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Introduction 

Subject introduction 

In recent years, artificial intelligence makes its appearance in extremely different fields 

with promising results able to produce enormous steps forward in some circumstances. 

In chemoinformatics the use of machine learning technique, in particular, allows the 

scientific community to build apparently accurate scoring functions for computational 

docking. These types of scoring functions can overperform classic ones, the type of 

scoring functions used until now.  However the comparison between classic and 

machine learning scoring functions are based on particular tests which can favour these 

latter, as highlighted by some studies. In particular the machine learning scoring 

functions, per definition, must be trained on some data, passing to the model the 

instances chosen to describe the complexes and the relative ligand-protein affinity. In 

these conditions the scoring power of the machine learning scoring functions can be 

evaluated on different dataset and the scoring functions performance recorded can be 

different depending on it. In particular, datasets very similar to the one used for the 

training phase of the machine learning scoring function can facilitate in reaching high 

performance in the scoring power. 

 

Project context 

Due to their importance in drug discovery, the development of scoring functions have 

been the focus of intense research endeavors for decades. They are fundamental 

instruments for the first phase of new medicine or vaccine discovery. Normally the 

period necessary to produce a new product of this type vary between 10 and 12 years. 

The first phase is called drug discovery. It consists in a massive screening of small 

molecules called ligand in order to discover what are the active ones. In principle the 

affinity between a ligand and a protein can be measured experimentally in silico. 

Actually, because of the large quantity of ligands considered, the screening is 

performed using scoring functions. However the actual scoring functions are moderately 

reliable and a further experimental test phase is necessary to accurate rank the active 

ligands. For this reason the drug discovery phase last from 2 to 3 years which is about 



the 20% of the entire period necessary to produce a new medicine or vaccine. A reliable 

scoring function can drastically reduce the period necessary for drug discovery because 

the experimental activity is not necessary. 

In this period it is very easy to understand how important is reducing the time of 

medicine or vaccine production. In fact, in an epidemic context, as the one we are 

passing trough, the reduction of the time necessary to produce the COVID-Sars2 

vaccine would have reduced the consequences of the Covid epidemic, first of all, the 

victims. 

The problem of knowing the ligand-protein status and consequently deriving the relative 

affinity is extremely hard. In fact a close solution for the Schrödinger equations in most 

cases is impossible. Finding a way to have a reliable estimate of ligand-protein affinity is 

a challenging objective for the scientific community. Many studies are conducted on this 

subject since the classic scoring functions appeared. Despite a very deep interesting in 

the subject, both from industries, but also from authorities, in order to prevent risks due 

to epidemic, the progress in the accuracy of classic scoring functions is still not 

sufficient.  

In recent years the incoming of artificial intelligence algorithms opens a new road to 

create more reliable scoring functions. The interest on the subject has just started and 

very few researchers are conducted on the topic. This work is one of these. Since the 

work on the present study started, many other studies on this subject have started or 

have been completed, attesting the increasing interest the topic. On the other hand, the 

subject is far from being completely explored. In fact, artificial intelligence has a 

fundamental element, necessary to be used to correctly work, a big database for 

training the model. Shared databases was born decades ago, anyway, in recent years, 

they are undergoing an intense development right for the incoming of artificial 

intelligence in chemioinformatic. They are cause and consequence at the same time in 

the increasing of artificial intelligence application. For this reason the potentiality of 

artificial intelligence in the field is still unexplored and lot of work on machine learning 

scoring function, but also in chemioinformatic in general, is necessary to be done. Right 

for this reason each new study on the topic counts on more reliable and developed 

database and can produce better and better results 

 



Objectives 

The objective of the present study is to verify the real efficiency and the effective 

performances of the new born machine learning scoring functions. Our aim is to give an 

answer to the scientific community about the doubts on the fact that the machine 

learning scoring function can be or not the revolutionary road to be followed in the field 

of chemioinformatic and drug discovery.  In order to do this many tests are conducted 

and a definitive test protocol to be executed to exhaustive validate a new machine 

learning scoring function is proposed . 

Here we investigate what are the circumstances in which a machine learning scoring 

function produces overestimated performances and why it can happen. As a possible 

solution we propose a tests protocol to be followed in order to guarantee a real 

performance descriptions of machine learning scoring functions. Eventually  an effective 

and innovative solution in the field of machine learning scoring functions is proposed. It 

consists in the use of per-target scoring functions which are machine learning scoring 

functions created using complexes coming from a single protein and able to predict the 

affinity of complexes which use that target. The data used to build the model are 

synthetic and for this reason are easy to be created. The performances on the target 

chosen are better than the ones obtained with basic model of scoring functions and 

machine learning scoring functions trained on database composed by more than one 

protein.  

 

Thesis outline 

The present work is composed of 7 chapters. The following topics are treated. 

Chapter 1 

In Chapter 1 an overview on artificial intelligence with particular reference to machine 

learning and to the algorithms used in this study, is done. 

Chapter 2 

In Chapter 2 an overview on the subject selected to apply machine learning algorithms 

is done. In particular proteins, ligands, relative complexes and, ligand-protein affinity are 



described. Once the subject are introduced, the database used in the study are 

presented. In particular experimental and synthetic data are presented with all their 

properties. 

Chapter 3 

In Chapter 3 a detailed presentation of the studies conducted on applications of artificial 

intelligence to chemioinformatic, with particular reference to machine learning scoring 

function, is presented. In particular an excursus on more important studies is done, with 

reference to the regression model used, the database used, and the results obtained. 

Chapter 4 

In Chapter 4 the scoring function built in this study, MLP scoring function, is presented. 

Initially the descriptive model used to represent the ligand-protein complex is presented 

and the relative code is described step by step. Then the regression model used for the 

MLP scoring function is detailed presented with particular attention to the training 

method and the network structure. The code used is described step by step. 

Chapter 5 

In Chapter 5 the MLP scoring function is tested on different types of test and the 

performances obtained are discussed and compared. The tests performed are the 

horizontal test, the vertical test and the per-target vertical test. 

Chapter 6 

In Chapter 6, considering the analysis made in the previous chapters, a possible 

solution, effective in the field of machine learning scoring function, is proposed. The 

solution is the per-target scoring function. The per-target scoring function is compared 

to other machine learning and other types of scoring functions in different tests. 

Chapter 7 

In Chapter 7 the conclusion of this study are taken in terms of: confirmation of the 

presence of bias conditions in a horizontal test; fairy test for performances evaluation of 

machine learning scoring functions with respect to classic scoring functions; innovative 

and effective solution in the field of scoring function. 

 



Summary of research work and main findings 

In order to pursue the objective specified, as preliminary operations, we create an 

appropriate experimental and synthetic database;  we design and test different training 

protocols, network structure and complex descriptive model and verify the best; we 

choose the most suitable types of test to verify the performances of the scoring 

functions. 

The study confirms that machine learning scoring functions perform excellently in 

horizontal test. This test describes a particular utilizing case of a scoring function and 

overestimate their general performance. The typical use of a scoring function in the field 

of chemistry and pharmacy emerges to be described by a vertical test. In these 

conditions the MLP scoring function, as other machine learning scoring functions, 

shows such a degradation of performances that they become similar to the ones of  

classic scoring functions. For this reason we propose that performance of new machine 

learning scoring function should always be described by both horizontal and vertical 

tests. 

Eventually we introduce machine learning per-target scoring function. It guarantees 

always higher performance with respect to the one of machine learning scoring function 

in vertical test performed on the same test set. In addition it seems to have improvable 

performance if larger training database would be used. 

 

  



1 Machine Learning 

In this chapter an overview on artificial intelligence is done and the theory on which the 

study is based is presented. 

 

1.1 Artificial intelligence and machine learning 

1.1.1 Artificial Intelligence 

Machine learning is a branch of artificial intelligence (AI) (1) (2) (3). Artificial intelligence 

is a discipline which deals with the creation of machines able to imitate the capabilities 

of human intelligence using different types of algorithms (4) (5). Going into details of 

artificial intelligence definition, it can be classified as the discipline which develops 

algorithms that allow the machines to produce intelligent activities at least in some 

specific domains. Starting from this definition, and considering that the exact functioning 

of the human brain is still partially unknown, it is clear that artificial intelligence is a very 

vast and faceted research area. Nowadays this field of research is highly developed 

because of the technological level reached in the computational calculation (6). The 

hardware systems are very powerful and the size is reduced. The energetic losses are 

low. In addition the capability of analyzing large databases of any type of data in very 

short times encourages the development of artificial intelligence research. 

The scientific community's interest for artificial intelligence starts decades ago (7). The 

first project of artificial intelligence started in 1943 when two researchers, Warren 

McCulloch and Walter Pitt, proposed to the scientific community the first artificial neuron 

(8). In 1949 Donald Olding Hebb, a Canadian psychology, published a book in which 

the connections between artificial neurons and the complex model of real brains are 

analyzed in detail.  

The first prototypes of functioning artificial neural networks appeared in the ‘50. These 

prototypes are mathematical or informatics models developed to reproduce the real 

functioning of human neurons and to solve problems in a similar way to a human mind.  

The public interest increased thanks to the young Alan Turing, who still in 1950 tried to 

explain how a computer can perform as a human brain. 



The term “artificial intelligence” officially appeared for the first time thanks to the 

mathematician John McCarthy in 1956. In this context the first programming languages 

specific for artificial intelligence were launched in 1958 (Lisp) (9) and in 1973 (Prolog) 

(10). From that moment the story of the artificial intelligence was swinging. It was 

characterized by significant steps forward from the point of view of the physical and 

mathematical models which became more and more complex in order to imitate some 

human brain functionality. On the other hand, there was a sort of lack in the hardware 

and neural network research.  

The first model of artificial neural network appeared at the end of the ‘50. It was called 

the perceptron. It was proposed in 1958 by the psychologist Frank Rosenblatt (11). It 

was a network with an input layer and an output layer and a learning rule based on the 

error back-propagation algorithm. The mathematical function modifies the weights of the 

connections causing a difference between the effective output and the desired output. 

Some experts identify in the Rosenblatt’s perceptron birth of the artificial intelligence.  

In the following years the mathematicians Marvin Minsky and Seymour Papert 

demonstrated the limits of the neural network proposed by Rosenblatt (12). In fact the 

perceptron was able to recognize, after being trained, only linear separable functions. In 

addition the calculation capability of a single perceptron was limited and the 

performances were strongly dependent on the choices of the inputs and of the 

algorithms used to modify the connection weights and, consequently, the outputs. The 

two mathematicians Minsky and Papert guessed that more than a single layer of 

perceptron in the artificial neural network can solve more complex problems. However, 

in those years, the increasing computational resources required in the training of more 

complex networks did not find an answer in the hardware development. 

The first important turning point in hardware development arrived in the ‘90 with the 

introduction of the graphics processing unit (GPU) in the global market. The GPU is 

faster than the old central processing unit (CPU) and is able to support complex 

processes. They operate at lower frequency and consume less energy with respect to 

CPU (13). 

In the last decade another important step forward was done with the development of 

neuromorphic chip. This chip integrates data elaboration and data storage in a single 

micro component in order to emulate the sensory and cognitive functions of the human 



brain (14). This evolution was possible thanks to the acceleration of the research in the 

field of nanotechnology. 

Through this global evolving process, the artificial intelligence is living an extremely  

strong development in the very recent years and it is applied in almost every sectors if it 

is possible and useful. 

Artificial intelligence can be subdivided in many areas according to the functionality 

considered. The mean functionalities are understanding, reasoning, interacting and 

learning. The understanding is the capability to recognize texts, images, voices,... 

Examples of artificial intelligence applications are search engines (Google Search,...), 

recommendation systems (offered by Netflix, Zalando, Amazon), driving internet traffic, 

targeted advertising (Instagram, Facebook), virtual assistants (Cortana, Alexa), 

autonomous vehicles (including drones and self-driving cars), automatic language 

translation (Microsoft Translator, Google Translate), facial recognition (Apple's Face ID, 

Microsoft's DeepFace), image labeling (used by Facebook, Apple's iPhoto, TikTok) and 

spam filtering. 

There are also thousands of successful artificial intelligence applications used to solve 

problems for specific industries or institutions. A few examples are energy storage, 

medical diagnosis, military logistics or supply chain management. Also game playing 

counts numerous artificial intelligence applications. 

The reasoning implies the capability of making logical deduction linking the collected 

information. The interaction is the capability of relating with the external environment. 

The learning is the capability of analyzing inputs and consequently producing outputs. 

Machine learning (ML) is a fundamental concept of artificial intelligence research since 

the interest on the subject began. 

 

1.1.2 Machine learning 

The first time the term “machine learning” was used was in 1959 by the scientist Arthur 

Lee Samuel (15). He defines the machine learning as the:  

 

“field of study that gives computers the ability to “learn” (e.g., progressively improve 

performance on a specific task) with data, without being explicitly programmed.”  



 

Today the definition most often adopted in the scientific community is the one proposed 

by the American scientist Tom Michael Mitchell,  director of the Machine Learning 

department of Carnegie Mellon University (16): 

 

“A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E.” 

 

In other words, machine learning allows the machine to learn from the experience. It 

means that the particular performances of the machine improve after completing a task, 

both if rightly or wrongly.  

The machine learning algorithms use computational methods to learn information 

directly from the data without using mathematical models or pre-determined equations. 

The machine operates without a programming code which indicates what to do step by 

step and for any occurrences. It uses only a set of data which are processed using 

specified algorithms. Using this method, the machine develops a proper logic to perform 

its task. The machine learning algorithms increase their performance in an adaptive 

way, with the increase of the data in the database. 

According to Arthur Samuel at the end of 1950, machine learning uses 2 types of 

approaches: unsupervised machine learning and supervised machine learning. They 

differ in the learning type. Actually there are some subsets of machine learning types 

which allow a more detailed classification of machine learning categories (17) (18). In 

particular we consider 3 types of machine learning: 

 Unsupervised machine learning (19) 

 Supervised machine learning (20) 

 Reinforcement learning (21) 

Reinforcement learning is concerned with how software agents ought to take actions in 

an environment in a manner to maximize some notion of cumulative reward. In machine 

learning, the environment is usually represented as a Markov decision process (MDP) 

(22). Reinforcement learning algorithms are used when exact models are impraticable 

because they do not assume knowledge of a precise MDP mathematical model. 

Reinforcement learning algorithms are used in the game environment, when the aim is 

to learn to play a game against an intelligent subject, or in autonomous vehicles.  



 

In unsupervised machine learning we have data without labels/target-values.  

The instances of the data are described by D-dimensional vectors.  

{𝒙𝑖}𝑖=1
𝑁  

The components of the vector, 𝑥𝑖, are the features which describe each datum. There is 

a vector for each of the 𝑁 instances in the database 

The aim of this method is to find a recurrent behaviour or a structure or some clusters in 

the data. It is mostly used for applications like the ones described in the following.  

 Principal Component Analysis (PCA) for dimensionality reduction (23).  

This method is used for changing higher-dimensional data to a smaller space. For 

example it is used to switch from 3D to 2D. The objective is to have a smaller dimension 

of data (2D instead of 3D), while the information, inside them, is preserved. 

 Clustering (24).  

Cluster analysis is the subdivision of a set of data into subsets (called clusters). Data 

within the same cluster are similar according to one or more pre-designed criteria, while 

data from different clusters are dissimilar. Different clustering techniques make different 

assumptions on the structure of the data and so can produce different subdivisions.  

The clusterization is defined by some similarity metric. Then, it can be evaluated by 

internal compactness or by the similarity between members of the same cluster or by 

the differences between members of different clusters. One of the principal methods of 

clustering is K-means. It creates a partition in which each datum belongs to the cluster 

with the nearest mean (cluster center). The cluster center is considered the prototype of 

the cluster. K-means clustering minimizes variances within the cluster (squared 

Euclidean distances). 

 Random forest (25).  

Random Forest operates by constructing a multitude of decision trees at training time. 

Decision tree learning is one of the predictive modeling approaches used in machine 

learning. It uses a decision tree (as a predictive model) to go from observations about 

an item (represented in the branches) to conclusions about the item target value 

(represented in the leaves). A tree is built by splitting the source set, constituting the 

root node of the tree into subsets, which constitute the successor children. The splitting 



is based on a set of splitting rules based on classification features. This process is 

repeated on each derived subset in a recursive manner called recursive partitioning. 

Random Forest  can be used as unsupervised machine learning, but also as supervised 

machine learning. In this way it can be used as a dissimilarity measure in a set of data. 

Often unsupervised learning is used also for singular value decomposition, self-

organized maps and  a first step before supervised learning. 

In supervised machine learning we have data that describe instances with a 

label/target-values.  

The following expression indicates the features vectors and the relative labels. 

{(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑁  

The components of the 𝒙𝑖 vectors are the features which describe each datum. The 

labels 𝑦𝑖 are the target values of the data. Labels can have continuous values 

(regression) or discrete values (classification), e.g., 0 or 1 (Figure 1.1). 𝑁 is the size of 

the dataset. 

 

Figure 1.1 Label types 

The aim of this method is to identify a model which links the data to the label/target-

values. The model can reproduce those labels/target-values and can make new 

predictions of the label/target-value for new instances given their descriptive data. 

It is mostly used for applications like the following: 

 

 Regression analysis (linear regression, polynomial regression, logistic 

regression) (26).  



Regression analysis encloses a large variety of statistical methods to estimate the 

relationship between features (input) and their associated labels (output). In the linear 

regression a line is used to best fit the given data according to a mathematical criterion 

which for example can be the least squares. The polynomial regression is used when a 

nonlinear problem is encountered. In this case a 𝑛 degree polynomial is used to fit the 

given data. The logistic regression basically uses a logistic function to model a binary 

dependent variable. 

 

 Support Vector Machines (SVM) (27).  

The Support Vector Machines training algorithm in most cases is a non-probabilistic, 

binary, linear classifier. It builds a model able to classify the input data. 

 Other applications of supervised machine learning are: k-nearest neighbours 

(algorithm used in pattern recognition for the classification of objects based on 

the characteristics of objects close to the one considered) and artificial neural 

networks which is the one used in this study. 

 

1.2 Artificial neural network description 

Artificial Neural Networks (ANNs) are computing systems inspired by the neural 

networks of human brains (28).  

 

“Any function can be approximated by a sufficiently deep artificial neural network” K.-I. 

Funahashi, Neural Networks 2, 183-192 (1989) 

 

Originally the artificial neural networks were created to solve problems in the same way 

that a human brain would. This system is trained on example data. The training allows 

the system to learn to operate a specific function without having been programmed 

specifically for this function. The artificial neural networks, as anticipated, are 

structurally similar to a human brain. In fact they are composed of nodes, called artificial 

neurons, which emulate the biological neurons. Each artificial neuron is connected with 

the others and the information can be transmitted from one neuron to another. Once the 

signal is received, each artificial neuron can process the signal before transmitting it to 

the next. In fact in the human brain the synapses transmit information among the 

neurons. The signal transmitted by each artificial neuron is a real number. The output of 



each artificial neuron is a particular function of the inputs. The function used is called 

activation functions. They can be non-linear functions. Some weights are used to 

increase or decrease the strength of the signal at a connection. They are adjusted as 

learning proceeds. Typically, artificial neurons are aggregated into layers. Different 

layers may use different non-linear activation function on their inputs. Signals travel 

from the first layer (the input layer) to the last layer (the output layer) through one or 

more hidden layers. A neural network with a single hidden layer can approximate any 

continuous, multi-input/multioutput function with arbitrary accuracy (G. Cybenko, 1989; 

Kurt Hornik, 1991) However, the width of such networks might move to be exponentially 

large. Consider a general artificial neural network: 

 

 

 

Figure 1.2 Generic artificial neural network composed of one hidden layer 



The artificial neural network represented in Figure 1.2 is composed of one hidden layer 

plus the input and output layer. The network can be composed by any number of hidden 

layers, its behaviour is the same of the one described hereafter. The artificial neural 

network represented uses an input vector of 3 components. The number of neurons of 

the hidden layer is 3. Also the input vector components and the number of neurons can 

be varied, the relation among inputs and outputs are analogue.  

𝒙 is the input vector. The instances 𝑥𝑖 are represented inside the blue circles. They 

constitute the input layer. The neurons of the hidden layer are represented by the red 

circles. The output layer is composed of 1 neuron. It is represented by the violet circle.  

𝑎𝑖
(𝑗)

 is the activation function of neuron 𝑖 in layer 𝑗.  

The output vector is �̂�. It depends on 𝑤 and 𝒙.  

𝑤 is the matrix of weights. 𝑤(𝑗) is the matrix of weights from layer 𝑗 to layer 𝑗 + 1, 𝑤(𝑗) ∈

𝑅𝑠𝑗+1×(𝑠𝑗+1), where 𝑠𝑗 is the number of units (without bias) in layer 𝑗. So 𝑤(𝑗) =

[𝑤𝑛𝑚
(𝑗)
] 𝑛=0,𝑠𝑗+1
𝑚=0,𝑠𝑗+1

. 𝑤𝑛𝑚
(𝑗)

 is the weight between neuron 𝑚 at layer 𝑗 and neuron 𝑛 at layer 

𝑗 + 1. 

The terms with subscript 0 are the bias unit (𝑥0). In the case they are referred to the 

hidden layer, the reference layer is indicated in the apex (𝑎0
(2)

) . The algorithmic bias is 

used to prevent systematic and repeatable errors that create unfair outcomes, such as 

privileging one arbitrary group of users over others. It is treated as an additional input to 

the artificial neural network. It is standard pre-set to 1.  

In this neural network, information moves in one direction, forward with respect to entry 

nodes, through hidden nodes to exit nodes.  

The outputs of layer 2 are: 

𝑎1
(2) = ℎ(𝑤10

(1)𝑥0 + 𝑤11
(1)𝑥1 + 𝑤12

(1)𝑥2 + 𝑤13
(1)𝑥3) = (𝑤1

(1)𝑎(1)) 

𝑎2
(2) = ℎ(𝑤20

(1)𝑥0 + 𝑤21
(1)𝑥1 + 𝑤22

(1)𝑥2 + 𝑤23
(1)𝑥3) = (𝑤2

(1)𝑎(1)) 

𝑎3
(2) = ℎ(𝑤30

(1)𝑥0 + 𝑤31
(1)𝑥1 + 𝑤32

(1)𝑥2 + 𝑤33
(1)𝑥3) = (𝑤3

(1)𝑎(1)) 



Where 𝑎(𝑗)is the vector (𝑎1
(𝑗)
, 𝑎2
(𝑗)
, … , 𝑎𝑛

(𝑗)
) and 𝑎𝑖

(𝑗)
, which is the activation function of 

neuron 𝑖 in layer 𝑗, is given by the scalar product between 𝑤𝑖
(𝑗−1)

𝑎(𝑗−1), ℎ is the function 

chosen as activation function. 

This notation can be also substituted by the vectorized notation, which means 

evaluating ℎ(𝒙) on each element of 𝒙: 

𝑎(2) = ℎ(𝑤(1)𝑎(1)) 

The outputs of layer 3, that is the final output, is: 

�̂�(𝑤, 𝒙) = 𝑎1
3 = ℎ∗(𝑤10

(2)𝑎0
(2) + 𝑤11

(2)𝑎1
(2) + 𝑤12

(2)𝑎2
(2) + 𝑤13

(2)𝑎3
(2)) = ℎ∗(𝑤1

(2)𝑎(2))  ⇒ �̂�(𝑤, 𝒙)

= 𝑎(3) = ℎ∗(𝑤(2)𝑎(2)) 

Where h∗ is the activation function of the output unit (e.g, identity). 

If we consider the simplest artificial neural network, reported hereafter (Figure 1.3), the 

following output is obtained. The network is composed of one neuron (the output 

neuron), represented by the orange circle. No hidden layers are present. The input 

vector 𝒙 has 2 components: 𝑥1, 𝑥2. The output is �̂�. 

