 𝑧, 𝑡)
)

𝑘=−1,0,…,𝑀𝑠+1, the analogue
of Eq. (13) for the solid concentrations 𝑐𝑠 are

𝑐𝑠(𝑟, 𝑧, 𝑡) =
(

𝑏𝑏𝑏(𝑟) (𝑅𝑠)−1
)

−1∶𝑀𝑠+1
𝑐𝑐𝑐𝑠(𝑧, 𝑡). (15)

We denote with 0 the identity operator and with 1 and 2 the first
and second derivative operators respect to 𝑧, respectively. For each of
these operators, we can impose equation (14) at each point of . For
instance, for the first derivative, this leads to:
(

1𝑐
𝑙(𝑧𝑗 , 𝑡)

)

𝑗=0,1,…,𝑁 =
(

𝑍𝑧𝑍
−1)

∶,−1∶𝑁+1 𝑐𝑐𝑐
𝑙(𝑡) ≡ 𝑍𝑧𝑐𝑐𝑐𝑙(𝑡), (16)

where 𝑍𝑧 ≡
(

𝑏𝑏𝑏(𝑧𝑗 )1
)

𝑗=0,1,…,𝑁 has 𝑁 + 1 rows, moreover, 𝑍𝑧 =
(

𝑍𝑧𝑍−1)
∶,−1∶𝑁+1 is called differentiation matrix of first order. Similarly,

for 0 and 2 with matrices 𝑍0 and 𝑍𝑧𝑧, respectively.
Similarly, for fixed 𝑧𝑗 we can impose equation (15) in each point of

𝑠. For the second order differential operator respect to 𝑟, that with an
abuse of notation we denote with 2, this leads to:
(

2𝑐𝑠(𝑟𝑠𝑘, 𝑧𝑗 , 𝑡)
)

𝑘=0,1,…,𝑀𝑠 =
=
(

𝑅𝑠
𝑟𝑟 (𝑅

𝑠)−1
)

∶,−1∶𝑀𝑠+1 𝑐𝑐𝑐
𝑠(𝑧𝑗 , 𝑡) ≡ 𝑅𝑠,𝑟𝑟𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡),

(17)

where 𝑅𝑠
𝑟𝑟 ≡

(

𝑏𝑏𝑏(𝑟𝑠𝑘)
2
)

𝑘=0,1,…,𝑀𝑠 , 𝑠 = 𝑓, 𝑏, defines the differentiation
matrices of second order in the radial direction 𝑅𝑠,𝑟𝑟. Similarly, for 0
and 1 with matrices 𝑅𝑠

0 and 𝑅𝑠
𝑟 , respectively, for 𝑠 = 𝑓, 𝑏.

In more detail, we have:

𝐼𝑧 =
(

𝑍0𝑍
−1)

∶,−1∶𝑁+1,

𝑍𝑧 =
(

𝑍𝑧𝑍
−1)

∶,−1∶𝑁+1,

𝑍𝑧𝑧 =
(

𝑍𝑧𝑧𝑍
−1)

∶,−1∶𝑁+1,

𝐼𝑠 =
(

𝑅𝑠
0 (𝑅

𝑠)−1
)

∶,−1∶𝑀𝑠+1, 𝑠 = 𝑓, 𝑏,

𝑅𝑠,𝑟 =
(

𝑅𝑠
𝑟 (𝑅

𝑠)−1
)

∶,−1∶𝑀𝑠+1, 𝑠 = 𝑓, 𝑏,

𝑅𝑠,𝑟𝑟 =
(

𝑅𝑠
𝑟𝑟 (𝑅

𝑠)−1
)

∶,−1∶𝑀𝑠+1, 𝑠 = 𝑓, 𝑏.

We define some useful notations for the systems below. A matrix
endowed with the subscript 𝑗 denotes the single 𝑗th row of the cor-
responding original matrix (i.e., the matrix without the subscript 𝑗).
This means that, regardless of the vertical or radial coordinate, the
subscript 0 denotes the first row of the matrix that corresponds to the

𝑠
point 𝑧0 = 0 or 𝑟0 = 0, 𝑠 = 𝑓, 𝑏, respectively. Similarly, the subscripts

4 
𝑁 and 𝑀𝑠, 𝑠 = 𝑓, 𝑏 denote the row of the matrix corresponding to the
boundary points 𝑧𝑁 = 𝐿 and 𝑟𝑠𝑀𝑠 = 𝑎𝑠, 𝑠 = 𝑓, 𝑏, respectively. Moreover,
in the following solid systems, we use this notation: a matrix equipped
with the subscript 𝐼 is the sub-matrix that consists of all the rows of
the corresponding original matrix except the ones corresponding to the
left boundary point, 𝑧0 = 0 or 𝑟𝑠0 = 0, 𝑠 = 𝑓, 𝑏, that is for instance:
𝑅𝑠,𝑟
𝐼 = (𝑅𝑠,𝑟)1∶𝑀𝑠 ,∶.

