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Abstract
We consider the problem of governing systemic risk in an assets–liabilities dynamical
model of a banking system. In the model considered, each bank is represented by
its assets and liabilities. The net worth of a bank is the difference between its assets
and liabilities and bank is solvent when its net worth is greater than or equal to zero;
otherwise, the bank has failed. The banking system dynamics is defined by an initial
value problem for a system of stochastic differential equations whose independent
variable is time and whose dependent variables are the assets and liabilities of the
banks. The banking system model presented generalizes those discussed in Fouque
and Sun (in: Fouque, Langsam (eds) Handbook of systemic risk, Cambridge Univer-
sity Press, Cambridge, pp 444–452, 2013) and Fatone and Mariani (J Glob Optim
75(3):851–883, 2019) and describes a homogeneous population of banks. The main
features of the model are a cooperation mechanism among banks and the possibility
of the (direct) intervention of the monetary authority in the banking system dynamics.
By “systemic risk” or “systemic event” in a bounded time interval, we mean that in
that time interval at least a given fraction of banks have failed. The probability of
systemic risk in a bounded time interval is evaluated via statistical simulation. Sys-
temic risk governance aims to maintain the probability of systemic risk in a bounded
time interval between two given thresholds. The monetary authority is responsible
for systemic risk governance. The governance consists in the choice of assets and
liabilities of a kind of “ideal bank” as functions of time and in the choice of the rules
for the cooperation mechanism among banks. These rules are obtained by solving an
optimal control problem for the pseudo mean field approximation of the banking sys-
tem model. Governance induces banks in the system to behave like the “ideal bank”.
Shocks acting on the banks’ assets or liabilities are simulated. Numerical examples of
systemic risk governance in the presence and absence of shocks acting on the banking
system are studied.
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1 Introduction

The notion of systemic risk refers to the risk of collapse of an entire system rather than
simply the failure of its individual parts. Systemic risk and systemic risk governance are
therefore important research topics that have applications in many different contexts,
such as physics, biology, engineering, and finance.

We limit our attention to the modeling of systemic risk in banking systems. In
this case, systemic risk refers to the collapse of banking systems due to the banks’
default and it depends on the banks’ interconnections. Because of the complexity of
the connections between banks, systemic risk is often unpredictable and unmeasurable
and the construction of a safe banking system capable of measuring and governing
systemic risk plays a key role in systemic risk research. For a survey of the various
aspects of systemic risk and the use of mathematical models in studying systemic risk,
we refer to Fouque and Langsam (2013), Hurd (2016) and the references therein.

Models found in the literature often analyze banking activities and systemic risk
under static (time-independent) or, more often, discrete-time models (see e.g., Hal-
dane and May 2011; May and Nimalan 2010; Iori et al. 2006; Grilli et al. 2014,
2017; Tedeschi et al. 2012; Lenzu and Tedeschi 2012; Caccioli et al. 2012, 2014;
Berardi and Tedeschi 2017). Among others, Berardi and Tedeschi (2017), Grilli et al.
(2014), Tedeschi et al. (2012), and Lenzu and Tedeschi (2012) develop agent-based
interbank networks where the banks are interconnected through credit relation-
ships. Iori et al. (2006) construct a systemic risk contagion model based on the
interbank network, and Caccioli et al. (2014) model the banking system as a bipar-
tite network where the two groups are represented by the banks and the assets. The
widespread use of discrete-time models in describing the interbank dynamics is due
to the fact that these models usually allow several microeconomic variables to be
included that are useful for a realistic description of a banking system.Moreover, static
or discrete-time models are mathematically more tractable than continuous models.

As banking practices become more intense and seamless, it is natural to think of
approximating banking activities using continuous-time models instead of discrete-
time models, even if, from the mathematical point of view, they are usually more
demanding. As can be seen in detail in the following, some tentative steps in this direc-
tion can be found in Fouque and Ichiba (2013), Fouque and Sun (2013), Carmona et al.
(2015), Mukuddem-Petersen and Petersen (2006, 2008), Sun (2018), Biagini et al.
(2019a), Fatone and Mariani (2019). In this context, it is also desirable to rigorously
define the systemic risk of a banking system. In fact, especially when continuous-
time models are considered, there is not a general consensus on a unique definition of
systemic risk (Fouque and Langsam 2013; Hurd 2016).

The banking system model we present in this paper is situated in the framework
of mean field theory. This theory, initially introduced in statistical mechanics (see
e.g., Gallavotti 1999), has recently been successfully applied to the study of financial
models where, in contrast to the discrete-time models mentioned above, the dynamic
evolution is studied by means of a system of interacting stochastic differential equa-
tions (see among the others, Fouque and Ichiba 2013; Fouque and Sun 2013; Carmona
et al. 2015; Garnier et al. 2013; Sun 2018; Biagini et al. 2019a; Fatone and Mariani
2019). In particular, under suitable assumptions, the mean field theory allows a possi-
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bly high-dimensional dynamical model (e.g., a banking systemmodel) to be governed
via a control law determined using a low-dimensional dynamical model (e.g., the
mean field approximation of the banking system model). The financial dynamical
models proposed in this context typically consist of an initial value problem for a
system of stochastic differential equations, usually diffusion equations, whose depen-
dent variables represent, for example, monetary reserves, wealth or other more general
indicators of the health of financial institutions. These diffusion equations are usually
tied together through a term in the drift that implies the network structure.

The banking system model studied in this paper generalizes those presented
in Fouque and Sun (2013), Carmona et al. (2015), Fatone and Mariani (2019) and
exploits some ideas taken from Haldane and May (2011), May and Nimalan (2010),
Mukuddem-Petersen and Petersen (2006, 2008). In Fouque and Sun (2013), Car-
mona et al. (2015), the dependent variables of the stochastic differential equations
that define the model are the log-monetary reserves of the banks as functions of time
and there is a cooperation mechanism that regulates borrowing and lending activities
among banks. Moreover, the probability of systemic risk in a bounded time interval
is studied using the mean field approximation and the theory of large deviations. The
model presented in Fatone and Mariani (2019) generalizes those presented in Fouque
and Sun (2013), Carmona et al. (2015). In particular, in Fatone and Mariani (2019)
a model with two cooperation mechanisms is studied. The first cooperation mecha-
nism regulates the borrowing and lending activities among banks, while the second
describes the borrowing and lending activities between the banks and the monetary
authority. Furthermore, a technique for governing the probability of systemic risk in
a bounded time interval is introduced and studied.

In Haldane and May (2011), May and Nimalan (2010), Mukuddem-Petersen
and Petersen (2006, 2008), assets–liabilities models of banking systems are pre-
sented, in which each bank is modeled by its assets and liabilities. Time-independent
(static) Haldane and May (2011), May and Nimalan (2010) and time-dependent
(dynamic) Mukuddem-Petersen and Petersen (2006, 2008) assets–liabilities bank-
ing system models have been studied. In Mukuddem-Petersen and Petersen (2006,
2008), banks’ assets and liabilities are further decomposed as the sum of more spe-
cific addenda; the time dynamics of each addendum is specified. Finally in Haldane
and May (2011), May and Nimalan (2010) the analogies between systemic risk in
banking systems and systemic risk in several other domains of science and engineering
are explored.

In detail, this paper is concerned with measuring, monitoring and governing sys-
temic risk in an assets–liabilities continuous-time dynamical model of a banking
system. In other words, we consider a continuous-time dynamical model of a banking
system where each bank holds assets and has liabilities that are stochastic processes in
time. The assets and liabilities of each bank are defined implicitly as functions of time
by an initial value problem for a system of stochastic differential equations. The net
worth of a bank is defined as the difference between the bank’s assets and liabilities
and a bank is solvent when its net worth is greater than or equal to zero; otherwise,
the bank has failed. A political/technical authority is responsible for managing the
banking system and, in particular, for governing systemic risk. For convenience we
refer to this authority as the monetary authority.
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The model proposed describes a homogeneous population of banks where each
bank interacts with the other banks and with the monetary authority. The homogeneity
of the bank population implies that all banks in the model behave in the same way.
From an economic point of view, the homogeneity of the bank population can be
seen, for example, as “perfect” herding behavior occurring when the banks try to
“perfectly” copy each other’s behavior. For theoretical explanations of the motivations
behind bank herding behavior, we refer to Acharya and Yorulmazer (2008) and the
references therein. Note that the assumption of bank homogeneity makes it possible to
successfully apply mean field theory. Themain features of the model are a cooperation
mechanism among banks that regulates interbank borrowing and lending activities and
the possibility of the monetary authority’s (direct) intervention in the banking system
dynamics. The cooperation mechanism is based on the idea that “those who have
more (assets, liabilities) give to those who have less (assets, liabilities)”. Themonetary
authority’s intervention in the banking system dynamics consists of the choice of two
functions representing, respectively, the assets and liabilities of a kind of “ideal bank”
as functions of time and the choice of the rules controlling the cooperation mechanism
among the banks.

It is worthwhile noting that the model proposed here is a deliberate over-simplifi-
cation of interbank borrowing and lending activities. Banking systems are, in reality,
very complex and diverse dynamic systems and the hypothesis of a uniform bank
population initially proposed in Fouque and Sun (2013) and used here is a very strong
hypothesis that is far from being true in real banking systems. As well, the assumption
of banks that lend to and borrow from each other in the spirit of “those who have
more (assets, liabilities) give to those who have less (assets, liabilities)” is simply a
game feature introduced to model lending and borrowing among banks with the final
scope of better understanding the banking system and systemic risk. This assumption
was initially introduced in Fouque and Sun (2013) but has been commonly accepted
and used by several authors (see for example, Fouque and Ichiba 2013; Carmona
et al. 2015; Fatone and Mariani 2019; more recently, Sun 2018; Biagini et al. 2019a)
in order to have a banking system model that is simple enough for mathematical
analysis, yet captures how banks’ lending preferences affect possible multiple bank
failures. Introducing incentives for lending and borrowingwouldmake themodelmore
realistic. Some attempts in this direction can be found in Carmona et al. (2015), Rogers
and Veraart (2013), Eisert and Eufingerbi (2014) and may serve as a topic of future
research. From an economic standpoint cooperation among banks can be seen, for
example, as an “extreme” risk-sharing mechanism. This is the case when independent
banks, having significant exposure to the same assets, begin cooperating to protect
themselves from the decrease in assets values which could prejudice their interests
and can lead to a crisis in the entire banking system. Finally, the hypothesis implied
by the borrowing and lending mechanism adopted in these models, i.e., the potentially
unlimited possibility of borrowing and lendingmoney amongbanks andbetweenbanks
and themonetary authority, is a very strong assumption.However, these simplifications
are balanced by the fact that, in the simplified models considered, a pseudo mean field
limit of the system can be easily computed and used to study systemic risk governance
via an ad hoc optimal control problem.Moreover, understanding the simplifiedmodels
can be seen as a preliminary step in the study of more realistic banking systemmodels.

123



Systemic risk governance in a dynamical model…

As emphasized in many papers dealing with discrete-time models of banking sys-
tems (see for instance, Berardi and Tedeschi 2017; Caccioli et al. 2014; Grilli et al.
2014, 2017; Iori et al. 2006; Lenzu and Tedeschi 2012; Tedeschi et al. 2012), hetero-
geneity influences the resilience and stability of a banking system, thereby determining
the level of systemic risk. Bank heterogeneity concerns several aspects, for exam-
ple, bank size, investment opportunities (Iori et al. 2006), balance-sheet distribution
(Berardi and Tedeschi 2017; Iori et al. 2006), and topology of the banking network
(Berardi and Tedeschi 2017; Caccioli et al. 2012; Tedeschi et al. 2012). All these
aspects affect systemic risk in a banking system in different ways. The mechanism of
shock propagation among financial institutions and its relation to systemic risk is also
usually studied using static or discrete-time models. We have focused our attention on
the models proposed in May and Nimalan (2010), Haldane and May (2011) since the
authors investigate shock propagation in a static assets–liabilities model of a banking
system using a mean field approach. In these papers, the effect of exogenous shocks
on the individual bank is modeled as a sudden reduction in assets value.

It would be interesting to investigate how the above-mentioned properties are
reflected when dealing with continuous-time dynamical models of banking systems.
A first step in this direction is to analyze simple continuous-time dynamical models
(like the one presented here) and then extend this study to more general, complex,
diverse and realistic dynamical models. In order to do this, at least from a theoretical
viewpoint, we explain the details of the banking system model studied in this paper
and its potential generalizations.