�̂�(𝑤, 𝒙) = ℎ(𝑤10 + 𝑤11𝑥1 + 𝑤12𝑥2) = ℎ (∑𝑤1𝑖𝑥𝑖

2

𝑖=0

) 

where ℎ indicate the activation function. 



 

Figure 1.3 Simplest artificial neural network composed of a single neuron, the output neuron. 

Input vector composed of two components 

In a neural network an activation function defines how the weighted sum of the input is 

transformed into an output from one or more nodes in a layer of the network. Activation 

functions are a key part of neural network design (29). The activation function 

choice has a large impact on the performance and capability of the neural network. 

Different activation functions may be used in different parts of the model. Usually 

artificial neural networks are designed to use the same activation function for all nodes 

in a layer and typically all hidden layers use the same activation function. The output 

layer can use a different activation function depending on the type of prediction 

problem. Many different types of activation functions can be used in neural networks, 

although only few functions are normally used in practice for hidden and output layers. 

Hereafter the most important activation functions are reported (Figure 1.4). 



 

Figure 1.4 The most important activation functions 

The perceptron or Heaviside step function is calculated as follows: 

𝐻(𝑥) = {
1, 𝑥 > 0
0, 𝑥 ≤ 0

. 

It is  a step function, the value of which is zero for negative arguments and one for 

positive arguments. The value of the function in 0 varies depending on the function 

definition. Some common choice can be that 𝐻(0) = 1,
1

2
, 0.  The function takes any 

real value as input. 

The Sigmoid activation function is calculated as follows: 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
. 

The function takes any real value as input and outputs values in the range 0 to 1. The 

larger the input (more positive), the closer the output value will be to 1, whereas the 

smaller the input (more negative), the closer the output will be to 0. 

The Tanh (hyperbolic tangent) activation function is calculated as follows: 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. 



It is very similar to the Sigmoid activation function. The function takes any real value as 

input and the outputs values are in the range -1 to 1. The larger the input (more 

positive), the closer the output value will be to 1, whereas the smaller the input (more 

negative), the closer the output will be to -1. 

The rectified linear activation function, or ReLU activation function, is perhaps the most 

common function used for hidden layers. 

The ReLU function is calculated as follows: 

𝑅(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

= 𝑚𝑎𝑥{0, 𝑥}. 

This means that if the input value (𝑥) is negative, then a value 0 is returned, otherwise, 

the value is returned. 

The leaky rectified linear unit (Leaky ReLU) is calculated as follows: 

𝐿(𝑥) = {
0.01𝑥, 𝑥 < 0
        𝑥, 𝑥 ≥ 0

. 

The function is very similar to the ReLU activation function. The function takes any real 

value as input and outputs values are in the range −∞ to +∞. It is a growing function 

without asymptotes 

The Exponential linear unit (ELU) is calculated as follows: 

𝐸(𝑥) = {
𝛼(𝑒𝑥 − 1), 𝑥 ≤ 0
                𝑥, 𝑥 > 0

} 

The function is very similar to the ReLU activation function. The function takes any real 

value as input and outputs values are in the range - 𝛼 to +∞. It is a growing function 

starting from -1. In some case a parameter 𝛼 is used as multiplier in front of the 

expression (𝑒𝑥 − 1) only for negative or zero input. 

 

1.3 Neural network training method 

The process of supervised machine learning adopted in artificial neural networks 

consists in learning a function that can be used to predict the output associated with 

new inputs through iterative optimization of a loss function or cost function. The cost 



function is a kind of function of the difference between estimated and true values for an 

instance of data. The optimization consists in optimizing the parameter of the model in 

order to minimize the cost function. The iteration permits to improve the accuracy of the 

function outputs or predictions over time. For this reason it is said to have learned to 

perform that task. 

If we consider the simple example of a linear regression with data composed of one 

dimensional feature, the database is the following: 

 {(𝑥1, 𝑦1),… , (𝑥𝑖, 𝑦𝑖),… , (𝑥𝑛, 𝑦𝑛)} 

If a linear model is used, the output of the model is: 

�̂�(𝛩, 𝒙) = 𝜃0 + 𝜃1𝑥 = 𝑋 ∙ 𝛩 

Where 𝑋 = (1 𝑥) and 𝛩 = (
𝜃0
𝜃1
) 

𝛩 is the matrix of the parameters. In this case is a one-dimensional vector with two 

components. 

The cost function considered in this case is the squared difference between the 

predicted data and the real data. This is called the least squares method. 

𝐿(𝛩) =
1

𝑁
∑(�̂�(𝛩, 𝒙𝑖) − 𝑦𝑖)

2

𝑁

𝑖=1

 

The optimization of the model parameters in order to have the best fit between 

predicted and real value is obtained minimizing the cost function: �̂� = 𝑎𝑟𝑔min. 𝐿(𝛩) 

The minimization of the cost function is done by taking the derivative of the function with 

respect to the variables. This operation allows us to obtain the optimal values of the 

parameters of the function (the vector 𝛩).  

𝛿𝐿

𝛿𝜃0
= 2∑(𝜃0 + 𝜃1𝑥𝑖 − 𝑦𝑖) = 0

𝑁

𝑖=1

 

 
𝛿𝐿

𝛿𝜃1
= 2∑(𝜃0 + 𝜃1𝑥𝑖 − 𝑦𝑖)𝑥𝑖 = 0

𝑁

𝑖=1

 



The system is composed of 2 equations and we have 2 unknowns. 

𝜃0𝑁 + 𝜃1∑𝑥𝑖 =

𝑁

𝑖=1

∑𝑦𝑖

𝑁

𝑖=1

 

𝜃0∑𝑥𝑖

𝑁

𝑖=1

+ 𝜃1∑𝑥𝑖
2 =

𝑁

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑁

𝑖=1

 

The solution of this system is the following: 

𝜃1 =
𝜎(𝑥, 𝑦)

𝜎2(𝑥)
 

𝜃0 = �̅� − 𝜃1�̅� 

where 𝜎 and 𝜎2 are respectively the covariance of (𝑥, 𝑦) and the variance of (𝑥) and �̅� 

and �̅� are the average values. 

𝜎(𝑥, 𝑦) =  
1

𝑁
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑁

𝑖=1

 

𝜎2(𝑥) =  
1

𝑁
∑(𝑥𝑖 − �̅�)

2

𝑁

𝑖=1

 

�̅� =  
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

;   �̅� =  
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

 

1.3.1 Gradient descent 

In a general case, each data is described by  𝑘 features. Because of this the training 

data is represented by a matrix composed of 𝑁 rows, where 𝑁 is the number of data in 

the database, and 𝑘 columns. The parameters vector is composed by 𝑘 elements. The 

loss function is the following. 

𝐿(𝛩) =
1

𝑁
∑(�̂�(𝛩, 𝒙𝑖) − 𝑦𝑖)

2

𝑁

𝑖=1

 



In this case the optimization of the parameters is done using the gradient descent (30). 

It is a first-order iterative optimization algorithm for finding a local minimum of a 

differentiable function. The principle is to take repeated steps in the opposite direction of 

the gradient of the function at the current point, because this is the direction of steepest 

descent. 

Consider a function 𝐹(𝑥) for which the minimum has to be found. One starts with a 

guess 𝑥 for a local minimum of 𝐹 and considers the sequence 𝑥0, 𝑥1, 𝑥2, … such that 

𝑥𝑛+1 = 𝑥𝑛 − 𝜂∇𝐹(𝑥𝑛), 𝑛 ≥ 0 

Here, 𝜂 is a real parameter called learning rate. The result is a monotonic sequence 

𝐹(𝑥0) ≥ 𝐹(𝑥1) ≥ 𝐹(𝑥2) ≥ ⋯ 

Hopefully, the sequence {𝑥𝑛} converges to the desired absolute minimum. The value of 

the step size indicated by 𝜂 is the learning rate of the algorithm. A graphic explanation 

of the gradient descent can be found in Figure 1.5.  

 

Figure 1.5 Graphic explanation of the gradient descent algorithm 

When the gradient descent is applied to the loss function of linear regression, you 

obtain: 



𝛿𝐿

𝛿𝜃0
=
2

𝑁𝑡
∑(𝑋𝑖 ∙

𝑁𝑡

𝑖=1

𝛩 − 𝑦𝑖) 

                                   
𝛿𝐿

𝛿𝜃𝑗
=
2

𝑁𝑡
∑(𝑋𝑖 ∙

𝑁𝑡

𝑖=1

𝛩 − 𝑦𝑖)𝑥𝑖,𝑗   for  𝑗 = 1,… 𝑘  

Where 𝑥𝑖,𝑗 is the 𝑗𝑡ℎ element of the feature vector  𝒙𝑖 that represent the 𝑖𝑡ℎ instance. In 

order to possibly achieve the global minimum, you start with a random value for 𝜃𝑗 for 

𝑗 = 0, . . . , 𝑘. Next value of 𝜃𝑗, 𝜃𝑗
′, is obtained with the following operation: 

𝜃𝑗
′ = 𝜃𝑗 − 𝜂

𝛿

𝛿𝜃𝑗
𝐿(𝛩). 

 

In the case the number of data are numerous (typically 𝑁𝑡 ≈ 104−5) the stochastic 

gradient descent can be used to avoid calculation too expensive in terms of resources. 

Instead of computing the gradient using all 𝑁𝑡 instances of the training set, it consist in 

using mini-batches randomly chosen of 10 to 100 or more instances, depending on the 

database size, for which the gradient is computed. The computed gradient points on 

average in the right direction, with a stochastic noise that helps escaping local minima. 

 

1.3.2 Gradients computation in artificial neural networks: 

backpropagation algorithm 

In the case an artificial neural network, with many neurons and layers and a standard 

size database, is used, it is possible to have 104 or even 105 parameters, to be 

computed, for every instance of the mini-batch. In such cases the backpropagation 

algorithm is used for evaluating the gradient of the loss function (31). 

The aim is to evaluate 
𝛿𝐿(𝑊)

𝛿𝑤𝑛𝑚
(𝑗)  for any instance 𝑖, considering that the loss function, 

without regularization, is additive.  

The weighted input of neuron 𝑛 at layer 𝑗 is: 



𝑧𝑛
(𝑗)
= ∑ 𝑤𝑛𝑚

(𝑗−1)
𝑎𝑚
(𝑗−1)

𝑠𝑗−1

𝑚=0

 

The relative activation is: 

𝑎𝑛
(𝑗)
= ℎ(𝑧𝑛

(𝑗)
) (vector notation: 𝑎(𝑗) = ℎ(𝑧(𝑗)). 

It is possible to define the “error” of neuron 𝑛 at layer 𝑗 as:  

𝛿𝑛
(𝑗)
= 

𝛿𝐿

𝛿𝑧𝑛
(𝑗)  (vector notation: 𝛿(𝑗) =

(

 
 𝛿1

(𝑗)

𝛿2
(𝑗)

⋮

𝛿𝑠𝑗
(𝑗)

)

 
 

). 

Instead, in the last layer, the error is: 

𝛿1
(𝐿)
= 

𝛿𝐿

𝛿𝑎1
(𝐿) ℎ

∗′(𝑧1
(𝐿)) (1 exit neuron); 𝛿𝐿 = ∇a(L)L⊗ h∗

′
(z(L)) (many exit neurons). 

In the latter case ⊗ indicates the Hadamard product (elementwise). 

Starting from these assumptions, according to the backpropagation algorithm, the error 

at layer 𝑗, given error at layer 𝑗 + 1, is: 

𝛿(𝑗) = ((𝑤(𝑗))
𝑇
𝛿(𝑗+1)) ⊗ h′(z(j)) for 𝑗 = 𝐿 − 1, . . . ,2. 

The partial derivatives with respect to weights and biases are respectively: 

𝛿𝐿

𝛿𝑤𝑚𝑛
(𝑗)
= 𝑎𝑛

(𝑗)
𝛿𝑚
𝑗+1
;  
𝛿𝐿

𝛿𝑏𝑚
(𝑗)
= 𝛿𝑚

𝑗+1
 

Layer 1 adds the term due to regularization: 
𝛿𝐿

𝛿𝑤𝑚𝑛
(𝑗) →

𝛿𝐿

𝛿𝑤𝑚𝑛
(𝑗) + 𝜆𝑤𝑚𝑛

(𝑗)
 

An alternative notation can be used:  

𝛿𝐿

𝛿𝑤
= 𝑎𝑖𝑛𝛿𝑜𝑢𝑡 

where 𝑎𝑖𝑛 is the activation of the neuron input to 𝑤, 𝛿𝑜𝑢𝑡 is the error on the output 

neuron. 



 

1.3.3 Overfitting and underfitting 

The function learned by the artificial neural network can reproduce the data distribution 

more or less accurately (32). In particular the following situation can be encountered. 

 

Figure 1.6 Underfitting, right fitting and overfitting training 

The red crosses represent the data distribution. They follow a parabolic distribution. The 

blue line is the function that approximates the distribution. It can be considered the 

function learned by the artificial neural network. The expression under the plot is the 

mathematical expression of the function. In the first case the function is underfitting the 

data distribution. It means the model is too simplistic to accurately represent the data. In 

fact, the model is a line. The result of the model is that it inaccurately represent the data 

points and thus is not able to predict future data results as shown in Figure 1.7. 

The underfitting problem can be avoided using a more complex model(e.g., a deeper 

neural network), improving the optimization algorithm or reducing the regularization (33) 

(if used). 



 

Figure 1.7 Underfitting phenomenon 

The correct model is the one represented in the second case of the Figure 1.6. It is a 

parabolic model like the one used for the data distribution. 

In the last case of the Figure1.6, the function is overfitting the data distribution. The 

overfitting is the result of an analysis that corresponds too closely to the training data 

and may therefore fail to fit to additional data like the validation or test data. Because of 

this the model may fail to predict future observations reliably. Generally, when a 

learning algorithm is more accurate in fitting known data (hindsight) but less accurate in 

predicting new data (foresight), it is said to be an overfitting algorithm (see Figure 1.8). 

Usually it happens when a more complicated approach than is ultimately optimal, is 

used. In the last case represented in the figure, a 4th degree equation is used to 

represent a 2nd degree distribution of data.  



 

Figure 1.8 Overfitting phenomenon 

Overfitting is especially likely in cases where learning was performed too long or where 

training examples are rare. This causes the learner to adjust to very specific random 

features of the training data that have no causal relation to the target function. In this 

process of overfitting, like already said, the performance of predicting training examples 

still increases while the performance on unseen data becomes worse, as schematically 

represented in Figure 1.8. 

 

Figure 1.9 Overfitting phenomenon birth with the increase of model complexity 



The overfitting problem can be avoided using more data for the training. Usually the size 

of the data set for the training process is about 104−5. In the case the data available are 

few and cannot be expanded, the overfitting can be avoided using a simpler model 

(Figure 1.9) or using fewer features. In the case none of these solutions can be 

adopted, or they are not effective, it is possible to add the regularization to the model 

(Figure 1.10). The regularization modifies the cost function adding a term that penalizes 

models with large values of parameters. It is added to the output signal considering the 

absolute value (L1) or the squared value (L2). In this study a L2 regularization is used. 

The L1 regularization is analog to the L2 one. In the following expression an L2 

regularization is added for multivariate linear regression. 

𝐿(𝛩) =
1

𝑁
∑(�̂�(𝛩, 𝒙𝑖) − 𝑦𝑖)

2 +
𝜆

2𝑁
∑𝜃𝑗

2

𝑘

𝑗=1

𝑁

𝑖=1

. 

Note that the constant 𝜃0 (bias term) is not regularized. The regularization parameter is 

usually varied in log scale: 10−6, 10−5, … , 10−2, 10−1. If the regularization parameter is 

too small, it is like not having regularization. So, if the overfitting phenomenon is 

present, it will be maintained. If the regularization parameter is too high, the underfitting 

phenomenon is present. The overfitting phenomenon implies high variance. On the 

contrary, the underfitting phenomenon implies high bias.  

 

Figure 1.10 Overfitting phenomenon neutralization with the use of regularization parameter 

 



1.3.4 Stopping criterion 

The training process can be stopped mainly according to two criteria (34). The first 

criterion is based on a loss function. The monitoring of the loss function permits to 

check the trend of this function and to stop the training when it does not decrease any 

more. As anticipated, the loss function used in this study is the mean squared error. 

Usually a tolerance on the stopping criterion is applied, in order to avoid the training 

stopping for a momentaneous increase of the loss function. With the aim of avoiding 

overfitting, the stopping criterion is usually applied on a set of data not used for the 

training process. This is called the validation set.  

The other stop criterion is simply the number of iterations. When the maximum number 

of iterations set is reached, the training stops 

 

1.4 Neural network training strengthening: 

transfer learning 

The transfer learning technique is a method thought to increase the network capability 

of learning training data, but also to minimize the resources used to train an artificial 

neural network (35) (36).  

The term transfer learning is used to indicate an advanced machine learning method in 

which a model pre-developed to perform a generic activity, is used as a starting point for 

developing another one, aimed to perform a different activity. This method is often used 

in image classification. 

The first article in which the transfer learning is explicitly treated was published in 1976 

by the scientist Stevo Bozinovski e Ante Fulgosi. The research on transfer learning is 

continuing and now Andrew Ng, associate professor at Stanford University, co-founder 

and head of Google Brain, believes that the transfer learning will be the next driver for 

commercial success of machine learning. 

As anticipated, the transfer learning consists in the training of an artificial neural network 

in which a pre-train on a big database has been already performed. The pre-trained 

model can be used as it is or can be used as a base for a personalization on other data 

and, so, to perform another activity. The idea behind the transfer learning is that if a 

model is trained on a sufficiently large and general database, the general maps of 

functionality learned can be used in analog tasks. This method permits to achieve 



functionalities without the necessity of training from scratch a new artificial neural 

network on a database sufficiently large to guarantee a good result. 

There are 2 main models to use transfer learning. 

The first model is used to extract further functionality from the behaviour of an artificial 

neural network already trained and to apply it on new data. With this aim it is sufficient 

to add to the already trained model, a new classifier, which is trained from scratch. This 

method allows the reuse of the conceptual maps already developed in the first model 

without the necessity of training from zero a whole artificial neural network. This model 

of using transfer learning is applicable for solving similar problems.    

The second model is the fine-tuning. It is used to limit the training to a sensible inferior 

number of data. In this model the more external layers of neurons of the pre-trained 

artificial neural network can be unlocked. These layers are further trained in a specific 

way for the final task. The fine-tuning allows the refinement of the basic model, obtained 

with the pre-training, in order to have a more performing model for the specific final task. 

In this way the training is faster and the resources requested are less ingent with 

respect to training of an artificial neural network from scratch.  

Summarizing, the transfer learning allows the reuse of the largest part of the weights of 

an artificial neural network already trained for solving a similar problem. It limits the 

training to the layers dedicated to the classification or regression of the features already 

obtained in the previous layers. In this study we use this method to strengthen the 

model built, especially in the case of fine-tuning.  

 

1.5 Neural network performance descriptors 

The performance of an artificial neural network can be measured using many 

parameters, depending on the type of problem. In particular, for the regression problem, 

the performance are mainly measured using the parameters hereafter. In the following 

expressions, 𝑦𝑖 is the 𝑖𝑡ℎ real data and �̂�(𝛩, 𝒙𝑖) is the 𝑖𝑡ℎ predicted data. 𝑁 is the total 

number of data. 𝒙 is the features matrix. 𝛩 is the weight matrix. 

 

  Mean squared error:  

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�(𝛩, 𝒙𝑖))2
𝑁

𝑖=1

. 



 

The mean squared error measures the average of the squares of the errors, that 

is, the average squared difference between the estimated values and the actual 

value. 

 

 Mean absolute error: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�(𝛩, 𝒙𝑖)|𝑁
𝑖=1

𝑁
. 

 

The mean absolute error is a measure the average of the absolute value of the 

errors between the estimated values and the actual value. 

 

 Coefficient of determination: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�(𝛩, 𝒙𝑖))2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

. 

 

 �̅� is the mean value of the real values 𝑦𝑖.  

The coefficient of determination is the proportion of the variation in the dependent 

variable that is predictable from the independent variables. If the model fit is 

perfect with real data, 𝑅2 = 1. A baseline model, which always predicts �̅� will 

have 𝑅2 = 0. Models that have worse predictions than this baseline will have a 

negative 𝑅2.  

 

 Pearson’s correlation coefficient: 

𝑅𝑝 =
∑ (𝑦𝑖 − �̅�)(�̂�(𝛩, 𝒙𝑖) − �̂�(𝛩, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑁
𝑖=1

√∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

√∑ (�̂�(𝛩, 𝒙𝑖) − �̂�(𝛩, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑁

𝑖=1

. 

 

�̂�(𝛩, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean value of the predicted data.  

Pearson’s correlation (𝑅𝑝) is defined as the ratio between the covariance of the 

data and the product between the standard deviation of the 2 variables. When 

applied to a sample, it is possible to obtain the shown formula by substituting the 

covariances and variances based on a sample. The correlation coefficient ranges 

from −1 to 1. An absolute value of exactly 1 implies that a linear equation 

describes perfectly the relationship between predicted and real data, with all data 



points lying on a line. The correlation sign is determined by the regression slope. 

A positive value  implies positive gradient for the line and viceversa for negative 

values. A value of 0 implies that there is no linear dependency between the 

variables. An absolute value of  𝑅𝑝 inferior of 0.3 indicates a weak correlation 

between predicted and real data. An absolute value of  𝑅𝑝 between 0.3 and 0.7 

indicates a moderate correlation. An absolute value of  over 0.7 indicates a 

strong correlation. 

Many other performance descriptors for regression problem exist, but these are the 

most important for the present work. 

For classification problems the measures of a test’s accuracy mostly used are F-score, 

confusion matrix, receiver operating characteristic (ROC) and others. 

  



2 Database 

2.1 Database description 

As discussed in the previous chapter 1.1.2, machine learning allows the machine to 

learn from experience. Experience, in machine learning, is synonymous with data. In 

fact, the machine makes its experience through the input data. The machine learning 

algorithms use computational methods to learn information directly from the data, 

without using a priori mathematical models or pre-determined equations.  

The database is a fundamental element for machine learning. Without a sufficiently 

large database, the machine learning process cannot take place. For sure, the recent 

strong increase of machine learning applications in any possible field is due to the 

increased capability of collecting and storing an enormous quantity of data. The 

enormous quantity of data is contemporarily a cause, but also a consequence of 

machine learning development. In fact, modern hardware permits to collect large 

quantity of data in a small device. This fact encourages data storing also in common 

applications. The increasing collection of data determines the birth of the big data 

phenomenon. Big data refers to data sets that are too large or complex to be dealt with 

by traditional data-processing application software. As already seen, some applications 

of artificial intelligence are used in the analysis of big data (37) (38).  

On the other hand, the promising results obtained in recent years by artificial 

intelligence applications, like machine learning, push the scientific community to create 

new large database containing any kind of data which can be used as starting point for 

machine learning applications. 

This is the case of this study. In fact, in the next chapter we will discuss the difficulty in 

trusting the results coming from classic scoring functions. For this reason, a possible 

solution is found in applying the machine learning techniques to the field of scoring 

functions. With this aim, the process of measuring more and more binding structures 

and creating shared database containing data on chemical complexes has significantly 

increased in recent years. Anyway, we will further explore this aspect in the next 

paragraphs. For this moment, we consider how the database is used in machine 

learning. In particular we consider supervised machine learning applications because in 

this study we are dealing with these types of applications. 