With the above described notations, we can express the liquid phase
system as:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1 − 𝜙) 𝐼𝑧
𝜕𝑐𝑐𝑐𝑙(𝑡)
𝜕𝑡

= 𝐷𝑍𝑧𝑧𝑐𝑐𝑐𝑙(𝑡) − 𝑞𝑍𝑧𝑐𝑐𝑐𝑙(𝑡)+

+𝑏𝑓𝐺𝐺𝐺𝑓 (𝑡) + 𝑏𝑏𝐺𝐺𝐺𝑏(𝑡),

−𝐷𝑍𝑧
0𝑐𝑐𝑐

𝑙(𝑡) + 𝑞𝐼𝑧0𝑐𝑐𝑐
𝑙(𝑡) = 0,

−𝐷𝑍𝑧
𝑁𝑐𝑐𝑐𝑙(𝑡) = 0,

𝑐𝑐𝑐𝑙(0) = 0,

(18)

where for each vertical level 𝑧𝑗 , 𝑗 = 0, 1,… , 𝑁 , we collect the reactive
terms into vectors 𝐺𝐺𝐺𝑠(𝑡), 𝑠 = 𝑓, 𝑏, whose components are given by

𝐺𝑠(𝑧𝑗 , 𝑡) = 𝑘𝑟𝐼
𝑠
𝑀𝑠𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡) max

(

𝐼𝑠
𝑀𝑠𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡) − 𝐼𝑧

𝑗 𝑐𝑐𝑐
𝑙(𝑡), 0

)

⋅max
(

𝑐sat − 𝐼𝑧
𝑗 𝑐𝑐𝑐

𝑙(𝑡), 0
)

.

or each vertical level 𝑧𝑗 , 𝑗 = 0, 1,… , 𝑁 , there are two problems of
ind (2) for the solution of the solid phase, coupled to the liquid phase
hrough the non-linear source terms. For 𝑠 = 𝑓, 𝑏, they are given by:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐼𝑠𝐼
𝜕𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡)

𝜕𝑡
= 𝐷𝑔

( 2
𝑟
𝑅𝑠,𝑟
𝐼 𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡) + 𝑅𝑠,𝑟𝑟

𝐼 𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡)
)

,

𝐼𝑠0
𝜕𝑐𝑐𝑐𝑠

𝜕𝑡
(𝑧𝑗 , 𝑡) = 3𝐷𝑔𝑅

𝑠,𝑟𝑟
0 𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡),

−𝐷𝑔𝑅
𝑠,𝑟
0 𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡) = 0,

−𝐷𝑔𝑅
𝑠,𝑟
𝑀𝑠𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡) = 𝐺𝑠(𝑧𝑗 , 𝑡),

𝑐𝑐𝑐𝑠(𝑧𝑗 , 0) = 𝑐0.

(19)

We note that at 𝑟 = 0, the following discretisation based on De L’Hôpital
rule has been used

𝜕𝑐𝑠

𝜕𝑡
(0, 𝑧, 𝑡) = lim

𝑟→0

(

2
𝑟
𝐷𝑔

𝜕𝑐𝑠

𝜕𝑟
(𝑟, 𝑧, 𝑡) +𝐷𝑔

𝜕2𝑐𝑠

𝜕𝑟2
(𝑟, 𝑧, 𝑡)

)

=

= 3𝐷𝑔
𝜕2𝑐𝑠

𝜕𝑟2
(0, 𝑧, 𝑡).

Now we can apply the time discretisation to problems (18), (19) and
use a method resembling the Crank–Nicolson method for both linear
and non-linear parts while the boundary conditions are implemented
at the new time level. Note that we use the time index as a superscript
to indicate a discrete time level.

We start with the time discretisation of the PDE for the liquid phase,
as a help to see how we will reorder it. Let 𝑁𝑡 be a positive integer such
that ℎ𝑡 = 𝜏∕𝑁𝑡, for 𝑛 = 0, 1,… , 𝑁𝑡 − 1 we have:

(1 − 𝜙) 𝐼𝑧(𝑐𝑐𝑐𝑙,𝑛+1 − 𝑐𝑐𝑐𝑙,𝑛) =
ℎ𝑡
2

(

𝐷𝑍𝑧𝑧𝑐𝑐𝑐𝑙,𝑛+1 − 𝑞𝑍𝑧𝑐𝑐𝑐𝑙,𝑛+1+

+ 𝑏𝑓𝐺𝐺𝐺𝑓,𝑛+1 + 𝑏𝑏𝐺𝐺𝐺𝑏,𝑛+1 +𝐷𝑍𝑧𝑧𝑐𝑐𝑐𝑙,𝑛+
𝑧 𝑙,𝑛 𝑓 𝑓 ,𝑛 𝑏 𝑏,𝑛)
−𝑞𝑍 𝑐𝑐𝑐 + 𝑏 𝐺𝐺𝐺 + 𝑏 𝐺𝐺𝐺 ,
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where 𝑐𝑐𝑐𝑙,𝑛 ≈ 𝑐𝑐𝑐𝑙(𝑡𝑛), 𝑛 = 0, 1,… , 𝑁𝑡. Thus, we get:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