We consider N banks that lend to and borrow from each other. These banks form
the nodes of a network representing the banking system. From amathematical point of
view, the network is a graph of order N , i.e., a collection of N nodes with links among
them. The links denote the presence of a cooperative relationship among the nodes
and each link has a capacity indicating the “intensity” of the cooperation mechanism
between the linked nodes. Various assumptions about the structure of the financial net-
work, and therefore about the topology of the graph, can be made. These assumptions
hold important consequences for the study of systemic risk associated with the finan-
cial network. In the simplest models, such as the one considered here and in Fouque
and Sun (2013), Fatone and Mariani (2019), the bank population is homogeneous and
any one of the N banks is linked in the same way to all the other banks as a lender and
borrower, that is, all the links have the same capacity and the graph associated with the
financial network is the clique. In particular, this means that all banks are copies of a
“unique bank”. More refined and realistic banking system models can be considered.
For example, the banks in the model can be linked to a central bank (see e.g., Carmona
et al. 2015) and they may or may not be linked among themselves. In the latter case,
the graph corresponding to the financial network is a star graph. The banking system
model can be generalized to consider banks of different sizes, for example, a situation
characterized by the presence of big banks and small banks or big banks, medium
banks and small banks. For instance, in May et al. (2008) it is shown that the topology
of the USA Fedwire system, composed of some 9500 participating banks, is “highly
non-random in a dissociative way”, that is, there are a few big banks and each big
bank is connected to many small banks. Moreover, the small banks are connected to
only a few other banks, which are mainly the big banks.
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More realistic models for these networks could be obtained, for example, by intro-
ducing assets and liabilities accounting, incentives for borrowing and lending, and
upper bounds to the borrowing and lending activities among banks. More generally,
models that are networks of networks are sometime used to study real banking systems.

The study of some of these more realistic models shows that, under some suitable
assumptions, it is possible to reduce the default risk for each type of bank present in
the system (i.e., big banks, medium banks, small banks), but the price of this reduction
is an increase in the default of the entire system (see e.g., Haldane and May 2011).
As a consequence, systemic risk must be governed. In these more complex models,
the original mean field approximation cannot be used. In fact, different types of banks
do not have the same “average behavior”. One possibility would be to aggregate
information deduced from the behavior of the mean field approximation of each type
of bank present in the model according to the effective relationship between the banks.
In this way, the resulting approximation could be used to govern the systemic risk
associated with the original banking system. For example, the model studied in this
paper could be thought of as a rough representation of the “big bank” system of a given
financial network. A possible extension is a model characterized by the presence of
“big banks and small banks” (and in general a model characterized by the presence of
banks of different types). In this case, twomeanfield approximations can be considered
(one for the big banks and the other for the small banks) and these two approximations
can be coupled in a dynamical system that describes the qualitative interaction among
the different types of banks in the model. The feasibility and effectiveness of this
approach depend on the specific model under investigation, and, in particular, on the
graph that expresses the interaction among the banks. For an exhaustive review on
systemic risk in the context of financial networks, including the study of potential
default cascades due to various contagion effects, we refer to Hurd (2016), Fouque
and Langsam (2013), Biagini et al. (2019a).

Concerning the modeling of shocks, we generalize the shock propagation mecha-
nismadopted inHaldane andMay (2011),May andNimalan (2010) to continuous-time
models. In the banking systemmodel proposed, realistic situations of banking distress
due to the deterioration in the quality of banks’ assets and/or liabilities can be mod-
eled. Shocks that hit the banking system are simulated with jumps in the volatilities
of the stochastic differential equations satisfied by the banks’ assets and liabilities and
with jumps in the correlation coefficients of the stochastic differentials of the diffusion
terms that appear on the right-hand side of the assets and liabilities equations.

We use “systemic risk” or “systemic event” in a bounded time interval to refer to
the fact that in that time interval at least a given fraction of the banks in the model fails.
Given a banking systemmodel, we use statistical simulation to evaluate the probability
of systemic risk in a bounded time interval. The action of the cooperation mechanism
among banks reduces the default probability of the individual bank at the expense
of an increase in the default probability of all or almost all the banks in the banking
system. The latter case is called “extreme” systemic risk.

When the number of banks in the model goes to infinity, a heuristic approximation
of the banking systemmodel called “pseudo mean field approximation” is introduced.
This approximation is inspired by the mean field approximation of statistical mechan-
ics (see e.g., Gallavotti 1999) and is based on the homogeneity of the bank population.
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The pseudo mean field approximation is a stochastic dynamical system with two
degrees of freedom.

We present a method to govern the probability of systemic risk in a bounded time
interval. The goal of governance is to keep the probability of systemic risk in a bounded
time interval between two given thresholds. Governance exploits the choice made by
themonetary authority for the assets and liabilities of a kindof “ideal bank” as functions
of time and the solution of a stochastic optimal control problem for the pseudo mean
field approximation of the banking system model. In fact, in a homogeneous bank
population when there are enough banks, all banks behave like a sort of “mean bank”,
the behavior of which is approximated with the behavior of the pseudo mean field
approximation of the banking system model. This behavior is forced to be similar to
the behavior of the “ideal bank” by solving a stochastic optimal control problem for the
pseudo mean field approximation of the banking system model. With a homogeneous
bank population, the governance of the pseudo mean field approximation is easily
translated into the governance of the entire bank population. More specifically, it is
translated into the rules for the cooperation mechanism among banks. In this way,
systemic risk governance induces the individual banks to behave like the ideal bank.
Shocks in the banks’ assets and liabilities are simulated and numerical examples of
systemic risk governance in the presence and absence of shocks are presented.

The paper is organized as follows. In Sect. 2, an assets–liabilities banking system
model is defined. In Sect. 3, the definition of systemic risk in a bounded time interval
is given and the implications of the presence of the cooperation mechanism and homo-
geneity of the bank population for the systemic risk probability are investigated. In
Sect. 4, the mean field and pseudo mean field approximations of the banking system
model defined in Sect. 2 are discussed. In Sect. 5, an optimal control problem for
the pseudo mean field approximation of the banking system model is solved and the
optimal control that is found is translated into the rules that determine the behavior
of the cooperation mechanism among banks. Finally in Sect. 7, a method to govern
systemic risk in a bounded time interval is presented and some numerical examples of
systemic risk governance of banking systems in the presence and absence of shocks
are discussed.

2 The banking systemmodel

Let t be a real variable that denotes time and N > 1 be a positive integer representing
the number of banks present in the banking systemmodel at time t = 0. The superscript
i labels the i-th bank, i = 1, 2, . . . , N . The activities of each bank are partitioned
in the following categories: interbank loans, external assets, deposits and interbank
borrowings. The assets of a bank are composed of the bank’s interbank loans and
external assets. The liabilities of a bank are composed of the bank’s deposits and
interbank borrowings. The assets ait of the i-th bank at time t ≥ 0 are the sum of the
interbank loans ιit at time t ≥ 0, and the external assets eit at time t ≥ 0, of the i-th
bank, i = 1, 2, . . . , N , that is:

ait = ιit + eit , t ≥ 0, i = 1, 2, . . . , N . (1)
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The liabilities lit of the i-th bank at time t ≥ 0 are the sum of the deposits dit at time
t ≥ 0, and the interbank borrowings bit at time t ≥ 0, of the i-th bank, i = 1, 2, . . . , N ,
that is:

lit = dit + bit , t ≥ 0, i = 1, 2, . . . , N . (2)

The previous four categories of activities are balanced in the bank’s capital. The net
worth or equity of the i-th bank, cit , at time t ≥ 0, is defined as the difference between
assets ait at time t ≥ 0 and liabilities lit at time t ≥ 0, of the i-th bank, i = 1, 2, . . . , N ,
that is:

cit = ait − lit , t ≥ 0, i = 1, 2, . . . , N . (3)

Equations (3) represent stylized balance sheets of the banks present in the banking
system model. In this paper, we consider a continuous-time dynamical model that
allows assets and liabilities to behave stochastically. This behavior is consistent with
the uncertainty associated with items appearing on the balance sheets (3), namely the
interbank loans and external assets (assets) and the deposits and interbank borrowings
(liabilities).

We assume that a bank is solvent when its assets are greater than or equal to its
liabilities, that is, we assume that the i-th bank is solvent at time t ≥ 0, if

cit = ait − lit ≥ 0, t ≥ 0, i = 1, 2, . . . , N . (4)

When the net worth cit , t ≥ 0, of the i-th bank becomes negative for the first time
during the time evolution, the i-th bank has failed, i = 1, 2, . . . , N . The failed banks
are removed from the banking system model. Note that in the models studied in this
paper, the assets, liabilities and net worth of each bank are stochastic processes in
time. This means, in particular, that inequality (4) must be considered for each path
of the stochastic process that represents the net worth. That is, a bank can have failed
on a path of its net worth and be solvent on a different path. Equations (1), (2), (3) are
a simple model of bank capital; more advanced models can be found, for example,
in Diamond and Rajan (2000).

InMukuddem-Petersen andPetersen (2006, 2008), the dynamics of each addendum
present on the right-hand side of (1), (2) is specified. Here instead we specify only the
dynamics of the assets ait , t ≥ 0, and liabilities lit , t ≥ 0, i = 1, 2, . . . , N . In fact, we
assume that the banks’ assets and liabilities are stochastic processes of time defined
implicitly by the following system of stochastic differential equations:

dait = aitμadt + ait σadW
i
t , t > 0, i = 1, 2, . . . , N , (5)

dlit = litμldt + lit σldZ
i
t , t > 0, i = 1, 2, . . . , N , (6)

with initial conditions:

ai0 = ãi0, li0 = l̃ i0, i = 1, 2, . . . , N , (7)
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where σa = σa,t , t > 0, σl = σl,t , t > 0 are piecewise constant positive functions
of time and μa , μl are real constants. In (7), ãi0, l̃

i
0, i = 1, 2, . . . , N , are random

variables that, for simplicity, we assume to be concentrated at a point with probability
one. Abusing the notation, we use the same symbols to denote the random variables
and the points where the random variables are concentrated. We assume ãi0 > 0,
l̃ i0 > 0, ãi0 − l̃ i0 > 0, i = 1, 2, . . . , N , that is, we assume that at time t = 0, all banks
are solvent with probability one.

The stochastic processes Wi
t , Z

i
t , t ≥ 0, in (5), (6) are standard Wiener processes,

such that Wi
0 = 0, Zi

0 = 0, and dWi
t , dZ

i
t , t > 0, are their stochastic differentials,

i = 1, 2, . . . , N . We assume that:

E(dWi
t dW

j
t ) = ρ2

a dt, i �= j, E(dZi
t dZ

j
t ) = ρ2

l dt, i �= j,

E(dWi
t dW

i
t ) = E(dZ j

t dZ
j
t ) = dt, E(dWi

t dZ
j
t ) = 0,

t > 0, i, j = 1, 2, . . . , N , (8)

where E(·) denotes the expected value of ·, and ρa = ρa,t , t > 0, ρl = ρl,t , t > 0,
are piecewise constant functions of time such that |ρa,t | ≤ 1, |ρl,t | ≤ 1, t > 0. The
stochastic differentials dWi

t , t > 0, i = 1, 2, . . . , N , can be represented as follows:

dWi
t = ρad ˜W 0

t +
√

1 − ρ2
a d ˜Wi

t , t > 0, i = 1, 2, . . . , N , (9)

where ˜W j
t , t ≥ 0, j = 0, 1, . . . , N , are independent standard Wiener processes

such that ˜W j
0 = 0, j = 0, 1, . . . , N , and d ˜W j

t , t > 0, j = 0, 1, . . . , N , are their
stochastic differentials. The term d ˜W 0

t , t > 0, is called the common noise of the assets
equations (5). Similarly the stochastic differentials dZi

t , t > 0, i = 1, 2, . . . , N , can
be represented as follows:

dZi
t = ρld˜Z0

t +
√

1 − ρ2
l d˜Zi

t , t > 0, i = 1, 2, . . . , N , (10)

where ˜Z j
t , t ≥ 0, j = 0, 1, . . . , N , are independent standard Wiener processes such

that ˜Z j
0 = 0, j = 0, 1, . . . , N , and d˜Z j

t , t > 0, j = 0, 1, . . . , N , are their stochastic
differentials. The term d˜Z0

t , t > 0, is called the common noise of the liabilities

equations (6). Finally we assume that d ˜Wi
t and d˜Z j

t are independent, t > 0, i, j =
0, 1, . . . , N .

Note that in (8), the correlation coefficients ρ2
a , ρ2

l between the stochastic differ-
entials of the assets equations (5) and liabilities equations (6) are non-negative. These
non-negative correlation coefficients generate the so-called “collective” behavior of
the banks in the presence of a shock and are translated into the representation formu-
lae of the stochastic differentials (9), (10). The correlation model (8) can be easily
extended to more general situations.

For example, in (8), the correlation between assets and liabilities for a given bank
and the correlation between assets and liabilities of different banks can be considered
and modeled. In this case, the representation formulae (9), (10) must be adapted to the
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circumstances, using, for instance, theCholesky factorization for the correlationmatrix
of theWiener processes appearing in (8). For simplicity, we omit these generalizations
here.

Note that the diffusion coefficient σa is the same in all assets equations (5) and
that similar statements hold for the diffusion coefficient σl , the drift coefficients μa ,
μl , and the correlation coefficients ρa , ρl . Moreover, let us assume that ãi0 = ã0,
l̃ i0 = l̃0, i = 1, 2, . . . , N , so we have ã0 > 0, l̃0 > 0, ã0 − l̃0 > 0. With these
assumptions, all banks in themodel are equal, that is, the bank population described by
the banking systemmodel (3), (5), (6), (7), (8) is homogeneous. Systems composed of
a homogeneous population of “individuals” are studied in statistical mechanics where
the individuals are usually atoms or molecules. In extending the ideas developed in
statistical mechanics to banking system models, we show that the homogeneity of the
bank population implies that when N goes to infinity, all banks behave in the same
way, i.e., they all behave as a kind of “mean bank”. Using the language of statistical
mechanics, the “mean bank” behavior is defined by the “mean field” approximation
of the banking system model.