Typically the database is subdivided into two or three subsets in order to complete the 

training and testing processes for the artificial neural network. The subset are used for 

training the model, for testing it and possibly for validating the model during the training 

for early stopping or for hyper parameter selection. In supervised machine learning, the 

input data consist in data that describe instances and in a label/target-value: 

 

{(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑁 . 

 

The data which describe instances belonging to the training set are used as input data 

for the artificial neural network. The label/target-values are the desired output for the 

related input and are used in the machine learning process. The training set is normally 

the largest subset. Typically  a percentage of about 80% of the entire database is used. 

In our study a percentage of the entire database which varies between the 80% and the 

93% is used for the training set. The variation depends on the type of database 

considered. 

The test set is normally composed of about 20% of the data base. In our study it uses a 

percentage which varies between 20% and 7% of the entire database. The data which 

describe instances belonging to the test set are used as input in the test procedure of 

the model. The label/target-values are used as term of comparison with respect to the 

predicted values to measure the performance of the model. Data present in the training 

set are not present in the test set. Consequently the two subset do not overlap. 

The validation set is a possible partition of the database which can be used in the 

monitoring process to determine the ending of the training phase. The dimension of the 

validation set is similar to one used for the test set, so it can vary between the 10% and 

the 7% of the entire database. If a validation set is introduced, the part of the database 

used in the training is reduced and it consists in the remaining database excluding test 

set and validation set. The validation set contains a number of complexes used to 

monitor the training process. For this reason, also the validation set do not overlap with 

the other subsets. In particular, the validation set is used to calculate the loss function 

during training. Different functions can be used as loss function. In this study, the mean 

squared error (MSE) is used as loss function. The stopping criterion considers the 

variation of the loss function. Once the loss function is no longer decreasing for a fixed 

number of consecutively iterations, the training is stopped. It is useful to monitor the loss 

function on a validation set and not on the training set, because its measure must be an 



index of readiness of the model and not of the learning process on the training data. 

The schematic subdivision of the database is represented in Figure 2.1. 

 

 

Figure 2.1 Schematical representation of the database and its subdivision in subsets 

The data used in this research are ligand-protein atomic structures, associated to the 

corresponding affinity value or docking score. 

 

2.1.1 Proteins 

Proteins are polymers of 20 different amino acids (39).  Proteins, in addition to some 

inorganic elements (for example, calcium and phosphorus, necessary for calcification 

bone), and some essential fatty acids (for example, linoleic acid, a part of cell 

membranes) carry out the plastic function of nutrients or rather that which allows the 

construction of new living matter. Proteins are the building blocks of living organisms. 



This peculiar function, called plastic, however, is not the only one. In fact, proteins are 

also involved in the synthesis of hormones, enzymes, and tissues (especially muscle).  

In conditions of low energy intake, proteins, derived from food or muscle catabolism, 

can be used by the liver to provide energy to the organism. 

As anticipated, from a chemical point of view, proteins are macromolecules made up of 

20 fundamental units called amino acids, which, like many rings, join together to form a 

long chain (40). Proteins are composed of one or more polypeptides chains, i.e. linear 

compounds formed by amino acids linked one after the other (41). There are hundreds 

of amino acids, but only twenty of them are part of proteins. Anyway, they are a 

sufficient number to form more than 50,000 different proteins which are the ones 

present in the human body. Proteins are composed of as little as 50 amino acids to a 

maximum of a few thousands. The shorter chains are called oligopeptides (number of 

amino acids less than or equal to 10) and peptides (from 10 to 50 amino acids).  

Eight of these amino acids are essential because the body does not manage to 

synthesize them fast enough to meet the metabolic demands. These amino acids are 

leucine, isoleucine, lysine, methionine, valine, threonine, phenylalanine, tryptophan. 

They must, therefore, be introduced with food, in order to avoid specific nutritional 

deficiencies. In the first two years of life two other amino acids become essential. They 

are called arginine and histidine respectively. For all the other amino acids there are 

enzymatic systems that make their endogenous biosynthesis possible. 

Many foods are rich in proteins: meat, fish, but also the plant world offers a good 

sustenance: rice, wheat, maize, and sorghum are rich in these elements. 

Each protein performs one or more functions in the body, generally through specific 

interaction with other molecules. The conformation (three-dimensional structure) of each 

protein determines the type of possible interactions and therefore the specific function. It 

depends on the sequence of amino acid residues contained in the protein. The abolition 

(denaturation) of the protein conformation determines the loss of function.  

Among the most important functions exercised by proteins in organisms, there are: 

structural function (collagen);  transport function (hemoglobin, apolipoproteins, albumin); 

defence and protection function (immunoglobulins, fibrinogen); control and regulation 

function (hormones, receptors of different hormones, transcription factors); catalytic 

function (all enzymes); movement function (actin, myosin). 

The proteins can be classified according  to their chemical composition in simple 

(composed of only amino acids) and complex (composed of amino acids and other 



substances different from them like lipoproteins, glycoproteins, nucleoproteins, 

phosphoproteins.  

 

  

Figure 2.2 Amino acid basic structure 

 

What essentially determines the role of an amino acid in a protein is the nature of the 

side chain indicated with the following symbol: -R (Figure 2.2). These functional groups 

are responsible for the structure, functions and electrical charge of proteins. Amino 

acids can be classified according to the properties of their side chains (-R), considering 

their polarity or non-polarity at the physiological pH and therefore the tendency to 

interact with water. Amino acids with charged, hydrophilic side chains are generally 

exposed on the surface of proteins. Non-polar hydrophobic residues are generally found 

within proteins, protected from contact with water.  

The structural feature common to all proteins is that they are polymers of amino acids. 

For this reason amino acids are the structural elements of proteins. The protein 

molecule is a polymer consisting of amino acid monomers linked by the peptide bond 

(42).  Amino acids are joined by the peptide bond in which the carboxyl group of one 

amino acid reacts with the amino group of another amino acid with elimination of a 

water molecule. More amino acids can join to form linear chains, in which both 

functional groups, basic and acid, of each amino acid residue are involved in peptide 

bonds. The formation of peptides results from the concatenation of multiple amino acids 

through amide (or peptide) bonds (see Figure 2.3). The peptide bond is rigid and planar. 

The binding energy is very high and the bond can be broken by boiling and prolonged 

action of strong acids or bases. Proteolytic enzymes can selectively break these bonds. 



 

 

Figure 2.3 Formation of peptides results from the concatenation of multiple amino acids through 

amide (or peptide) bonds 

 

The functional variety of proteins is determined by several factors: the number of amino 

acids; the type of amino acids; the way in which they are linked; the spatial 

arrangement; the shape of the polypeptide chains. 

The levels of organization of proteins are the following (43): 

• Primary structure: describes the amino acid sequence and is always linear. 



• Secondary structure: describes the shape of the chain and can be helical or pleated. 

• Tertiary structure: describes the three-dimensionality of the chain with attention to the 

local or remote relationships of the R groups and to the globular and fibrous proteins 

(collagen). 

• Quaternary structure: describes the interactions between several protein chains. 

The primary structure is given by the amino acid sequence in the polypeptide chain. 

In the secondary helical structure, an H bridge is created for every 3.6 amino acids. The 

H bond is established between the H of the amide nitrogen and the O of the carbonyl 

group. There are no hydrogen bonds with the outside. The R groups project out 

orthogonally. The propeller is always right-handed.  

In the folded secondary structure, different segments of the polypeptide chain, which 

have an extended arrangement, are parallel to each other (with an antiparallel course). 

The structure is stabilized by hydrogen bonds between the NH and CO groups of 

adjacent segments. The juxtaposition of different segments of the polypeptide chain 

gives rise to structures referred to as wavy beta sheets due to the bond angles. 

 

 

Figure 2.4 Helical and beta sheet regions 

 

The tertiary structure is given by the combination of several helical and/or beta sheet 

regions connected to each other by segments that form loops. The looped regions 



generally constitute the functional site of the protein. The tertiary structure is stabilized 

by secondary bonds that are established between the side chains of the amino acids. In 

some proteins we have a covalent bond, the disulfide bridge, which is established 

between two cysteine side chains. The tertiary structure is stabilized by hydrogen bonds 

between groups peptides, such as in the helix structure and in the beta sheets, 

hydrogen bonds between R groups, hydrophobic interactions between non-polar R 

groups, electrostatic bonds between R groups, R positively and negatively charged and 

disulfide bridges. 

The quaternary structure foresees that the protein, formed by several polypeptide 

chains (subunits), is united with the same type of bonds that stabilize the tertiary 

structure. 

 

2.1.2 Ligand 

In chemistry a ligand represents an atom, ion or molecule that forms a coordination 

bond, generally donating its electrons. This bond is a type chemical bond in which two 

atoms jointly use one or more electrons, which was made available by a single atom, 

while the other makes use of the electrons shared by the first atom (44). 

The molecule resulting from the union of one or more ligands is defined as a complex. 

The main factors that characterize ligands are represented by their size, charge, and 

chemical nature. In a complex, ligands can both stabilize the host molecule and 

condition its chemical and structural properties. 

In biochemistry, a ligand is defined as a molecule capable of binding with a biomolecule 

and forming a complex capable of performing or inducing a biological function. 

Furthermore, the interaction between ligand and receptor alters the conformation (the 

three-dimensional structure) of the receptor itself. 

In practice, the ligand in biochemistry is usually a molecule capable of binding, through 

a weak interaction, to a target protein. This interaction can be an ionic bond, a hydrogen 

bond, or a Van der Waals interaction. The implementation of a covalent bond, therefore 

irreversible bond, between the ligand and the target biomolecule is very rare in 

biological systems. Substrates, inhibitors, activators and neurotransmitters can be 

considered ligands. A receptor is a protein, transmembrane or intracellular, which binds 

with a specific factor, defined as a ligand, causing a conformational change in the 

receptor which results in the onset of a cellular response or a biological effect. 



For this reason the study of medicines is based on the interactions between ligands and 

proteins. In that case the ligands are the active principle of the drugs. 

 

2.1.3 Ligand-protein complex 

As anticipated, the functions of many proteins require reversible binding with other 

molecules, commonly called ligands (45). A ligand can be of a different nature, even 

another protein. The result of this binding is a ligand-protein complex. In this field, the 

term docking is used to indicate the association of the ligand to the target biomolecule. 

Docking is usually reversible. The strength of the bond that is established between the 

ligand and the target biomolecule is called affinity. The transient nature of ligand-protein 

interactions is essential for life because it allows the body to respond quickly and 

reversibly to environmental and metabolic changes. A ligand binds to a region of the 

protein (binding site) that is complementary to the ligand in terms of size, charge, and 

hydrophobic character. The interaction is specific and is able to discriminate between 

thousands of molecules present in the vicinity of the binding site. A protein can have 

different binding sites for as many ligands. The ligand-protein binding is often 

accompanied by a conformational modification of the protein which makes the binding 

site more complementary to the ligand with a consequent strengthening of the binding 

(induced adaptation). 

The ligand-protein interactions can be regulated by binding with other specific ligands 

that can cause structural alterations in the protein that modify the affinity and therefore 

the bond strength with the first ligand. 

The conformational changes can be subtle (molecular vibrations and small movements) 

or more evident (displacements of parts of the molecule structure of several 

nanometers). As previously said, conformational changes are most often essential for 

protein function. 

 

2.1.4 Ligand-protein complex structure 

Ligand-protein complexes are held together by shared electrons or, less frequently, by 

covalent bonds. Such bonds are directional. It means that the atoms adopt specific 

positions relative to one another, to maximize the bond strengths and to minimize their 

energy. In addition, the binding with other specific ligands can cause structural 



alterations due to the variation in the bond energy . As a result, each complex has a 

definite spatial distribution of its atom which determines its structure. This topic is 

studied in structural chemistry. It deals with determining how atoms combine in definite 

ratios and how this is related to the bond directions and bond lengths. The properties of 

molecules are related to their structures. For example, the water molecule is bent 

structurally and therefore has a dipole moment.  

Theoretically, the structure of a molecule is determined by solving the quantum 

mechanical equation for the motion of the electrons in the field of the nuclei (called the 

Schrödinger equation). In fact, in a molecular structure the bond lengths and bond 

angles are those for which the molecular energy is the least. The determination of 

structures by numerical solution of the Schrödinger equation is highly resource 

consuming. For this reason other methods are preferred. In recent years the use of 

supercomputers and the increasing power in standard computers cause an increase in 

the use of Schrödinger equations. 

Structural information in a molecule can be obtained using many experimental 

techniques. Microwave vibration-rotation spectra or neutron diffraction can determine 

the nuclear positions in a molecule. X-ray diffraction experiments are used for studying 

the electron cloud surrounding the nucleus in a molecule. X-ray crystallography is a 

technique of crystallography in which the image, produced by the diffraction of X-rays 

through the space of the atomic lattice in a crystal, is recorded and then analyzed to 

reveal the nature of the lattice. Typically, this leads to determining the material and 

molecular structure of a substance. In an X-ray diffraction measurement a crystal is 

mounted on a protractor and gradually rotated as it is bombarded with X-rays which 

produce a diffraction pattern of regularly spaced points. In addition, further information 

can be obtained by nuclear magnetic resonance techniques (NMR) or electron spin 

resonance. Eventually visual images of individual molecules and atoms can be 

produced thanks to the advances in electron microscopy performed in recent years. 

Nowadays many projects of sharing on line ligand- protein structures and relative proper 

features exist. As anticipated, the aim of these projects is to join forces in order to 

collect as many data as possible. They are helpful for various computational and 

statistical studies, among which there are many artificial intelligence applications, on 

molecular recognition, drug discovery, and many more. Some examples of shared 

databases are Protein Data Bank, PDBbind, and CSAR (46) (47) (48) (49) (50) (51) 

(52).   



2.1.5 Ligand-protein complex affinity and docking score 

The label/target-values used in this study are the ligand-protein affinity and the docking 

score (53). Proteins work by interacting with other molecules. Molecules that interact 

reversibly with proteins, without been altered by interaction, are called ligands. Ligand-

protein interactions are the basis of a very large number of biochemical processes. The 

quantitative description of these interactions represents one of the most relevant 

research topics of biochemistry. The key parameter used to describe these interactions 

is the dissociation constant, 𝐾𝑑. The 𝐾𝑑 expresses the relationship that exists between 

the concentration of the ligand and the fraction of the binding sites of the protein that are 

occupied by the ligand. A ligand that has a high affinity for a protein has a very low 𝐾𝑑 

value. If the ligand binds the protein tightly, the ligand concentration required to occupy 

half of the binding sites is low and the value of 𝐾𝑑 is also low. A ligand with a low affinity 

for a protein has a high 𝐾𝑑 value. 

There are many parameters which are used to measure the ligand-protein affinity. In our 

study we chose two similar parameters, one for experimental and one for synthetic data. 

They will be described in the next paragraphs. 

The docking score is related to the molecular docking. Molecular docking, in the field of 

molecular modelling, is a method that predicts the preferred orientation of a molecule 

towards a second one when they bind together to form a stable complex. Knowledge of 

the preferred orientation can be used to predict the strength of a ligand-protein 

association or bond between two molecules using for example a scoring function. In 

particular, docking is frequently used to predict the binding orientation of a 

pharmacologically active small molecule to its target protein, so that the affinity and 

activity of this molecule can be predicted. In this case, the protein has its binding task 

and the best binding orientation of the small molecule must be found. This is the case 

we are dealing with in this research. The purpose of molecular docking is to simulate 

the molecular recognition process by a computer. The aim is, therefore, to obtain an 

optimized conformation simultaneously for the protein, the ligand, and their relative 

orientation such that the free energy of the system is minimized. Two approaches are 

particularly popular in the molecular docking community. One approach uses a 

technique that describes the protein and the ligand as complementary surfaces. The 

second approach simulates the docking process in which the interaction energies of the 

ligand-protein complex are calculated. The surface complementarity methods describe 

a series of properties that make binding between protein and ligand possible. These 



properties include molecular surface or complementary surface descriptors. In this case 

the molecular surface of the receptor is described in terms of the surface area 

accessible to the solvent and the molecular surface of the ligand is described in terms of 

its binding surface. The complementarity between the two surfaces results from the 

description of the shape correspondence which can help to find the complementary 

docking position between the receptor and ligand molecules. Further approaches are  

the description of the hydrophobic properties of the protein observing the cyclical 

presence in the atoms of the main chain and Fourier shape descriptor technique.  

Approaches based on complementarity of form are typically fast and robust. However 

they cannot usually accurately model movements or dynamic changes in the ligand-

protein conformation, although recent developments allow these methods to investigate 

ligand flexibility. 

Simulating the docking process is a much more complicated process. In this approach, 

the protein and the ligand are separated by a physical distance. The ligand finds its 

position in the active site of the protein after a certain number of movements in its 

conformational space. Movements mean rigid body transformations such as translations 

and rotations, but also internal changes in the ligand structure such as internal rotation 

and torsion. Each move in the conformational space of the ligand induces a total energy 

chage of the system and therefore after each move the total energy of the system is 

recalculated. 

The first requirement for docking is the structure of the protein. As anticipated, normally 

the structure has been determined by techniques like X-ray crystallography or, more 

rarely, NMR of proteins. The structure of the protein and a database of potential ligands 

serve as input to the program. 

Successful docking depends on the search algorithm and on the scoring function. The 

research space in theory consists of every possible orientation and conformation of the 

protein coupled to the ligand. However, in practice, with current computational 

resources, it is very difficult to exhaustively explore all the research space comprising all 

the possible distortions of a molecule (molecules are dynamic, they can have a set of 

conformational states) and all the possible orientations of the ligand relative to the 

protein, in a given level of granularity. Most docking programs in use involve a flexible 

ligand and some attempts to attach to a flexible receptor in the protein. Each position of 

the pair is called a pose.  

The scoring function takes a pose as input and returns a number indicating the 

possibility that the pose represents a favorable binding interaction. Most of the scoring 



functions are based on the estimation of the energy of a pose. Less is the energy, more 

favorable is the pose. 

Docking is commonly used in the field of drug design for hit identification, lead 

optimization, and bioremediation. Hit identification is simply the use of docking 

combined with a scoring function for quickly monitoring large databases of potential 

drugs in silico, to identify the molecules most likely to bind to the target of interest. Lead 

optimization means the use of docking to predict where and in what relative orientation 

a ligand binds to a protein for creating more reactive and selective analogs. In the 

bioremediation, the ligand-protein docked can be used to predict pollutants that can be 

degraded by enzymes. 

 

2.2 Experimental data 

The experimental data are used to create a very accurate database, and, consequently, 

a scoring function which can better learn binding proprieties. 

The experimental database contains ligand-protein complexes whose structures were 

obtained through X-Ray crystallography and deposited into the Protein Data Bank 

(http://www.rcsb.org).  

The Protein Data Bank (PDB) is an open access digital data resource for biological 

experimental data central to scientific discovery. It was established as the 1st one in all 

of biology and medicine. The PDB archive was first announced in 1971 in Nature New 

Biology. The PDB provides access to 3D structure data for large biological molecules 

(proteins, DNA, and RNA). PDB stores an enormous wealth of 3D structure data. It has 

underpinned significant advances in understanding of protein architecture, culminating 

in recent breakthroughs in protein structure prediction. In fact, the PDB was created with 

the aim of helping in accumulating knowledge of 3D structure, function, and evolution of 

biological macromolecules, expanding the frontiers of fundamental biology, biomedicine, 

and biotechnology. The team who works on the PDB is called RCSB PDB (Research 

Collaborator for Structural Bioinformatics PDB) and it is served also by recognized 

experts in fields as advisors, including but not limited to, structural biology, cell and 

molecular biology, computational biology, information technology and education. 

We selected a set of structures whose ligand-target interaction information is available 

from the  PDBbind database (http://www.pdbbind.org.cn/). The PDBbind database 

provides a comprehensive collection of experimentally measured binding affinity data 



for biomolecular complexes deposited in the Protein Data Bank (PDB). It provides an 

essential linkage between the energetic and structural information of those complexes, 

which is helpful for various computational and statistical studies on molecular 

recognition, drug discovery, and many more. The PDBbind database was originally 

developed by Prof. Shaomeng Wang's group at the University of Michigan in USA, and 

was first released to the public in May, 2004. This database is now maintained and 

further developed by Prof. Renxiao Wang's group at College of Pharmacy, Fudan 

University in China. The PDBbind database is updated on an annual basis to keep up 

with the growth of the Protein Data Bank.  

The PDBbind has some subsets inside it. The PDBbind core set, one of these, aims at 

providing a relatively small set of high-quality ligand-protein complexes for validating 

docking/scoring methods. In particular, this data set has served as the primary test set 

in the popular Comparative Assessment of Scoring Functions (CASF) benchmark 

developed by the same group developing PDBbind. 

 

2.2.1 Experimental data preparation 

Among the complexes present in the database, we selected a set of structures with a 

resolution degree lower than 3Å and with a measured dissociation constant. The 

dissociation constant 𝐾𝑑 is defined as: 

 

𝐾𝑑 =
[𝑃][𝐿]

[𝐶]
 

 

where [𝑃][𝐿] and [𝐶] represent the concentration of the protein, of the ligand, and of the 

complex, respectively. 

In this study we use the 𝑝𝐾𝑑 value. The 𝑝𝐾𝑑 value is defined as: 

𝑝𝐾𝑑 = −log10(𝐾𝑑) 

It means we use only extremely detailed structures, in order to allow our model learning 

as many binding details as possible. This is an important condition we apply and not 

present in other studies on the subject. In fact, most of the studies do not apply 

particular conditions on the complexes used for building the model, apart from the 

nature of the data (experimental or synthetic). 



Each structure was added of the hydrogen atoms with the help of molecular modeling 

and simulation software Molecular Operating Environment (MOE) (54) . MOE is a drug 

discovery software platform that integrates visualization, modelling, and simulations, as 

well as methodology development, in one package. Main application areas in MOE 

include structure-based design, pharmacophore discovery, fragment-based design, 

medicinal chemistry and biologics applications, molecular modeling and simulations, 

protein and antibody modeling, cheminformatics & QSAR. Eventually, a manual 

analysis is conducted on the complexes to check the rightness of the protein 

preparation. 

For this reason, the experimental data are accurate, but not numerous. In fact, the 

process necessary to create an experimental datum is time and resources consuming. 

The total number of experimental data used in this study is 2400. In Table 2.1 the main 

characteristic of experimental data are resumed. 

Type of data 
Number of 
complexes 

Meanligand-
protein affinity 

Experimental 2400 5.98 

Table 2.1 Resuming table of experimental data 

 

2.3 Synthetic data 

For the synthetic database, we download a series of ligands for various targets which 

have the experimental 3D structure available, in the Protein Data Bank. The series of 

ligands were downloaded from the BindingDB online database (https://bindingdb.org). 

BindingDB is a public, web-accessible database of measured binding affinities, focusing 

chiefly on the interactions of proteins considered to be candidate drug-targets with 

ligands that are small, drug-like molecules. BindingDB supports medicinal chemistry 

and drug discovery in different ways: through literature awareness and development of 

structure-activity relations (SAR and QSAR). Through validation of computational 

chemistry and molecular modeling approaches such as docking, scoring, and free 

energy methods; through basic studies of the physical chemistry of molecular 



recognition. BindingDB also includes a small collection of host-guest binding data of 

interest to chemists studying supramolecular systems. The data collection derives from 

a variety of measurement techniques, including enzyme inhibition and kinetics, 

isothermal titration calorimetry, NMR and radioligand and competition assays. 

BindingDB includes data extracted from the literature by the BindingDB project, selected 

PubChem confirmatory BioAssays and ChEMBL, for which a well defined protein target 

is provided. Data extracted by BindingDB typically includes more details regarding 

experimental conditions. BindingDB currently contains 2.096.653 binding data for 8.185 

proteins and over 920.703 drug-like molecules (55). 