(1 − 𝜙) 𝐼𝑧 −
ℎ𝑡
2

(𝐷𝑍𝑧𝑧 − 𝑞𝑍𝑧)
]

𝑐𝑐𝑐𝑙,𝑛+1 =

=
[

(1 − 𝜙) 𝐼𝑧 +
ℎ𝑡
2

(𝐷𝑍𝑧𝑧 − 𝑞𝑍𝑧)
]

𝑐𝑐𝑐𝑙,𝑛+

+
ℎ𝑡
2

(

𝑏𝑓𝐺𝐺𝐺𝑓,𝑛+1 + 𝑏𝑏𝐺𝐺𝐺𝑏,𝑛+1 + 𝑏𝑓𝐺𝐺𝐺𝑓,𝑛 + 𝑏𝑏𝐺𝐺𝐺𝑏,𝑛),

−𝐷𝑍𝑧
0𝑐𝑐𝑐

𝑙,𝑛+1 + 𝑞𝐼𝑧0𝑐𝑐𝑐
𝑙,𝑛+1 = 0,

−𝐷𝑍𝑧
𝑁𝑐𝑐𝑐𝑙,𝑛+1 = 0,

𝑐𝑐𝑐𝑙,0 = 0.

(20)

We do the same for the solid phases and, for 𝑠 = 𝑓, 𝑏, we obtain

𝐼𝑠𝐼
(

𝑐𝑐𝑐𝑠,𝑛+1(𝑧𝑗 ) − 𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 )
)

=
ℎ𝑡
2
𝐷𝑔

( 2
𝑟
𝑅𝑠, 𝑟
𝐼 𝑐𝑐𝑐𝑠,𝑛+1(𝑧𝑗 )+

+𝑅𝑠, 𝑟𝑟
𝐼 𝑐𝑐𝑐𝑠,𝑛+1(𝑧𝑗 ) +

2
𝑟
𝑅𝑠, 𝑟
𝐼 𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 ) + 𝑅𝑠, 𝑟𝑟

𝐼 𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 )
)

,

where 𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 ) ≈ 𝑐𝑐𝑐𝑠(𝑧𝑗 , 𝑡𝑛), 𝑗 = −1, 0,… , 𝑁 + 1, 𝑛 = 0, 1,… , 𝑁𝑡. The
corresponding systems are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

𝐼𝑠𝐼 −
𝐷𝑔ℎ𝑡
2

( 2
𝑟
𝑅𝑠, 𝑟
𝐼 + 𝑅𝑠, 𝑟𝑟

𝐼

)

]

𝑐𝑐𝑐𝑠,𝑛+1(𝑧𝑗 ) =

=
[

𝐼𝑠𝐼 +
𝐷𝑔ℎ𝑡
2

( 2
𝑟
𝑅𝑠, 𝑟
𝐼 + 𝑅𝑠, 𝑟𝑟

𝐼

)

]

𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 ),
[

𝐼𝑠0 −
3𝐷𝑔ℎ𝑡

2
𝑅𝑠, 𝑟𝑟
0

]

𝑐𝑐𝑐𝑠,𝑛+1(𝑧𝑗 ) =

=
[

𝐼𝑠0 +
3𝐷𝑔ℎ𝑡

2
𝑅𝑠, 𝑟𝑟
0

]

𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 ),

−𝐷𝑔𝑅
𝑠,𝑟
0 𝑐𝑐𝑐𝑠,𝑛+1(𝑧𝑗 ) = 0,

−𝐷𝑔𝑅
𝑠,𝑟
𝑀𝑠𝑐𝑐𝑐𝑠,𝑛+1(𝑧𝑗 ) = 𝐺𝑠,𝑛+1(𝑧𝑗 ),

𝑐𝑐𝑐𝑠,0(𝑧𝑗 ) = 𝑐0,

(21)

In systems (21), the concentrations 𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 ), 𝑠 = 𝑓, 𝑏 depend on 𝑧𝑗 , there-
fore such systems must be solved for each vertical level 𝑧𝑗 . Moreover,
systems (20), (21) are coupled through the reactive terms 𝐺𝑠, whose
approximations 𝐺𝑠,𝑛(𝑧𝑗 ), 𝑠 = 𝑓, 𝑏, are obtained from

𝐺𝑠,𝑛(𝑧𝑗 ) = 𝑘𝑟𝐼𝑠𝑀𝑠𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 )𝑓𝛼
(

𝐼𝑠𝑀𝑠𝑐𝑐𝑐𝑠,𝑛(𝑧𝑗 ) − 𝐼𝑧𝑗 𝑐𝑐𝑐
𝑙,𝑛
)

⋅

⋅𝑓𝛼
(

𝑐sat − 𝐼𝑧𝑗 𝑐𝑐𝑐
𝑙,𝑛
)

,

𝑓𝛼(𝑥) =

⎧

⎪

⎨

⎪

⎩

exp
(

𝑥
𝛼 + log(𝛼) − 1

)