In an assets–liabilities dynamical model of a banking system [like model (3), (5),
(6), (7), (8)], it is possible to study the propagation of certain types of shocks. For
example, one can model shocks consisting of losses in value of the banks’ external
assets caused by a generalized fall in the assets market prices and/or by a generalized
rise in expected defaults (see for example, Haldane and May 2011; May and Nimalan
2010). These shocks reduce the net worth of all banks at the same time, leading to an
abrupt increase in the probability of systemic risk in a bounded time interval. In model
(3), (5), (6), (7), (8) shocks are modeled with jumps in the volatility σa in the assets
equations (5), while keeping σl constant in the liabilities equations (6) or, vice versa,
with jumps of σl keeping σa constant. For simplicity, we do not consider jumps of σa
and σl at the same time. In other words, the shocks acting on the banks’ assets and
liabilities are modeled choosing the functions σa = σa,t , t > 0, and σl = σl,t , t > 0.
Moreover, in model (3), (5), (6), (7), (8), it is possible to study the banks’ “collective”
behavior in the presence of a shock. In fact, when a shock hits the banking system,
all banks react in the same way and this “collective” behavior is modeled with a
positive correlation between the stochastic differentials on the right-hand side of the
assets equations (5) and/or the liabilities equations (6). That is, the banks’ “collective”
behavior in reaction to a shock is modeled with a jump in the functions ρa = ρa,t ,
t > 0, and/or ρl = ρl,t , t > 0.

Using model (3), (5), (6), (7), (8), we adapt the mechanisms used in the models
presented in Fouque and Sun (2013), Fatone and Mariani (2019) to describe the coop-
eration among banks and we introduce the terms used to describe the intervention of
the monetary authority in the banking system dynamics. To do so, we define the new
variables Gi

t , H
i
t , t ≥ 0, i = 1, 2, . . . , N , as follows:

Gi
t = ln(ait ), Hi

t = ln(lit ), t ≥ 0, i = 1, 2, . . . , N , (11)

where ln(·) is the logarithm of ·. First, note that the variablesGi
t = ln(ait ), H

i
t = ln(lit ),

t ≥ 0, i = 1, 2, . . . , N , are well-defined. In fact, at time t = 0, for i = 1, 2, . . . , N ,
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we have ãi0 = ã0 > 0, l̃ i0 = l̃0 > 0, ã0 − l̃0 > 0, with probability one, and therefore
Eqs. (5), (6) imply that ait > 0, lit > 0, with probability one, t > 0.

The quantities Gi
t = ln(ait ), H

i
t = ln(lit ), are, respectively, the log-assets and

log-liabilities of the i-th bank at time t ≥ 0, i = 1, 2, . . . , N .
Using Itô’s Lemma and Eqs. (5), (6), it is easy to see that the stochastic processes

Gi
t , H

i
t , t ≥ 0, i = 1, 2, . . . , N , satisfy the following equations:

dGi
t =

(

μa − 1

2
σ 2
a

)

dt + σadW
i
t , t > 0, i = 1, 2, . . . , N , (12)

dHi
t =

(

μl − 1

2
σ 2
l

)

dt + σldZ
i
t , t > 0, i = 1, 2, . . . , N , (13)

with initial conditions:

Gi
0 = ln(ãi0) = ln(ã0), Hi

0 = ln(l̃ i0) = ln(l̃0), i = 1, 2, . . . , N . (14)

Let us define the stochastic processes:

Ai
t = Gi

t −
(

μat − 1

2

∫ t

0
σ 2
a,τdτ

)

, t ≥ 0, i = 1, 2, . . . , N , (15)

Li
t = Hi

t −
(

μl t − 1

2

∫ t

0
σ 2
l,τdτ

)

, t ≥ 0, i = 1, 2, . . . , N . (16)

From (12), (13), (14) it is easy to see that Ai
t , L

i
t , t ≥ 0, i = 1, 2, . . . , N , satisfy the

following equations:

dAi
t = σadW

i
t , t > 0, i = 1, 2, . . . , N , (17)

dLi
t = σldZ

i
t , t > 0, i = 1, 2, . . . , N , (18)

with initial conditions:

Ai
0 = ln(ãi0) = ln(ã0), Li

0 = ln(l̃ i0) = ln(l̃0), i = 1, 2, . . . , N . (19)

Let ψt , t ≥ 0, be a continuous piecewise differentiable function; the notation
dψt = dψt

dt dt = (ψt )
′ dt , t > 0, denotes the “piecewise differential” of ψt , t ≥ 0.

Using the ideas developed in Fouque and Sun (2013), Fatone andMariani (2019)we
modify Eqs. (17), (18) and we introduce the terms used to implement the cooperation
mechanism among banks and the terms used to model the intervention of the monetary
authority in the banking system dynamics. This is done by adding some drift terms
to (17), (18). That is, given the continuous piecewise differentiable functions ϕt > 0,
φt > 0, t ≥ 0, such that ϕt − φt > 0, t ≥ 0, we replace Eqs. (17), (18), respectively,
with the following:

dAi
t = αt

N

N
∑

j=1

(

A j
t − Ai

t

)

dt + dϕ̃t + σadW
i
t , t > 0, i = 1, 2, . . . , N , (20)
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dLi
t = γt

N

N
∑

j=1

(

L j
t − Li

t

)

dt + dφ̃t + σldW
i
t , t > 0, i = 1, 2, . . . , N , (21)

where ϕ̃t , φ̃t , t ≥ 0, are given by:

ϕ̃t = ln(ϕt ) − μat + 1

2

∫ t

0
σ 2
a,τdτ, t ≥ 0, (22)

φ̃t = ln(φt ) − μl t + 1

2

∫ t

0
σ 2
l,τdτ, t ≥ 0. (23)

Equations (20) and (21) are completed with the initial conditions (19) and with
the assumptions about the correlation coefficients (8). Hereafter, for convenience we
assume ã0 = ϕ0, l̃0 = φ0.

Equations (20) and (21) describe, respectively, the banks’ “assets” and “liabilities”.
For simplicity, the variables Ai

t , L
i
t , t ≥ 0, are called, respectively, the “assets” and

“liabilities” of the i-th bank, i = 1, 2, . . . , N , instead of centered log-assets and
centered log-liabilities as would be more appropriate.

The functions ϕt , φt , are interpreted, respectively, as assets and liabilities of the
“ideal bank” at time t , t ≥ 0. The fact that the “ideal bank” is solvent corresponds to
the assumption that ϕt − φt > 0, t ≥ 0. Recall that the functions ϕ̃t , φ̃t , t ≥ 0, of
Eqs. (20) and (21) are related to ϕt , φt , t ≥ 0, through (22) and (23). The functions
αt ≥ 0, γt ≥ 0, t > 0, of (20) and (21) regulate the cooperation mechanism among
banks and their choice corresponds to the rules of the cooperation mechanism among
banks. This choice will later be attributed to the monetary authority and will be used
to govern the systemic risk in a bounded time interval of the banking system model.
The initial value problem (20), (21), (19) is completed with assumptions (8).

For i = 1, 2, . . . , N , the cooperation of the i-th bank with the other banks is

described by the drift terms αt
N

∑N
j=1

(

A j
t −Ai

t

)

dt , t > 0, and γt
N

∑N
j=1

(

L j
t −Li

t

)

dt ,

t > 0, respectively, of the i-th Eq. (20) and the i-th Eq. (21). In fact the term
αt
N

∑N
j=1

(

A j
t − Ai

t

)

dt , in the i-thEq. (20) implies that for t > 0 and j = 1, 2, . . . , N ,

if at time t bank j has more “assets” than bank i (i.e., if A j
t > Ai

t ) assets flow

from bank j to bank i , and this flow is proportional to the difference A j
t − Ai

t at
the rate αt

N . The opposite happens if bank i has more “assets” than bank j (i.e., if

A j
t < Ai

t ), j = 1, 2, . . . , N . For i = 1, 2, . . . , N , the term γt
N

∑N
j=1

(

L j
t − Li

t

)

dt ,

t > 0, in the i-th Eq. (21) is related to the “liabilities” and is analogous to the term
αt
N

∑N
j=1

(

A j
t − Ai

t

)

dt , t > 0, of the “assets” of the i-th Eq. (20); this term has the

same effect on the liabilities as the effect that the term αt
N

∑N
j=1

(

A j
t − Ai

t

)

dt , t > 0,

has on the assets.
Note that the division by N in the rates αt

N , γt
N , t > 0, of the drift terms of Eqs.

(20) and (21) is a normalization factor taken from the technical literature (see for
example, Carmona et al. 2015; Garnier et al. 2013; Fatone and Mariani 2019). It plays
no role in this paper.
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The cooperation mechanism added in (20) and (21) is a simple implementation
of the idea that “those who have more (assets, liabilities) give to those who have less
(assets, liabilities)”. In this sense it is a cooperation mechanism between banks. This is
a very simple form of cooperation mechanism, but it is widely accepted throughout the
scientific community. Itwas originally introduced inFouque and Ichiba (2013), Fouque
and Sun (2013), but has been generalized in various ways in a number of articles. See,
for example, Garnier et al. (2013), Carmona et al. (2015), Sun (2018), Biagini et al.
(2019a), Biagini et al. (2019b), Fatone and Mariani (2019).

The drift terms dϕ̃t , dφ̃t , t > 0, in Eqs. (20) and (21) describe the intervention of
the monetary authority in the banking system dynamics. In fact the term dϕ̃t , t > 0, of

Eq. (20) is responsible for the fact that the drift terms αt
N

∑N
j=1

(

A j
t − Ai

t

)

dt , t > 0,

i = 1, 2, . . . , N , stabilize the trajectories of Ai
t , t > 0, i = 1, 2, . . . , N , around

the function ϕ̃t , t > 0, and, as a consequence, stabilize the trajectories of ait , t > 0,
i = 1, 2, . . . , N , around the function ϕt , t > 0. Analogously the term dφ̃t , t > 0, in

Eq. (21) is responsible for the fact that the drift terms γt
N

∑N
j=1

(

L j
t − Li

t

)

dt , t > 0,

i = 1, 2, . . . , N , stabilize the trajectories of Li
t , t > 0, i = 1, 2, . . . , N , around

the function φ̃t , t > 0, and, as a consequence, stabilize the trajectories of lit , t > 0,
i = 1, 2, . . . , N , around the function φt , t > 0. That is, when αt > 0, γt > 0, t > 0,
the drift terms introduced in Eqs. (20) and (21) and expressed by dϕ̃t , dφ̃t , t > 0,
generate a “swarming” effect in the trajectories of the assets ait , t > 0, i = 1, 2, . . . , N ,

and liabilities lit , t > 0, i = 1, 2, . . . , N , around ϕt , φt , t > 0, respectively, that is,
around the assets and liabilities of the “ideal bank”. This implies that the trajectories
of the net worth of the i-th bank swarm around the net worth of the “ideal bank”
ξt = ϕt − φt , t > 0, i = 1, 2, . . . , N . This swarming effect is a key ingredient of the
systemic risk governance discussed later.

Let us rewrite Eqs. (20), (21), (19) using the stochastic processes Gi
t , H

i
t , t ≥ 0,

i = 1, 2, . . . , N as dependent variables. We have:

dGi
t = αt

N

N
∑

j=1

(

G j
t − Gi

t

)

dt + d ln(ϕt ) + σadW
i
t , t ≥ 0, i = 1, 2, . . . , N ,

(24)

dHi
t = γt

N

N
∑

j=1

(

H j
t − Hi

t

)

dt + d ln(φt ) + σldZ
i
t , t ≥ 0, i = 1, 2, . . . , N ,

(25)

with initial conditions:

Gi
0 = ln(ã0), Hi

0 = ln(l̃0), i = 1, 2, . . . , N , (26)

where ã0 = ϕ0, l̃0 = φ0. We add assumption (8) to Eqs. (3), (11), (24), (25), (26),
thereby completing the banking system model.
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For simplicity, we use the same symbols to denote the variables of model (3), (5),
(6), (7), (8) and those of model (3), (11), (24), (25), (26), (8). When necessary to avoid
ambiguity, we specify the banking system model considered.

Note that when αt = 0, γt = 0, t > 0, and the functions ϕt , φt , t ≥ 0, are constants,
there is no cooperation among banks and no intervention of the monetary authority
in the banking system dynamics. In this case, model (3), (11), (24), (25), (26), (8),
reduces to model (3), (5), (6), (7), (8).

3 Systemic risk in a bounded time interval

Given the banking system model (3), (5), (6), (7), (8), or (3), (11), (24), (25), (26), (8),
we define two events: (i) default of a bank in a bounded time interval, (ii) systemic
risk in a bounded time interval, and we introduce a probability distribution called “loss
distribution” of banks that have defaulted in a bounded time interval.

Given 0 ≤ τ1 < τ2 < +∞ and the default level D ≥ 0, we define the event Fi[τ1,τ2],
“default of the i-th bank in the time interval [τ1, τ2]”, as follows:

Fi[τ1,τ2] =
{

min
τ1≤t≤τ2

cit < D

}

, i = 1, 2, . . . , N . (27)

That is, for i = 1, 2, . . . , N , the i-th bank defaults in the time interval [τ1, τ2] if its
net worth cit , t ≥ 0, in that time interval goes below the default level D. Recall that in
this paper we have chosen D = 0; the inequality minτ1≤t≤τ2 c

i
t < D is considered for

each path of the stochastic process cit , τ1 ≤ t ≤ τ2, i = 1, 2, . . . , N . The failed banks
are removed from the banking system model, which means that the number of banks
present in the model may depend on the path of the banking system model considered
and may not be constant during the time evolution.