 

2.3.1 Synthetic data preparation 

In particular, we select compounds with an experimentally assessed data of affinity for 

the target, where the affinity is a 𝐾𝑖 data. The 𝐾𝑖 (inhibition constant) measures the 

affinity between a ligand and a protein using a reference radioligand. The parameter is 

very similar to 𝐾𝑑. We chose to use 𝐾𝑖 for the synthetic data because the complexes 

available with this parameter measured  are more numerous than the ones with 𝐾𝑑 and 

because of the similarity between the two parameters. As for experimental data, we use 

𝑝𝐾𝑖 = −log10(𝐾𝑖). Also for the synthetic data, we maintain a coherence in the affinity 

value used in the study. This is an important factor with respect to other studies on the 

subject where the type of the affinity value considered is not often specified. These 

series of ligands are then subjected to docking simulations at the respective target. The 

docking work is done with the help of GOLD docking engine through Molecular 

Operating Environment (MOE) software interface. GOLD stands for “Genetic 

Optimisation for Ligand Docking”. It is one of the most widely used docking programs 

and available as part of the CSD-Discovery and CSD-Enterprise Suites. GOLD’s 

evolutionary algorithm modifies the position, orientation, and conformation of a ligand to 

fit into one or more low energy states of the protein active site. It maps ligand geometry 

parameters onto populations of chromosomes and then runs evolutionary rounds of 

mutation, crossover, scoring, and selection to optimise ligand-protein interactions. The 

ligand structures are docked into the target binding site simulating a mean of 5 different 

poses and, for each ligand, the effective docking conformation is chosen as the one with 

the best score, according to MOE. 



In the study, 17 different types of proteins are used as targets for the synthetic 

database. In the end, more than 100000 data are created by the docking software and 

the ones selected for the synthetic database are 28200. The proteins used are reported 

in the following table, where the quantity of respective complexes present in the 

database is also indicated. With this method it is much easier to create a big database 

because the process is completely automatic. However, the synthetic complex structure 

is not as reliable as the experimental one.  In fact, the complex structure of synthetic 

data is, in general, created using docking software. As described in detail in the next 

chapter, in our study we use the MOE docking engine. A docking software uses a 

proper scoring function to determine the best configuration among different protein-

ligand relative positions. The choice is based on the best score provided by the scoring 

function. However, as discussed in Chapter 3, the available scoring functions cannot 

produce accurate results, for various reasons carefully  explained in that chapter. On 

the other hand, the experimental data include structures obtained via crystallographic 

radiography. The measured complex structure is assumed to correspond to the actual 

structure in their natural environment. This subject will be further discussed in Chapter 

3. The database of synthetic data, for each ligand-target complex, contains not only the 

experimental affinity data 𝐾𝑖, but also the docking score produced by MOE software is 

registered. In Table 2.2 the main characteristic of synthetic data are resumed. In Table 

2.3 the total number of complexes for each protein present in the synthetic database are 

reported. 

  



Type of data 
Number of 
complexes 

Mean ligand-
protein affinity 

Mean docking 
score 

Synthetic 28200 7.48 11.43 

Table 2.2 Resuming table of experimental data 

 

Protein 5HT2A A2A BACE1 DOP FAAH GR H1 JAK1 PI3K 

Complexes 2763 2914 1413 1243 508 843 1070 1213 1064 

Protein PIM2 ACE KOP M1 MCL1 JAK2 OX2 D2  

Complexes 384 488 2431 1056 688 1394 2160 6568  

Table 2.3 Complexes for each protein in the synthetic database 

 

2.4 Data distribution 

In the present paragraph, the characteristic  of each database used in the research are 

discussed. In fact, each database used is different from the other. Synthetic data and 

experimental data consider different variables for target values,  even if the ligand-

protein affinity is considered in both cases, as previously explained. From the synthetic 

data, two database are extracted. They are using the same features, but they consider 

different target values: ligand-protein affinity and docking score. In this case the values 

have different physical meaning, but they are both supposed to measure the binding 

strength.  



As discussed the experimental database is thought to be the principal database of this 

study. It is composed of 2400 data. The distribution of the target values considered is 

shown in Figure 2.5. 

 

 
Figure 2.5. Experimental database, target values distribution 

The mean of the ligand-protein affinity value in the whole dataset is 5.98. No outliers 

data are present in the set. An outlayer is a datum which is far from the mean value of 

the considered data distribution,  This is a consequence of the data creation process, 

which involves checking the data one by one before inserting it in the database. 

The synthetic database contains 28200 data, when the ligand-protein affinity is 

considered, the data distribution of the target values is the one shown in Figure 2.6. The 

mean of the ligand-protein affinity value in this whole dataset is 7.48. The difference 

between the mean value of ligand-protein affinity in experimental and synthetic data can 

be justified by the difference in the physical value considered between the two sets of 

data. In fact 𝐾𝑑and 𝐾𝑖 are similar, but not exactly the same parameter, as already 



discussed. The comparison between the target values of these two set of data is shown 

in Figure 2.10. 

 
Figure 2.6. Synthetic database, target values distribution considering ligand-protein affinity 

Eventually, also the docking score can be considered as target value for the synthetic 

data. The docking score considered is a negative value. The more negative the docking 

score is, the higher is the probability to have that pose for the complex. For the present 

study, the docking score is taken positively in order to have a distribution similar to the 

other target values. It means the original docking score is multiplied by -1. In this 

configuration, the higher the docking score is, the higher is the probability to have that 

pose for the complex. This is similar to the other target values, for which the higher the 

value is, the higher is the probability to find that configuration. The target value 

distribution of synthetic data with the docking score is shown in Figure 2.7. The mean of 

the docking scores converted for the data present in the database is 11.43. In the 

synthetic database, both when ligand-protein affinity or docking score are considered as 



target value, some outliers are present. They are excluded from the data in the training 

and test phase of the scoring function. 

 
Figure 2.7. Synthetic database, target values distribution considering docking score 

The difference of target values distribution when docking score or ligand-protein affinity, 

both if synthetic or experimental, are considered is more sensible. Actually, as 

anticipated in this paragraph, the total amount of synthetic data is more than 100000. 

Only the pose with the best score is considered in the synthetic database. Even if the 

docking score and ligand-protein affinity are different data, a comparison between the 

two, for each complex, is made to discover if some relation between the two target 

values is present (Figure 2.8). It is possible to see, in particular from Figure 2.9,  that the 

two data have no evident relation. Only a similar trend  can be observed. In particular, 

when the affinity decrease, also the mean value of the docking score has a decreasing 

trend. 



 
Figure 2.8. Synthetic database, target values distribution considering ligand-protein affinity and 

docking score contemporary. Different group of data are related to different targets 



 
Figure 2.9. Synthetic database, target values distribution considering ligand-protein affinity and 

docking score contemporary for protein A2A 

 



 

Figure 2.10. Database comparison according to the target values considered. The straight lines 

represent the mean value of each group of data 

 



 

Figure 2.11. Comparison between ligand-protein affinity and docking score for the synthetic data. 

The Pearson correlation coefficient between these two target data is 𝐑𝐩 = 0.17 

 

2.5 Database creation result 

The result of the database construction procedure both for experimental and synthetic 

data, is a list of .pdb file and a .xlsx file. The .pdb files contain the 3D structures of each 

complex. The .xlsx files contain the ligand-protein affinity and docking score (when 

present) of each complex. The .xlsx is a standard Excel file in which the name and the 

identification code of the complex are reported in two distinct columns and the relative 

targets values are reported in the adjacent columns.  

 



 

Figure 2.12. Content of a .pdb file 

In Figure 2.12 a part of a typical .pdb file is shown. Each atom belonging to the complex 

is described by a line of the .pdb file. For this reason, the .pdb file contains a number of 

lines equal to the number of atoms composing the complex described. The following 

informations relative to each element are present in the file: 

 Column 1: Membership molecule. 

The elements are divided in two groups, elements belonging to the protein 

(ATOM) and elements belonging to the ligands (HETATM).  

 

 Column 2: Sequential number of atoms considered. 

 

 Column 3: Atomic role. 

 

 Column 4-5:  Membership amino-acid. 

 

 Column 6: Sequential number of amino-acid considered. 

 

 Column 7-8-9: Cartesian coordinates. 



The x, y, z coordinates are reported in column 7, 8, 9, respectively. The 

coordinates are in units of Ångströms [ Å ].  

 

 Column 10-11: Occupancy and temperature factor. 

 

 Column 12: Atomic species. 

The .pdb file contains some additional information at the beginning and at the end of the 

file which are not useful for this research. 



3 State of the art 

3.1 Machine learning scoring function 

In this chapter the argument of scoring functions is introduced and an excursus on the 

subject of machine learning scoring functions, starting from the origin until the present 

day, is made.   

In medicinal chemistry and in pharmacology, scoring functions are used to accurately 

rank molecules based on their predicted affinity for a target of interest after they have 

been docked. Usually, one of the molecules is a small organic compound, such as a 

drug, and the second is the drug's biological target, such as a protein receptor. Anyway, 

the two molecules involved can also be two proteins or a protein and DNA. In this study, 

we will focus on the binding between a protein and a small organic compound.  

The scoring function aims at describing the electrostatic, hydrophobic, solvation and 

hydrogen bonding interactions between the two molecules. The first goal is to 

discriminate between binders and non-binders. In fact, for example, the success rate of 

the initial phases of drug discovery depends on the prediction of the affinity of a 

candidate ligand for a therapeutic target (e.g., protein) of interest. The number of 

synthetically accessible small molecules is extremely vast. This combinatorial explosion 

underscores a core challenge in drug discovery: testing the affinity of as many small 

molecules as possible while maintaining a sufficient degree of accuracy. In fact, 

computationally exploring this entire space is currently intractable . There is, actually, a 

significant trade-off in both experimental and computational drug screening approaches 

between speed, cost, and accuracy (56) (57) (58). Chemists often use scoring functions 

also to rank poses of a ligand  in a task (after they have been docked using a docking 

tool) and to predict the binding affinity of candidate ligands to a target protein (scoring 

power). This latter remains one of the most important and difficult incompletely solved 

problems in computational biomolecular science, and it is the one we are dealing with in 

this study.  

Popular docking tools include a proper scoring function belonging to the classical type. 

Some examples are, e.g., GOLD (59), SurFlex Dock (60), or AutoDock Vina (56).  

Classical scoring functions can be created using different types of approaches: 

empirical, force field, or knowledge based.  



The empirical scoring functions are based on counting the number of various types of 

interactions between the two binding partners (61). They calculate the free energy of 

binding as a sum of contributing terms. Each term consists in a physicochemically 

distinct contribution to the binding free energy, such as: hydrogen bonding, van der 

Waals interactions, hydrophobic interactions, and the ligand’s conformational entropy. 

Each of these terms is multiplied by a coefficient and the resulting parameters are used 

for estimating the binding affinities.  

The force field scoring functions consider the strength of intermolecular van der Waals 

and electrostatic interactions between all atoms of the two molecules in the complex 

and, sometimes, also the strain and the desolvation energy. They parameterize the 

potential energy of a complex as a sum of energy terms arising both from bonded and 

both from non-bonded interactions (62). Each of these terms has a functional form 

characteristic of the particular force field. On the other hand, each force field contains a 

number of parameters that are estimated from experimental and simulated data. 

However, these force fields do not account for entropy because they were just designed 

to model intermolecular potential energies (63).  

The knowledge based scoring functions are based on the following assumption. If a 

certain type of interaction between functional groups or atoms are encountered more 

often than expected by a random distribution, they should be energetically favorable, 

namely, they contribute favorably to binding affinity (64). They are called knowledge-

based scoring functions because they use the 3D coordinates of a large set of ligand-

protein complexes as a knowledge base. In this way, a ligand-protein complex model 

can be created on the basis of how similar its features are to those in the knowledge 

base. The features used are often the distributions of atom–atom distances between 

ligand and protein in the complex. Recurrent features in the knowledge base means 

favorable conditions, whereas less frequently observed features score unfavorably. The 

resulting score, deriving from the sum of these contributions over all pairs of atoms in 

the complex, is converted into a pseudo-energy function, typically through a reverse 

Boltzmann procedure, in order to provide an estimate of the binding affinity (65) (66) 

(67). Some knowledge based scoring functions nowadays include parameters that are 

fitted to experimental binding affinities (68) or introduce Information Theory-driven 

improvements as well as explicit solvent models (69).  

In addition to scoring functions, there are other computational technique that provide a 

more accurate prediction of binding affinity, such as those based on molecular 

dynamics simulations. However, these techniques imply expensive calculations. For this 



reason they remain impractical for the evaluation of large database of proteins or  

ligands and they are currently typically limited to family-specific simulations (62) (70). 

Classic scoring functions can sometimes obtain good results in virtual screening 

experiments (57) (71) (72) (73). However, researchers working in medicinal chemistry 

need more consistent and reliable predictions, meaning that novel approaches are 

required. In fact, scoring functions do not fully account for a number of physical 

processes that are important for molecular recognition, which in turn limits their ability to 

select and rank small molecules by computed binding affinities. It is known that, among 

other drawbacks, classic scoring functions do not account well for solvation energy 

contributions or conformational entropy (74).  Furthermore, it is generally believed (70)  

that two of the major sources of error in scoring functions are the implicit treatment of 

solvent and their limited description of protein flexibility. In addition to these enabling 

simplifications, there is an important issue that is often neglected, whatever type of 

scoring function is considered. The scoring function assumes a predetermined theory-

inspired model for the relationship between the features that characterize the complex 

and its predicted binding affinity. However, the types of complexes present in nature can 

be extremely numerous and all of these do not conform to the rigid approach assumed 

in classic scoring functions. This inherent problem leads the scoring functions to poor 

predictivity in those complexes that do not conform to the modelling assumptions. For 

instance, the van der Waals potential energy of non-bonded interactions in a complex is 

often modelled by a Lennard-Jones 12-6 function with parameters calibrated with 

experimental data. In fact, the model for the relationship between the features that 

characterize the complex and its predicted binding affinity is often built based on 

experimental and simulated data. However, there could be many cases for which this 

particular functional form is not sufficiently accurate. Furthermore, while the r−6 

attractive term can be shown to arise as a result of dispersion interactions between two 

isolated atoms, this does not include the significant higher order contributions to the 

dispersion energy, as well as the many-body effects that are present in ligand-protein 

interactions (75).  

To rank or evaluate ligands from chemical libraries, the use of more than a single 

scoring function is a standard procedure. This guarantees a cross validation in the 

virtual screening performance. Often, before ranking a ligand-protein complex, an 

empirical or a knowledge-based or a force field function is used to generate an 

ensemble of possible docking poses. Each docking pose is further evaluated by an 

knowledge based scoring function. The results are used to correct the rank of the ligand 



poses. However, resampling strategies, such as cross-validation or bootstrapping, are 

still not systematically used to guard against the overfitting of calibration data in 

parameter estimation for scoring functions (76). 

In addition, a single classic scoring function can perform well or not depending on the 

target protein being addressed. This is a factor of uncertainty in classic scoring function 

results since the predictive accuracy of those functions varies between protein families. 

For this reason, scoring functions calibrated for the target under study are sometimes 

preferred to universal ones (77) (78). Importantly, the underlying often linear regression 

model employed by classical SFs has been shown to be unable to assimilate large 

amounts of structural and binding data (79). Still, it is worth mentioning that a number of 

control parameters can be adjusted to tailor the scoring function to a particular target 

and to select the major interaction type to be taken into account. However, most classic 

scoring functions cannot be trained on a particular target and are provided in a way that 

does not permit changing the regression model. 

It is clear that the use of classic scoring functions can be laborious and not reliable, as 

just described, and it limits their use in large libraries of compounds.  

In recent years, machine learning techniques are being applied in multiple research 

fields obtaining very promising results, in particular when the study has access to a very 

large number of data to learn from. This is often the case in the docking and in the 

virtual screening researching areas. Following this trend, the machine learning 

methodology has made its appearance in the docking and in the virtual screening 

pipelines. 

It is necessary specifying that machine learning models appeared in virtual screening 

and chemoinformatics in recent years, not earlier than 20 years ago. Because of this, 

the present study and all the cited ones are pioneristic studies. 

Here we focus mainly on algorithms posed as a regression problems for predicting 

ligand-protein binding affinities, even if they already appear in many other applications. 

Machine-learning scoring functions provide clear advantages over classic ones (80) (81) 

(82) (83). They are sometimes several orders of magnitude faster than classic scoring 

functions. However, their performance can significantly vary depending on the model 

used and consequently on the chosen featurization (80). 

These functions are created using different types of regression models, like random 

forests, logistic regression, support vector machines (SVM), or deep learning algorithms  



trained on shared databases. A shared database is a database created by one or more 

research teams and shared on the web to have an amount of validated and reliable data 

available for any kind of research purpose. The binding affinity prediction with machine-

learning scoring function interests many fields. Various outstanding open issues are 

being investigated by researchers. Which machine learning method could generate 

more predictive scoring functions (84)? How can one build machine-learning versions of 

classic scoring functions (85)? What is the impact of structure-based feature selection 

on predictive performance (86)? How does target diversity affect predictive performance 

(87)? How does predictive performance increase with the size of the training data, in 

both classic and machine learning types of scoring functions (79)? How does the quality 

of structural and binding data influence predictive performance (88)? How could one 

correct the impact of docking pose generation error on predictive performance and how 

does the implementation of web servers and stand-alone software make these tools 

freely available (89) (90) (91)?  

One of the first appearance of machine learning in the field was in the role of an 

alternative to modelling assumptions in scoring functions. One of the first study of this 

kind was conducted by Deng et al. (92). They thought that non-parametric machine 

learning can be used to implicitly capture binding effects that are hard to model 

explicitly. In principle any possible kind of interaction can be directly inferred from 

experimental data by not imposing any particular functional form for the scoring 

function. In the previous mentioned study they used the distance-dependent interaction 

frequencies between a set of determined  atom types, observed in two separate small 

datasets, as elements to model binding effects. This model was validated against 

several small external test sets (6 or 10 compounds). This study can be considered a 

valuable proof-of-concept that machine learning can produce useful scoring functions, 

besides of opening the way to the research on scoring functions based on machine 

learning. In the following years, support vector regression (SVR) was applied to produce 

family-specific scoring functions for five different ligand-protein systems using datasets 

with less than 100 complexes. The tests on the cross-validation data partitions 

produced excellent correlation coefficients. SVR was used also in combination with 

Inductive Logic Programming in order to obtain a set of quantitative rules that can be 

used in drug lead optimization for hypothesis generation (93).  

In the very first years of study in the field of machine learning-based scoring functions, 

there has been much more research on machine learning approaches to Quantitative 

Structure–Activity Relationships (QSAR) bioactivity predictions. However, this type of 



research is exclusively based on ligand molecule properties without taking into 

consideration the information from the protein structure. In fact, the model used is less 

complex with respect to a machine learning-based scoring functions. Indeed the results 

could be not reliable because the information on the protein is lacking.  

Some early studies on machine learning scoring function (94) (95) used classic 

statistical approaches, such as linear models. The feature considered are hydrogen 

bonds, hydrophobicity, or van der Waals surface. The coefficient used in the training 

model are extracted from these latter features. Very soon it was clear that this simple 

approach cannot efficiently approximate free energies due to the nonflexible and simple 

nature of their linear modelling relationship (80). 

The first scoring function based on machine learning to achieve high performance on a 

well-known benchmark was created by Ballester et al. (96)  and is called RF-Score. The 

aim of their study is to create a function based on Random Forest (RF) (97) to predict 

ligand-protein binding affinity which can perform better than classic scoring functions. 

The descriptive model used for the ligand-protein complex is a structure based model. It 

consists in counting the number of a specific atomic pair, in which one atom belongs to 

the protein and the other atom belongs to the ligand. The atomic species considered by 

Ballester et al. (96) are C, N, O, F, P, S, Cl, Br, I. The space area in which the number 

of atomic couples considered are counted is a sphere of radius equal to 12 Å. 

Consequently, the total number of features which describe each ligand-protein complex 

is 81. Because of the composition of the proteins chosen for training and testing in the 

RF-Score model, 45 of the 81 features are composed by zeros. Therefore, each 

complex is characterized by a vector with 36 features. RF-Score is created using a 

Random Forest model with a number of trees equal to 500.  

Wójcikowski et al. (98)  further developed the idea proposed by Ballester et al. 

(96) creating a new scoring function, named RF-Score-VS. In this work the aim is to 

investigate the influence of including inactive molecules docked to targets in the training 

procedure. The analysis is conducted evaluating the screening power and the scoring 

power of the function and comparing them to the ones of classical scoring functions. 

The scoring power consists in simply predicting the ligand-protein affinity. The screening 

power consist in recognizing active ligands in a certain set. In fact, when a large 

database of compounds is screened, one then takes the best scored compounds for 

further evaluation. The screening power is measured with the enrichment test. The 

enrichment test tries to reproduce this screening operation counting how many active 



compounds are among the best scored compounds. In particular the enrichment factor 

considered in this study is the top 1% (EF1%). 

They use an analogue regression model with respect to Ballester et al. (96), based on 

random forest with the same number of trees. In this case the database used is 

composed by ligand-protein complexes created using different docking tools. They 

propose three different descriptive models trying to improve the structure based ligand-

protein complex representation. The first model (v1) is exactly the same used by 

Ballester et al. (96). It uses a combination of ligand-protein atom-type pair counts on the 

binding site neighborhood in a single area of radius 12 Å. The atomic species 

considered are the same proposed by Ballester et al. (96). Because of this the total 

number of features considered for the ligand-protein complex description is 81. The RF-

Score-VS v2 scoring function considers an additional feature for each complex: the 

Autodock Vina (56) partial score. In fact, this study used data coming from a docking 

procedure in the training and testing phase. The Autodock Vina (56)  partial score is the 

docking score obtained by the particular docking software used in the data base 

creation. In this case the number of features for each complex is 82. The last version of 

scoring function proposed by Wójcikowski et al (98) is called RF-Score-VS v3. The 

descriptive model , instead of 1 interval of 12 Å, consider 6 intervals of 2 Å amplitude 

without considering the Autodock Vina partial score. In this case the number of features 

for each complex is 486. 

More recently, deep learning has demonstrated the potential to exceed the capability of 

extracting information from the features used to describe such a complex situation, as  

the ligand-protein binding is. The flexibility of deep neural networks allows models, in 

principle, to learn successively higher orders of features from the simplest possible 

representations of the data at hand. In computer vision, for example, convolutional 

neural networks (99) applied to images can learn how to progressively detect edges, 

eyes, ears,... and finally faces, starting from early layers in the network, through 

intermediate network layers, to terminal layers of the network. While such advanced 

artificial neural network frameworks have led to immense advances in the fields of 

computer vision and natural language processing, they have only recently penetrated 

other areas, like the scoring function pipeline. In fact, the first machine learning scoring 

functions using convolutional neural network appeared not earlier than five years ago. 

This particular type of network and its structure, consisting in subsequent blocks with 

different functions, perform well with tri-dimensional databases, like the ligand-protein 

complex structure is. The aim of using convolutional neural network, with the tri-



dimensional complex structure as feature, is to learn more complex chemical features 

by optimizing both the model and featurization simultaneously. 

One of the first studies in which a scoring function was created with a convolutional 

neural network, was performed by by Gomes et al. (100). They used two primitive 

convolutional operations: atom type convolution and radial pooling. The atom type 

convolution extracts features encoding local chemical environments from an input 

representation (Cartesian atomic coordinates) into a neighbor-listed distance matrix. 

Radial pooling consists in the dimensionality reduction of the output of the atom type 

convolution. This dimensionality reduction is done, both to prevent over-fitting through 

feature binning, and for reducing the number of parameters learned.  Radial pooling 

takes as input the output by the atom type convolution.  