, 𝑥 ≤ 𝛼

𝑥, 𝑥 > 𝛼,
(22)

with 𝛼 > 0. The parameter 𝛼 must be chosen sufficiently small in such
a way that 𝑓𝛼 is an approximation of the function max(𝑥, 0). We note
that 𝑓𝛼 is continuous and differentiable and the system can be written
as

𝐴𝝈𝑛+1 = 𝐶𝝈𝑛 + 𝝋𝑛+1, 𝑛 = 0,… , 𝑁𝑡 − 1, (23)

𝐵𝝀𝑛+1 = 𝐸𝝀𝑛 + 𝝍𝑛+1 + 𝝍𝑛, 𝑛 = 0,… , 𝑁𝑡 − 1, (24)

where

𝐴,𝐶 ∈ R(𝑁+1)(𝑀𝑓+𝑀𝑏+6)×(𝑁+3)(𝑀𝑓+𝑀𝑏+6),

𝐵, 𝐸 ∈ R(𝑁+3)×(𝑁+3),

𝝈𝑛 ∈ R(𝑁+1)(𝑀𝑓+𝑀𝑏+6),𝝀𝑛 ∈ R𝑁+3, 𝑛 = 0,… , 𝑁𝑡 − 1,

𝝋𝑛 ∈ R(𝑁+1)(𝑀𝑓+𝑀𝑏+6),𝝍𝑛 ∈ R𝑁+3, 𝑛 = 0,… , 𝑁𝑡 − 1.

The vectors 𝝈𝑛 and 𝝀𝑛 are defined as

𝝈𝑛 =
(

𝐜𝑓,𝑛
𝐜𝑏,𝑛

)

,

𝝀𝑛 =
(

𝑐𝑙,𝑛 , 𝑐𝑙,𝑛,… , 𝑐𝑙,𝑛
)𝑇

,
(25)
−1 0 𝑁+1

5 
with

𝐜𝑓,𝑛 =
(

𝑐𝑓,𝑛−1 (𝑧0), 𝑐
𝑓,𝑛
0 (𝑧0),… , 𝑐𝑓,𝑛

𝑀𝑓+1
(𝑧0),

𝑐𝑓,𝑛−1 (𝑧1), 𝑐
𝑓,𝑛
0 (𝑧1),… , 𝑐𝑓,𝑛

𝑀𝑓+1
(𝑧1),… ,

… , 𝑐𝑓,𝑛−1 (𝑧𝑁 ), 𝑐𝑓,𝑛0 (𝑧𝑁 ),… , 𝑐𝑓,𝑛
𝑀𝑓+1

(𝑧𝑁 )
)𝑇

,

nd analogously for the vector 𝐜𝑏,𝑛. In particular 𝝈𝑛 and 𝝀𝑛 are unknown
or 𝑛 ≥ 1, instead 𝝀0 is the null vector and, for 𝑠 = 𝑓, 𝑐, 𝒄𝑠,0 are the
ectors having all entries equal to 𝑐0. The non-linear terms are in

𝝋𝑛 =

(

𝐅𝑓,𝑛

𝐅𝑏,𝑛

)

,

𝝍𝑛 =
(

0,
ℎ𝑡

2
𝑏𝑓𝐺𝑓,𝑛(𝑧0) +

ℎ𝑡

2
𝑏𝑏𝐺𝑏,𝑛(𝑧0),… ,

ℎ𝑡

2
𝑏𝑓𝐺𝑓,𝑛(𝑧𝑁 ) +

ℎ𝑡

2
𝑏𝑏𝐺𝑏,𝑛(𝑧𝑁 ), 0

)𝑇

,

𝑠,𝑛 =
(

0,… , 0, 𝐺𝑠,𝑛(𝑧0), 0,… , 0,… , 0, 𝐺𝑠,𝑛(𝑧𝑁 ), 0
)𝑇 ,

he vector 𝐅𝑠,𝑛 has zero components outside the positions 𝑀𝑠 + 2 +
(𝑀𝑠 + 3), 𝑘 = 0,… , 𝑁 . Thus, for the solution of system (23), (24) we
pply the nested fixed-point iteration procedure. We note that the solid
lobal matrices 𝐴 and 𝐶 are not strictly necessary for the procedure, we
an solve the two solids systems consecutively; however, we defined
hese matrices for the reader’s convenience, since they are useful in
lgorithm 1, where we give the solving strategy.

Algorithm 1: Given 𝑐0, 𝑚𝑎𝑥𝑖𝑡1, 𝑚𝑎𝑥𝑖𝑡2, 𝑡𝑜𝑙1 and 𝑡𝑜𝑙2 compute
he solution 𝝈𝑛, 𝝀𝑛, 𝑛 = 1,… , 𝑁𝑡, of system (23),(24), by the
ollowing steps.

