

UNIVERSITA’ DEGLI STUDI DI CAMERINO

School of Advanced Studies

DOCTORATE COURSE IN

“Physics”

XXXIV Cycle

TITLE OF THE THESIS:

“Ligand-Protein Binding Affinity Prediction Using

Machine Learning Scoring Functions”

 PhD Student Supervisor

Ing. Francesco Pellicani Prof. Sebastiano Pilati

 Co-supervisor

 Prof. Diego Dal Ben

Index

Introduction .. 5

1 Machine Learning ... 10

1.1 Artificial intelligence and machine learning ... 10

1.1.1 Artificial Intelligence ... 10

1.1.2 Machine learning .. 12

1.2 Artificial neural network description .. 16

1.3 Neural network training method .. 22

1.3.1 Gradient descent .. 24

1.3.2 Gradients computation in artificial neural networks: backpropagation algorithm

 .. 26

1.3.3 Overfitting and underfitting ... 28

1.3.4 Stopping criterion ... 32

1.4 Neural network training strengthening: transfer learning 32

1.5 Neural network performance descriptors .. 33

2 Database .. 36

2.1 Database description .. 36

2.1.1 Proteins .. 38

2.1.2 Ligand .. 43

2.1.3 Ligand-protein complex .. 44

2.1.4 Ligand-protein complex structure ... 44

2.1.5 Ligand-protein complex affinity and docking score... 46

2.2 Experimental data .. 48

2.2.1 Experimental data preparation ... 49

2.3 Synthetic data... 50

2.3.1 Synthetic data preparation ... 51

2.4 Data distribution ... 53

2.5 Database creation result .. 60

3 State of the art .. 63

3.1 Machine learning scoring function .. 63

3.2 Database .. 71

3.3 Test types ... 74

3.4 Performance doping factor ... 84

4 MLP Scoring function ... 85

4.1 Ligand-protein complex descriptive model ... 85

4.1.1 Database normalization ... 87

4.1.2 Database construction: code analysis .. 89

4.2 MLP scoring function neural network and training protocol choice 97

4.2.1 MLP scoring function: code analysis .. 101

Training matrix and target vectors loading .. 101

Superfluous features elimination ... 102

4.3 Test set choice ... 111

5 MLP scoring function performance ... 113

5.1 Horizontal test .. 113

5.1.1 How the percentage of database used in training influenced the horizontal test

 .. 115

5.2 Vertical test... 117

5.3 Per-target vertical test .. 118

5.4 Performance comparison .. 120

6 A possible solution: per-target scoring function .. 121

6.1 Comparison among different types of scoring functions on the same test set 123

7 Conclusions .. 125

7.1 Research summary .. 125

7.2 Conclusions .. 125

Acknowledgements ... 128

Bibliography ... 129

Introduction

Subject introduction

In recent years, artificial intelligence makes its appearance in extremely different fields

with promising results able to produce enormous steps forward in some circumstances.

In chemoinformatics the use of machine learning technique, in particular, allows the

scientific community to build apparently accurate scoring functions for computational

docking. These types of scoring functions can overperform classic ones, the type of

scoring functions used until now. However the comparison between classic and

machine learning scoring functions are based on particular tests which can favour these

latter, as highlighted by some studies. In particular the machine learning scoring

functions, per definition, must be trained on some data, passing to the model the

instances chosen to describe the complexes and the relative ligand-protein affinity. In

these conditions the scoring power of the machine learning scoring functions can be

evaluated on different dataset and the scoring functions performance recorded can be

different depending on it. In particular, datasets very similar to the one used for the

training phase of the machine learning scoring function can facilitate in reaching high

performance in the scoring power.

Project context

Due to their importance in drug discovery, the development of scoring functions have

been the focus of intense research endeavors for decades. They are fundamental

instruments for the first phase of new medicine or vaccine discovery. Normally the

period necessary to produce a new product of this type vary between 10 and 12 years.

The first phase is called drug discovery. It consists in a massive screening of small

molecules called ligand in order to discover what are the active ones. In principle the

affinity between a ligand and a protein can be measured experimentally in silico.

Actually, because of the large quantity of ligands considered, the screening is

performed using scoring functions. However the actual scoring functions are moderately

reliable and a further experimental test phase is necessary to accurate rank the active

ligands. For this reason the drug discovery phase last from 2 to 3 years which is about

the 20% of the entire period necessary to produce a new medicine or vaccine. A reliable

scoring function can drastically reduce the period necessary for drug discovery because

the experimental activity is not necessary.