Other important studies on machine learning scoring functions based on convolutional 

neural networks were published by Seo et al. (101)  and Stepniewska et al. (102). 

Seo et al. (101) proposed a scoring function called BAPA (Binding Affinity Prediction 

with Attention) using three kinds of neural network layers (convolutional, attention, and 

dense) for binding affinity prediction. Because machine learning scoring functions 

originally  tend to have limitations, mainly resulting from a lack of sufficient interactions 

energy terms, the proposed model has two important features: a descriptor 

embeddings, that contains embedded information about the local structures of a ligand-

protein complex, and an attention mechanism for highlighting important descriptors to 

binding affinity prediction, through the use of a weights vector. 

Stepniewska et al. (102) have developed Pafnucy a scoring function based on a deep 

neural network. The model consists of two parts: the convolutional and the dense parts. 

The first uses three convolutional layers and the second three dense layers. In their 

approach, they consider the complex into a defined size of 20 Å  cubic box focused at 

the geometric center of a ligand. Then the positions of heavy atoms are discretized 

using a 3D grid with 1 A° resolution. This approach allowed for the representation of the 

input as a 4D tensor in which each point is defined by Cartesian coordinates (the first 3 

dimensions of the tensor) and a vector of features (the last dimension). In Pafnucy, 19 

features were used to describe an atom: the atom types (species considered are B, C, 

N, O, P, S, Se, halogen and metal), hybridization, numbers of bonds with other heavy 

atoms, numbers of bonds with other hetero atoms, properties (hydrophobic, aromatic, 

acceptor, donor and ring), partial charge and molecules belonging (ligand or protein). 

According to the authors, this approach serves as a regularization technique as it forces 

the network to discover general properties of interactions between proteins and ligands.  



Driven by  deep learning-based approaches, which have rapidly emerged to provide 

state-of-the-art performances in different fields,  and to find out how this class of models 

performs in molecular scoring tasks, also Jose Jimenez et al. (103) proposed an end-to-

end framework, named KDEEP, based on 3D-convolutional neural networks for 

predicting ligand-protein absolute affinities.  

They used a 3D voxel representation of both proteins and ligand using a van der Waals 

radius for each atom type, which in turns gets assigned to a particular property channel 

(hydrophobic, hydrogen-bond donor or acceptor, aromatic, positive or negative 

ionizable, metallic and total excluded volume), according to its rule. The contribution of 

each atom to each grid point depends on their Euclidean distance. The number of 

properties are duplicated to account for both protein and ligand, by using the 

same ones in each, up to a total of 16 different channels. These descriptors are 

computed on a fixed 24 Å3 sub-grid centered on the geometric center of the ligand, in 

practice capturing a neighborhood of the binding site. The architecture network used by 

Jose Jimenez et al. (103) is adapted from the one proven successful in computer vision 

applications, such as SqueezeNet (104). 

It is evident how strong and how recent the interest in applying machine learning to 

virtual screening and chemoinformatics is. Furthermore we are just focusing on a small 

piece of this wide field of study, such as ligand-protein binding affinity prediction, 

considering that we just focus on machine learning applied to ligand-protein binding 

affinity prediction. 

 

3.2 Database 

In the retrospective studies, the performance of scoring functions was evaluated on 

several public available benchmarking datasets. Here the principal databases used in 

the subject are presented, i.e. the Community Structure-Activity Resource (CSAR) 

(105), the PDBbind (106), the Directory of Useful Decoys (DUD) (107), and the 

Directory of Useful Decoys - Enhanced (DUD-E) (108).  

Each study generated various classes of non-overlapping training and testing sets using  

the mentioned databases, intended to simulate possible application scenarios. In fact, it 

is important to consider that in any case, the complexes present in the training set are 

never present in the test set (or validation set, if used). 



The reason for which shared datasets were created is facilitating the prediction of the 

binding affinities based on experimental complex structures. In fact, they are composed 

of 3D complex structures coming from experiments. The availability of experimental 

ligand-protein complex structures allows the structure-based featurization to correlate 

with the ligand-protein binding affinities with the precise binding interactions.  

The most important database in docking and virtual screening pipeline is the PDBbind 

database, which has already been presented. 

The CSAR database disseminated experimental datasets of crystal structures and 

binding affinities for diverse ligand-protein complexes. The acronym stands for 

Community Structure-Activity Resource. The repository is hosted by University of 

Michigan. Some data were generated in house at the University of Michigan, while 

others were collected from the literature or deposited by academic labs, national 

centers, and the pharmaceutical industry. As anticipated, also for this project the original 

aim was to create better datasets to train scoring functions and develop new docking 

algorithms. The DUD and DUD-E datasets are composed of data created by docking 

tools. DUD stands for directory of useful decoys. They were originally designed to 

assess docking enrichment performance by distinguishing the actives ligands among a 

large database of computationally generated non-binding decoy molecules.  

DUD is designed to help test docking algorithms by providing challenging decoys. It 

contains a total of 2950 active compounds against a total of 40 targets. For each active, 

36 "decoys" with similar physical properties, but dissimilar topology, are contained. DUD 

is provided by the Irwin and Shoichet labs in the Department of Pharmaceutical 

Chemistry at the University of California, San Francisco (UCSF) (109). 

DUD-E is an enhanced and rebuilt version of DUD. It contains 22886 active compounds 

and their affinities against 102 targets, an average of 224 ligands per target. In addition, 

it contains 50 decoys for each active having similar physico-chemical properties but 

dissimilar 2-D topology. 

In one of the first study on the topic of machine learning scoring function, Ballester et al. 

(96) used the 2007 PDBbind release. In order to generate a refined set suitable for 

validating scoring functions, the authors of the study applied a series of conditions for 

the data. Only complex structures with a resolution of 2.5 Å or better were considered. 

Only complexes with known dissociation constants (𝐾𝑑) or inhibition constants (𝐾𝑖) were 

considered. They left those complexes with assay-dependent 𝐼𝐶50 measurements out of 

the refined set. Still there is no unique affinity value considered as univoque ligand-

protein affinity. In addition, because not all molecular modelling software can handle 



ligands with uncommon elements, only complexes with ligand molecules containing just 

the common heavy atoms (C, N, O, F, P, S, Cl, Br, I) were considered. This process led 

to a refined set of 1300 ligand-protein complexes with their corresponding binding 

affinities. The predictions of scoring functions were tested on the core set, which 

comprised 195 diverse complexes with measured binding affinities. 

In the study by Wójcikowski et al. (98) the database was composed of the complexes 

deriving from the combination of 102 protein targets with a group of active molecules for 

each target (224 ligands on average) and decoys (50 decoys per active ligand). The 

decoys were obtained from the DUD-E (108). The total database is composed by 

92750946 data. The structure of the complexes was generated with three docking 

programs: AutoDock Vina (the Smina implementation, [http://smina.sf.net/]) (56) (110), 

Dock 3.6 (111), and Dock 6.6 (112) (113). Only one best scoring ligand pose according 

to the docking tools was chosen for the scoring function model building. 

Gomes et al. (100) used two subsets of the PDBBind 2015 dataset: core (195 

structures) and refined (3706 structures). The crystal structures present in the core and 

refined datasets were obtained at a higher resolution and cleaned more thoroughly than 

the full dataset, considering more stringent requirements on the quality of the complex 

structure, quality of the binding data, and the nature of the complex. They used the two 

databases separately. All train/test splits follow the 80/20 ratio. 

 Seo et al. (101) also used PDBbind database, but in version 2016 and 2018, for 

training the model. The training set is composed of 3689 complexes. They mainly used, 

as test dataset for model performance evaluation, CASF-2016 dataset (285 complexes) 

and CASF-2013 dataset (195 complexes). The corresponding binding affinities are 

expressed with 𝑝𝐾𝑎, which can be defined using −log(𝐾𝑑) or −log(𝐾𝑖).  

Also Stepniewska et al. (102) used PDBbind 2016 as principal database. The general 

and refined sets were used to train the model and to select the hyperparameters (11906 

data). While the core set (290), CASF-2013 (129), and Astex Diverse Set (114)  

database was used as an external test set. The Astex database is an independent 

source with respect to PDBbind project. Like for Seo et al. (101), their corresponding 

binding affinities is expressed with 𝑝𝐾𝑎, which can be −log(𝐾𝑑) or −log(𝐾𝑖).  

For training the model, commonly to previous studies, Jose Jimenez et al.  [26] used the 

refined set of the PDBbind database, without including the complexes belonging to the 

core subset of the same database, for a total number of 3767 complexes. This latter 

subset is used as the principal test set. It is composed of 290 complexes. In addition, 

they perform secondary tests on other databases like CSAR NRC-HiQ set 1 and set 2, 



CSAR 2012 and 2014. As in the previous mentioned studies, they do not use an 

univoque measure for the binding affinity. In fact, there is no distinction between 𝐾𝑑 and 

𝐾𝑖, that is dissociation and inhibition constants. They consider 𝑝𝐾𝑎, which can be either 

−log(𝐾𝑑) or −log(𝐾𝑖). 

 

3.3 Test types 

Several studies underlined how machine-learning scoring functions have outperformed 

classical ones in binding affinity prediction. More recent studies, besides comparing 

their machine learning performances with classic scoring functions ones, try to 

outperform the already existing machine learning scoring function, for a sort of 

performance escalation.  

In order to determine the scoring functions performance, a series of different tests were 

performed. In this paragraph, the principal types of tests used to describe a machine 

learning scoring functions performance and the corresponding results in the most 

important studies on the subject are described.  

Basically, there are two main type of tests: vertical test and horizontal test. Normally, a 

database is composed of complexes coming from a relative circumscripted number of 

proteins. Each protein is bounded with many ligands. It is possible to consider the 

complexes coming from the same protein as a subgroup inside the database. In this 

case, the entire database is represented by an ensemble of subgroups representing the 

complexes of each protein, as schematically shown in the Figure 3.1. 

 

Figure 3.1 Schematical representation of the database 



 

 

Figure 3.2 Schematical representation of the database subdivision in the horizontal test 

 

A horizontal test consists in subdividing the database, represented in the way of Figure 

3.2, horizontally into the training and test set, according to a determined percentage. In 

this explanation we just consider a subdivision of the database in these two groups, but 

in the case the validation set is used, another subset is created for this latter set. The 

subdivision is still horizontal.  Each subgroup, represented by the complexes deriving 

from a single protein, is divided into complexes belonging to the training and test set. 

For this reason we can find complexes coming from the same protein in both the 

training and test subsets. The scheme in Figure 3.2 is not representing exactly the 

database because the subset of complexes coming from each protein could have 

different sizes. In addition, the subdivision is not equally broken down among the 

subgroups. In fact, it is done considering the entire database. For this reason it can 

happen that the complexes of a particular protein are included for the 85% in the 

training set and for the 15% in the test set and the complexes of another protein are 

subdivided according to the percentage 75-25. Anyway, Figure 3.2 shows the average 

subdivision of the database into training and test set for a horizontal test. 



 

Figure 3.3 Schematical representation of the database subdivision in the vertical test 

 

The vertical test is schematically represented in Figure 3.3. It consists in subdividing the 

database as represented in Figure 3.1, vertically. In this case, the training set is 

composed of complexes of proteins not present in the test set and vice versa. Because 

of this, when you use a vertical test, you build your model using some proteins and then 

you test it on proteins never seen by the model.  

As anticipated, the tests are done to compare the performance of the scoring functions 

in pratical applications. The vertical test can describe a real-case scenario. In chemical 

and pharmacological laboratories,  scientists  often aim at discovering new drugs or 

studying the effects of some active principles on a certain protein. A typical situation is 

that the affinity between some ligands and a protein (never  addressed before) must be 

predicted. The usual scientist’s instruments are the scoring functions, classical or based 

on machine learning. In addition, in his/her domain, he/she has a number of data, 

experimental or synthetic, of which the affinity and a precise or less precise molecular 

structure are known. These data could be the ones used to train the machine learning 

scoring function. But, probably, any data on the protein under study are known because 

the process is acted to discover something new.  This could describe the case in which 

the world is entangled now. That is the Corona virus epidemic. A vertical test can well 

reproduce this scenario. In fact, in a vertical test, the network is trained on complexes 

deriving from some specific proteins. The consequent test is performed on a pool of 

data which are not deriving from any protein present in the train set. In the present case, 

the test is called vertical test.  

A variation of the vertical test is the per-target vertical test, schematically shown in 

Figure 3.4.  



 

Figure 3.4 Schematical representation of the database subdivision in the per-target vertical test 

 

The scoring function is trained on the entire database except on the complexes deriving 

from one protein. These are used as test set. Using this type of test the typical scenario 

of medicine discovery, where the target is previously selected but never studied before, 

is described. Following the example of the Corona virus, this test could describe the 

case where you have selected the Spike protein to be the target protein of your study 

and the research of effective ligands begins. 

On the other hand, a horizontal test does not describe the situation well, because the 

machine learning scoring function is tested on complexes similar to others already seen. 

In particular, the protein in your test is already experimentally measured in the reactions 

with many other ligands. This is in contrast with the situation described above. This 

approach can mimics experiments where docking is performed on targets for which 

there are already known active ligands and virtual screening is done to find new ones. It 

is a real, but less interesting scenario. 

Ballester et al. (96) created the first machine learning scoring function to achieve high 

performance on a well-known benchmark. That performance was measured using a 

standard horizontal test. The performance parameter taken in consideration is the 

Pearson Correlation Coefficient, 𝑅𝑝. A value of 𝑅𝑝= 0.78 was obtained. The question of 

how much of the predictive ability of machine learning scoring function is due to learning 

the true relationship between the atomic-level description of structures and their binding 

affinities is open since this pioneristic study. The authors tried to answer this question 

mixing the database. In particular they assigned a wrong affinity value to the ligand-

protein complexes present in the test set. The aim is to verify if the RF-Score is able to 



reach similar level of 𝑅𝑝 using a correct or incorrect test set. If the 𝑅𝑝 reached is the 

same in both cases, probably the machine learning scoring function is not learning the 

binding properties of the complexes. Otherwise, probably,  it is learning the binding 

properties of the complex. The mean 𝑅𝑝 obtained with this test has an absolute value of 

0.18, which is considered a proof of the correct  functionality of RF-score. 

Wójcikowski et al. (98) made a precise distinction in the tests they performed. When the 

screening power is evaluated, they perform three types of test for each of the three 

scoring functions: horizontal, vertical, and per target vertical test. The results in 

horizontal test show a dramatic increase of EF1% performance between the best 

classic scoring functions compared to machine-learning scoring functions: around two 

to, even, 15 times increase depending on the docking engine and scoring function. The 

vertical test shows that there is a drop in EF1% performance with respect to the 

horizontal one.  Nevertheless, this result is still better than the one obtained from a 

classical approach, even if the difference is very small. Eventually, they trained a 

separate SF for each of the DUD-E targets (per-target scoring functions) tested on per-

target test in order to verify if tailored functions perform significantly better than a 

generic function. Most of the per-target functions evaluated in the Wójcikowski et al. 

(98)  study tend to perform only slightly better than the generic, unique, function (trained 

on all available data). This slight improvement can be observed in particular if the data 

on the target chosen are numerous. Because the enrichment test do not show if these 

top 1% molecules are actually the most active ones, Wójcikowski et al. (98) check if 

machine-learning methodology predicts binding affinity better than a classical SF, using 

version 2 (v2) of RF-score VS. The test is conducted measuring the 𝑅𝑝 in the horizontal 

and vertical tests and obtaining respectively a value of 𝑅𝑝 = 0.56 and 𝑅𝑝 = 0.20. The 

test confirm the difficulty of the actual machine learning scoring function in vertical test. 

Gomes et al. (100) consider four methods of splitting PDBBind core and refined sets 

into subsets for train/test evaluations. These are employed for four different types of 

tests. The  tests are called random, stratified, scaffold, and temporal. The random split 

consist in a usual horizontal test. In fact, they randomly split samples into train/test 

subsets. The stratified split sorts examples in order of increasing inhibition constant 𝐾𝑖, 

and then it chooses 10 samples at a time and randomly splits these samples into 

train/test subsets to ensure that each set contains the full range of inhibition constant 

present in the parent dataset. It can be considered a horizontal test because the same 

protein can be present both in train and test set. Scaffold splitting considers ligand 



molecules scaffold (the structure obtained removing  side chain atoms). Common 

scaffolds are placed in the train set and uncommon scaffolds are placed in the test set. 

This split attempts to separate structurally distinct molecules into train and test sets. For 

this reason it represents a kind of vertical test, even if the ligand structure is considered 

and the separation criteria are based on common and uncommon structures. Temporal 

splitting was performed based on the year that the ligand-protein complex was entered 

in the Protein Data Bank. This split tests the ability of the learning algorithm to use prior 

historical data to predict results of future experiments, similar to typical use in 

prospective drug discovery. Based on the definition reported at the beginning of this 

paragraph, this is an horizontal test too. To determine the train and test set 

performance, the squared Pearson Correlation Coefficient (𝑅𝑝
2 of log 𝐾𝑖 were evaluated). 

The results obtained in the 4 types of test are the following. In the random test, the 

scores 𝑅𝑝
2 = 0.448 and 𝑅𝑝

2 = 0.508 are obtained, respectively, using the PDBbind core 

set  and the PDBbind refined set. In the stratified test the scores 𝑅𝑝
2= 0.116 and 𝑅𝑝

2 = 

0.491 are obtained, respectively, using the PDBbind core set  and the PDBbind refined 

set. In the scaffold test the scores 𝑅𝑝
2= 0.043 and 𝑅𝑝

2= 0.267 are obtained, respectively, 

using the PDBbind core set  and the PDBbind refined set. In the temporal test the 

scores 𝑅𝑝
2 = 0.251 and 𝑅𝑝

2 = 0.529 are obtained, respectively, using the PDBbind core 

set  and the PDBbind refined set for training and testing the model. It is possible to 

observe that the performance obtained in the horizontal test are sensibly higher than the 

one obtained in the scaffold test, which can be considered as a vertical test, even if 

facilitated. In addition, the performance of Gomes et al. (100) scoring function (ACNN) is 

compared with other machine learning scoring functions based on models already 

proposed in literature, also much simpler with respect to the one proposed by Gomes et 

al. (100). The performance obtained are comparable. 

Seo et al. (101) evaluated the performance of binding affinity prediction models via 

different metrics. In particular, we point the reader’s attention to the Pearson’s 

Correlation Coefficient (𝑅𝑝). The conducted test  is a horizontal test. In the main test 

sets chosen, that are based on the CASF-2013 and CASF-2016 databases, the  scores 

obatined are respectively,  𝑅𝑝 = 0.77 and 𝑅𝑝 = 0.82. In addition, they perform a kind of 

vertical test  to evaluate the performance of the model according to protein structure 

similarity or ligand structure similarity. The structure similarity is evaluated based on Li 

et al. (115) study. It is not possible to define these test as a proper vertical test, because 

the criterion of avoiding same protein, both in training and test set, is not respected. 



Nevertheless, in this latter test there is a flexion of the BAPA (101) performance, with 

respect to the horizontal test, of less than 0.1, considering the 𝑅𝑝 parameter. Eventually, 

they compare BAPA with four existing popular prediction models including RF-Score v3 

(79), Pafnucy (102), PLEC-linear (116), and Onionnet (117). All the just mentioned 

models are trained and tested using the same datasets of this study and the results are 

comparable. 

In Stepniewska et al. (102) the correlation between the scores and experimentally 

measured binding constants is assessed mainly with the Pearson’s correlation 

coefficient 𝑅𝑝. They perform horizontal tests in order to measure the performance of 

Pafnucy scoring function using the PDBbind core set, CASF-2013, and Astex database. 

They obtain respectively 𝑅𝑝 = 0.78, 𝑅𝑝 = 0.70, and 𝑅𝑝 = 0.57. The performance of 

Pafnucy scoring function are similar to the ones of other machine learning scoring 

functions in horizontal test, as already presented. 

As in previous studies, Jose Jimenez et al. (103) use the usual horizontal test and 

measure the scoring function performances with Pearson’s correlation coefficient 𝑅𝑝 as 

the main performance parameter. KDEEP shows better performance in the horizontal 

test if the PDBBind core set is used (𝑅𝑝 = 0.82). Instead, if other databases are 

considered, the performance is reduced (𝑅𝑝 = 0.72 and 0.65 respectively on  CSAR 

NRC-HiQ set 1 and CSAR NRC-HiQ set 2, and 𝑅𝑝  = 0.37 and 0.61 respectively on 

CSAR 2012 and CSAR 2014). Also in this case the mean KDEEP performances are 

comparable with the ones of other mentioned machine learning scoring functions on 

horizontal test. Besides of comparing the scoring function performances to other 

machine learning scoring functions, in our  study a comparison is also made with basic 

scoring function, like molecular weights scoring function. This latter is a scoring function 

which simply attribute a ligand-protein binding affinity assuming a linear dependence as 

a function of  the molecular weights of the molecule. KDEEP  highlight clear better 

performance in the horizontal test with respect to a molecular weights scoring function.  

Eventually, they perform a secondary test in which KDEEP is tested on a set of data 

composed only of complexes of one protein, not present in the train set, that is, a per-

protein vertical test. In this case, the performances are significantly lower than the ones 

of the horizontal test and do not overtake the performance of classic scoring function, 

on the contrary, they are comparable. The weighted average 𝑅𝑝 measured by Jose 

Jimenez et al. (103) in the described case is 𝑅𝑝 = 0.34. 



Basically, all machine learning scoring functions created in recent years overperform the 

classic scoring functions. In fact, as discussed, most of the studies compare the results 

obtained by machine learning scoring functions with respect to classic scoring functions 

in a particular test,  obtaining a positive feedback. In Table 3.1, the performances of the 

most important machine learning scoring functions introduced in this chapter are 

reported. The aim of the Table 3.1 is to furnish a clear description of the performance 

state of the art of this type of scoring function and to compare each other based on the 

same performance parameter and class of test. In fact, as presented, different research 

groups can use different type of performance descriptors. In this situation, it is difficult to 

have a clear picture of the state of the art. In Table 3.1 the Pearson correlation 

coefficient is used to compare all the scoring functions because every research use it in 

addition to other different parameters. The scoring functions are listed according to their 

authors. The test considered are the horizontal, vertical, and per-target vertical test. The 

definition of these tests has been reported previously in the present paragraph. An 

additional column is added to record the results obtained in tests similar to the vertical 

test. These tests are called “ Vertical test “Kind of””. In this category the tests that avoid 

the contemporary presence in training and test set of similar complexes, for any type of 

criteria (protein sequence-based similarity, ligand scaffold similarity,...), are reported. 

These tests are not exactly vertical test according to definition reported, but they try to 

reproduce similar conditions of vertical tests. In the table, between round brackets the 

test set used in a certain test is reported. Always in the table, between squared 

brackets, the name of the test performed according to the author of the research is 

reported. 

The best performing benchmark for machine learning scoring function is, for sure, the 

horizontal test. In fact, it is the test in which the best performances are recorded. 

However, we observe that machine learning scoring function encounter some difficulties 

in vertical tests, or in similar benchmarks. The teams that perform vertical tests always 

recorded a general decrease of the machine learning scoring function performances 

with respect to what was measured in the horizontal test. If the test is strictly vertical, 

the performance decrease is sensible, but also in the cases where a kind of vertical test 

is adopted, a performance decrease is already present.  

On the other hand, vertical and horizontal test for classic scoring functions have no 

meaning because they do not sustain a training procedure. When machine learning and 

classic scoring functions are compared in any kind of test, it is the testing pool to be the 



same. In fact, the performance of classic scoring functions are stable between a 

horizontal and vertical test. The gap that appeared between these latter and machine 

learning scoring functions in horizontal tests, usually disappear in vertical test. 