Let int [·] be the integer part of the real number · and M be a positive integer such
that int

[ N
2

] ≤ M ≤ N . The systemic risk (or systemic event) of type M in the time
interval [τ1, τ2], SR[τ1,τ2], is the event defined as follows:

SRM[τ1,τ2] = {at leastM banks fail in the time interval [τ1, τ2]} . (28)

In this paper, we choose M = int
[ N
2

] + 1 and we write SR[τ1,τ2] to mean SRM[τ1,τ2]
when M = int

[ N
2

] + 1.
Let P(·) be the probability of the event ·. Given the banking system model (3), (5),

(6), (7), (8) or (3), (11), (24), (25), (26), (8) we associate to the events Fi[τ1,τ2], i =
1, 2, . . . , N , and SR[τ1,τ2] defined in (27), (28) a probability evaluated using statistical
simulation. In fact the probability P(Fi[τ1,τ2]) of event F

i[τ1,τ2], i = 1, 2, . . . , N , and
the probability P(SR[τ1,τ2]) of event SR[τ1,τ2] is approximated with the corresponding
frequencies computed on a set of numerically simulated trajectories of the banking
system model considered. Note that due to the homogeneity of the bank population,
P(Fi[τ1,τ2]) does not depend on i , i = 1, 2, . . . , N .

The loss distribution of the banks that have defaulted in the bounded time interval
[τ1, τ2] is the probability distribution of the random variable defined as the number
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Fig. 1 Loss distribution in [0, T ], T = 1, of system (3), (11), (24), (25), (26), (8) when N = 10, μa = 0.1,
μl = 0.1, σa = σ1,t , σl = 0.6, ρa = 0, ρl = 0, ϕt = 0.1, φt = 0.06, αt = 10, γt = 10, t ∈ [0, T ], T = 1
(solid line) and loss distribution in [0, T ], T = 1, of system (3), (5), (6), (7) when N = 10, μa = 0.1,
μl = 0.1, σa = σ1,t , σl = 0.6, ρa = 0, ρl = 0, t ∈ [0, T ], T = 1 (dashed line)

of bank defaults in the time interval [τ1, τ2]. Given a banking system model, the loss
distribution of the banks defaulted in time interval [τ1, τ2] can be approximated via
statistical simulation computing the distribution of the frequencies of the appropriate
events in a set of numerically simulated trajectories of the banking system model
considered.

Let us study the loss distribution of the banks defaulted in the time interval [0, T ],
T = 1, in banking system models (3), (5), (6), (7), (8) and (3), (11), (24), (25), (26),
(8). In both models, we choose N = 10, and we evaluate the loss distribution of
the banks defaulted in [0, T ], T = 1, using a statistical simulation starting from 104

numerically simulated trajectories of the models considered. We define the functions:

σ1,t = 0.8, t ∈ [0, 1], (29)

σ2,t =
{

0.2, t ∈ [0, 0.2],
1, t ∈ (0.2, 1], (30)

σ3,t =
⎧

⎨

⎩

0.2, t ∈ [0, 0.2],
0.8, t ∈ (0.2, 0.5],
0.2, t ∈ (0.5, 1].

(31)

In Figs. 1, 2, 3, 4 and 5, the dashed line shows the loss distribution of the banks
defaulted in time interval [0, T ], T = 1, of model (3), (5), (6), (7), (8), while the solid
line shows the loss distribution of the banks defaulted in time interval [0, T ], T = 1,
of model (3), (11), (24), (25), (26), (8). In Figs. 1, 2, 3, 4 and 5 we have: N = 10,
ϕt = 0.1, φt = 0.06, σl = σl,t = 0.6, ρl = ρl,t = 0, t ∈ [0, T ], T = 1, μa = 0.1,
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number of defaults
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Fig. 2 Loss distribution in [0, T ], T = 1, of system (3), (11), (24), (25), (26), (8) when N = 10, μa = 0.1,
μl = 0.1, σa = σ2,t , σl = 0.6, ρa = 0, ρl = 0, ϕt = 0.1, φt = 0.06, αt = 20, γt = 20, t ∈ [0, T ], T = 1
(solid line) and loss distribution in [0, T ], T = 1, of system (3), (5), (6), (7) when N = 10, μa = 0.1,
μl = 0.1, σa = σ2,t , σl = 0.6, ρa = 0, ρl = 0, t ∈ [0, T ], T = 1 (dashed line)
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Fig. 3 Loss distribution in [0, T ], T = 1, of system (3), (11), (24), (25), (26), (8) when N = 10, μa = 0.1,
μl = 0.1, σa = σ3,t , σl = 0.6, ρa = 0, ρl = 0, ϕt = 0.1, φt = 0.06, αt = 10, γt = 10, t ∈ [0, T ], T = 1
(solid line) and loss distribution in [0, T ], T = 1, of system (3), (5), (6), (7) when N = 10, μa = 0.1,
μl = 0.1, σa = σ3,t , σl = 0.6, ρa = 0, ρl = 0, t ∈ [0, T ], T = 1 (dashed line)
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Fig. 4 Loss distribution in [0, T ], T = 1, of system (3), (11), (24), (25), (26), (8) when N = 10, μa = 0.1,
μl = 0.1, σa = σ1,t , σl = 0.6, ρa = 0.5, ρl = 0, ϕt = 0.1, φt = 0.06, αt = 10, γt = 10, t ∈ [0, T ],
T = 1 (solid line) and loss distribution in [0, T ], T = 1, of system (3), (5), (6), (7) when N = 10,μa = 0.1,
μl = 0.1, σa = σ1,t , σl = 0.6, ρa = 0.5, ρl = 0, t ∈ [0, T ], T = 1 (dashed line)
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Fig. 5 Loss distribution in [0, T ], T = 1, of system (3), (11), (24), (25), (26), (8) when N = 10, μa = 0.1,
μl = 0.1, σa = σ1,t , σl = 0.6, ρa = √

0.5, ρl = 0, ϕt = 0.1, φt = 0.06, αt = 10, γt = 10, t ∈ [0, T ],
T = 1 (solid line) and loss distribution in [0, T ], T = 1, of system (3), (5), (6), (7) when N = 10,μa = 0.1,
μl = 0.1, σa = σ1,t , σl = 0.6, ρa = √

0.5, ρl = 0, t ∈ [0, T ], T = 1 (dashed line)
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μl = 0.1. Moreover in Fig. 1 we have: σa = σ1,t , ρa = ρa,t = 0, αt = 10, γt = 10,
t ∈ [0, T ], T = 1, in Fig. 2 we have: σa = σ2,t , ρa = ρa,t = 0, αt = 20, γt = 20,
t ∈ [0, T ], T = 1, in Fig. 3 we have: σa = σ3,t , ρa = ρa,t = 0, αt = 10, γt = 10,
t ∈ [0, T ], T = 1, in Fig. 4 we have: σa = σ1,t , ρa = ρa,t = 0.5, αt = 10, γt = 10,
t ∈ [0, T ], T = 1, and finally in Fig. 5 we have: σa = σ1,t , ρa = ρa,t = √

0.5,
αt = 10, γt = 10, t ∈ [0, T ], T = 1.

Note that the results shown in Figs. 1, 2, 3, 4 and 5 are obtained when the functions
ϕt = 0.1, φt = 0.06, t ∈ [0, T ], T = 1, are constants. With this choice, there is no
intervention of the monetary authority in the banking system dynamics for t ∈ (0, T ]
(in fact d ln(ϕt ) = d ln(φt ) = 0, t ∈ (0, T ], in (24), (25)) and only the cooperation
mechanism among banks is active when t ∈ [0, T ]. Note that in Figs. 1, 2, 3, 4 and 5
the functions αt , γt , t ∈ [0, T ], T = 1, are also chosen to be constant.

For model (3), (5), (6), (7), (8), the loss distribution of the banks defaulted in [0, T ],
T = 1 (shownwith a dashed line in Figs. 1, 2, 3, 4 and 5) is a unimodal distributionwith
a unique maximum corresponding to a maximizer (or to several adjacent maximizers)
located in the interior of the interval [0, N ], N = 10. In contrast, when we consider
model (3), (11), (24), (25), (26), (8), the loss distribution of the banks defaulted in
the time interval [0, T ], T = 1 (shown with a solid line in Figs. 1, 2, 3, 4, 5) has a
bump near zero defaults and a bump near N defaults and is small in between, i.e.,
it is a bimodal distribution with two maxima corresponding to two maximizers (or
to two disjoint sets of adjacent maximizers) located at the endpoints of the interval
[0, N ], N = 10. This is due to the action of the cooperation mechanism among
banks in model (3), (11), (24), (25), (26), (8). Moreover, a comparison of Fig. 1 with
Figs. 4 and 5 shows that the presence of a non-zero correlation (i.e., ρa �= 0, ρl = 0)
between the stochastic differentials on the right-hand side of the assets equations of
the banks (Figs. 4, 5) substantially increases the probability of “extreme” systemic
risk with respect to the probability of the same event in the zero correlation case (i.e.,
ρa = ρl = 0) (Fig. 1). Similar phenomena appear when volatility and correlation
coefficient jumps are present in the liabilities equations.

Figures 1, 2, 3, 4 and 5 show that in a homogeneous bank population, the cooperation
among banks introduced in model (3), (11), (24), (25), (26), (8) reduces the default
probability of the individual bank when compared to the default probability of the
individual bank in model (3), (5), (6), (7), (8) at the expense of the default probability
of the entire (or almost the entire) banking system, which is greater in model (3), (11),
(24), (25), (26), (8) than in model (3), (5), (6), (7), (8). Moreover, the comparison
of Fig. 1 with Figs. 4 and 5 shows that this effect is enhanced by the presence of
“collective” behaviors in the bank population (i.e., it is enhanced when ρ2

a , ρ2
l are

greater than zero). This is in agreement with the findings of Carmona et al. (2015),
Fatone and Mariani (2019), Haldane and May (2011), May and Nimalan (2010),
where it is shown that for a stable banking system, excessive homogeneity of the bank
population is undesirable.

Note that the previous analysis can be interpreted in different ways according to
the choice of the parameter M used in the definition of systemic risk. If, as is done
here, we choose M = int

[ N
2

] + 1 in the definition (28) of systemic risk, we see that
when α increases (i.e., when the cooperation among banks increases), the stability
of the individual bank increases and the probability of systemic risk decreases. If,
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on the other hand, in the definition (28) M is chosen to be close enough to N (for
example, M = N − 1 or M = N ), we see that when α increases (i.e., when the
cooperation among banks increases), the probability of systemic risk increases. The
occurrence of an “extreme” systemic risk event, i.e., the event “default of M = N − 1
or M = N banks”, is often referred to as a situation in which a “cascading” and/or
“contagion” effect has occurred. In fact, the intensity of the “contagion” depends on α,
and increasing α means increasing the intensity of the contagion. The corresponding
increase in the probability of “extreme” systemic risk can be seen as a manifestation
of the induced “cascading” effect.

4 Themean field approximation and pseudomean field
approximation

For a survey of the mean field approximation in the context of statistical mechanics,
see for example, Gallavotti (1999), and the references therein.We limit our attention to
the use of some ideas taken from themean field approximation of statistical mechanics
in the study of the banking system models considered in the previous sections.

We begin by considering the mean field approximation of the banking system
model (3), (11), (24), (25), (26), (8). When the stochastic differentials of Eqs. (24),
(25) dWi

t , dZ
i
t , t ≥ 0, i = 1, 2, . . . , N , are independent, that is, when in (8) we have:

ρ2
a = ρ2

a,t = 0, ρ2
l = ρ2

l,t = 0, t ≥ 0, so that in (9), (10) we have: dWi
t = d ˜Wi

t ,

dZi
t = d˜Zi

t , t ≥ 0, i = 1, 2, . . . , N , the mean field approximation of this banking
systemmodel can be deduced by proceeding as done in Fouque and Sun (2013), Fatone
and Mariani (2019). In fact, when ρ2

a = ρ2
a,t = 0, ρ2

l = ρ2
l,t = 0, t ≥ 0, and N goes

to infinity, it is easy to see that the mean field limit of (3), (11), (24), (25), (26), (8) is
given by:

Yt = At − Lt , t ≥ 0, (32)

where

At = eGt , Lt = eHt , t ≥ 0, (33)

and Gt , Ht , t ≥ 0, satisfy the stochastic differential equations:

d (Gt − ln(ϕt )) = αt (ln(ϕt ) − Gt ) dt + σad Pt , t > 0, (34)

d (Ht − ln(φt )) = γt (ln(φt ) − Ht ) dt + σldQt , t > 0, (35)

with initial conditions:

G0 = ln(ϕ0), H0 = ln(φ0). (36)

The stochastic processes Pt , Qt , t ≥ 0, of (34), (35) are standard Wiener processes
such that P0 = 0, Q0 = 0, dPt , dQt , t > 0, are their stochastic differentials and we
have:
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E(dPtdQt ) = 0, t > 0. (37)

In the mean field approximation (32), (33), (34), (35), (36), (37), the stochastic
process Yt , t > 0, represents the net worth of the “mean bank” at time t ≥ 0.
Similarly the stochastic processes At , Lt , t > 0, represent, respectively, the assets
and liabilities of the “mean bank” at time t ≥ 0. Due to the homogeneity of the bank
population, when N goes to infinity, the assets, liabilities and net worth of the banks
of model (3), (11), (24), (25), (26), (8) behave, respectively, like the assets, liabilities
and net worth of the “mean bank”, that is, they behave like the stochastic processes
defined in (33), (32).