In this period it is very easy to understand how important is reducing the time of

medicine or vaccine production. In fact, in an epidemic context, as the one we are

passing trough, the reduction of the time necessary to produce the COVID-Sars2

vaccine would have reduced the consequences of the Covid epidemic, first of all, the

victims.

The problem of knowing the ligand-protein status and consequently deriving the relative

affinity is extremely hard. In fact a close solution for the Schrödinger equations in most

cases is impossible. Finding a way to have a reliable estimate of ligand-protein affinity is

a challenging objective for the scientific community. Many studies are conducted on this

subject since the classic scoring functions appeared. Despite a very deep interesting in

the subject, both from industries, but also from authorities, in order to prevent risks due

to epidemic, the progress in the accuracy of classic scoring functions is still not

sufficient.

In recent years the incoming of artificial intelligence algorithms opens a new road to

create more reliable scoring functions. The interest on the subject has just started and

very few researchers are conducted on the topic. This work is one of these. Since the

work on the present study started, many other studies on this subject have started or

have been completed, attesting the increasing interest the topic. On the other hand, the

subject is far from being completely explored. In fact, artificial intelligence has a

fundamental element, necessary to be used to correctly work, a big database for

training the model. Shared databases was born decades ago, anyway, in recent years,

they are undergoing an intense development right for the incoming of artificial

intelligence in chemioinformatic. They are cause and consequence at the same time in

the increasing of artificial intelligence application. For this reason the potentiality of

artificial intelligence in the field is still unexplored and lot of work on machine learning

scoring function, but also in chemioinformatic in general, is necessary to be done. Right

for this reason each new study on the topic counts on more reliable and developed

database and can produce better and better results

Objectives

The objective of the present study is to verify the real efficiency and the effective

performances of the new born machine learning scoring functions. Our aim is to give an

answer to the scientific community about the doubts on the fact that the machine

learning scoring function can be or not the revolutionary road to be followed in the field

of chemioinformatic and drug discovery. In order to do this many tests are conducted

and a definitive test protocol to be executed to exhaustive validate a new machine

learning scoring function is proposed .

Here we investigate what are the circumstances in which a machine learning scoring

function produces overestimated performances and why it can happen. As a possible

solution we propose a tests protocol to be followed in order to guarantee a real

performance descriptions of machine learning scoring functions. Eventually an effective

and innovative solution in the field of machine learning scoring functions is proposed. It

consists in the use of per-target scoring functions which are machine learning scoring

functions created using complexes coming from a single protein and able to predict the

affinity of complexes which use that target. The data used to build the model are

synthetic and for this reason are easy to be created. The performances on the target

chosen are better than the ones obtained with basic model of scoring functions and

machine learning scoring functions trained on database composed by more than one

protein.

Thesis outline

The present work is composed of 7 chapters. The following topics are treated.

Chapter 1

In Chapter 1 an overview on artificial intelligence with particular reference to machine

learning and to the algorithms used in this study, is done.

Chapter 2

In Chapter 2 an overview on the subject selected to apply machine learning algorithms

is done. In particular proteins, ligands, relative complexes and, ligand-protein affinity are

described. Once the subject are introduced, the database used in the study are

presented. In particular experimental and synthetic data are presented with all their

properties.

Chapter 3

In Chapter 3 a detailed presentation of the studies conducted on applications of artificial

intelligence to chemioinformatic, with particular reference to machine learning scoring

function, is presented. In particular an excursus on more important studies is done, with

reference to the regression model used, the database used, and the results obtained.

Chapter 4

In Chapter 4 the scoring function built in this study, MLP scoring function, is presented.

Initially the descriptive model used to represent the ligand-protein complex is presented

and the relative code is described step by step. Then the regression model used for the

MLP scoring function is detailed presented with particular attention to the training

method and the network structure. The code used is described step by step.

Chapter 5

In Chapter 5 the MLP scoring function is tested on different types of test and the

performances obtained are discussed and compared. The tests performed are the

horizontal test, the vertical test and the per-target vertical test.

Chapter 6

In Chapter 6, considering the analysis made in the previous chapters, a possible

solution, effective in the field of machine learning scoring function, is proposed. The

solution is the per-target scoring function. The per-target scoring function is compared

to other machine learning and other types of scoring functions in different tests.