  



Study Performance:  𝑅𝑝(database used)[Test type used in original study] 

Horizontal test Vertical test Per-target 

vertical test 

Vertical test  

“Kind of” 

Ballester et 

al. 

0.78(PDB core) / / / 

Wójcikowski 

et al. 

0.56(DUD-E) 0.20(DUD-

E) 

/ / 

Gomes et al. 0.67(PDB core); 

0.71(PDB ref.) [Random]. 

0.34(PDB core) 

0.70(PDB ref.) [Stratified]. 

0.50(PDB core) 

0.73(PDB ref.) 

[Temporal]. 

/ / 0.21(PDB 

core) 

0.52(PDB ref.) 

[Scaffold] 

Seo et al. 0.77(CASF-2013) 

0.82(CASF-2016) 

/ / 0.74(CASF-

2013) 

Stepniewska 

et al. 

0.78(PDBcore), 

0.70(CASF-2013) 

0.57(Astex)  

/ / / 

Jose 

Jimenez et 

al. 

0.82(PDBcore) 

0.37(CSAR 2012) 

0.61(CSAR 2014) 

/ 0.34(PDBco

re) 

/ 

Jincai Yang 

et al. 

0.84(PDB ref.) 0.73(PDB 

gen.)  

0.71(PDB ref.) 0.60(PDB 

gen.) 

/ / 0.63(PDB ref.) 

0.54(PDB 

gen.) 

[sequence-

based 

splitting]. 

0.48(PDB ref.) 

0.42(PDB 

gen.) [ligand 

scaffold 

similarity] 

Table 3.1 Comparison among most important machine learning scoring functions performances 



 

3.4 Performance doping factor 

Of course, machine learning scoring functions can be an innovative solution in the field 

of virtual screening and chemoinformatics. However, not all the researchers agree on 

the incredible performances of these functions. In this paragraph we deal with some 

possible bias that influences the performances presented above. 

Jincai Yang et al. (118) go into details of Josph Gomes et al. (100)  study and their 

scoring function, called ACNN, to demonstrate that often machine learning scoring 

function performances are doped by the chosen database and testing method. In their 

study, they demonstrate that same levels of performance are obtained considering the 

whole complex structure or only the protein or the ligand structure singularly. ACNN 

models did not require learning the essential ligand-protein interactions in complex 

structures and achieved similar performance even on datasets containing only ligand 

structures or only protein structures. This means that machine learning scoring 

functions simply recognize similar proteins or ligands, but do not learn the propriety of 

the binding mechanism. In addition, the authors performed data splitting based on 

similarity clustering (protein sequence or ligand scaffold), significantly reduced the 

model performance. In fact, already Li et al.  reported that the protein similarity impacts 

the performance of artificial intelligence models (115). They obtained a general 

reduction of  0.2 in the 𝑅𝑝
2 both if the clustering is based on protein sequence or ligand 

scaffold with respect to a classic horizontal test.  Jincai Yang et al. (118)  concluded that 

biases are widely present in the two database under study, PDBbind and DUD-E, and 

the performance of scoring functions using these database arguably suffers from the 

data redundancy caused by the protein and ligand similarity. For this reason they 

propose to use sufficiently large and unbiased datasets for training robust artificial 

intelligence models to accurately predict ligand-protein interactions. This implies 

verifying that the database does not present redundancy of similar structures in train 

and test set since this can lead to overestimate the scoring function performance.  It is 

easy to understand that, according to Jincai Yang et al. (118), the horizontal test 

identifies the conditions that should be avoided because it can overestimate the 

performance of the function.  

  



4 MLP Scoring function 

As anticipated in the Introduction, the objective of this thesis is pursued through the 

creation of a new machine learning scoring function. As regression model, it is used a 

multilayer perceptron. For this reason, the scoring function is called MLP scoring 

function. In this chapter, we start presenting the creation of  ligand-protein complex 

descriptive model and the features matrix and target vector. Then, we analyze the 

regression model. 

 

4.1 Ligand-protein complex descriptive model 

The machine learning scoring function faces the problem of complex description, with 

particular reference to the binding zone, in terms of a matrix. As already discussed, in 

previous studies, Pedro j. Ballester et al. (96) proposed the model where it counts the 

number of a certain atomic couples in the area of the binding pocket. Woljacowsky et al. 

(98)  considered the same model proposed by Pedro j. Ballester et al. (96). In addition 

to this model, they proposed two more versions of the descriptive model. Other studies 

in the field of machine learning scoring functions use convolutional neural networks. For 

the particular configuration of this networks, a tri-dimensional description of the complex 

is needed. In our case, the regression model chosen is a multilayer perceptron, and a 

bi-dimensional descriptive matrix is used as input. 

The archetype proposed by Ballester et al. (96)   and then Wójcikowski et al. (98)  is 

resumed in the present research. This model involves counting the number of particular 

atomic couples in a certain range of distance around the pocket. The atomic couple is 

composed by an atom belonging to the protein and an atom belonging to the ligand. 

The list of protein atomic species considered is reduced with respect to the previous 

studies just because some of the atoms considered there are never present in 

complexes we considered. However we consider the hydrogen among the atomic 

species taken into consideration. The atoms considered for the ligand and for the 

protein are reported hereafter, respectively:  

[H, C, N, O, F, P, S, Cl, Br, I]; 

[H, C, N, O, P, S]. 



All the possible couples created combining the atoms belonging to the ligand list with 

the ones to the protein list are considered. 

Consequently, the number of different possible couples of atomic species is 60. 

The atoms belonging to the ligand list are all the possible atoms present in the ligand 

except for metals, because it is unusual to find ligands with metals. In fact in the 

databases used in this study, ligands with metals are not present. Therefore, if metals 

had been included in the ligand list, the result would be a training matrix with larger size 

in which the columns dedicated to the couples with metals are filled by zeros. 

In particular, we are inspired by the Wójcikowski et al. (98)  descriptive model because 

we consider more than one interval in which the number of atomic couples are counted, 

as in version 2 of their RF-Score VS. A study is conducted on what the best descriptive 

model is in terms of interval amplitude and radius area of the pocket (Figure 4.1). The 

different amplitude considered are 1.5 Å, 2 Å, and 3 Å. It means that the counting of the 

number of couples happens in each interval of the specified amplitude until the pocket 

area is covered.  The network is trained using these different descriptive models, 

growing the area radius from time to time. A scoring function is created using each 

different descriptive model. The regression model used is the multilayer perceptron 

trained with experimental data. The score used to evaluate the best descriptive model is 

𝑅𝑝 . The type of regression model used and the reasons why we are using it are 

discussed later in this chapter.  The results show that the best descriptive model in 

terms of amplitude is 2 Å, as in the model employed by Wójcikowski et al. (98).  The 

effective binding information seem to be in the area of 6-8 Å. In fact, every interval 

amplitude used in the  description model produces the best performance in terms of 𝑅𝑝 , 

when an area of radius equal to 6-8 Å is considered . In our study a maximum distance 

of 8 Å is considered. 

Four ranges of intermediate distances are considered between 0 and 8 Å, in particular, 

0-2 Å, 2-4 Å, 4-6 Å, and 6-8 Å. The compiling of the matrix is made calculating the 

absolute distance between the element of the ligand and the element of the protein for 

all the considered ligand-protein couples. The distance is simply evaluated using the 

Cartesian coordinates of the two atoms. Once the distance is calculated, the counter of 

a particular couple and of the intermediate range in which the distance is included 

increases by one. 

The matrix used to train the neural network is composed by a number of rows equal to 

the ligand-protein complexes considered and a number of columns equal to 240. The 

number of columns is the product between the considered couples and the distance 



ranges for each couple. As an example, the first column of the matrix contains the 

number of couple H-H in the distance range 0-2 Å, the second one contains the number 

of couple H-H in the distance range 2-4 Å and so on until the seventh column which 

contains the number of couple H-C in the distance range 0-2 Å. 

 

Figure 4.1 Ligand-protein descriptive models comparison 

The target matrix is simply a vector in which the target value considered (ligand-protein 

affinity or docking score) is reported. Each line of the training matrix and the relative 

component of the vector are the data used to describe a particular ligand-protein 

complex in this study.   

 

4.1.1 Database normalization  

The database is composed of a training matrix and a target vector. The components of 

the training matrix can assume values between 0 and numbers of the order of 105. The 

target vector can have different distributions according to which database or target 

value is considered. In this paragraph, we treat the process performed to standardize 

the database, both for training matrix and target vector. 



In the training matrix the presence of large values among the components of the matrix 

can compromise the learning process. For this reason a normalization operation is 

needed. Different types of normalization can be applied to the training matrix: 

A. No normalization. 

 

B. Normalization using overall maximum. 

Each component is subdivided by the maximum value present in the matrix. 

 

C. Normalization using log(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒). 

The component of the training matrix is done by the logarithm of the original 

component. 

 

D. Normalization using the average value of each column. 

Each component is divided by the mean value of the column to which the 

component belongs. 

 

E. Normalization using the maximum of each column. 

Each component is divided by the maximum value of the column to which the 

component belongs. 

 

 

A test is conducted to verify what the best normalization is for the model built in this 

study. In order to do this, as for choosing the best description model, a scoring function 

is created using each normalization model. The regression model used is the multilayer 

perceptron trained with synthetic data. The score used to evaluate the best descriptive 

model is 𝑅𝑝 . The type of regression model used and the reasons why using it are 

presented later in this chapter. The results of the test are shown in Figure 4.2. The 

normalization model B is applied in the rest of this study. 

 

 



 

Figure 4.2. Features normalization method 

In the target vector, we want a normalization procedure which guarantees a similar 

distribution for each type of data and target value. In particular we want distributions of 

target data with a mean value of 0 and a standard deviation equal to 1. In this way the 

training of a same neural network with two different sets of data, as done when the 

transfer learning technique is used, is homogeneous and produces reliable results. 

Hereafter, the operation used to normalize the target values is reported: 

𝑑′ =
𝑑 − 𝜇

𝜎
 

where 𝑑′ is the normalized target value, 𝑑 is the original target value, 𝜇 is the mean 

value in the considered database and 𝜎 is the standard deviation in the same database. 

The result obtained is a database where the target data distribution has mean value 

equal to zero and standard deviation equal to 1. 

 

4.1.2 Database construction: code analysis 

Following the previous qualitative description, now we deep on the training matrix and 

target vector creation process starting from the .pdb files. 

All the procedures are implemented with Python. 



Python is a "high-level" object-oriented programming language suitable, among other 

uses, for developing distributed applications, scripting, numerical computing and system 

testing. It was designed by Guido van Rossum in the early nineties. It is a multi-

paradigm language that has among its main objectives: dynamism, simplicity and 

flexibility. It supports the object oriented paradigm, structured programming, and many 

functional and reflection programming features. It is often studied among the first 

languages for its similarity to a pseudo-code. It is frequently used to reproduce the 

creation of software thanks to the experimentation flexibility, which allows the 

programmer to organize ideas during development (119). 

 

TRAINING MATRIX  

Considering the .pdb files subdivided in various folders inside the same upper folder, 

the first step is to open sequentially each folder and, then, the files inside the folder. The 

environment os and the command os.listdir() allow to open the upper folder and to have 

a list of the files contained in each folder. In order to proceed in the process a series of 

ad hoc functions are created. The following paragraphs describe each function. 

Subsequently, we will describe how to apply the functions to create the training matrix. 

 

Function “openf()”. 

Input: name  of file .pdb. 

Output: selection of the text contained in the .pdb file formatted as a list in which each 

item is a text line. 

The function puts the input in an address in order to open that .pdb file. Once the file is 

opened in reading mode, the function readlines() transforms the file in a list in which 

each line of the file is an item of the list. Subsequently, the openf() function determines 

the beginning and the end of the part of the file which contains interesting information 

for the research. In order to achieve this, it looks for the word “ATOM” in the characters 

0:4 of each line and the word “CONECT” in the characters 0:6 of each line. The word 

“ATOM” at the beginning of the line means that the list with the information about each 

element of the complex ligand-protein is started. The word “CONECT” is used in the last 

part of the .pdb file to describe the various connections present in that molecule. This 

kind of information is useless in the research conducted in this thesis, it means that the 

part of text containing useful information for the research is over. The function openf() 

selects the index of the first line containing “ATOM” and the index of the first line 

containing “CONECT”. It selects the text between these 2 index, and it returns it. 



 

Function “DistanzaDaTuttiHETATM()”. 

Input: output of function openf() 

Output: List of three elements vector composed by all possible ligand-protein couples in 

which the first element is the atom of the ligand, the second one is the atom of the 

protein, and the third one is the Cartesian distance between the first two. 

The function “DistanzaDaTuttiHETATM()” creates a list with all the possible ligand-

protein couple and the associated Cartesian distance. Each element of the list is a 

vector with three components: the atom of the ligand, the atom of the protein and the 

distance between the two. The function reads all the lines of the input list with a for 

cycle. Because the ligand-protein couples are considered in this order, the code first 

selects the element belonging to the ligand. It does not consider the water molecule 

present in the ligand because in the .pdb tracking mode they are assigned to the ligand, 

but they are not real part of this. They are only necessary to complete the connections 

between the protein and the ligand. When the if logic, used to find elements of the 

ligand, is verified, the line of the considered text is subdivided using the command 

.split(). Each element of the line separated by a space character from the next one 

becomes an element of a list. The list is composed by all the elements of the line. For 

each ligand components, another for cycle and a if logic is used to determine all the 

possible couples between that element of the ligand and all the elements of the protein. 

With the for cycle all the lines of the starting list are scrolled. The if logic considers only 

the elements belonging to the protein. When this last if logic is verified, one element is 

added to the output list. The element is composed by a vector of three elements, the 

first is the atomic specie of the considered  ligand atom, the second is the atomic 

species of the considered protein atom and the third is the distance between these two 

elements. The distance is calculated using the math environment and the math.sqrt() 

function. This function calculates the square root among the sum of the squared 

difference of the ligand-protein relative coordinates.  

During the study of the function DistanzaDaTuttiHETATM(), some small bugs were 

discovered in the .pdb files. The Cartesian coordinates of the atoms can be composed 

by 8 digits (the minus sign, 3 digits, the comma and 3 decimals, encountered in order 

from right to left in the .pdb file). When all the digits are used in y and z coordinates, no 

space is supposed to be present between these and the previous coordinates. For this 

reason, the function cannot recognize that two coordinates are present instead of one, 

and some unexpected crashes are encountered  while the program is running. In order 



to solve this problem, a substitution is made when the combination “-1” is encountered. 

The substitution is made adding a space character before the combination “-1” and so “ 

-1”. In fact, the hundreds digit in the Cartesian coordinates never takes a value different 

from 1. The same problem is encountered in the columns which precede the Cartesian 

coordinates in the .pdb files. These columns contain information about the type of 

amino-acid in which the considered atom is included, the type of molecule in which the 

atom is include and some other information useless for the research conducted in this 

study. For these reasons, it is chosen to cut a part of each line, until the 28th character. 

The 28th character of each line of the .pdb file coincides with the beginning of the 

coordinates for each atom. 

 

Function “Statisticizza()”. 

Input: output of function DistanzaDaTuttiHETATM() 

Output: Dictionary containing as keys all the considered ligand-protein couples and as 

key-values an numpy array composed of 6 elements corresponding to the considered 

distance ranges. Each element of the array indicates how many couples of the key 

couple are present in that range. 

The function Statisticizza() creates a dictionary starting from the output list of function 

DistanzaDaTuttiHETATM(). As input value, in addition to the output of function 

DistanzaDaTuttiHETATM(), it takes two more lists, one containing all the ligand-protein 

couple taken into account and the other containing the range of considered distance. 

For each component of the ligand-protein couple list, Statisticizza() creates a numpy 

vector composed of 6 zeros and scrolls all the lines of the output list of function 

DistanzaDaTuttiHETATM() looking for the corresponding couples. Once the considered 

couple and the couple of the list coincide, the function compares the Cartesian distance 

with the distance range. Using an If cycle it adds 1 to the numpy vector in the position of 

the range in which the Cartesian distance is included. The smallest distance range is 

the element with index 0 of the numpy vector and the largest one is the element with 

index 5. When all the lines of the output list of function DistanzaDaTuttiHETATM() are 

read, Statisticizza() writes the numpy vector in the dictionary using as dictionary key, the 

atomic symbol of the two element composing the couple. 

 

Function “ModifMatrice()”. 



Input: output of function Statisticizza(), numpy matrix with dimensions 𝐿 𝑥 𝐷, (𝐿 is the 

number of .pdb files. 𝐷 is the number of considered ligand-protein couples multiplied by 

the range of considered distances); matrix line index in which modifying the matrix.  

Output: / 

ModifMatrice takes as input a matrix (composed by zeros) and substitutes each line with 

information deriving from the output of function Statisticizza. It considers the matrix line 

index passed through the input to the function. In that line it substitutes to the original 

line, the numpy arrays corresponding to the considered .pdb file. Precisely, the function 

scrolls the list of couples considered with a for cycle. It uses each couple as the key to 

read the dictionary produced with the function Statisticizza(). It copies the 6-

dimensioned numpy array corresponding to the considered dictionary key, in the column 

index of the selected line. The column index are 6 range indexes, starting from 0 and 

increasing by 6 for each cycle of the for cycle. The array corresponding to the first 

couple of the couple list goes in the matrix column index 0-5, the array corresponding to 

the second one in the matrix column index 6-11, … 

The function ModifMatrice() has no output. It just modifies the content of a matrix given 

as input, using the information coming from the function Statisticizza(). The function 

summarizes the information included in a whole .pdb file in only one matrix line, 

composed by a number of columns equal to the considered features.  

 

Using the functions introduced above and some other input information, it is possible to 

create the first version of the training matrix. The necessary input information are the list 

of considered ligand-protein couples, the considered distance ranges, the starting 

matrix to be modified.  

The list of couples is created starting from the lists of ligand and protein taken into 

account. The list of atoms belonging to ligand and protein considered in this study, as 

anticipated, are, respectively: 

['H', 'C', 'N', 'O', 'F', 'P', 'S', 'Cl', 'Br', 'I']; 

['H', 'C', 'N', 'O', 'P', 'S']. 

The atoms belonging to the ligand and to the protein list are all the possible atoms 

present in ligand and proteins considered in this study . The list of couples is created 

using a double for cycle. The first cycle scrolls the list of considered ligand atoms and 

the second associates all the atoms of the protein to each ligand atom.  

The distance range between the 2 atoms of the couple considered, as anticipated, is a 

distance of 12 Å, divided in 6 intervals of 2 Å each. Of course it is possible to use 



different interval amplitude and total distance. Here we are describing the best 

descriptive model.  

In order to determine the exact dimension of the starting matrix, an initial index is fixed 

(Nist) equal to zero. Then, all the folders containing the .pdb files are opened using a for 

cycle and the command os.listdir() creates a list of the files inserted in each folder. The 

matrix dimension in terms of lines is determined by the sum of the length of each list of 

files. The initial training matrix composed by the number of lines just found and 

360columns, is created. 

The process of scrolling the folders containing the .pdb files with a for cycle and of 

creating a list of the files contained in each folder is repeated. Another for cycle is used 

to select one by one the files of the list in order to select the .pdb file to be analyzed and 

its index. The index is used to select which line of the training matrix has to be modified. 

Once the file is selected the previously described functions are applied, according to 

this sequence, to all the .pdb files contained in the folders: 

ModifMatrice(Statisticizza(DistanzaDaTuttiHETATM(openf()))). 

The first version of the training matrix is created. 

 

TARGET VECTOR 

The target vector contains the affinity values or the docking scores (if present) of each 

ligand-protein complex corresponding to the .pdb files used to create the training matrix. 

The target values are collected in Excel files, as anticipated. The Excel file 

corresponding to the complexes deriving from a particular protein is contained in folders 

nominate as the folder containing the corresponding .pdb files. The sheet of the Excel 

file is named “Foglio1”. The structure of the Excel file is constant. The 1st column 

contains the .pdb file name, the 2nd column contains the ligand-protein complex code, 

the 3rd column contains the ligand-protein affinity, the 4th column (if present)  contains  

the docking score in negative value. In order to create the affinity vector, a list of the 

Excel files is produced with the command os.listdir(). With a double for cycle the folders 

containing the .pdb files are scrolled, and for each one, the corresponding Excel folder, 

according to the folder name, is selected. The Excel file is opened and the sheet 

“Foglio1” is selected. Using another double for cycle the .pdb files and the rows of the 

Excel file are scrolled. The for cycle scrolling the Excel files is based on the row index 

number. The list of row index number is created using the range command and starting 

from index 2 until index equal to the number of .pdb files contained in the originally 

selected folder plus one. It starts from index 2 because the first row of the Excel 



contains the content title for each column. It is possible that the row index are more than 

the .pdb files because the Excel file contains more data than expected. In this case an 

error will occur running the routine and a manual check of the dimension of the Excel 

file is requested. When the file name reported in the first column of the Excel coincides 

with the .pdb file name selected, the corresponding target value is added to the queue 

of the target vector (changing the sign for docking scores). The last for cycle, the one 

scrolling the rows of the Excel file, is stopped. The for cycle to read the .pdb files is used 

in the same way as done in reading the files in the matrix creation process. This 

guarantees that the corresponding rows of the training matrix and of the affinity vector 

are related to the same .pdb file. 

As anticipated, the case when the Excel file does not include the same ligand-protein 

complexes present in the folder of the .pdb files can happen. The mismatch can be 

caused by oversight in compiling the Excel file. For this reason a function is created that 

checks the correspondence of the analyzed .pdb files with the ones that have the target 

value in the Excel file. 

 

Function “trovacopia()”. 

Input: the address of the folder containing the analyzed .pdb files and a list in which 

writing the mismatch files. 

Output: the list of mismatching file. 

The function trovacopia() uses the double for cycle to scroll first the list of .pdb file 

obtained using the command os.listdir() applied to the address given as input, and then 

the rows of the Excel file in the column containing the file name. Trovacopia() introduces 

a list nominated “vettoreConta” which will be used as counter. When the .pdb file 

selected by the first for cycle and the .pdb file name corresponding to the row selected 

by the second for cycle coincide, the file name is added to the counter list. The second 

for cycle is broken and an if logic verifies if the counter list is empty or not. When the list 

is empty it means that the selected .pdb file with the first for cycle has no corresponding 

target value in the Excel. The function trovacopia() adds the name of this kind of file to 

the output list. The rows of the training matrix corresponding to the files contained in the 

output list has to be deleted from the training matrix 

 

In order to apply the function trovacopia(), the previously described procedure to select 

the folder containing a certain type of .pdb files and the corresponding Excel file is 

applied. The address for the folder selected is created and the Excel file is opened in 



the sheet “Foglio1”. trovacopia() is applied to the selected address and to an empty list. 

If the output of the function remains an empty list, no action is taken. This means that all 

the .pdb files in the considered folder have a corresponding target value in the Excel. In 

the case the list contains some .pdb files a double for cycle is used. The first scrolls the 

list and, for each element of the list, the second scrolls a range of index equal to the 

number of files in the folder initially considered. The indexes are used to consider, one 

by one, all the .pdb files belonging to the considered folder. They represents the 

position of the files in the list. Using an if logic, when the file name considered, coming 

from the output list of trovacopia(), coincides with the name of a file of the list, the 

corresponding index is appended to a list called “posizioneErr”. At the end of the cycle 

analyzing a single folder, the list “posizioneErr” contains the indexes of the .pdb files 

with no corresponding target values. The list “posizioneErr” is used to delete the 

corresponding lines from the training matrix. The same procedure is repeated for each 

folder containing .pdb files, as in the training matrix creation. Of course, before deleting 

the line from the training matrix, the indexes obtained from the operation just described 

in a single folder, are summed to the number of the files in the folders previously 

analyzed minus the number of files already deleted. Once the checking process of the 

target vector is completed, this latter is saved as a numpy array. 