Let us consider the banking system model (3), (11), (24), (25), (26), (8) when the
stochastic differentials of equations (24), (25) are correlated, that is, when ρa , ρl are
non-zero constants. In this case as well, it is not difficult to deduce the mean field
approximation of the banking system model (see for example, Carmona et al. 2015),
however, for later convenience, we prefer to introduce a heuristic approximation of
model (3), (11), (24), (25), (26), (8) in the limit as N goes to infinity which we call
the pseudo mean field approximation that will be used in Sects. 5 and 7 to govern
the probability of systemic risk in a bounded time interval. In the pseudo mean field
approximation of the banking systemmodel in question, Eqs. (34), (35) are substituted,
respectively, with the equations:

d (Gt − ln(ϕt )) = αt (1 − |ρa |) (ln(ϕt ) − Gt ) dt
+gt |ρa | (ln(φt ) − Ht ) dt + σad Pt , t > 0, (38)

d (Ht − ln(φt )) = γt (1 − |ρl |) (ln(φt ) − Ht ) dt

+ht |ρl | (ln(ϕt ) − Gt ) dt + σldQt , t > 0. (39)

Equations (38), (39) are equipped with initial conditions (36) and assumption (37).
The functions gt ≥ 0, ht ≥ 0, t ≥ 0, are non-negative functions that will be chosen
later. The pseudo mean field approximation is completed by adding Eqs. (32), (33) to
(38), (39), (36), (37). In the pseudo mean field approximation (32), (33), (38), (39),
(36), (37), the stochastic processes Yt ,At , Lt , t ≥ 0, have the same meaning as in the
mean field approximation, that is, they represent, respectively, the net worth, assets
and liabilities of the “pseudo mean bank” as functions of time. Equations (32), (33),
(38), (39), (36), (37) define the dynamics of the “pseudo mean bank”.

When N goes to infinity and the functions gt , ht , t ≥ 0, are chosen appropriately, the
“pseudomean bank” behavior “approximates” the behavior of the “mean bank” and as
a consequence “approximates” the behavior of the banks of model (3), (11), (24), (25),
(26), (8). The choice of (32), (33), (38), (39), (36), (37) and, in particular, the choice
of (38), (39) as the pseudo mean field approximation is motivated by the following
facts. First, when the stochastic differentials dWi

t , dZ
i
t , t > 0, i = 1, 2, . . . , N , of

Eqs. (24), (25) are independent, i.e., when in (8) we have ρ2
a = 0, ρ2

l = 0, t > 0,
the pseudo mean field approximation (32), (33), (38), (39), (36), (37) coincides with
the mean field approximation (32), (33), (34), (35), (36), (37). Moreover, when the
stochastic differentials dWi

t , t > 0, i = 1, 2, . . . , N , and dZi
t , t > 0, i = 1, 2, . . . , N ,

in Eqs. (24), (25) are perfectly correlated, that is, when we have |ρa | = 1, |ρl | = 1,

123



Systemic risk governance in a dynamical model…

and we choose gt = 0, ht = 0, t > 0, the pseudo mean field approximation (32),
(33), (38), (39), (36), (37) “coincides” with the banking system model (3), (11), (24),
(25), (26), (8), with |ρa | = 1, |ρl | = 1, t > 0. In other words, the pseudo mean field
approximation is “exact”. In fact, when |ρa | = 1, |ρl | = 1, t > 0, and Gi

0 = ln(ϕ0),

Hi
0 = ln(φ0), i = 1, 2, . . . , N , all the banks in the model satisfy the same equation

and can be considered as a “unique” bank repeated N times. That is, when |ρa | = 1,
|ρl | = 1, t > 0, the initial conditions Gi

0 = ln(ϕ0), Hi
0 = ln(φ0), i = 1, 2, . . . , N ,

imply that the cooperation mechanism among banks present in (24) and in (25) has
no influence on the banking system dynamics. Note that the condition |ρa | = 1,
|ρl | = 1, t > 0, implies that the Wiener processes present in the equations relative
to the different banks of the model coincide, that is, dWi

t , dZ
i
t , t > 0, in (24), (25)

do not depend on i , i = 1, 2, . . . , N . In this case, all the banks in the banking system
model are replicated exactly by the pseudo mean field approximation (32), (33), (38),
(39), (36), (37) when |ρa | = 1, |ρl | = 1, t > 0, and we choose gt = 0, ht = 0, t > 0.
When the stochastic differentials dWi

t , dZ
i
t , t > 0, i = 1, 2, . . . , N , in Eqs. (24), (25)

are partially correlated, that is, when in (8) we have 0 < |ρa | < 1, 0 < |ρl | < 1,
t > 0, choosing the functions gt , ht , t > 0, appropriately, the pseudo mean field
approximation (32), (33), (38), (39), (36), (37) “interpolates” between the extreme
cases ρa = 0, ρl = 0, t > 0, and |ρa | = 1, |ρl | = 1, t > 0. Finally, in Sect. 7 in the
systemic risk governance the form chosen for Eqs. (38), (39) will enable the use of the
polynomial identity principle to determine the functions αt , γt , t ≥ 0, that regulate
the cooperation mechanism among banks.

In Sect. 7, we explain the choice of the functions ϕt , φt , αt , γt , gt , ht , t ≥ 0, used
to govern the systemic risk probability in a bounded time interval of model (3), (11),
(24), (25), (26), (8).

Note that when αt = 0, γt = 0, t ≥ 0, and the functions ϕt , φt , t ≥ 0, are positive
constants, there is no cooperation among banks and no intervention of the monetary
authority in the banking system dynamics. In this case, we choose gt = 0, ht = 0,
t ≥ 0 in the pseudo mean field approximation.

5 An optimal control problem for the pseudomean field
approximation

We consider an optimal control problem for the pseudomean field approximation (32),
(33), (38), (39), (36), (37) of the banking system model (3), (11), (24), (25), (26), (8)
when 0 ≤ |ρa | < 1, 0 ≤ |ρl | < 1, t > 0. Let n be a positive integer, R be the set of
real numbers, Rn be the n-dimensional real Euclidean space, and R+ be the set of the
positive real numbers.

Given the positive functions ϕt , φt , t ≥ 0, we define:

Zt = Gt − ln(ϕt ), t ≥ 0, (40)

and

St = Ht − ln(φt ), t ≥ 0, (41)
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equations (38), (39), (36) can be rewritten as follows:

dZt = βa(t,Zt ,St )dt + σad Pt , t > 0, (42)

dSt = βl(t,Zt ,St )dt + σldQt , t > 0, (43)

Z0 = 0, S0 = 0, (44)

where βa : R+ × R
2 → R and βl : R+ × R

2 → R are given by:

βa = βa,t = βa(t,Z,S) = −αt (1 − |ρa |)Z − |ρa | gt S, (Z,S) ∈ R
2, t > 0,

(45)

βl = βl,t = βl(t,Z,S) = −γt (1 − |ρl |)S − |ρl | ht Z, (Z,S) ∈ R
2, t > 0,

(46)

and the symbol 0 in (44) denotes the random variable concentrated at zero with prob-
ability one.

To choose the functions αt , γt , gt , ht , t > 0, of (45), (46) as done in the systemic
risk governance in Sect. 7, we begin by solving the stochastic optimal control problem
that follows.

Let T1 > 0 be a real number, λ = (λ1, λ2, λ3, λ4) ∈ R
4, λi > 0, i = 1, 2, 3, 4,

and B be the set of the real square integrable stochastic processes defined in [0, T1].
That is, a real stochastic process ζ = ζt , t ∈ [0, T1], belongs to B if and only if

E

(

∫ T1
0 ζ 2

t dt
)

< +∞. We consider the following stochastic optimal control problem:

min
β1,β2∈B

Uλ(β1, β2), (47)

where

Uλ(β1, β2)

= E

(∫ T1

0

[|ρaρl |(Zt − St )
2 + λ1β

2
1,t + λ2β

2
2,t + λ3(1 − |ρa |)Z2

t + λ4(1 − |ρl |)S2
t

]

dt

)

,

β1, β2 ∈ B, 0 ≤ |ρa | < 1, 0 ≤ |ρl | < 1, (48)

subject to

dZt = β1 dt + σad Pt , t ∈ [0, T1], (49)

dSt = β2 dt + σldQt , t ∈ [0, T1], (50)

Z0 = 0, S0 = 0. (51)

In the control problem (47), (48), (49), (50), (51) the functionUλ(β1, β2) is the utility
function, β1 = β1,t = β1(t,Zt ,St ), β2 = β2,t = β2(t,Zt ,St ), t ∈ [0, T1], are the
control variables and Zt , St , t ∈ [0, T1], are the state variables. The random variables
on the right-hand side of Eq. (51) must be interpreted as already done for those of Eq.
(44).
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When 0 < |ρa | < 1, 0 < |ρl | < 1, minimizing the utility function Uλ(β1, β2),
β1 = β1,t , β2 = β2,t , t ∈ [0, T1], defined in (48) means making small in the time
interval [0, T1] the following quantities:

(i) the difference between the net worth of the “pseudomean bank” and the net worth
of the “ideal bank” Zt − St = (Gt − ln(ϕt )) − (Ht − ln(φt )), t ∈ [0, T1];

(ii) the “size” of the control variable β1,t , t ∈ [0, T1];
(iii) the “size” of the control variable β2,t , t ∈ [0, T1];
(iv) the “size” of Zt , t ∈ [0, T1] (and therefore the difference between Gt ,

t ∈ [0, T1], and the function ln(ϕt ), t ∈ [0, T1]);
(v) the “size” of St , t ∈ [0, T1] (and therefore the difference between Ht ,

t ∈ [0, T1], and the function ln(φt ), t ∈ [0, T1]).
These five goals correspond, respectively, to making small the addenda:

(i) E

(

∫ T1
0 |ρaρl |(Zt − St )

2dt
)

; (ii) E
(

∫ T1
0 λ1β

2
1,t dt

)

; (iii) E
(

∫ T1
0 λ2β

2
2,t dt

)

;

(iv) E

(

∫ T1
0 λ3(1 − |ρa |)Z2

t dt
)

; (v) E
(

∫ T1
0 λ4(1 − |ρl |) S2

t dt
)

,

of the utility function Uλ defined in (48).

Note that when ρa = 0 and/or ρl = 0 the term E

(

∫ T1
0 |ρaρl |(Zt − St )

2dt
)

of Uλ

is zero and, in this case, minimizing the utility function Uλ corresponds to pursuing
only four of the five goals listed above, i.e., making the quantities ii), iii), iv), v) small
in the time interval [0, T1].

The control problem (47), (48), (49), (50), (51) is a linear-quadratic optimal control
problem (see Kolosov 1999). Following Kalman Kolosov (1999), we assume that
its value function is a quadratic form in the real variables Z , S with time-dependent
coefficients. We have:

Proposition 1 Under the previous assumptions when 0 ≤ |ρa | < 1 and 0 ≤ |ρl | < 1
the optimal control β1 = β1,t , β2 = β2,t , t ∈ [0, T1], solution of problem (47), (48),
(49), (50), (51) is given by:

β1 = β1,t = β1(t,Zt ,St ) = − 1

2λ1
(2a(t)Zt + c(t)St ) , t ∈ [0, T1], (52)

β2 = β1,t = β2(t,Zt ,St ) = − 1

2λ2
(2b(t)St + c(t)Zt ) , t ∈ [0, T1], (53)

where Zt , St , t ∈ [0, T1], are the solution to the initial value problem (49), (50), (51).
The functions a(t), b(t), c(t), d(t), t ∈ [0, T1], are defined by the following final value
problem:

∂a

∂t
= a2

λ1
+ c2

4λ2
− |ρaρl | − λ3(1 − |ρa |), t ∈ [0, T1], a(T1) = 0, (54)

∂b

∂t
= b2

λ2
+ c2

4λ1
− |ρaρl | − λ4(1 − |ρl |), t ∈ [0, T1], b(T1) = 0, (55)

∂c

∂t
= ac

λ1
+ bc

λ2
+ 2|ρaρl |, t ∈ [0, T1], c(T1) = 0, (56)
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∂d

∂t
= −aσ 2

a − bσ 2
l , t ∈ [0, T1], d(T1) = 0. (57)

Note that the optimal control (52), (53) does not depend on the function d(t),
t ∈ [0, T1] that appears in (57); it depends only on the functions a(t), b(t), c(t),
t ∈ [0, T1]. The final value problem (54), (55), (56) satisfied by a(t), b(t), c(t),
t ∈ [0, T1], can be solved independently from the final value problem (57) satisfied
by d(t), t ∈ [0, T1]. However, the function d(t), t ∈ [0, T1] is necessary to define
the value function V (see (63)) of the control problem (47), (48), (49), (50), (51) and
the formulae (52), (53) for the optimal control are deduced from the expression of the
value function.