Chapter 7

In Chapter 7 the conclusion of this study are taken in terms of: confirmation of the

presence of bias conditions in a horizontal test; fairy test for performances evaluation of

machine learning scoring functions with respect to classic scoring functions; innovative

and effective solution in the field of scoring function.

Summary of research work and main findings

In order to pursue the objective specified, as preliminary operations, we create an

appropriate experimental and synthetic database; we design and test different training

protocols, network structure and complex descriptive model and verify the best; we

choose the most suitable types of test to verify the performances of the scoring

functions.

The study confirms that machine learning scoring functions perform excellently in

horizontal test. This test describes a particular utilizing case of a scoring function and

overestimate their general performance. The typical use of a scoring function in the field

of chemistry and pharmacy emerges to be described by a vertical test. In these

conditions the MLP scoring function, as other machine learning scoring functions,

shows such a degradation of performances that they become similar to the ones of

classic scoring functions. For this reason we propose that performance of new machine

learning scoring function should always be described by both horizontal and vertical

tests.

Eventually we introduce machine learning per-target scoring function. It guarantees

always higher performance with respect to the one of machine learning scoring function

in vertical test performed on the same test set. In addition it seems to have improvable

performance if larger training database would be used.

1 Machine Learning

In this chapter an overview on artificial intelligence is done and the theory on which the

study is based is presented.

1.1 Artificial intelligence and machine learning

1.1.1 Artificial Intelligence

Machine learning is a branch of artificial intelligence (AI) (1) (2) (3). Artificial intelligence

is a discipline which deals with the creation of machines able to imitate the capabilities

of human intelligence using different types of algorithms (4) (5). Going into details of

artificial intelligence definition, it can be classified as the discipline which develops

algorithms that allow the machines to produce intelligent activities at least in some

specific domains. Starting from this definition, and considering that the exact functioning

of the human brain is still partially unknown, it is clear that artificial intelligence is a very

vast and faceted research area. Nowadays this field of research is highly developed

because of the technological level reached in the computational calculation (6). The

hardware systems are very powerful and the size is reduced. The energetic losses are

low. In addition the capability of analyzing large databases of any type of data in very

short times encourages the development of artificial intelligence research.

The scientific community's interest for artificial intelligence starts decades ago (7). The

first project of artificial intelligence started in 1943 when two researchers, Warren

McCulloch and Walter Pitt, proposed to the scientific community the first artificial neuron

(8). In 1949 Donald Olding Hebb, a Canadian psychology, published a book in which

the connections between artificial neurons and the complex model of real brains are

analyzed in detail.

The first prototypes of functioning artificial neural networks appeared in the ‘50. These

prototypes are mathematical or informatics models developed to reproduce the real

functioning of human neurons and to solve problems in a similar way to a human mind.

The public interest increased thanks to the young Alan Turing, who still in 1950 tried to

explain how a computer can perform as a human brain.

The term “artificial intelligence” officially appeared for the first time thanks to the

mathematician John McCarthy in 1956. In this context the first programming languages

specific for artificial intelligence were launched in 1958 (Lisp) (9) and in 1973 (Prolog)

(10). From that moment the story of the artificial intelligence was swinging. It was

characterized by significant steps forward from the point of view of the physical and

mathematical models which became more and more complex in order to imitate some

human brain functionality. On the other hand, there was a sort of lack in the hardware

and neural network research.

The first model of artificial neural network appeared at the end of the ‘50. It was called

the perceptron. It was proposed in 1958 by the psychologist Frank Rosenblatt (11). It

was a network with an input layer and an output layer and a learning rule based on the

error back-propagation algorithm. The mathematical function modifies the weights of the

connections causing a difference between the effective output and the desired output.

Some experts identify in the Rosenblatt’s perceptron birth of the artificial intelligence.

In the following years the mathematicians Marvin Minsky and Seymour Papert

demonstrated the limits of the neural network proposed by Rosenblatt (12). In fact the

perceptron was able to recognize, after being trained, only linear separable functions. In

addition the calculation capability of a single perceptron was limited and the

performances were strongly dependent on the choices of the inputs and of the

algorithms used to modify the connection weights and, consequently, the outputs. The

two mathematicians Minsky and Papert guessed that more than a single layer of

perceptron in the artificial neural network can solve more complex problems. However,

in those years, the increasing computational resources required in the training of more

complex networks did not find an answer in the hardware development.