 

NORMALIZATION PROCESS 

The training process uses the matrix created starting from the .pdb files. As already 

explained, it produces better results if the elements of the matrix are normalized,. The 

normalization process of the training matrix is done dividing each of the originally 360 

features by the maximum value present in the matrix. A numpy array called “Max” is 

created using the function np.amax(). The function is applied to the training matrix with 

respect to the columns (axes = 0). The output of the function is a numpy array 

containing the maximum value relative to the matrix for each column, so it is a vector 

1x360. The function np.amax() is applied another time and in the same way to the 

previously resulting vector 1x360. The result is called “MaxMax” and it is the maximum 

value present in the matrix. Each element of the matrix is substituted by the same 

element divided by the “MaxMax” value.  The results is a normalized training matrix, in 

which all the components are included in the interval 0:1.  

The target vector is normalized using the functions numpy.std() and numpy.mean() for 

calculating, respectively, the standard deviation and the mean value of the considered 



data set. Once the standard deviation and the mean value are evaluated, each target 

value is subtracted by the mean value and then divided by the standard deviation, as 

described by the formula reported in paragraph 4.1.1. 

The normalized training matrix and the affinity vector are saved as numpy arrays. 

The described process illustrates the creation of the training matrix and of the target 

vector which will be used in the neural network training process.  

 

4.2 MLP scoring function neural network and 

training protocol choice 

In the following paragraph the used regression model is presented. The choice of using 

a multilayer perceptron, is motivated by the ability to provide approximate solutions for 

extremely complex problems, as predicting binding affinities  is. 

A multilayer perceptron is an artificial neural network model that maps sets of incoming 

data into an appropriate set of outgoing data. It is made up of multiple layers of nodes in 

a directed graph, with each layer completely connected to the next. It consists of at least 

three layers of nodes: an input layer, a hidden layer, and an output layer . Except for 

incoming nodes, each node is a neuron (processing element) with a linear activation 

function (120). The multilayer perceptron is a modification of the standard linear 

perceiver, described in the first chapter, and can distinguish data that are not linearly 

separable (121). 

A study is conducted to determine the structure of the network which can guarantee the 

best results.  

The study is conducted using experimental data, which is considered the principal 

database. The structure and training protocol which emerge to be the best are used 

also with synthetic data. In fact, it is necessary considering that this research was 

originally envisioned for using a very refined database composed of experimental data. 

The synthetic data are originally intended as additional data and  the scoring function 

deriving from this pool is initially taken into account as a term of comparison.  



The first step to determine the best neural network structure and training protocol is to 

verify what the best structure is in terms of number of neurons for each layer using a 

standard training procedure.  It means that a basic subdivision of the database into 

training and test set according to percentage 87.5-12.5 is used. A standard number of 

1500 training iterations are performed and only the best 𝑅𝑝 measured on the test set is 

recorded.  The training process uses a batch size of 50 and 200 for experimental  and 

synthetic data, respectively. The regularization is constant in each layer and equal to 

10−6. The optimization algorithm is ADAM (122). 

In order to determine the best structure, considering the total amount of experimental 

complexes is 2400, layers composed of different  number of neurons, even if limited, 

are tested. In particular, networks with numbers of neurons equal to 10, 20, 30, or 40 

are tested. Because of the restricted number of data, a network with limited dimension 

is expected to be the best. For this reason, networks composed of 2 layers are 

considered. From this preliminary study, a layer dimension of 20 neurons demostrates 

to guarantee best results. In fact a network with a layer of ten neurons does not learn 

accurately the information of the training matrix. In the opposite case, a layer of 30 

neurons is not able to generalize the information acquired in the training (reference to 

Figure 4.3). 

Different structures and training protocols are tested and the corresponding results, in 

terms of Pearson’s correlation coefficient, are reported in Figure 4.3: 

A. standard network 1x20. 

B. Standard network 2x20. 

C. Standard network 3x20. 

D. Network 2x20 with transfer learning using synthetic data and ligand-protein 

affinity as target value. 

E. Network 2x20 with transfer learning using synthetic data and docking score as 

target value. 

F. Network 4x40 on synthetic data using ligand-protein affinity as target value 

(phase I) + 1x 20 (phase II). 



G. Network 2x20  with transfer learning using synthetic data and ligand-protein 

affinity as target value, adding a further feature only in the second layer, i.e., the 

docking score. 

The structures and training procedures listed above consider the same attributes 

specified at the beginning of this paragraph, if not differently specified. 

In case A, B and C the standard network is a multilayer perceptron, as previously 

introduced, composed of an input layer and an exit layer, plus some hidden layers. In 

the considered networks the number of the hidden layers present are equal to the 

number reported in the list. The standard network undergoes a single training using the 

experimental data. The difference among the standard networks ((cases A, B, C) is the 

structure. 

In case D and E the transfer learning technique is applied. The aim is to strengthen the 

scoring power of the machine learning function even if the training set is small .  As 

anticipated in the first chapter, it consists in performing a pre-training of the network 

using a database with similar characteristics to the original one. The pre-training has the 

purpose of modulating the neuron coefficients, to make the final train, with the real data, 

more effective. In fact, in this case the training of a neural network with a small 

database, like the experimental database is, risks to produce a function which can 

predict extremely well the training data. However, the function  might not have the 

capability of extracting general information from the database and making good 

predictions for new data. Clearly the transfer learning is more effective the more similar 

the data of the pre-train database are with respect to the real data and if the database 

utilized in the pre-train is sufficiently larger than the real database. In fact, the synthetic 

data are used for this purpose. They are more than one order of magnitude  more 

numerous and they are the same type of data with respect to the experimental data. In 

the case D, the multilayer perceptron is previously trained on synthetic data considering 

the ligand-protein affinity as target value. The pre-train lasts until the mean squared 

error calculated on the validation pool stop decreasing for ten iterations consecutively. 

The coefficients of the network obtained up to that moment are used as initial 

parameters to start the final training on experimental data. 

In case E, the same training procedure of case D is applied. The only difference is that 

the target value used in the pre-train, for synthetic data, is the docking score. 



The network described at point F is built in two phases. In the first phase it consists of a 

multilayer perceptron composed by 4 layers of 40 neurons. Here the network is trained 

on synthetic data considering the affinity between proteins and ligands as target value. 

In the first phase, the training ends when the loss function measured on the validation 

set does not decrease for 10 iterations consecutively. In the second and last phase a 

further layer composed of 20 neurons is added to the network. Here the effective 

training on experimental data is performed keeping locked the coefficient obtained in the 

pre-train for the first 4 hidden layers.  

In case G another technique, again based on transfer learning, to possibly increase the 

performance of the machine learning scoring function is applied. It consists in using the 

standard network 2x20 adding a further feature to the training matrix only for the last 

layer in the pre-train. The additional feature is the docking score. As in previous cases, 

the pre-training phase lasts until the cost function does not decrease for 10 iterations 

consecutively. Then, the final training, on experimental data, is performed. 

The plot in Figure 4.3 represents the difference performances of the MLP scoring 

function, in terms of 𝑅𝑝, for the network structures and training protocols just described. 

In the end, the strategies used to increase the scoring power of the machine learning 

scoring function do not produce promising results. Because of this, the simplest solution 

is chosen, namely a standard multilayer perceptron of size 2x20 for the experimental 

data. While a deeper network of size 4x40 is used for the synthetic data.  

 



 

Figure 4.3 Neural network structures and training protocols tested using the different protocols 

described on Paragraph 4.2 

 

4.2.1 MLP scoring function: code analysis 

In the following paragraph the process of creating the MLP scoring function is presented 

through the code analysis. This latter is analyzed for each network type we consider, 

merging the similar parts in a single analysis. All the procedures are implemented with 

Python. 

 

Training matrix and target vectors loading 

The creation of the MLP scoring function starts with the training process. In order to do 

it the training matrix and the target vector, already created, as previously described, are 

loaded with the command np.load(). In the case the transfer learning technique is 

applied, both the synthetic and experimental matrix, with relative target values, are 

loaded. 

 



Superfluous features elimination 

The descriptive model used in this study, as anticipated, considers a total area of radius 

8 Å in which the atomic couples are counted. The considered intervals measures 2 Å. 

This training matrix is originally created considering a total area of radius 12 Å. Because 

of this, after loading the training matrix, the code expects the elimination of the features 

in the ranges 8- 10 Å and 10 - 12 Å. For doing this, the indexes of columns containing 

data of the intervals 8-10 Å and 10-12 Å are included in a list. The indexes are created 

using a for cycle. Then the columns are deleted from the training matrix using the 

command np.delete(). The function is applied to the original matrix. The indexes of the 

columns to be removed are in the just created list. The axis chosen for applied this 

command is axis 0 (vertical).  

 

Training matrix normalization 

After this preliminary operation, the maximum of all the features considered is 

calculated. If the transfer learning technique is applied, the maximum of the features is 

calculated both for the synthetic and the experimental matrix. The function used for 

finding the maximum of the features is np.amax(). This function is applied along the axis 

= 0, namely the vertical axis. The function np.amax() is applied twice. The first time it is 

applied to the training matrix and the maximum for each feature is found. Then the 

function is applied to the deriving one dimensional vertical vector, in order to find the 

overall maximum.  

The absolute maximum is used to normalize the training matrices. Each element of the 

matrix is divided by the just obtained relative maximum. In this way the training matrix is 

composed of 240 features, the relative value is in the interval [0,  1]. 

 

PRE-TRAINING PHASE 

 

Training matrix and target vector permutation 

In the cases the transfer learning technique is applied, the single cycle of training is 

started using a simple for cycle. In fact we will see in the next paragraph that in this 

research each result is calculated as an average value on 10 different trainings. The 

code analysis conducted from this point is inside this cycle. 

After the beginning of the training cycle, a permutation of the pre-training matrix and of 

the relative target vector is performed. The permutation is performed in the following 



way. An index list from 0 to the total number of rows present in the pre-training matrix is 

created. The index list is permuted using the command random.sample() applied to the 

index list. The command is applied in a way that each index can appear only one time in 

the list. The resulting permuted index list is used to reorder the matrix and the target 

vector in the same way. The aim is to maintain the correspondence between the matrix 

row and the relative target value. 

 

Outliers elimination 

The next action is the elimination of the outliers, in terms of ligand-protein affinity. In 

fact, the synthetic data are numerous in quantity and checking each complex is not 

efficient. However some errors can appear in the database creation, as previously 

presented. In particular some molecules can have a negative or out of range ligand-

protein affinity or docking score because of some errors in the transcription of the 

values. For this reason the target values out from the interval 2-22 are considered 

outliers. This range of intervals is considered because 99% of the complexes are within 

the interval. The index of these complexes is identified and the corresponding row of the 

pre-training matrix and of the target vector is deleted. 

 

Target vector normalization 

The code analysis continues with the normalization of the target values for the pre-

training data. The target values distribution must have the mean equal to 0 and the 

standard deviation equal to 1, as previously described. The reason for this choice is to 

have homogeneous distribution if different databases are used in the training of the 

same network, like in the case when the transfer learning technique is applied. For this 

reason the mean and the standard deviation of the target values for the pre-training 

data is calculated. Then each target value is subtracted by the mean of the target 

values just obtained. Eventually the result is divided by the standard deviation of the just 

obtained target values. In this way the new target values distribution has a mean equal 

to 0 and a standard deviation equal to 1. 

 

Training, validation and testing pool 

At this point, the data inside the database are ready to be used in the pre-training 

phase. The data needs to be subdivided into different ensembles to correctly complete 

the network training. In particular, a training, a validation, and a testing pool need to be 



created. The training pool contains the data used to train the network. For this reason 

this is the larger ensemble among the 3. The validation pool contains a little amount of 

data used to check the training procedure. In particular, these data are used apply the 

early-stop criterion. The early-stop criterion indicates the condition that, if verified, 

implies the strop of the training procedure. In this case the pre-training phase is stopped 

by the EarlyStopping() function. The early-stop option is a callbacks function. It is 

initialized just after the creation of the pool by the callbacks() function. In this function, 

the parameter to be monitored for the early stopping and the patience rate have to be 

specified. The parameter indicates what function is monitored. In particular, the 

decreasing of this parameter is monitored. The patience rate indicates the number of 

continuous iterations for which the parameter selected can increase before stopping the 

training. In this study the parameter used for applying the early-stop function of the pre-

training phase is the mean squared error measured on the validation data. The patience 

rate is 10. 

callback = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10).  

The testing pool contains the data used to test the obtained function. These data are the 

ones used to measure the final performances of the created function. In the analyzed 

case, namely the pre-training phase, the testing data are just used to evaluate the pre-

training effectiveness. The size of each pool can depend on the particular type of 

training. In the pre-training phase the synthetic data are used. The testing data are 1500 

complexes, the validation data are 1000 complexes and the remaining complexes are 

used as training data. 

 

Neural network structure 

The following phase of the neural network training is the creation of the neural network 

structure. The structure is different according to which type of network is analyzed. 

Considering that, in this subsection, we are presenting the pre-training phase, in this 

paragraph only the structures of the network that use the transfer learning technique are 

analyzed. In particular we are referring to network types D, E, F, and G. 

First of all the model of the network (sequential, API,..) is specified, together with the 

proper name we assigned to the network. A Sequential model is appropriate for a plain 

stack of layers where each layer has exactly one input tensor and one output tensor. 

Otherwise, the Keras functional API is a way to create models that are more flexible 

than the Sequential model. The functional API can handle models with non-linear 

topology, shared layers, and even multiple inputs or outputs. In cases D, E, and F the 



sequential model is used. In these cases the network is created with the add() method. 

Therefore it is possible to add as many layers as needed. In case D and E, 2 layers are 

added. In case F, 4 layers are added. Each layer is accessible via the layers attribute. 

The layers used in the network are Dense. Dense layers implement the operation:  

 

𝑜𝑢𝑡𝑝𝑢𝑡 =  activation(dot(𝑖𝑛𝑝𝑢𝑡, 𝑘𝑒𝑟𝑛𝑒𝑙) +  𝑏𝑖𝑎𝑠). 

 

where 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is the element-wise activation function passed as the activation 

argument; 𝑘𝑒𝑟𝑛𝑒𝑙 is a weights matrix created by the layer. 𝑏𝑖𝑎𝑠 is a bias vector created 

by the layer; dot() indicates the dot product. The activation function used is the 

hyperbolic tangent (tanh). Each layer uses an exit regularization 

(kernel_regularizer=regularizers.l2) equal to 0.000001. Also the regularization is an 

attribute of the layer. The number of neurons present in each layer is specified in the 

attribute too. The numbers used in the different cases presented during the pre-training 

are:  

D: 2 layers of 20 neurons each. 

E: 2 layers of 20 neurons each. 

F: 4 layers of 40 neurons each. 

The first dense layer has the input dimension (input_dim) of the training matrix as a 

further attribute. The matrix dimension consists in the number of columns, namely the 

total number of features which describe an instance. For this reason, as already 

specified, the input dimension is 240. The exit neuron has to be specified too. It is 

treated like the previous layers, just avoiding the specification of the activation function. 

In the case G, a model with non-linear topology with multiple inputs is created. The first 

action is the specification of the various inputs. In case G the specified inputs are called 

feature_input and dk_input. The first input represents the standard 240 features chosen 

to describe the molecules. The second one is the docking score which is used as an 

additional feature, directly connected to the last layer of the pre-training. In each of 

these inputs, the dimension of the matrix in terms of columns must be specified in the 

attribute shape. After this phase the neural network structure is built in terms of layers 

and the relative inputs are specified. Here 2 dense layers of 20 neurons are used. The 

first layer is inserted with the command layers.Dense() and called feature_features. The 

number of neurons and the activation function are specified like its attributes in this way: 

feature_features = layers.Dense(20, activation="tanh"). The number of neurons is 20 



and the activation function is tanh. The input of the layer is specified successively to the 

layer attributes inside round brackets. In the case of the first layer, the input is 

feature_input. Then the output of the first layer is concatenated to the dk_input with the 

command layers.concatenate and is called x: x = layers.concatenate([feature_features, 

dk_input]). The second layer has the same attributes of the first and its input is the 

vector x.  Eventually the exit layer is created with the command layers.Dense too and 

called priority_pred. The number of neurons is 1 and the activation function is tanh. The 

input of this last layer is the output of the previous layer, called x again. Here is the 

structure. 

 

#Input 

feature_input = keras.Input(shape=(240,), name="features") 

dk_input = keras.Input(shape=(1,), name="dock")   

 

#Layer 1  

feature_features = layers.Dense(20, activation="tanh")(feature_input) 

 

#Additional feature 

x = layers.concatenate([feature_features, dk_input])  

 

#Layers 2  

x = layers.Dense(20, activation="tanh")(x) 

priority_pred = layers.Dense(1, activation="tanh", name="priority")(x). 

 

The model just built is created with command keras.Model(). The network is called 

NNbypass. Inside this command the inputs and the outputs of the model must be 

specified as attributes. In our case:  

NNbypass = keras.Model(inputs=[feature_input, dk_input], outputs=priority_pred). 

 

Network pre-training  

Whatever is the model created, it is configured for the pre-training with the command 

compile(). This command expects some attributes which enable the configuration of 



some training settings. In the case of MLP scoring function the attributes specified are 

the following: (loss='mean_squared_error', optimizer='adam') 

loss indicated the loss function. It is the value minimized by the model. In our model we 

choose the mean squared error. It is calculated between the real and the predicted 

value.  

optimizer indicates the optimization algorithm. (It permits us to find the weight values for 

which the cost function is minimized). Adam optimization is a stochastic gradient 

descent method that is based on adaptive estimation of first-order and second-order 

moments. 

The pre-training starts a built-in training loop (the fit() method). The function fit() 

receives the following attributes.  

 The input and the target data for the training.  

They are the training pool previously created. 

 The number of epochs.  

The quantity used in this study is 1500 (epochs = 1500). The total number of 

1500 epochs is reached only if the early-stop criterion is never realized before. 

 The batch size.  

It is the number of samples per gradient update. In the case synthetic data are 

used, like in the pre-training phase, analyzed here, the batch size is 200 

(batch_size = 200). 

 The callbacks.  

It is a list of callbacks to apply during training. In this case the previously 

presented callbacks, called callback, are applied. They are just used for the early 

stopping option application (callbacks=[callback]). 

 The validation data.  

The validation set in terms of input and target data are indicated. This set is used 

to apply the early-stop criterion. In this case the validation pool previously 

created is furnished (validation_data=(x_val, y_val)). 

 

End of pre-training phase  

Once the pre-training phase ends, either because the early-stop criterion is reached or 

because the total number of epochs are performed, the final training can start. The final 



network in the cases presented in this study, is built with the Sequential model. A name 

is chosen for the network. The structure is created, like described before, with the add() 

method. In case D, E and G, 2 dense layers of 20 neurons are added. In case F, 4 

dense layers of 40 neurons plus 1 of 10 neurons are added. The attributes of each layer 

are the same used in the pre-training phase. The activation function used is the 

hyperbolic tangent and the exit regularization is 0.000001. The first layer has the input 

dimension as a further attribute and the exit layer does not have the activation function 

attribute. Only a further attribute is used in case F. In fact, in this case the weights 

obtained by the pre-training in the first 4 layers are copied and kept locked in the final 

training. For this reason, in the final network, the first 4 layers have the additional 

attribute of being not trainable (trainable=False). The weights of the first 4 layers are 

copied from the ones obtained in the pre-train phase. Then they are set up in the first 4 

layers of the final network. The commands used to do it are set_weights() and 

get_weights(). They are applied to respective layers using the index notation. 

 

FINAL TRAINING 

Training and testing pool 

In the final training the database is divided into training and testing sets. The validation 

set is usually not present because the training completes all the epochs specified in the 

fit() function. We are not using EarlyStopping() in the final training In each epoch the 

performance parameters are recorded. In this way, the trend of the performance 

parameters is recorded along the entire training process. In the final training the 

experimental data are used. The testing data are 300. The remaining data are used as 

the training set. 

 

Neural network structure 

As already specified, the network used in the final training is built with the Sequential 

model in the way previously described also for case A, B and C. In case A, B and C, 1, 

2 and 3 dense layers of 20 neurons are added respectively. In the remaining cases the 

network structure used is previously specified. 

 

Network final training 

The final training starts with the use of the function compile() applied to the final 

network. Like in the pre-training phase, the loss function and the optimizer is specified. 



They are the same used in the pre-training phase. Then the function fit() is applied to 

the final network, as in the pre-training phase. In this case, the input and the target data, 

for the training, are experimental data. The quantity of data used is previously specified. 

The batch size in this case is 50. The rest of the attributes are identical to the ones used 

in the pre-training corresponding phase. The entire number of epochs specified in the 

attributes of the fit() function is completed in the final training and the performance 

parameters for each epoch are recorded, as already said. In this way the maximum of 

the performance parameters used are certainly recorded. In fact, the best performing 

MLP scoring function, on test data, is always obtained before the 1500th epoch. On the 

other hand, if the early-stop function is used, the training process is more efficient, but 

sometimes it can stop the training before the best performance of the function is 

reached. 

 

Target data prediction 

The prediction of the target data is done using the function predict() applied to the 

testing input data in the final network. Usually, in addition to the testing data, the 

prediction is applied also to the training input data to verify the effectiveness of the 

training process. 

 

Network performance parameters 

Once the prediction vector is created, the performance parameters for evaluating the 

scoring function created, are calculated. In our study, as already specified, the 

performance parameters taken into account are: 𝑅𝑝 on the train set, 𝑅𝑝 on the test set, 

𝑅2 on the train set, 𝑅2 on the test set, Mean Absolute Error (𝑀𝐴𝐸) on the test set, and 

mean squared error (𝑀𝑆𝐸) on the test set. The mathematical meaning and properties of 

these parameters are already treated. In the code, the parameters are evaluated using 

the following expression:  

 

𝑅2 in the train set (Rsqtrain): 

msqetrain = mean_squared_error(enmytrain, y_pred_train) 

vartrain = np.var(enmytrain,ddof=1) 

Rsqtrain = 1-msqetrain/vartrain 

enmytrain is the real target vector for the train set. 



y_pred_train is the predicted target vector for the train set. 

The function mean_squared_error() belongs to the sklearn.metrics. It calculates the 

mean squared error between 2 vectors using the mathematical expression already 

reported in the text. 

The function np.var() computes the variance along the vector enmytrain. ddof indicates 

the “Delta Degrees of Freedom”. The divisor in the mean calculation is the total number 

of elements of the array minus the ddof. In standard statistical practice, ddof=1 provides 

an unbiased estimator of the variance of a hypothetical infinite population. 

 

𝑅2 in the test set (Rsqtest): 

msqetest = mean_squared_error(enmytest, y_pred_test) 

vartest = np.var(enmytestEXP,ddof=1) 

Rsqtest = 1-msqetest/vartest 

enmytest is the real target vector for the test set. 

y_pred_test is the predicted target vector for the test set. 

The procedure is analog to the calculation of the R^2 in the train set. 

 

Pearson Correlation Coefficient in the training set (𝑅𝑝): 

𝑅𝑝 = pearsonr(enmytrain, y_pred_train) 

The function pearsonr() is a function of the module scipy.stats which calculates the 

Pearson Correlation Coefficient between 2 vectors automatically according to the 

mathematical expression already reported in the text. This module contains a large 

number of probability distributions, summary and frequency statistics, correlation 

functions and statistical tests. 

 

Pearson Correlation Coefficient in the test set (𝑅𝑝): 

𝑅𝑝 = pearsonr(enmytest, y_pred_test). 