1 𝝈𝟎 =
(

𝑐0,… , 𝑐0
)𝑇 ; 𝝀𝟎 = (0,… , 0)𝑇 ;

2 for 𝑛 = 0, 1,… , 𝑁𝑡 − 1 do
3 𝜈̄ = 𝜈̃ = 1;
4 𝝈𝑛+11,𝜈̄ = 𝝈𝑛; 𝝀𝑛+11,𝜈̃ = 𝝀𝑛;
5 for 𝜇 = 2, 3,… , 𝑚𝑎𝑥𝑖𝑡2 do
6 𝝈𝑛+1𝜇,1 = 𝝈𝑛+1𝜇−1,𝜈̄ ;
7 for 𝜈 = 2, 3,… , 𝑚𝑎𝑥𝑖𝑡1 do
8 𝝀𝑛+1𝜇,𝜈−1 = 𝝀

𝑛+1
𝜇−1,𝜈̃ ;

9 Compute 𝝈𝑛+1𝜇,𝜈 from 𝐴𝝈𝑛+1𝜇,𝜈 = 𝐶𝝈𝑛 + 𝝋𝑛+1
𝜇,𝜈−1;

10 if max
(

|

|

|

𝝈𝑛+1𝜇,𝜈 − 𝝈𝑛+1𝜇,𝜈−1
|

|

|

)

≤ 𝑡𝑜𝑙1 then
11 𝝈𝑛+1𝜇,𝜈̄ = 𝝈𝑛+1𝜇,𝜈 ;
12 break;
13 end
14 end
15 𝝀𝑛+1𝜇,1 = 𝝀𝑛+1𝜇−1,𝜈̃ ;
16 for 𝜈 = 2,… , 𝑚𝑎𝑥𝑖𝑡1 do
17 𝝈𝑛+1𝜇,𝜈−1 = 𝝈

𝑛+1
𝜇,𝜈̄ ;

18 Compute 𝝀𝑛+1𝜇,𝜈 from 𝐵𝝀𝑛+1𝜇,𝜈 = 𝐸𝝀𝑛 + 𝝍𝑛+1
𝜇,𝜈−1 + 𝝍

𝑛;

19 if max
(

|

|

|

𝝀𝑛+1𝜇,𝜈 − 𝝀𝑛+1𝜇,𝜈−1
|

|

|

)

≤ 𝑡𝑜𝑙1 then
20 𝝀𝑛+1𝜇,𝜈̃ = 𝝀𝑛+1𝜇,𝜈 ;
21 break;
22 end
23 end
24 if max

(

|

|

|

𝝈𝑛+1𝜇,𝜈̄ − 𝝈𝑛+1𝜇−1,𝜈̄
|

|

|

)

≤ 𝑡𝑜𝑙2 and

max
(

|

|

|

𝝀𝑛+1𝜇,𝜈̃ − 𝝀𝑛+1𝜇−1,𝜈̃
|

|

|

)

≤ 𝑡𝑜𝑙2 then
25 𝝈𝑛+1𝜇̄,𝜈̄ = 𝝈𝑛+1𝜇,𝜈̄ ; 𝝀𝑛+1𝜇̄,𝜈̃ = 𝝀𝑛+1𝜇,𝜈̃ ;
26 break;
27 end
28 end
29 𝝈𝑛+1 = 𝝈𝑛+1𝜇̄,𝜈̄ ; 𝝀𝑛+1 = 𝝀𝑛+1𝜇̄,𝜈̃
30 end



N. Egidi et al.

w
i

g
e
9
i

b
t
m
s
p
t

m
𝑘

o
𝑧

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 188 (2024) 115625 
More in detail, for each time step 𝑛 = 0,… , 𝑁𝑡 − 1, we consider the
following nested fixed-point iteration

𝐴𝝈𝑛+1𝜇,𝜈 = 𝐶𝝈𝑛 + 𝝋𝑛+1
𝜇,𝜈−1, (26)

𝐵𝝀𝑛+1𝜇,𝜈 = 𝐸𝝀𝑛 + 𝝍𝑛+1
𝜇,𝜈−1 + 𝝍

𝑛, (27)

here at time step 𝑛 + 1 we use indices 𝜇 and 𝜈 for the outer and
nner, respectively, fixed-point iteration, and we fix 𝑚𝑎𝑥𝑖𝑡1 and 𝑚𝑎𝑥𝑖𝑡2

such that 𝜈 ≤ 𝑚𝑎𝑥𝑖𝑡1 and 𝜇 ≤ 𝑚𝑎𝑥𝑖𝑡2. For example, let 𝜈̄ = 𝜈̄(𝜇) be
the final inner iteration, then system (26) gives 𝝈𝑛+1𝜇,𝜈̄ while system (27)
gives 𝝀𝑛+1𝜇,𝜈̃ . The used stopping criteria for 𝜈 and 𝜇 depends on a given
tolerance 𝑡𝑜𝑙1 > 0 and is detailed in Algorithm 1, where, for 𝒙 ∈ R𝑁 ,
max (𝒙) is the maximum component of 𝒙, while |𝒙| is a vector having
components equal to the absolute value of the components of 𝒙. We
note that the inner cycle does not take into account the coupling
between the two systems. Hence, for refining the results of the inner
cycle, we use the outer cycle. In more detail, the final solution of
the outer iteration (𝝈𝑛+1𝜇̄,𝜈̄ ,𝝀

𝑛+1
𝜇̄,𝜈̃ ) approximates the solution of (23), (24),

satisfying the stopping criterium at line 24 in Algorithm 1, where 𝑡𝑜𝑙2 >
0 denotes a given tolerance. Finally, we used proper parameters 𝜔𝑙 and
𝜔𝑠, 𝑠 = 𝑓, 𝑏, in relaxed iterations used to improve the convergence
of the inner cycle and help to satisfy the positivity of the solution at
the initial time steps. Indeed, without relaxed iteration we observed
that the liquid concentration becomes immediately negative instead
the solid concentration becomes immediately higher than the initial
concentration.