The first important turning point in hardware development arrived in the ‘90 with the

introduction of the graphics processing unit (GPU) in the global market. The GPU is

faster than the old central processing unit (CPU) and is able to support complex

processes. They operate at lower frequency and consume less energy with respect to

CPU (13).

In the last decade another important step forward was done with the development of

neuromorphic chip. This chip integrates data elaboration and data storage in a single

micro component in order to emulate the sensory and cognitive functions of the human

brain (14). This evolution was possible thanks to the acceleration of the research in the

field of nanotechnology.

Through this global evolving process, the artificial intelligence is living an extremely

strong development in the very recent years and it is applied in almost every sectors if it

is possible and useful.

Artificial intelligence can be subdivided in many areas according to the functionality

considered. The mean functionalities are understanding, reasoning, interacting and

learning. The understanding is the capability to recognize texts, images, voices,...

Examples of artificial intelligence applications are search engines (Google Search,...),

recommendation systems (offered by Netflix, Zalando, Amazon), driving internet traffic,

targeted advertising (Instagram, Facebook), virtual assistants (Cortana, Alexa),

autonomous vehicles (including drones and self-driving cars), automatic language

translation (Microsoft Translator, Google Translate), facial recognition (Apple's Face ID,

Microsoft's DeepFace), image labeling (used by Facebook, Apple's iPhoto, TikTok) and

spam filtering.

There are also thousands of successful artificial intelligence applications used to solve

problems for specific industries or institutions. A few examples are energy storage,

medical diagnosis, military logistics or supply chain management. Also game playing

counts numerous artificial intelligence applications.

The reasoning implies the capability of making logical deduction linking the collected

information. The interaction is the capability of relating with the external environment.

The learning is the capability of analyzing inputs and consequently producing outputs.

Machine learning (ML) is a fundamental concept of artificial intelligence research since

the interest on the subject began.

1.1.2 Machine learning

The first time the term “machine learning” was used was in 1959 by the scientist Arthur

Lee Samuel (15). He defines the machine learning as the:

“field of study that gives computers the ability to “learn” (e.g., progressively improve

performance on a specific task) with data, without being explicitly programmed.”

Today the definition most often adopted in the scientific community is the one proposed

by the American scientist Tom Michael Mitchell, director of the Machine Learning

department of Carnegie Mellon University (16):

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.”

In other words, machine learning allows the machine to learn from the experience. It

means that the particular performances of the machine improve after completing a task,

both if rightly or wrongly.

The machine learning algorithms use computational methods to learn information

directly from the data without using mathematical models or pre-determined equations.

The machine operates without a programming code which indicates what to do step by

step and for any occurrences. It uses only a set of data which are processed using

specified algorithms. Using this method, the machine develops a proper logic to perform

its task. The machine learning algorithms increase their performance in an adaptive

way, with the increase of the data in the database.

According to Arthur Samuel at the end of 1950, machine learning uses 2 types of

approaches: unsupervised machine learning and supervised machine learning. They

differ in the learning type. Actually there are some subsets of machine learning types

which allow a more detailed classification of machine learning categories (17) (18). In

particular we consider 3 types of machine learning:

 Unsupervised machine learning (19)

 Supervised machine learning (20)

 Reinforcement learning (21)

Reinforcement learning is concerned with how software agents ought to take actions in

an environment in a manner to maximize some notion of cumulative reward. In machine

learning, the environment is usually represented as a Markov decision process (MDP)

(22). Reinforcement learning algorithms are used when exact models are impraticable

because they do not assume knowledge of a precise MDP mathematical model.

Reinforcement learning algorithms are used in the game environment, when the aim is

to learn to play a game against an intelligent subject, or in autonomous vehicles.

In unsupervised machine learning we have data without labels/target-values.

The instances of the data are described by D-dimensional vectors.

{𝒙𝑖}𝑖=1
𝑁

The components of the vector, 𝑥𝑖, are the features which describe each datum. There is

a vector for each of the 𝑁 instances in the database

The aim of this method is to find a recurrent behaviour or a structure or some clusters in

the data. It is mostly used for applications like the ones described in the following.

 Principal Component Analysis (PCA) for dimensionality reduction (23).

This method is used for changing higher-dimensional data to a smaller space. For

example it is used to switch from 3D to 2D. The objective is to have a smaller dimension

of data (2D instead of 3D), while the information, inside them, is preserved.