 

Mean absolute error in the test set (𝑀𝐴𝐸): 

maetest = mean_absolute_error(enmytest, y_pred_test) 

The function mean_absolute_error() belongs to the sklearn.metrics. It calculates the 

mean absolute error between 2 vectors using the mathematical expression already 

reported in the text. 



 

Mean squared error in the test set (𝑀𝑆𝐸): 

msqetest = mean_squared_error(enmytest, y_pred_test). 

 

All the performance parameters calculated after each epoch are recorded in a list, till 

the training is ended at the 1500th epoch. The performance parameters are recorded as 

a row-element of a list. The row-elements are recorded using the command append(). 

Because of this they are recorded sequentially, from the first to the last element. Each 

row-element contains six elements which correspond to the 6 performance parameters 

just described. At the end of the training process the list is transformed into a numpy 

array (np.array()) in order to better manage the file and its values. The training 

procedure ends with the save of the array obtained in which the performance of the 

function created is reported. Then the maximum or the minimum, as needed, can be 

calculated for each parameter, using the function np.amax() or np.amin(). 

 

4.3 Test set choice 

To guarantee reliable results in the MLP scoring function performance test, it is 

important to choose a method that guarantees equal conditions for each test. In this 

paragraph we present the way used in this study to measure the performance. 

The performance of the MLP scoring function is measured on the test set. This latter is 

a subset of the database not used for the training and validation operations. As already 

presented, the database, in particular the synthetic one, is created considering 

sequentially complexes coming protein by protein. Choosing an interval of the database, 

especially for the horizontal test, means performing a test that is not reliable. In fact, the 

chosen subset can contain complexes derived by a single protein or few proteins, 

possibly never seen in the training. In this case a horizontal test can become a vertical 

test. Another possible case is that the MLP scoring function can predict very well the 

complexes deriving by some specific proteins and in the test set are selected 

complexes deriving by these proteins. The presented cases produce unreliable 

performance results. In order to avoid these situations the permutations of the training 

matrix and target vectors is performed, as previously described, before subdividing the 



database into the subsets. The use of the permutation for the database cannot prevent 

all performance measurement mistakes. In fact, if  a single test is used to measure the 

performance of MLP scoring function, even if the database is permuted, it can 

encounter particular favorable or unfavorable conditions. These conditions are simply 

due to the subdivision encountered in the subsets creation. In order to avoid this 

situation, in this study, for each performance parameter, we consider the mean value on 

10 different tests. A different test corresponds to a different permutations of the 

database. In addition to the mean performance value, also the standard error is 

calculated for each parameter according to the following expression: 

𝑆𝑇𝐷. 𝐸𝑅𝑅𝑂𝑅 =
𝜎(𝑅𝑝)

√10 − 1
, 

where 𝜎(𝑅𝑝) is the standard deviation of the 𝑅𝑝 calculated in the 10 different tests. 

 

  



5 MLP scoring function performance 

In this chapter we describe the performance of the scoring function created for this 

study, namely the MLP scoring function. The value of 𝑅𝑝 considered here is computed 

as the mean value on 10 different attempts. In fact, as discussed before, in each 

attempt a random permutation of the matrix and the corresponding target vector is 

applied before the training.  

 

5.1 Horizontal test  

In Figure 5.1 the performance of the MLP scoring function for a horizontal test is 

reported. We consider 3 different scoring functions, according to the database and the 

target values used to train the network. The test set is composed by 300 and 2000 

complexes, respectively, for experimental and synthetic data. These numbers represent 

the 12.5 % and the 7% of the corresponding databases. As discussed above, in the 

present study, two different scoring functions are analyzed, one trained on synthetic and 

one on experimental data. In particular, for synthetic data we consider two scoring 

functions, one for predicting the binding affinity and one for predicting the docking score. 

The function used to forecast the docking score is used to check the goodness of the 

model proposed by this study in terms of complex descriptive model and training 

procedure. In this last case, a maximum of 𝑅𝑝  0.85 is reached. According to the 

correlation ranges described in Chapter 1, it means that a strong correlation occurs 

between real and predicted scores. This is a proof that the model used in this study is 

reliable. The descriptors used are sufficiently complete to guarantee, at least, the 

performance of a classic scoring function, such as GOLD (59). Generalizing, it seems 

that the scoring power of commercial scoring functions can be easily emulated by 

machine learning scoring functions, but this is another subject that will not be treated in 

this study.  

In the case of the MLP scoring function built with experimental data, we obtain 𝑅𝑝 = 

0.55 in the horizontal test. In this case, only a moderate correlation is obtained between 

real and predicted ligand-protein affinity. In fact, this type of correlation occurs when the 

𝑅𝑝  is in the interval between 0.3 and 0.7. Also when the synthetic data are used a 



moderate correlation is present, in fact we obtain  𝑅𝑝  0.60. The performance of MLP 

scoring function is similar to the one of other machine learning scoring function, as 

presented at the beginning of this study. The MLP scoring function created using 

synthetic data can reach higher performance than the one with experimental data. Even 

if the synthetic data are about one order of magnitude more numerous with respect to 

experimental data, and this is an important factor when you use deep learning, they 

have less reliable3D structure in the binding site. The descriptive model used in this 

research, as already presented, is based on the 3D molecular structure. For this reason, 

the result can be surprising. However, we consider the hypothesis that a machine 

learning scoring function is able to recognize similar proteins instead of complex binding 

proprieties, as discussed by Jincai Yang et al (118). In this case, it is easier to find 

similar proteins in a pool where the variance of the proteins is sensibly inferior. This 

happens in the synthetic database, which has a smaller variance than the experimental 

database. In fact, the MLP scoring function, in the case of synthetic data, receives a 

train on 17 proteins complexes. Indeed, each group is composed of a number of 

complexes almost of the same order of magnitude of the entire experimental database. 

In the case of experimental data, the proteins taken into account are sensibly more 

numerous, considering that each protein is present in about ten complexes. For this 

reason, the difference between the 𝑅𝑝 obtained with experimental and synthetic data is 

not surprising. It confirms the theory that a machine learning scoring function learns to 

recognize the proteins and not the molecular binding mechanisms.  

The gradient of the curves of experimental and synthetic data as a function of the 

training set size are different, as one can see in Figure 5.1. There, the 𝑅𝑝 on the y axis 

is plotted as a function to the training set size on the horizontal axis.  This could be 

explained with the argumentations presented before. The experimental data have a big 

variance in its domain. Because of this, when you train the network on a small train set, 

it is probable that train and test set have a small overlap in terms of protein types. As 

already discussed, similar complexes present contemporary in train and test set 

increase the performance of the scoring function in terms of 𝑅𝑝. Increasing the train set 

dimension, the overlap phenomenon increases and consequently the 𝑅𝑝 score 

improves.  

 



5.1.1 How the percentage of database used in training influenced 

the horizontal test 

In Figure 5.2, we plot 𝑅𝑝 reached by the MLP scoring function as a function of the 

percentage of the training set compared to the whole database. Differently from the 

previous figure, the behaviors of the functions built with the different types of data are 

similar in terms of slopes. In addition, the qualitative behavior is reasonably well 

approximated by a straight line.  

As a consequence of all the observations proposed, it is clear that what matters in the 

𝑅𝑝 increase for a machine learning scoring function, whether built with experimental or 

synthetic data, is the percentage of the entire database on which the network is trained 

and not the binding site refinement.  

The maximum 𝑅𝑝 obtained in a scoring function horizontal test prediction is influenced 

by the overlap of proteins present in train and test sets. Generalizing, the similarity 

between complexes in train and test set increases performance measurement in 

horizontal test. Considering Figure 5.2, one understands that the higher the overlap is, 

the larger the vertical shift of the straight line is. 

This is a confirmation of Jincai Yang et al (118) thesis. They sustain that a machine 

learning scoring functions learn to recognize the different proteins and not the complex 

bounding features. Moreover, similar databases used in train and test are a doping 

factor in the 𝑅𝑝  measurement. 

 

 

 

 



 

Figure 5.1. MLP scoring function performance for trainset dimension on horizontal test using the 

three different databases for relative training and test 

 

 
 

 

Figure 5.2. MLP scoring function performance as a function of the trainset percentage with 

respect to the complete database on horizontal test. The database used are the experimental and 

synthetic one. The target value considered is the ligand-protein affinity. 



 

5.2 Vertical test  

In order to verify the real performance of the MLP scoring function, we perform more 

stringent tests, which can describe a real-case scenario. In particular in chemical and 

pharmacological laboratories, the typical challenge is to predict the affinity between a 

protein, which was never  addressed before, and some ligands.  

 

With these premises, a horizontal test does not describe the situation well, because the 

machine learning scoring function is tested on complexes similar to others already seen. 

In particular, the protein in your test is already experimentally measured in the reactions 

with many other ligands. A vertical test is the one we are looking for in this scenario. In 

fact, in a vertical test, the network is trained on complexes deriving by some specific 

proteins. The consequent test is performed on a pool of data which are not deriving 

from  any protein present in the train set. This is the vertical test. In Figure 5.3 it is 

possible to observe that a vertical test, using the MLP scoring function trained on 

synthetic data, produces a performance in terms of 𝑅𝑝  sensibly inferior to the one 

measured in the horizontal test. In addition, a constant value of 𝑅𝑝  is measured when 

the dimension of the training pool is increased. In the case described here, the test set 

is composed of 2068 complexes made from 4 different proteins. The protein considered 

in this test are: FAAH, PIM2, ACE, and MCL1. Each protein counts, respectively, 508, 

384, 488, and 688 complexes. The complexes of these specific proteins are chosen 

because they are the less numerous pools among the ones present in our database. 

The intention is to maximize the variety of proteins, minimizing the dimension of the test 

set. The remaining database is used for training the scoring function. The training set 

contain complexes deriving from the 13 proteins not used in the test set. For this test, 

the data considered are synthetic, because of the possibility of easily dividing the 

training and test set among different protein pools. 

 

The results obtained by MLP scoring function in a vertical test, even if sensibly lower 

than the one in the horizontal test, still show a moderate positive correlation. The result 

is better than the one obtained by Wójcikowski et al (98), which is the other team that 

performs a similar test. They obtain 𝑅𝑝  = 0.2. 



It is important to notice that the scoring power of the function measured in term of 𝑅𝑝  do 

not increase with the train set size. This confirms the thesis, already presented, that 

machine learning scoring function have good performance if the affinity prediction is 

made for complexes similar to the ones used in the training phase. In fact, in a vertical 

test, by definition, similar complexes deriving from the same proteins are not 

contemporary present both in train and test set. A machine learning scoring function 

develops the ability to recognize similar complexes in terms of proteins or ligands. 

When the affinity prediction is done on complexes totally different from the ones used in 

the training, the result is degraded. 

 

 

Figure 5.3 MLP scoring function performance for trainset size on vertical test. The database used 

is the synthetic one. The target value considered is the ligand-protein affinity. 

 

5.3 Per-target vertical test 

In Figure 5.4 another type of vertical test is performed, namely, what we refer to as the 

per-protein vertical test. The MLP scoring function is trained on the entire database 



except the complexes deriving by one protein. These are used as test set. Using this 

type of test a typical scenario of a new medicine discovery, where by the target is 

previously selected, but never studied before, is described. In this plot, the protein 

names reported in the abscissa are the protein complexes used as test set. The train 

set is the remaining database excluding the complexes of the test set. The dimension of 

the test set and, consequently, of the train set, varies depending on which protein 

complexes are considered. As in the previous case, the data considered are synthetic.  

The performance of the function is similar to the one described in Figure 5.4, providing a 

confirmation of the argument presented above. In fact, the mean 𝑅𝑝  is degraded  with 

respect to the horizontal test. Considering each protein vertical test, an average 

behavior describes a very moderate correlation between the data predicted and the real 

one (𝑅𝑝 = 0.35). The exception is made by the complexes of the proteins JAK1 and 

JAK2. Indeed, their affinities are predicted in a way that guarantees an almost strong 

correlation with real data. The explanation can be found in the high sensibility to the 

ligand molecular weight of these two proteins. Most part of the scoring functions are 

sensible to the molecular weight. It means that a scoring function tends to predict a 

higher affinity with the increase of the weight of the ligand. In fact, this trend can be 

really observed. However, it is normally verified only for a restricted range of values and 

it is not a rigorous law. The MLP scoring function can learn this simple trend and just 

apply it in the case of proteins JAK1 and JAK2, as shown in Figure 5.4. In fact, in the 

case of these proteins, the bounding task is large and the just described simple 

approximation,  has a higher range of validity. This is the reason why the sensibility to 

the molecular weight of JAK1 and JAK2 is higher.    

 



 

Figure 5.4 MLP scoring function performance on per target vertical test. The database used is the 

synthetic one. The target value is the ligand-protein affinity. 

 

5.4  Performance comparison 

The results obtained from the vertical and per-target vertical test confirm that the use of 

a machine learning scoring function, which guarantees good performances in horizontal 

test at the point that the correlation between real and predicted data is moderately 

strong, seems to be mildly useful in chemical and pharmacological applications. The 

reason is that chemical and pharmacological typical scoring functions applications 

contexts are reproduced by the vertical tests. In this scenario, the use of machine 

learning scoring function shows a degraded performance with respect to the results 

obtained by the same in a horizontal test. In the case of MPL scoring function the 𝑅𝑝  

score decreases by at least 0.2. The correlation between real and predicted data, 

reached by the machine learning scoring function downgrades from moderate strong to 

moderately weak or weak. The degradation of performances is confirmed by further 

studies on the subject (118) (98) (103). 

  



6 A possible solution: per-target 

scoring function 

The intention of making a step forward in terms of machine learning scoring function 

leads us to explore the field of per-target scoring functions.  

There are some factors that push the team toward the idea that the creation of 

individual scoring function for each target can be a suitable solution in the field of 

scoring function based of machine learning techniques. One factor is the difference 

measured among the 𝑅𝑝 in each protein, in the per-target vertical test. The other factor 

is the awareness that a single scoring function can perform well or not depending on the 

target protein considered, as already emerged by the study of classic scoring functions.  

Besides, the following reasons encourage us in developing all the potential of synthetic 

data: the easiness in creating synthetic data; the large quantity of synthetic available 

data; the performance of the MLP scoring function obtained using synthetic data. A 

machine learning per-target scoring function is a scoring function created using a neural 

network for which the training and testing data come from an individual target. This 

solution can be effective because it avoids the machine learning scoring functions 

tendency of learning to recognize similar proteins when the training is performed in a 

database with many different of them. For this reason, the machine learning per-target 

scoring function strengthens the function capability of learning the propriety of the 

complex binding mechanism. 

The neural network used in this study is a multilayer perceptron, as for the MLP scoring 

function considered above. This scoring function is called MLP per-target scoring 

function, where the word "target" is substituted by the target considered. In the cases 

shown in Figure 6.1, all the per-target scoring functions use a network structure of 2x20 

except for the one created for protein D2. In fact, these protein pools have a number of 

data that vary from 1200, for protein JAK2, to 3000, for protein A2A. The dimension of 

the datasets is close to the one of the experimental data. Therefore the structure 2x20 is 

used. The MLP per-D2 scoring function uses a 3x20 structure considering the number 

of data available for this protein is 6500.  

The data used to train the function, as anticipated, are synthetic. The molecular 

structure is created by the docking software MOE (54) starting from the original 3D 

structures of the protein and the ligand. The ligand-protein affinity is experimentally 



measured. The process of measuring it is simpler and quicker than a crystallographic 

radiography measurement of the 3D complex structure. In addition, the real ligand-

protein affinity is available in shared databases for a very larger number of complexes 

with respect to the quantity of available experimental crystallographic structures. 

The MLP per-target scoring functions reported in Figure 6.1 use a test set of 300 data. 

The choice of the 6 proteins considered in the ensemble of 17 available is simply due to 

the fact that they are the more numerous pools deriving from a single protein. The plot 

of 𝑅𝑝  for the MLP per-D2 scoring function is not completely visible in Figure 6.1. The 

reason is that it has a larger database with respect to the others. The final 𝑅𝑝  obtained 

for a training set of 6200 data is 𝑅𝑝= 0.41. As it is possible to observe in Figure 6.1, the 

performances, in terms of 𝑅𝑝 , of the MLP per-target scoring functions considered, are 

all better than the MLP scoring function in a vertical test and in the corresponding per-

protein vertical tests. This is noticeable by  making comparison with the performances 

shown in Figure 5.3 and 5.4. 

 

 

Figure 6.1. MLP per-target scoring function performance as a function of the training set size 

considering different proteins. The database used is the synthetic one. The target value 

considered is the ligand-protein affinity. 



 

6.1 Comparison among different types of scoring 

functions on the same test set 

In Figure 6.2, one can see a homogeneous comparison between scoring functions. In 

fact, here the employed  test set, in terms of size and in terms of target used  for the 

complexes, is the same for each group of functions: the MLP per-target scoring 

function, the MLP scoring function in a per-protein vertical test and a simple molecular 

weight scoring function. A molecular weight scoring function, as previously described,  

is a simple linear fit of the ligand-protein affinity as a function of the ligand molecular 

weight, using a least-squares regression. Two data pools are considered as test set, 

one composed by protein OX2 complexes and the other by protein JAK2 complexes. In 

both cases the comparison shows better performance of the per-target scoring function. 

The 𝑅𝑝  trend in the horizontal test is reported as a function of train set dimension, for 

the MLP scoring function created using experimental and synthetic data. As already 

said, the horizontal test presents an overestimation of the scoring function performance. 

However, the MLP per-target scoring function in the case of OX2 and JAK2 is similar or 

better in terms of 𝑅𝑝  score than the performance of MLP scoring function in the 

horizontal test.  

As a further consideration, all the per-target scoring functions show an 𝑅𝑝  score 

increasing with the train set dimension. It seems that this increasing trend would be 

maintained if the database was increased even further. This suggests that the 

performance of the per-target scoring function can improve with larger databases. 

 



 

Figure 6.2 Comparison among the MLP per-target scoring function, the MLP scoring function in a 

per-protein vertical test, and a simple molecular weight scoring function The Pearson  correlation 

coefficient 𝑹𝒑is plotted as a function of the training set size (x axes).  The test set used in the 

comparison is homogeneous in terms of size and in terms of target.  The considered target value 

is the ligand-protein. The horizontal line represents the mean Pearson  correlation coefficient 

𝑹𝒑obtained by the MLP scoring function in the per-target vertical test.  



7 Conclusions 

 

7.1 Research summary 

As initially specified, the objective of the present study is to verify the real efficiency and 

the effective performances of the recently developed machine learning scoring 

functions. Here we investigated the circumstances in which a machine learning scoring 

function produces overestimated performances and why this happens. As a possible 

solution we proposed a tests protocol to be followed in order to guarantee a real 

performance description of machine learning scoring functions. Eventually  an effective 

and innovative solution in the field of machine learning scoring functions was proposed.  

In order to reach the aims of this research we moved toward the target through many 

steps. We collected experimental and synthetic 3D ligand-protein structures and we 

adjusted and corrected them in order to be suitable for training a machine learning 

scoring function. We studied different types of training protocols and network structures 

in order to increase as much as possible the scoring power of our scoring function. We 

proposed different types of data representation and we conducted an in-depth study on 

which is the most effective descriptive model to extract information from the data. We 

considered various types of possible tests to measure the performances of a machine 

learning scoring function, including, in particular, horizontal and vertical tests. We tried 

to give a clear picture of them related to the test type performed and to the possible real 

scenario reproduced with the particular test type. In addition we correlated the 

performances to the ones of types of scoring function previously developed in the field 

(both classic and machine learning)     

 

7.2 Conclusions 

The present research confirms that optimal results can be obtained in ligand-protein 

affinity prediction if horizontal tests are performed with machine learning scoring 

function, as previous studies have already suggested (96) (100) (103) (102) (98). The 



correlation between predicted and real data is moderately strong to strong in all the 

scoring function presented in this thesis. As reported in previous studies (96) (100) 

(102) (101) (98), classic scoring functions reach lower level of correlation than those. 

However, horizontal tests describe a particular utilizing case of a scoring function and 

are not indicative of its general performance. Indeed, a horizontal test puts a machine 

learning scoring function in a favorable situation respect to its effective capability of 

predicting binding affinity. In fact, as already discussed (118), machine learning scoring 

functions are able to distinguish different proteins if they undergo a training with a 

dataset including the same proteins used in test set. We confirm that machine learning 

scoring function learn to recognize similar proteins and their performance can depend 

on the percentage of database seen in the training phase, if the same proteins are 

present in the test set too. In particular, fixing the size of the database, the higher is the 

variance of the proteins in the database, the lower the performance of the machine 

learning scoring function is, if a horizontal test is performed. According to this 

observation, the comparison between classic scoring functions and machine learning 

scoring function using a horizontal test is not appropriate. 

In addition, in the field of chemistry and pharmacy, the typical use of a scoring function 

is to help the discovery of active ligands for protein not yet studied, or for which a poor 

quantity of data is present. This scenario is described by a vertical test. 

In this type of test, the MLP scoring function shows a degradation of performance in 

terms of 𝑅𝑝  of 0.2. The performance degradation is confirmed also by other researchers 

who performed this type of test (98),  or tests where the similarity between complexes 

present in train and test is avoided (100) (101). Also Jincai Yang et al (118) highlighted 

this situation in their research. Considering a vertical test, as underlined by Jose 

Jimenez et al. study (103), the degradation of the machine learning scoring power 

closes the gap between machine learning scoring functions performances  and classic 

ones. Even the simple molecular weight scoring functions can guarantee a correlation 

between real and predicted data comparable to machine learning scoring function in this 

situation. 

Because of this the performance of new machine learning scoring function should 

always be described by both horizontal and vertical tests. Only the contemporary 

presence of these tests can provide an exhaustive picture of the performance of the 

function. In the vertical test the training of the machine learning scoring function should 

be done on complexes different from the ones used for testing. To clearly establish what 



avoiding similar complexes in train and test set means, the instruction of our study is to 

avoid the presence of same proteins contemporarily in test and train set. This is an 

objective and recognizable indication. 

 

Eventually, the innovative solution proposed by this study in the field of machine 

learning scoring function is the use of machine learning per-target scoring function. This 

type of function requires (if not present yet)  a small amount of previous work for 

experimentally measuring ligand-protein affinity for thousands of complexes of the 

interested protein. The data are used as training set in the recursive scheme presented 

with MPL per-protein scoring function. In the end, one obtains a scoring function which 

is expected to be more  reliable and to guarantee at least a moderate correlation 

between real and predicted data. As presented, a similar level of performance is not 

guaranteed in vertical test by all the functions who performed it. To verify exactly the 

scoring power of a per-target scoring function, one can always use the small database 

created for training it, letting a small portion of data to test the function. In this way one 

achieves the awareness that the performance obtained are realistic or underestimated, 

if you own more data to increase your training database. In fact, one of the most 

interesting aspect of the machine learning per-target scoring function is the data used to 

create it. Synthetic data are used. This type of data are relative fast to be produced. In 

fact the complex structure is created using popular docking software and only the 

ligand-protein affinity is experimental measured. This is a relative fast procedure. For 

sure it is very quicker than producing a complete experimental data for which a 3D 

crystallography is necessary. This is why many more synthetic data are now available 

with respect to experimental data. The easiness in collecting synthetic data permits the 

availability of large synthetic database in which are more probable to find interesting 

target. On the other hand the per-target scoring function demonstrate to have 

improvable performance if larger database would be used, as the performance plot 

maintain a positive and constant gradient. Eventually the per-target scoring functions 

are now able to guarantee at least a moderate correlation between real and predicted 

data also with target of interest and this level of performance can be increased using 

larger database. Moreover, a per-target scoring function can be easily created also with 

descriptive models and neural network types presented by previous studies on the 

subject, just modifying the data used for training the machine learning scoring function. 
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