4. Experimental results

In this section, we present both the results obtained from a labora-
tory extraction campaign and in-silico simulations. The experimental
extraction campaign has been described in [10], however, for the
reader’s convenience we briefly discuss it in Section 4.1, while in
Section 4.2 we illustrate the numerical results obtained with the pro-
posed method. We also make a comparison between the laboratory and
computational results in terms of the EY.

4.1. Laboratory measurements

The laboratory results are obtained by using the espresso coffee
machine Victoria Arduino VA388 Black Eagle [30] for the coffee ex-
traction. The used coffee powder is the pure Arabica coffee Modœtia
ground by Mythos 1 [31] and tamped by PUQ® PRESS M2 [32]. All
the tools, used during the experimental campaign, were supplied by
the company Simonelli Group SpA (Belforte del Chienti, Italy). The
extraction procedure applied in the collection of coffee samples is as
follows: the VST© Competition filter basket, having an inner radius of
29.25mm and a height of 26mm, was filled with 20 ± 0.1 g of powder,
which was tamped with a 20 kgF constant tamping force. The extracted
coffee mass has been kept at 40 ± 2 g, in this way, we obtained 1:2 as
the brew ratio between powder and extracted coffee. The samples were
obtained by considering different grain sizes, pressures, and water tem-
peratures. At each extraction, the coffee was collected into a ceramic
cup, stirred and cooled down, finally a small amount was inserted in
a digital refractometer and the corresponding TDS was measured. For
each extraction, the EY was evaluated by the following formula

EY = TDS
brew ratio .

For the laboratory results, used in the following for the comparison
with the computed results, we considered the Modœtia coffee, a water
pressure 𝑝 = 6, 9 bar, a water temperature 𝑇 = 90.4, 93.4 °C and a
ranulometry: optimal, fine, coarse. Where the granulometry is consid-
red optimal when it produces about 40 g of coffee in 25 s at 9 bar and
3.4 °C. Taking this granulometry as a reference, the fine granulometry
s obtained by reducing the distance between the burrs of the grinder,
 o
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Table 1
For the different granulometry: the mean extraction time 𝜏 and the mean height of the
tamped powder 𝐿.

Coffee type Optimal Fine Coarse

𝐿 [mm] 𝜏 [s] 𝐿 [mm] 𝜏 [s] 𝐿 [mm] 𝜏 [s]

Modœtia 13.00 26 13.27 40 14.20 20

Table 2
Laboratory results for TDS measurements, with their standard deviation (𝜎), and EY,
for Modœtia coffee.
𝑇 [°C] 𝑝 [bar] 𝜏 [s ] Granulometry TDS [%] (𝜎) EY [%]

93.4 9 26 Optimal 10.4 (0.28) 20.87
93.4 6 26 Optimal 10.0 (0.12) 20.43
90.4 9 26 Optimal 10.2 (0.06) 20.81
90.4 6 25 Optimal 10.2 (0.06) 20.53

93.4 9 39 Fine 10.9 (0.23) 22.09
93.4 6 39 Fine 10.8 (0.25) 22.07
90.4 9 42 Fine 11.0 (0.3) 22.18
90.4 6 41 Fine 11.2 (0.26) 22.58

93.4 9 18 Coarse 9.6 (0.50) 19.44
93.4 6 22 Coarse 9.7 (0.31) 20.11
90.4 9 19 Coarse 9.5 (0.06) 19.09
90.4 6 22 Coarse 10.0 (0.29) 20.10

whereas the coarse is obtained by increasing the distance between the
burrs.

For each configuration, we considered three samples obtaining 36
different samples. Obviously, since the brew ratio was kept constant,
depending on the granulometry, we obtained different extraction times.
Table 1 reports, for different granulometry, the mean height 𝐿 of the
tamped powder and the means 𝜏, of the extraction times, obtained
y varying the temperature and the pressure of the water. Moreover,
he laser diffraction granulometer Mastersizer 3000, Malvern Instru-
ents [33] has been used for analysing the coffee powder. The particle

ize distribution curves of the optimal, fine and coarse granulometry
rofiles of Modœtia coffee powder are shown in Fig. 2. The value on
he 𝑥-axis is the diameter of the coffee particles, and the percentage

of the particles is on the 𝑦-axis. From the figure, we can see that all
the curves have a local minimum near 100 μm and a bimodal trend.
This justifies the choice of considering two families of particles: the
fines (diameter ≤ 100 μm) and the boulders (diameter ≥ 100 μm). In the
model, this choice is made by assigning the radii for boulders and fines,
i.e. 𝑎𝑏 and 𝑎𝑓 , respectively.