Proof Let us use the dynamic programming principle (see Kolosov 1999) to solve
control problem (47), (48), (49), (50), (51). That is let

V (t,Z,S) = min
β1,β2∈B

E

(∫ T1

t

[|ρaρl |(Zτ − Sτ )
2 + λ1β

2
1,τ + λ2β

2
2,τ + λ3(1 − |ρa |)Z2

τ

+ λ4(1 − |ρl |)S2
τ

]

dτ
∣

∣

∣Zt = Z,St = S
)

, (Z,S) ∈ R
2, t ∈ [0, T1],

(58)

be the value function of the control problem (47), (48), (49), (50), (51). The func-
tion V (t,Z,S), (Z,S) ∈ R

2, t ∈ [0, T1], satisfies the following Hamilton, Jacobi,
Bellman equation (see Kolosov 1999):

∂

∂t
V (t,Z,S) + 1

2
σ 2
a

∂2

∂Z2 V (t,Z,S) + 1

2
σ 2
l

∂2

∂S2 V (t,Z,S) + |ρaρl | (Z − S)2 +

λ3(1 − |ρa |)Z2 + λ4(1 − |ρl |)S2 + H
(

∂

∂Z V (t,Z,S),
∂

∂S V (t,Z,S)

)

= 0,

(Z,S) ∈ R
2, t ∈ [0, T1], (59)

with final condition:

V (T1,Z,S) = 0, (Z,S) ∈ R
2, (60)

where

H(p1, p2) = min
(δ1,δ2)∈R2

(

δ1 p1 + λ1δ
2
1 + δ2 p2 + λ2δ

2
2

)

= − p21
4λ1

− p22
4λ2

, (p1, p2) ∈ R
2, (61)

is the Hamiltonian function of the optimal control problem (47), (48), (49), (50),
(51). 
�
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Using (61) Eq. (59) becomes:

∂

∂t
V (t,Z,S) + 1

2
σ 2
a

∂2

∂Z2 V (t,Z,S) + 1

2
σ 2
l

∂2

∂S2 V (t,Z,S) + |ρaρl | (Z − S)2

+ λ3(1 − |ρa |)Z2 + λ4(1 − |ρl |)S2 − 1

4λ1

(

∂

∂Z V (t,Z,S)

)2

− 1

4λ2

(

∂

∂S V (t,Z,S)

)2

= 0, (Z,S) ∈ R
2, t ∈ [0, T1], (62)

with final condition (60).
Following Kalman Kolosov (1999), we assume that the value function solution of

problem (62), (60) is of the form:

V (t,Z,S) = a(t)Z2 + b(t)S2 + c(t)ZS + d(t), (Z,S) ∈ R
2, t ∈ [0, T1],

(63)

where a(t), b(t), c(t), d(t), t ∈ [0, T1], are functions to be determined. Substituting
(63) in (62), (60) and using the polynomial identity principle, it is easy to see that the
final value problem for the Hamilton, Jacobi, Bellman equation (62), (60) reduces to
the final value problem (54), (55), (56), (57).

Problem (54), (55), (56), (57) is afinal valueproblem for a systemofRiccati ordinary
differential equations. In general systems of this kind have only local solutions. This
means that, in general, a solution of (54), (55), (56), (57) in the time interval [0, T1]
may not exist. When this is the case, assumption (63) about the form of the value
function is not good enough to solve problem (47), (48), (49), (50), (51) and we do not
study the control problem (47), (48), (49), (50), (51) any further. Hereafter, we assume
that the final value problem (54), (55), (56), (57) has a solution defined in [0, T1].

From knowledge of the value function V defined in (63) solution of (62), (60) the
optimal control β1 = β1,t , β2 = β2,t , t ∈ [0, T1], solution of (47), (48), (49), (50),
(51) is determined using the formulae:

β1 = β1,t = β1(t,Zt ,St ) = − 1

2λ1

∂

∂Z V (t,Z,S)

∣

∣

∣Z=Zt ,S=St

= − 1

2λ1
(2a(t)Zt + c(t)St ) , t ∈ [0, T1], (64)

β2 = β2,t = β2(t,Zt ,St ) = − 1

2λ2

∂

∂S V (t,Z,S)

∣

∣

∣Z=Zt ,S=St

= − 1

2λ2
(2b(t)St + c(t)Zt ) , t ∈ [0, T1], (65)

where Zt , St , t ∈ [0, T1], are the solution of (49), (50), (51) when β1=β1,t , β2=β2,t ,
t ∈ [0, T1], are given by (64), (65).

Problem (47), (48), (49), (50), (51) is the optimal control problem used to govern the
pseudo mean field approximation (32), (33), (38), (39), (36), (37) of banking system
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model (3), (11), (24), (25), (26), (8). In fact, when 0 ≤ |ρa | < 1, 0 ≤ |ρl | < 1, given
the optimal control β1, β2 defined in (64), (65), we determine the functions βa , βl
of (45), (46) imposing the identities βa(Z,S) = β1(Z,S), βl(Z,S) = β2(Z,S),
(Z,S) ∈ R

2, and using the polynomial identity principle in the variables (Z,S) ∈ R
2.

We have:

αt = a(t)

λ1(1 − |ρa |) , γt = b(t)

λ2(1 − |ρl |) , t ∈ [0, T1], 0 ≤ |ρa |, |ρl | < 1,

(66)

and

gt = c(t)

2λ1 |ρa | , ht = c(t)

2λ2 |ρl | , t ∈ [0, T1], 0 < |ρa |, |ρl | < 1, (67)

or

ht = 0 and/or gt = 0, t ∈ [0, T1], ρa = 0 and/or ρl = 0. (68)

We point out that when ρa = 0 and/or ρl = 0, the function c(t) = 0, t ∈ [0, T1] is
a solution of (56). Moreover, note that the use of the polynomial identity principle in
the deduction of (66), (67), (68) is possible thanks to the form of Eqs. (38), (39) of the
pseudo mean field approximation.

Recall that the function αt , t ∈ [0, T1], defined in (66) is a function that, when
substituted in (24), induces the trajectories of the logarithm of the assets to swarm
around ln(ϕt ), t ∈ [0, T1]; it therefore induces the trajectories of the assets to swarm
around ϕt , t ∈ [0, T1]. Similarly the function γt , t ∈ [0, T1], defined in (66) is a
function that, when substituted in (25), induces the trajectories of the logarithms of
the liabilities to swarm around ln(φt ), t ∈ [0, T1]; it therefore induces the trajectories
of the liabilities to swarm around φt , t ∈ [0, T1].

Remember that in (24), (25) the constraints αt ≥ 0, γt ≥ 0, t ∈ [0, T1], must be
satisfied. When they are not satisfied by the choices of αt , γt , t ∈ [0, T1], made in
(66), they are enforced. In the numerical experiments discussed in Sect. 7, when the
functions αt and/or γt , t ∈ [0, T1], determined using (66), are negative, we choose
αt = 0 and/or γt = 0, t ∈ [0, T1].

Note that formulae (66), (67), (68) provide a choice of the functions αt , γt , gt , ht
when t ∈ [0, T1]; to choose these functions when t > 0, the previous formulae must
be adapted to account for the repeated solution of control problems similar to the one
considered here.

6 Systemic risk governance

Let T2 > 0 be a real number. We consider the problem of governing the probability of
systemic risk in the time interval [0, T2] in model (3), (11), (24), (25), (26), (8) in the
absence or presence of shocks acting on the banking system. Given τ1, τ2 such that
0 ≤ τ1 < τ2 ≤ T2, and the interval [τ1, τ2] ⊆ [0, T2], let us consider the governance

123



Systemic risk governance in a dynamical model…

of systemic risk in the time interval [τ1, τ2]. The goal of governance is to keep the
probability of systemic risk in the time interval [τ1, τ2], P(SR[τ1,τ2]), between two
given thresholds. Systemic risk governance pursues its goal by trying to keep the
assets, liabilities and net worth of the banks in the model “close”, respectively, to the
assets, liabilities and net worth of the “ideal bank”, that is close, respectively, to the
functions ϕt > 0, φt > 0 and ξt = ϕt − φt > 0, t ∈ [τ1, τ2]. Given the choice of
functions ϕt , φt , ξt = ϕt − φt , t ∈ [τ1, τ2], governance is based on the solution to
the optimal control problem (47), (48), (49), (50), (51) and on its relationship with
the banking system model (3), (11), (24), (25), (26), (8) when the functions αt , γt ,
t ∈ [τ1, τ2], are chosen by adapting formula (66) deduced for the time interval [0, T1]
to the time interval [τ1, τ2]. In fact the choice of the functions αt , γt , t ∈ [τ1, τ2],
obtained adapting formula (66) to the time interval [τ1, τ2], creates a “swarming”
effect of the banks’ assets and liabilities around, respectively, the functions ϕt , φt ,
t ∈ [τ1, τ2]. As a consequence, it creates a “swarming” effect of the banks’ net worth
around the function ξt , t ∈ [τ1, τ2].

We assume that the decisions about systemic risk governance in the time inter-
val [τ1, τ2] are taken at time t = τ1. In detail, to pursue the goal of keeping the
probability of systemic risk in the time interval [τ1, τ2], P(SR[τ1,τ2]), between two
given thresholds, the first step at time t = τ1 is to choose the functions ϕt , φt ,
ξt = ϕt − φt , t ∈ [τ1, τ2] appropriately. In fact, it is easy to see that by increas-
ing ξt > 0, t ∈ [τ1, τ2], the systemic risk probability in [τ1, τ2] decreases and that
by decreasing ξt > 0, t ∈ [τ1, τ2], the systemic risk probability in [τ1, τ2] increases.
Moreover, since ξt = ϕt − φt > 0, t ∈ [τ1, τ2], ξt , t ∈ [τ1, τ2], can be increased
by increasing ϕt and leaving φt , t ∈ [τ1, τ2] unchanged, by decreasing φt leaving ϕt ,
t ∈ [τ1, τ2] unchanged, or by changing ϕt and φt , t ∈ [τ1, τ2] simultaneously. Simi-
larly, ξt , t ∈ [τ1, τ2], can be decreased either by decreasing ϕt leaving φt , t ∈ [τ1, τ2]
unchanged, by increasing φt leaving ϕt , t ∈ [τ1, τ2] unchanged, or by changing ϕt

and φt , t ∈ [τ1, τ2] simultaneously.
Given the thresholds S1, S2, such that 0 ≤ S1 < S2 < 1, and ϕτ1 , φτ1 , ξτ1 =

ϕτ1 − φτ1 we want to choose the functions ϕt , φt , ξt = ϕt − φt , t ∈ [τ1, τ2], such
that the probability of systemic risk in the time interval [τ1, τ2] satisfies the following
inequalities:

S1 ≤ P(SR[τ1,τ2]) ≤ S2. (69)

Note that the lower bound S1 > 0 to the probability of systemic risk is introduced
to avoid that the monetary authority governing the systemic risk (i.e., for example
reacting to an adverse shock hitting the banking system) forces the systemic risk
probability to an unnecessary small value, thereby penalizing the operation of the
banking system with the prescription of an unnecessary high cooperation level. This
last purpose is pursued by choosing S1 > 0 appropriately. If this is not a goal of the
monetary authority in the systemic risk governance, the choice S1 = 0 is allowed.

Wedefine some simple rules that are used to choose the functionsϕt ,φt , ξt = ϕt−φt ,
t ∈ [τ1, τ2] in order to satisfy (69). At time t = τ1, we start by making the “simplest”
possible choice of ϕt , φt , ξt = ϕt − φt , t ∈ [τ1, τ2], that is, we choose ϕt = ϕτ1 ,
φt = φτ1 , ξt = ξτ1 , t ∈ [τ1, τ2]. Corresponding to this choice, the functions αt , γt ,
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t ∈ [τ1, τ2], are determined by adapting formula (66) to the time interval [τ1, τ2] and
the probability of systemic risk in the time interval [τ1, τ2], P(SR[τ1,τ2]), is evaluated
via statistical simulation. Note that P(SR[τ1,τ2]) depends not only on the functions
ϕt , φt , αt , γt , t ∈ [τ1, τ2], but also on the random variables aiτ1 , l

i
τ1
, ciτ1 = aiτ1 − liτ1 ,

i = 1, 2, . . . , N . Based on the value of P(SR[τ1,τ2]), the following actions are taken:

Strategy 1 if P(SR[τ1,τ2]) > S2 the monetary authority changes the functions ϕt , φt ,
ξt = ϕt − φt , t ∈ [τ1, τ2], to “swarm” the trajectories of the net worth of
the banking system model (3), (11), (24), (25), (26), (8) “upward”, that
is, the monetary authority increases ξt > 0, t ∈ [τ1, τ2]. This is done in
one of the following ways:

Strategy 1a increasing ϕt > 0 leaving φt > 0, t ∈ [τ1, τ2] unchanged;
Strategy 1b decreasing φt > 0 leaving ϕt > 0, t ∈ [τ1, τ2] unchanged;
Strategy 1c changing both ϕt > 0 and φt > 0, t ∈ [τ1, τ2].