 Clustering (24).

Cluster analysis is the subdivision of a set of data into subsets (called clusters). Data

within the same cluster are similar according to one or more pre-designed criteria, while

data from different clusters are dissimilar. Different clustering techniques make different

assumptions on the structure of the data and so can produce different subdivisions.

The clusterization is defined by some similarity metric. Then, it can be evaluated by

internal compactness or by the similarity between members of the same cluster or by

the differences between members of different clusters. One of the principal methods of

clustering is K-means. It creates a partition in which each datum belongs to the cluster

with the nearest mean (cluster center). The cluster center is considered the prototype of

the cluster. K-means clustering minimizes variances within the cluster (squared

Euclidean distances).

 Random forest (25).

Random Forest operates by constructing a multitude of decision trees at training time.

Decision tree learning is one of the predictive modeling approaches used in machine

learning. It uses a decision tree (as a predictive model) to go from observations about

an item (represented in the branches) to conclusions about the item target value

(represented in the leaves). A tree is built by splitting the source set, constituting the

root node of the tree into subsets, which constitute the successor children. The splitting

is based on a set of splitting rules based on classification features. This process is

repeated on each derived subset in a recursive manner called recursive partitioning.

Random Forest can be used as unsupervised machine learning, but also as supervised

machine learning. In this way it can be used as a dissimilarity measure in a set of data.

Often unsupervised learning is used also for singular value decomposition, self-

organized maps and a first step before supervised learning.

In supervised machine learning we have data that describe instances with a

label/target-values.

The following expression indicates the features vectors and the relative labels.

{(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑁

The components of the 𝒙𝑖 vectors are the features which describe each datum. The

labels 𝑦𝑖 are the target values of the data. Labels can have continuous values

(regression) or discrete values (classification), e.g., 0 or 1 (Figure 1.1). 𝑁 is the size of

the dataset.

Figure 1.1 Label types

The aim of this method is to identify a model which links the data to the label/target-

values. The model can reproduce those labels/target-values and can make new

predictions of the label/target-value for new instances given their descriptive data.

It is mostly used for applications like the following:

 Regression analysis (linear regression, polynomial regression, logistic

regression) (26).

Regression analysis encloses a large variety of statistical methods to estimate the

relationship between features (input) and their associated labels (output). In the linear

regression a line is used to best fit the given data according to a mathematical criterion

which for example can be the least squares. The polynomial regression is used when a

nonlinear problem is encountered. In this case a 𝑛 degree polynomial is used to fit the

given data. The logistic regression basically uses a logistic function to model a binary

dependent variable.

 Support Vector Machines (SVM) (27).

The Support Vector Machines training algorithm in most cases is a non-probabilistic,

binary, linear classifier. It builds a model able to classify the input data.

 Other applications of supervised machine learning are: k-nearest neighbours

(algorithm used in pattern recognition for the classification of objects based on

the characteristics of objects close to the one considered) and artificial neural

networks which is the one used in this study.

1.2 Artificial neural network description

Artificial Neural Networks (ANNs) are computing systems inspired by the neural

networks of human brains (28).

“Any function can be approximated by a sufficiently deep artificial neural network” K.-I.

Funahashi, Neural Networks 2, 183-192 (1989)

Originally the artificial neural networks were created to solve problems in the same way

that a human brain would. This system is trained on example data. The training allows

the system to learn to operate a specific function without having been programmed

specifically for this function. The artificial neural networks, as anticipated, are

structurally similar to a human brain. In fact they are composed of nodes, called artificial

neurons, which emulate the biological neurons. Each artificial neuron is connected with

the others and the information can be transmitted from one neuron to another. Once the

signal is received, each artificial neuron can process the signal before transmitting it to

the next. In fact in the human brain the synapses transmit information among the

neurons. The signal transmitted by each artificial neuron is a real number. The output of

each artificial neuron is a particular function of the inputs. The function used is called

activation functions. They can be non-linear functions. Some weights are used to

increase or decrease the strength of the signal at a connection. They are adjusted as

learning proceeds. Typically, artificial neurons are aggregated into layers. Different

layers may use different non-linear activation function on their inputs. Signals travel

from the first layer (the input layer) to the last layer (the output layer) through one or

more hidden layers. A neural network with a single hidden layer can approximate any

continuous, multi-input/multioutput function with arbitrary accuracy (G. Cybenko, 1989;

Kurt Hornik, 1991) However, the width of such networks might move to be exponentially

large. Consider a general artificial neural network:

Figure 1.2 Generic artificial neural network composed of one hidden layer

The artificial neural network represented in Figure 1.2 is composed of one hidden layer

plus the input and output layer. The network can be composed by any number of hidden

layers, its behaviour is the same of the one described hereafter. The artificial neural

network represented uses an input vector of 3 components. The number of neurons of

the hidden layer is 3. Also the input vector components and the number of neurons can

be varied, the relation among inputs and outputs are analogue.