The values of TDS and EY are reported in Table 2, in particular,
the minimum value and the maximum value of the EY are reported
in bold. From this table, we can see that, for Modœtia, the EY is
maximised for fine granulometry, 𝑝 =6 bar and 𝑇 =90.4 °C. Hence, the
fine granulometry reasonably yields the maximum EY.

4.2. Numerical results

The numerical results are obtained on a PC equipped with an
Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz, operative
system Windows 11, by implementing in MATLAB R2020a, 64-bit the
Algorithm 1, which is a numerical scheme for solving problem (1)–(2)

We use the following physico-chemical parameters, for details on
this choice see [9,10,12]: the total solid fraction is 𝜙 = 0.8272, the
initial solid concentration is 𝑐0 = 200 kg∕m3, the concentration of
saturation is 𝑐sat = 212.4 kg∕m3, the liquid diffusivity is 𝐷 = 1.0 ⋅ 10−8

2/s, the solid diffusivity is 𝐷𝑔 = 6.25 ⋅ 10−10 m2/s, the reaction rate is
𝑟 = 6.0 ⋅ 10−9 m7/kg2.

In the discretisation scheme, the points in  are distributed as half
f a Chebyshev nodes set in such a way that we have more points near
= 0. We have chosen this distribution for the nodes in , since we

bserved that near 𝑧 = 0 the solution has a steep trend. Instead, the
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Fig. 2. Distributions of the particles sizes for the Modœtia coffee.
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Table 3
Geometrical and physical parameters used in the numerical experiments.

Sample 𝑎𝑓 [μm] 𝑎𝑏 [μm] 𝜙𝑓 𝑞 [10−4 m∕s] 𝜏 [s]

Fine 15.5 200.0 0.24 3 40
Optimal 16.6 227.0 0.22 4.5 26
Coarse 15.6 227.0 0.20 5.3 20

point in 𝑠 are uniformly distributed. Moreover, as RBFs we choose
the polyharmonic splines of exponent 3, that is 𝜑(𝑟) = 𝑟3 and hence

𝜑𝑗 (𝑧) = |𝑧 − 𝑧𝑗 |
3, 𝑧𝑗 ∈ ̄,

𝜑𝑗 (𝑟𝑠) = |𝑟𝑠 − 𝑟𝑠𝑗 |
3, 𝑟𝑠𝑗 ∈ ̄𝑠, 𝑠 = 𝑓, 𝑏.

We note that the polyharmonic splines possess desirable characteristics,
such as their independence from the shape parameter. They also have
certain limitations such as their accuracy compared to other RBFs.
We tried other RBFs, such as the Gaussian, however, in our case, the
polyharmonic splines were the most accurate. The maximum degree of
the polynomial basis is 𝑝 = 3. Moreover, we choose 𝑁 = 100, 𝑀𝑓 = 4,
and 𝑀𝑏 = 40; the numbers of time steps are 𝑁𝑡 = 800, 1000, 1500, for
coarse, optimal and fine granulometry, respectively. Thus ℎ𝑡 ≈ 10−2;
the parameter 𝛼 in (22) is 0.1. The relaxation parameters 𝜔𝑙 and 𝜔𝑠,
𝑠 = 𝑓, 𝑏, depend on the time step. In particular, 𝜔𝑙 = 0.9 and 𝜔𝑠 = 0.75,
if 𝑛 ≤ 15; 𝜔𝑙 = 𝜔𝑠 = 0.1, 𝑠 = 𝑓, 𝑏, otherwise. Finally, the tolerances are
𝑡𝑜𝑙1 = 10−7 and 𝑡𝑜𝑙2 = 10−6 and the maximum allowed iterations are
𝑚𝑎𝑥𝑖𝑡1 = 𝑚𝑎𝑥𝑖𝑡2 = 500.

Table 3 reports the parameters depending on the granulometry and
computed from laboratory measurements. In particular, 𝑎𝑓 and 𝑎𝑏 come
from the granulometry analyses of Fig. 2, 𝜙𝑓 is the volume percentage
of fine particles with respect to the total solid fraction 𝜙, 𝑞 is the
Darcy’s flux and is inversely proportional to the granulometry. Finally,
the percolation time 𝜏 is the mean of the ones in Table 2.

The EY is computed by Eq. (4), the integral is solved by the
trapezoidal rule, and the liquid concentration 𝑐𝑙 is obtained from the
numerical results.

In Table 4, there are, for each granulometry, the mean EY obtained
by the numerical simulations on all the samples used in the laboratory,
and the EY range obtained from laboratory measurements. From this
comparison, we can see that the computed average EY falls inside
the laboratory range. The same results are shown in Fig. 3, where
we have the EY along the 𝑦-axis and the granulometry along the 𝑥-
axis; moreover the coloured squares represent the obtained numerical
values, while the vertical bars are the laboratory ranges.