Strategy 2 if P(SR[τ1,τ2]) < S1 the monetary authority changes the functions ϕt , φt ,
ξt = ϕt − φt , t ∈ [τ1, τ2], to “swarm” the trajectories of the net worth
of the banking system model (3), (11), (24), (25), (26), (8) “downward”,
that is the monetary authority decreases ξt > 0, t ∈ [τ1, τ2]. This is done
in one of the following ways:

Strategy 2a decreasing ϕt > 0 leaving φt > 0, t ∈ [τ1, τ2] unchanged;
Strategy 2b increasing φt > 0 leaving ϕt > 0, t ∈ [τ1, τ2] unchanged;
Strategy 2c changing both ϕt > 0 and φt > 0, t ∈ [τ1, τ2].

Strategy 3 if S1 ≤ P(SR[τ1,τ2]) ≤ S2, the monetary authority leaves the functions
ϕt , φt , ξt = ϕt − φt , t ∈ [τ1, τ2], unchanged.

Note that at time t = τ1, the monetary authority makes its decisions about systemic
risk governance in the time interval [τ1, τ2] assuming that the volatilities σa , σl and
the correlation coefficients ρ2

a , ρ
2
l remain constant in the time interval at the value that

they have at time t = τ1. That is, the monetary authority does not expect volatility
and/or correlation shocks to hit the banking system in the time interval [τ1, τ2]. It
simply reacts to them after they have occurred.

The choice of acting on the assets ϕt , t ∈ [τ1, τ2], or liabilities φt , t ∈ [τ1, τ2], of
the “ideal bank” depends on the kind of shock that must be confronted. For example,
in the presence of a volatility shock on the assets side that occurred before t = τ1 (the
systemic risk governance decision time), that is, reacting to a jump in the function
σa that occurred before t = τ1, it is natural at time t = τ1 to increase/decrease ξt ,
t ∈ [τ1, τ2], simply by increasing/decreasing ϕt > 0, t ∈ [τ1, τ2], leaving φt > 0,
t ∈ [τ1, τ2] unchanged. In other words, in this situation, it is natural to limit the
monetary authority’s action to Strategies 1a, 2a, and 3. Similarly, in the presence of
a volatility shock on the liabilities side that occurred before t = τ1, that is, reacting
to the presence of a jump in the function σl that occurred before t = τ1, it is natural
at time t = τ1 to increase/decrease ξt , t ∈ [τ1, τ2], simply by decreasing/increasing
φt > 0, t ∈ [τ1, τ2], leaving ϕt > 0, t ∈ [τ1, τ2] unchanged. That is, in this situation,
it is natural to limit the monetary authority’s action to Strategies 1b, 2b, and 3.
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When possible, the strategy of increasing the “ideal bank’s” assets is more desirable
for the well-being of the economy than decreasing its liabilities. In fact, increasing the
assets induces similar behavior in the assets of the banks in the banking system and
this keeps the wheels of the economy turning, while decreasing the liabilities induces
similar behavior in the banks’ liabilities, thereby slowing down the economy. At the
extremes, when possible, the monetary authority should prefer Strategies 1a, 2b, and
3 to Strategies 1b, 1c, 2a, 2c.

The choice between Strategies 1a, 1b, 1c, or 2a, 2b, 2c is based on the comparison
of these strategies from the systemic risk point of view. A possible criterion for this
comparison is to evaluate the corresponding loss distributions of the banks that have
defaulted in the time interval [τ1, τ2]. The strategy associated with the loss distribution
with the “smallest tail” must be considered as the best strategy. For simplicity, we do
not pursue this goal here.

We now discuss some numerical experiments of systemic risk governance. We
present the results obtained considering the governance of systemic risk in the next
year during a period of 2 years in model (3), (11), (24), (25), (26), (8) in the absence or
presence of shocks acting on the banking system.Governance decisions are taken at the
beginning of each quarter during the 2-year period studied. For simplicity, we consider
only volatility shocks on either the assets side or the liabilities side. The occurrence
of these shocks is simulated with jumps in the volatilities σa , σl , of the stochastic
differential equations of the assets (24) and liabilities (25), respectively. Note that
together with jumps in the volatility coefficients, we sometimes consider jumps in the
correlation coefficients ρa , ρl , of the stochastic differentials on the right-hand side of
Eqs. (24), (25). Moreover, when there are no shocks acting on the banking system or
when the monetary authority faces a volatility shock on the assets side, we consider
as possible only the actions described in Strategies 1a, 2a, 3 and in Strategies 1a, 2b,
3. Similarly, when the monetary authority faces a volatility shock on the liabilities
side, we consider as possible only the actions described in Strategies 1a, 2b, 3 and in
Strategies 1b, 2b, 3.

In the experiments, we study a banking system model with N = 10 banks with
a time horizon T2 of 3 years, i.e., the time unit is equal to 1 year and T2 = 3. We
assume that governance decisions are made quarterly, i.e., the time step of governance
decisions is �τ = 1/4. In the time interval [0, T2], we consider the time intervals
[τ j

1 , τ
j
2 ] ⊂ [0, T2], T2 = 3, where τ

j
1 = j ·�τ and τ

j
2 = τ

j
1 + 1, j = 0, 1, . . . , 8, and

governance decisions are made at the times t = τ
j
1 , j = 0, 1, . . . , 8. That is, at time

t = τ
j
1 the decision is made relative to systemic risk in the time interval [τ j

1 , τ
j
2 ].

In the time intervals [τ j
1 , τ

j
2 ], j = 0, 1, . . . , 8, the model (3), (11), (24), (25), (26),

(8) reduces to the following (sub)-models:

cit = ait − lit , t ∈ [τ j
1 , τ

j
2 ], i = 1, 2, . . . , N , j = 0, 1, . . . , 8, (70)

where the stochastic processes:

Gi
t = ln(ait ), Hi

t = ln(lit ), t ∈ [τ j
1 , τ

j
2 ], i = 1, 2, . . . , N , j = 0, 1, . . . , 8,

(71)
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satisfy the following system of stochastic differential equations:

dGi
t = αt

N

N
∑

k=1

(

Gk
t − Gi

t

)

dt + d ln(ϕt ) + σadW
i
t ,

t ∈ (τ
j
1 , τ

j
2 ], i = 1, 2, . . . , N , j = 0, 1, . . . , 8, (72)

dHi
t = γt

N

N
∑

k=1

(

Hk
t − Hi

t

)

dt + d ln(φt ) + σldZ
i
t ,

t ∈ (τ
j
1 , τ

j
2 ], i = 1, 2, . . . , N , j = 0, 1, . . . , 8, (73)

with initial conditions:

Gi
τ 01

= ln(ã0), Hi
τ 01

= ln(l̃0), i = 1, 2, . . . , N , (74)

Gi
τ
j
1

= Gi
τ
j−1
2

, Hi
τ
j
1

= Hi
τ
j−1
2

, i = 1, 2, . . . , N , j = 1, 2, . . . , 8, (75)

and the assumption:

E(dWi
t dW

k
t ) = ρ2

a dt, i �= k, E(dZi
t dZ

k
t ) = ρ2

l dt, i �= k,

E(dWi
t dW

i
t ) = E(dZk

t dZ
k
t ) = dt, E(dWi

t dZ
k
t ) = 0,

t ∈ [τ j
1 , τ

j
2 ], i, k = 1, 2, . . . , N , j = 0, 1, . . . , 8. (76)

For j = 0, 1, . . . , 8, the functions αt , γt , t ∈ [τ j
1 , τ

j
2 ], in (72), (73) are obtained by

adapting formula (66), that is relative to the time interval [0, T1], to the time interval
[τ j

1 , τ
j
2 ]. In each time interval [τ j

1 , τ
j
2 ], j = 0, 1, . . . , 8, the probability of systemic

risk of the corresponding sub-model (70), (71), (72), (73), (74), (75), (76) is evaluated
via a statistical simulation starting from 104 numerically generated trajectories of the
corresponding sub-model. These trajectories are obtained by finite differences using
the explicit Eulermethodwith time step�t = 10−4 to numerically solve the stochastic
differential equations (72), (73) with auxiliary conditions (74), (75), (76).

In order to keep the probability of systemic risk in each time interval [τ j
1 , τ

j
2 ],

j = 0, 1, . . . , 8, between the thresholds S1 and S2, we provide the monetary authority
with a pre-defined set of functions that can be used to push the trajectories of the assets
and liabilities of the j-th sub-model (70), (71), (72), (73), (74), (75), (76) “upward”
or “downward”, or leave them “unchanged”, j = 0, 1, . . . , 8. That is for the assets,
we define the functions:

A j,na: ϕt = ϕt, j,na =
⎧

⎨

⎩

na
8 (t − τ

j
1 ) + ϕ

τ
j
1
, t ∈ [τ j

1 , τ
j
1 + �τ ],

na
8 �τ + ϕ

τ
j
1
, t ∈ (τ

j
1 + �τ, τ

j
2 ],

j = 0, 1, . . . , 8, na = −8,−7, . . . , 0, . . . , 7, 8.

(77)
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Similarly, for the liabilities, we define the functions:

L j,nl : φt = φt, j,nl =
⎧

⎨

⎩

nl
8 (t − τ

j
1 ) + φ

τ
j
1
, t ∈ [τ j

1 , τ
j
1 + �τ ],

nl
8 �τ + φ

τ
j
1
, t ∈ (τ

j
1 + �τ, τ

j
2 ],

j = 0, 1, . . . , 8, nl = −8,−7, . . . , 0, . . . , 7, 8. (78)

Finally, based on (77), (78) for the net worth, we define the functions:

Pj,na ,nl : ξt = ξt, j,na ,nl = ϕt, j,na − φt, j,nl , t ∈ [τ j
1 , τ

j
2 ],

j = 0, 1, . . . , 8, na nl = −8,−7, . . . , 0, . . . , 7, 8. (79)

Note that for j = 0, 1, . . . , 8 in (77), when 0 < na ≤ 8 (or −8 ≤ na < 0),
the function ϕt, j,na , is a non-decreasing (or non-increasing) piecewise linear function
of t , while when na = 0, the function ϕt, j,na is a constant. Consequently, for j =
0, 1, . . . , 8, the choice of functions ϕt, j,na with 0 < na ≤ 8 (−8 ≤ na < 0) in (77)
pushes the trajectories of the assets of the j-th sub-model (70), (71), (72), (73), (74),
(75), (76) “upward” (“downward”), while the choice na = 0 leaves the trajectories of
the assets of the j-th sub-model (70), (71), (72), (73), (74), (75), (76) “unchanged”.
Similar statements adapted to the circumstances hold for the choices 0 < nl ≤ 8,
−8 ≤ nl < 0, nl = 0 of the functions φt, j,nl in (78) and for the trajectories of
the liabilities in the j-th sub-model (70), (71), (72), (73), (74), (75), (76). Note that
the implementation of Strategy 1, 2, or 3 with the choices made in (77), (78) is only
illustrative. Many other choices of the functions representing the assets and liabilities
of the “ideal bank” are possible and lead to results analogous to the ones discussed
here.

To measure the quality and the cost of the systemic risk governance implemented
in the experiments, we define four performance indices. Let

η j = P(SR[τ j
1 ,τ

j
2 ]), j = 0, 1, . . . , 8, (80)

and let η = (η0, η1, . . . , η8) ∈ R
9 be the vector of the systemic risk governance

procedure implemented in the experiments. The systemic risk normNSR is defined as
follows:

NSR = ‖η‖2 , (81)

where ‖η‖2 denotes the Euclidean norm of the vector η. The index NSR is used to
measure the quality of the systemic risk governance.Note that small values of the index
NSR correspond to high-quality systemic risk governance and that in the numerical
experiments discussed here, when the governance goal (69) is achieved in every 1-year
time interval contained in [0, T2], we have 3S1 ≤ NSR ≤ 3S2.

The indices CcSR, Cα
SR, Cγ

SR are used to measure the cost of the systemic risk gover-
nance. The first index CcSR measures the “cost associated with the choice of the assets
and liabilities” of the “ideal bank” defined in (77) and (78), while the indices Cα

SR,
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Cγ
SR measure “the cost associated with the choice of the functions αt , γt , t ∈ [0, T2],

that regulate the cooperation mechanism among banks”. More specifically, in each
1-year period considered in the governance procedure, we define the cost associ-
ated with the choice of the assets and liabilities of the “ideal bank” as the absolute
value of the angular coefficient of the linear part of the piecewise linear functions
in (77), (78). In this way, in the period [τ j

1 , τ
j
2 ], the cost of choosing A j,na , defined

in (77), is |na |
8 , na = −8,−7, . . . , 0, . . . , 7, 8, and similarly, the cost of choosing

L j,nl , defined in (78), is
|nl |
8 , nl = −8,−7, . . . , 0, . . . , 7, 8. Finally, the cost of choos-

ing Pj,na ,nl given in (79), is defined as |na |
8 + |nl |

8 , na = −8,−7, . . . , 0, . . . , 7, 8,
nl = −8,−7, . . . , 0, . . . , 7, 8. The total cost measured by the index CcSR of the sys-
temic risk governance procedure defined above is given by the sum over j of the cost
of the trajectories Pj,na ,nl , j = 0, 1, . . . , 8, used in the procedure. The indices Cα

SR,
Cγ
SR are given, respectively, by the sum of the means of αt , γt in the time intervals

[τ j
1 , τ

j
2 ], j = 0, 1, . . . , 8, used in the systemic risk governance procedure. In other

words, recalling Eqs. (72), (73) and defining:

ᾱ j = 1

�τ

∫ τ
j
2

τ
j
1

αt dt, t ∈ [τ j
1 , τ

j
2 ], j = 0, 1, . . . , 8, (82)

γ̄ j = 1

�τ

∫ τ
j
2

τ
j
1

γt dt, t ∈ [τ j
1 , τ

j
2 ], j = 0, 1, . . . , 8, (83)

we have:

Cα
SR =

8
∑

j=0

ᾱ j , Cγ
SR =

8
∑

j=0

γ̄ j . (84)

In the numerical experiments, the indicesNSR, CcSR, Cα
SR, Cγ

SR change significantly
depending on the circumstances (i.e., the presence or absence of volatility and correla-
tion shocks) faced during the 2-year period of the systemic risk governance procedure.
Moreover, covering the entire history of governance, that is, covering a 2-year gover-
nance period composed of nine quarterly decisions, the indices defined above measure
only a “overall” quality and cost of the systemic risk governance procedure.