𝒙 is the input vector. The instances 𝑥𝑖 are represented inside the blue circles. They

constitute the input layer. The neurons of the hidden layer are represented by the red

circles. The output layer is composed of 1 neuron. It is represented by the violet circle.

𝑎𝑖
(𝑗)

 is the activation function of neuron 𝑖 in layer 𝑗.

The output vector is �̂�. It depends on 𝑤 and 𝒙.

𝑤 is the matrix of weights. 𝑤(𝑗) is the matrix of weights from layer 𝑗 to layer 𝑗 + 1, 𝑤(𝑗) ∈

𝑅𝑠𝑗+1×(𝑠𝑗+1), where 𝑠𝑗 is the number of units (without bias) in layer 𝑗. So 𝑤(𝑗) =

[𝑤𝑛𝑚
(𝑗)
] 𝑛=0,𝑠𝑗+1
𝑚=0,𝑠𝑗+1

. 𝑤𝑛𝑚
(𝑗)

 is the weight between neuron 𝑚 at layer 𝑗 and neuron 𝑛 at layer

𝑗 + 1.

The terms with subscript 0 are the bias unit (𝑥0). In the case they are referred to the

hidden layer, the reference layer is indicated in the apex (𝑎0
(2)

) . The algorithmic bias is

used to prevent systematic and repeatable errors that create unfair outcomes, such as

privileging one arbitrary group of users over others. It is treated as an additional input to

the artificial neural network. It is standard pre-set to 1.

In this neural network, information moves in one direction, forward with respect to entry

nodes, through hidden nodes to exit nodes.

The outputs of layer 2 are:

𝑎1
(2) = ℎ(𝑤10

(1)𝑥0 + 𝑤11
(1)𝑥1 + 𝑤12

(1)𝑥2 + 𝑤13
(1)𝑥3) = (𝑤1

(1)𝑎(1))

𝑎2
(2) = ℎ(𝑤20

(1)𝑥0 + 𝑤21
(1)𝑥1 + 𝑤22

(1)𝑥2 + 𝑤23
(1)𝑥3) = (𝑤2

(1)𝑎(1))

𝑎3
(2) = ℎ(𝑤30

(1)𝑥0 + 𝑤31
(1)𝑥1 + 𝑤32

(1)𝑥2 + 𝑤33
(1)𝑥3) = (𝑤3

(1)𝑎(1))

Where 𝑎(𝑗)is the vector (𝑎1
(𝑗)
, 𝑎2
(𝑗)
, … , 𝑎𝑛

(𝑗)
) and 𝑎𝑖

(𝑗)
, which is the activation function of

neuron 𝑖 in layer 𝑗, is given by the scalar product between 𝑤𝑖
(𝑗−1)

𝑎(𝑗−1), ℎ is the function

chosen as activation function.

This notation can be also substituted by the vectorized notation, which means

evaluating ℎ(𝒙) on each element of 𝒙:

𝑎(2) = ℎ(𝑤(1)𝑎(1))

The outputs of layer 3, that is the final output, is:

�̂�(𝑤, 𝒙) = 𝑎1
3 = ℎ∗(𝑤10

(2)𝑎0
(2) + 𝑤11

(2)𝑎1
(2) + 𝑤12

(2)𝑎2
(2) + 𝑤13

(2)𝑎3
(2)) = ℎ∗(𝑤1

(2)𝑎(2)) ⇒ �̂�(𝑤, 𝒙)

= 𝑎(3) = ℎ∗(𝑤(2)𝑎(2))

Where h∗ is the activation function of the output unit (e.g, identity).

If we consider the simplest artificial neural network, reported hereafter (Figure 1.3), the

following output is obtained. The network is composed of one neuron (the output

neuron), represented by the orange circle. No hidden layers are present. The input

vector 𝒙 has 2 components: 𝑥1, 𝑥2. The output is �̂�.