Fig. 4 shows the behaviour of 𝑐𝑙, for the optimal granulometry, as
a function of the time 𝑡 and the basket height 𝑧, by reporting on the
vertical axes the mean of the liquid concentration computed at each
considered sample. The other granulometries show similar behaviours.
In particular, the liquid concentration at 𝑧 = 𝐿, which is null at the
 o
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Table 4
Numerical results of the EY with the corresponding EY ranges
from the laboratory experiments.
Sample EY [%] Experimental EY range [%]

Fine 22.53 22.07–22.58
Optimal 20.44 20.43–20.87
Coarse 19.30 19.09–20.11

Fig. 3. Comparison between simulated and real EY values.

eginning 𝑡 = 0, immediately increases, under the effect of dissolving
ubstances, and decreases at the end of the extraction.

Figs. 5, 6(a) show the qualitative behaviour of the solid concen-
ration 𝑐𝑠, 𝑠 = 𝑓, 𝑏, at 𝑧 = 𝐿∕2, for the optimal granulometry. From
ig. 5 we can see that, in boulder particles, the external layer 𝑟 = 𝑎𝑏

s more affected by dissolution than the core. From Fig. 6(a) we can
ee that, at the beginning of the extraction, the concentration of fine
articles immediately decreases due to the dissolution, then for about
he next five seconds, the concentration remains constant and finally
ecreases again, releasing the fines soluble material very quickly. This
onstant trend is very interesting, and it can be easily analysed with
ig. 6(b), which shows the liquid and fine solid concentration curves in
lue and orange, respectively, over time and at 𝑧 = 𝐿∕2. In this figure
t is plotted the fluid concentration 𝑐𝑓 at 𝑟 = 0 (the centre of the fine
article) however, analogous behaviour has been observed also at the
oundary. When 𝑐𝑓 < 𝑐𝑙, then 𝐺𝑓=0, this means that the dissolution
nside fines stops and 𝑐𝑓 remains constant.

Finally, to give some numerical evidence of the convergence of the
roposed solving strategy, in Table 5 we report the EY values for coarse
ranulometry under varying the discretisation parameter 𝑁 . Also in
his simulation we have that the computed EY is inside the range
btained in laboratory. We note that we do not vary the values of
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Fig. 4. Computed liquid concentration 𝑐𝑙 with optimal granulometry.
Fig. 5. Solid concentration of boulders 𝑐𝑏 at 𝑧 = 𝐿∕2, during the simulated extraction with optimal granulometry.
Table 5
Comparison of the numerical EY value for coarse granulometry
under varying discretisation parameter.
N EY [%] Experimental EY range [%]

50 19.56 22.07–22.58
80 19.34 20.43–20.87
100 19.30 19.09–20.11

𝑀𝑓 and 𝑀𝑏 since the EY is calculated only on the base of the liquid
concentration 𝑐𝑙(𝑧, 𝑡).

5. Conclusions

In this work we proposed a simple tool for the coffee industry to
evaluate the extraction efficiency. In particular, we considered the main
processes occurring in the espresso coffee extraction, which, under
some simplifying assumptions, is modelled through a one-dimensional
8 
ADR model. The proposed numerical scheme is based on a modified
Crank–Nicolson method, where the spatial derivatives are approxi-
mated via RBFs while in [10] the finite differences have been used.
The resulting system is solved with the proposed nested fixed-point
iteration and the reliability of this strategy is experimentally assessed,
in particular, the model is preliminarily validated by comparing the
simulated and laboratory EY. From the results, we see that the model
well simulates the dynamics of the extraction process in terms of
extraction efficiency. In particular, by comparing the results with those
obtained in [10], this new method gives a better approximation of the
EY, even if it is more computationally expensive. Moreover, thanks to
the use of a meshless technique, the proposed method can be easily
generalised to higher dimensions, however, to get a better comparison,
we should enlarge the extraction campaign.

Two future improvements have to be considered, to get a powerful
simulation tool: the refinement of the numerical scheme, especially
for treating the reactive parts, and the extension of the validation
procedure with a larger set of laboratory experiments. Once these
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Fig. 6. (a) Solid concentration of fines 𝑐𝑓 , and (b) Liquid (in blue) and solid concentration of fines at the centre of the particle (in orange) at 𝑧 = 𝐿∕2, during the simulated
extractions with optimal granulometry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
refinements have been implemented, such a model allows the control of
the percolation process concerning the total dissolved substances. Thus,
this work paves the way for the study of challenging goals of the coffee
industry, such as maximising the extraction efficiency while reducing
the used coffee powder, and moving towards the sustainability aim.

Finally, we recall that the ADR equations are extensively used for
modelling real-life phenomena, so the proposed discretisation scheme,
although used to calculate the EY for coffee, has a great scope of appli-
cations in the engineering field. For this purpose, the great advantage
of the proposed solving strategy is that it can be easily generalised to
three-dimensional domains, thanks to the use of RBFs.
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