Table 1 shows the numerical results obtained in the systemic risk governance of
model (70), (71), (72), (73), (74), (75), (76). In the experiments presented, themonetary
authority pursues the goal of keeping the probability of systemic risk in the next year
between the thresholds S1 = 0.01 and S2 = 0.05 by implementing the actions associ-
ated with Strategies 1, 2, 3 through the choice of the functions A j,na , L j,nl , Pj,na ,nl ,
j = 0, 1, . . . , 8, na = −8,−7, . . . , 0, . . . , 7, 8, nl = −8,−7, . . . , 0, . . . , 7, 8,
defined, respectively, in (77), (78), (79). In detail, for j = 0, 1, . . . , 8, the mone-
tary authority runs through the possible choices of the functions listed in (77), (78),
(79) in their natural order according to Strategies 1, 2, 3 starting from the choice A j,0,
L j,0, Pj,0,0 = A j,0 − L j,0. Via statistical simulation, it then evaluates the probability
of systemic risk in the next year associated with each choice of the previous functions
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Table 1 Numerical experiments with μa = μl = 0.1, λi = 0.1, i = 1, 2, 3, 4, ϕ0 = 0.6, φ0 = 0.2,
S1 = 0.01, S2 = 0.05

Experiment σa σl ρa ρl Strategies NSR (NSR no gov) CcSR Cα
SR Cγ

SR

1 0.3 0.3 0 0 1a, 2a, 3 0.08 (0.06) 0.28 4.17 4.17

1a, 2b, 3 0.08 (0.06) 0.28 4.17 4.17

2 0.3 0.3 ρ1,t 0 1a, 2a, 3 0.07 (0.13) 0.33 5.59 4.59

1a, 2b, 3 0.06 (0.13) 0.33 5.59 4.59

3 σ4,t 0.3 0 0 1a, 2a, 3 0.17 (0.71) 1.26 12.91 12.91

1a, 2b, 3 0.19 (0.71) 1.21 11.77 11.77

4 σ4,t 0.3 ρ1,t 0 1a, 2a, 3 0.26 (0.77) 1.53 21.99 15.72

1a, 2b, 3 0.25 (0.77) 1.34 19.33 13.07

5 0.3 σ4,t 0 0 1a, 2b, 3 0.20 (0.72) 1.21 11.77 11.77

1b, 2b, 3 0.18 (0.72) 1.11 10.41 10.41

6 0.3 σ4,t 0 ρ1,t 1a, 2b, 3 0.27 (0.77) 1.36 13.45 19.71

1b, 2b, 3 0.50 (0.77) 2.01 24.45 30.69

considered. The first choice that gives a probability of systemic risk in the next year
that satisfies (69) is chosen as the systemic risk governance decision. The choice of
functions αt , γt corresponding to the previous choices of functions ϕt , φt , is made by
adapting (66) to the circumstances. If none of the functions listed in (77), (78), (79)
gives a probability of systemic risk in the next year that satisfies (69), the governance
procedure is not able to reach its goal in the time interval considered, in which case
the governance procedure makes the best choice available in (77), (78), (79) and tries
to reach its goal in the following time interval.

Note that when the correlation coefficients ρ2
a and/or ρ2

l increase, the “swarm-
ing” effect induced by the cooperation mechanism among banks in (24) and/or (25)
decreases. Recall that in the extreme case of ρ2

a = 1, ρ2
l = 1, the cooperation mecha-

nism has no effect anymore. Therefore, when ρ2
a = 1, ρ2

l = 1, governing the systemic
risk probability is only possible by increasing the net worth of the “ideal bank”.

Let σ4,t , t ∈ [0, T2], T2 = 3, be defined as follows:

σ4,t =
⎧

⎨

⎩

0.3, t ∈ [0, 0.2],
0.8, t ∈ (0.2, 0.5],
0.3, t ∈ (0.5, 3].

(85)

In the experiments in Table 1, positive shocks acting on the assets or on the liabilities
of the banks are modeled by considering the choices σa = σ4,t , t ∈ [0, T2], T2 = 3,
or σl = σ4,t , t ∈ [0, T2], T2 = 3. Moreover, let ρ1,t , t ∈ [0, T2], T2 = 3, be defined as
follows:

ρ = ρ1,t =
⎧

⎨

⎩

0, t ∈ [0, 0.2],
0.5, t ∈ (0.2, 0.5],
0, t ∈ (0.5, 3].

(86)
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The “collective” behavior of the banks in the presence of shocks is modeled assuming
a positive correlation in the noise terms of the assets or of the liabilities equations of
(70), (71), (72), (73), (74), (75), (76). In particular, in some experiments we consider
the choices ρa = ρ1,t , t ∈ [0, T2], T2 = 3, or ρl = ρ1,t , t ∈ [0, T2], T2 = 3.

Note that the functionsσ4,t , t ∈ [0, T2], T2 = 3, defined in (85), andρ1,t , t ∈ [0, T2],
T2 = 3, defined in (86), “jump together” at time t = 0.2 and t = 0.5.

The remaining parameters of the model used in the experiments shown in Table 1
are: μa = 0.1, μl = 0.1, ã0 = ϕ0 = 0.6, l̃0 = φ0 = 0.4, λi = 0.1, i = 1, 2, 3, 4.
Note that the previous choices guarantee ξt = ϕt − φt > 0, t ∈ [0, T2], T2 = 3.

Table 1 shows the values of the indicesNSR, CcSR, Cα
SR, Cγ

SR obtained in the experi-
ments. In the seventh column of Table 1, next to the value of NSR, the value of NSR
obtained in absence of governance is shown within brackets. In the absence of gov-
ernance, we choose μa = 0.1, μl = 0.1, αt = 10, γt = 10, t ∈ [0, T2], T2 = 3,
ã0 = ϕ0 = 0.6, l̃0 = φ0 = 0.4, and we evaluate the probability of systemic risk in the
next year at the beginning of each quarter. These choices of parameter values guar-
antee that the probability of systemic risk in the next year at time t = 0 lies between
the thresholds S1 = 0.01 and S2 = 0.05. Note that with the previous choices in the
absence of governance, the values of the indices CcSR, Cα

SR, Cγ
SR are always equal to 0,

90, 90, respectively. When necessary, the values of the last three columns of Table 1
obtained in the presence of governance may be compared with values of the indices
CcSR = 0, Cα

SR = 90, Cγ
SR = 90 that correspond to the absence of governance.

An overview of Table 1 shows that from the systemic risk governance perspective,
the performance of Strategies 1a, 2a, 3 versus Strategies 1a, 2b, 3 and of Strategies
1a, 2b, 3 versus Strategies 1b, 2b, 3 is approximately the same.

Experiments 1 and 2 of Table 1 show that when the volatilities σa , σl are constant
and there are no correlation shocks in the time interval [0, T2], T2 = 3, the presence
or absence of governance does not make a significant difference provided that, in the
absence of governance at time t = 0, a good choice ismade for the assets and liabilities
of the “ideal bank” in the 1-year period beginning at time t = 0 and for the constant
values of αt , γt , t ∈ [0, T2], T2 = 3. That is, when the volatilities σa , σl are constants
and there are no correlation shocks in the time interval [0, T2], T2 = 3, the systemic
risk governance is substantially reduced to the choice for the assets and liabilities of
the “ideal bank” at time t = 0 and for the constant values of the functions αt , γt ,
t ∈ [0, T2], T2 = 3. When this choice is made correctly, continuing with constant
assets and liabilities functions of the “ideal bank” or with small variations in each
successive time interval [τ j

1 , τ
j
2 ], j = 1, 2, . . . , 8, is enough to keep the probability

of systemic risk in the next year between the given thresholds. The functions αt , γt ,
t ∈ [0, T2], T2 = 3, are chosen according to the rules established in Sect. 5 in the
study of the control problem for the pseudo mean field approximation of the banking
system. In this case, the possibly positive value of CcSR in the presence of governance
(compared with CcSR = 0 in the absence of governance) is certainly compensated by
the smaller values of the indices Cα

SR, Cγ
SR with respect to the values corresponding

to the absence of governance (i.e., Cα
SR=90, Cγ

SR = 90). Moreover, note that in these
cases we have 3S1 ≤ NSR ≤ 3S2.

Note that in Experiment 1, the choice of the functions αt = 10, γt = 10, t ∈ [0, T2],
T2 = 3, made in the absence of governance together with the choices of the other
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parameters of the problem guarantees that the probability of systemic risk in the next
year at time t = 0 will be between the thresholds S1 = 0.01 and S2 = 0.05 and it
gives values of NSR in the presence and absence of governance of the same order of
magnitude. For an idea of the consequences of changing the values αt = 10, γt = 10,
t ∈ [0, T2], T2 = 3, we mention that if we fix αt = 1, γt = 1, t ∈ [0, T2], T2 = 3
in Experiment 1, leaving all the remaining parameters unchanged, in the absence of
governance, we have CcSR = 0, Cα

SR = 9, Cγ
SR = 9, but we have NSR = 0.30.

As expected, the comparison between Experiments 1 and 3 of Table 1 shows that
the governance of systemic risk in the presence of volatility shocks is more demanding
than governance in the absence of shocks. This can be seen by comparing the cost
indices CcSR, Cα

SR, Cγ
SR and the quality indices NSR of Experiments 1 and 3. Further-

more, the situation worsens when both a volatility and a correlation shock act on the
liabilities equations of the banking system. This last fact can be seen by comparing the
performance indices of Experiments 1, 3 and 4 of Table 1. In particular, the compar-
ison of the performance indices of Experiments 3 and 4 shows that the values of the
cost indices CcSR, Cα

SR, Cγ
SR increase significantly going from Experiment 3 to Experi-

ment 4 despite the fact that the index NSR signals that the quality of the governance
is decreasing. In fact, in Experiments 3 and 4, we have NSR > 3S2. This means that
during the 2-year period studied, it was not always possible to satisfy (69). Note that
the index NSR in Experiment 4 is greater than in Experiment 3, which shows that
the “collective” behavior of the banks induced by the non-zero correlation ρa makes
governance more difficult.

Similar observations can be made when a volatility shock acts on the banks’ lia-
bilities (compare, for example, Experiments 1 and 5 of Table 1) and when positive
correlation is present in the noise terms of the liabilities equations ρl (compare, for
example, Experiments 5 and 6).

Moreover, note that in Experiments 3, 4, 5, 6, the value of the indexNSR is always
greater than 3S2 = 0.15. This is due to the fact that when governance faces the shock
for the first time, it is unable to reach its goal of keeping the probability of systemic
risk in the next year within the assigned thresholds.

We conclude by noting that in the experiments presented in Table 1, the systemic
risk governance procedure proposed is able to reach its goal, i.e., it is able to keep
the probability of systemic risk in the next year between the assigned thresholds at a
reasonable cost.

7 Conclusions

Anewquantitative approach tomeasure,monitor andgovern systemic risk in an assets–
liabilities continuous-time dynamical model of banking system was investigated. The
strategy is situated within the theory of mean field equations. As emphasized in the
Introduction, as a mathematical abstraction of a banking network, the proposed model
is a deliberate and extreme oversimplification of a real banking system model. How-
ever, based on earlier work, its essential assumptions have produced interesting and
potentially important insights.
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The model proposed describes a homogeneous population of banks where each
bank is represented by its assets and liabilities, which are time-dependent interacting
stochastic processes. The networth of a bank is defined as the difference between assets
and liabilities of the bank and a bank is solvent when its net worth is greater or equal to
zero; otherwise, the bank has failed. The main features of the model are a cooperation
mechanism among banks that regulates interbank borrowing and lending activities
and the possibility of the (direct) intervention of the monetary authority in the banking
system dynamics. We use systemic risk or systemic event in a bounded time interval
to refer to the fact that in that time interval at least a given fraction of the banks fails.
The monetary authority is responsible for the systemic risk governance, which aims
to keep the probability of systemic risk in a bounded time interval between two given
thresholds. The rules of governance are obtained by solving an optimal control problem
for the pseudo mean field approximation of the banking system model. The numerical
examples of systemic risk governance in the presence and absence of shocks acting
on the banking system show the effectiveness of the proposed approach in governing
systemic risk.

The simple banking system model presented in this paper may be extended to
more general models by relaxing one or more of the hypotheses used here, and the
governance of systemic risk in these more refined and realistic banking systemmodels
can be investigated. These extensions are on-going research topics.
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