�̂�(𝑤, 𝒙) = ℎ(𝑤10 + 𝑤11𝑥1 + 𝑤12𝑥2) = ℎ (∑𝑤1𝑖𝑥𝑖

2

𝑖=0

)

where ℎ indicate the activation function.

Figure 1.3 Simplest artificial neural network composed of a single neuron, the output neuron.

Input vector composed of two components

In a neural network an activation function defines how the weighted sum of the input is

transformed into an output from one or more nodes in a layer of the network. Activation

functions are a key part of neural network design (29). The activation function

choice has a large impact on the performance and capability of the neural network.

Different activation functions may be used in different parts of the model. Usually

artificial neural networks are designed to use the same activation function for all nodes

in a layer and typically all hidden layers use the same activation function. The output

layer can use a different activation function depending on the type of prediction

problem. Many different types of activation functions can be used in neural networks,

although only few functions are normally used in practice for hidden and output layers.

Hereafter the most important activation functions are reported (Figure 1.4).

Figure 1.4 The most important activation functions

The perceptron or Heaviside step function is calculated as follows:

𝐻(𝑥) = {
1, 𝑥 > 0
0, 𝑥 ≤ 0

.

It is a step function, the value of which is zero for negative arguments and one for

positive arguments. The value of the function in 0 varies depending on the function

definition. Some common choice can be that 𝐻(0) = 1,
1

2
, 0. The function takes any

real value as input.

The Sigmoid activation function is calculated as follows:

𝑆(𝑥) =
1

1 + 𝑒−𝑥
.

The function takes any real value as input and outputs values in the range 0 to 1. The

larger the input (more positive), the closer the output value will be to 1, whereas the

smaller the input (more negative), the closer the output will be to 0.

The Tanh (hyperbolic tangent) activation function is calculated as follows:

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
.

It is very similar to the Sigmoid activation function. The function takes any real value as

input and the outputs values are in the range -1 to 1. The larger the input (more

positive), the closer the output value will be to 1, whereas the smaller the input (more

negative), the closer the output will be to -1.

The rectified linear activation function, or ReLU activation function, is perhaps the most

common function used for hidden layers.

The ReLU function is calculated as follows:

𝑅(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

= 𝑚𝑎𝑥{0, 𝑥}.

This means that if the input value (𝑥) is negative, then a value 0 is returned, otherwise,

the value is returned.

The leaky rectified linear unit (Leaky ReLU) is calculated as follows:

𝐿(𝑥) = {
0.01𝑥, 𝑥 < 0
 𝑥, 𝑥 ≥ 0

.

The function is very similar to the ReLU activation function. The function takes any real

value as input and outputs values are in the range −∞ to +∞. It is a growing function

without asymptotes

The Exponential linear unit (ELU) is calculated as follows:

𝐸(𝑥) = {
𝛼(𝑒𝑥 − 1), 𝑥 ≤ 0
 𝑥, 𝑥 > 0

}

The function is very similar to the ReLU activation function. The function takes any real

value as input and outputs values are in the range - 𝛼 to +∞. It is a growing function

starting from -1. In some case a parameter 𝛼 is used as multiplier in front of the

expression (𝑒𝑥 − 1) only for negative or zero input.

1.3 Neural network training method

The process of supervised machine learning adopted in artificial neural networks

consists in learning a function that can be used to predict the output associated with

new inputs through iterative optimization of a loss function or cost function. The cost

function is a kind of function of the difference between estimated and true values for an

instance of data. The optimization consists in optimizing the parameter of the model in

order to minimize the cost function. The iteration permits to improve the accuracy of the

function outputs or predictions over time. For this reason it is said to have learned to

perform that task.

If we consider the simple example of a linear regression with data composed of one

dimensional feature, the database is the following:

 {(𝑥1, 𝑦1),… , (𝑥𝑖, 𝑦𝑖),… , (𝑥𝑛, 𝑦𝑛)}

If a linear model is used, the output of the model is:

�̂�(𝛩, 𝒙) = 𝜃0 + 𝜃1𝑥 = 𝑋 ∙ 𝛩

Where 𝑋 = (1 𝑥) and 𝛩 = (
𝜃0
𝜃1
)

𝛩 is the matrix of the parameters. In this case is a one-dimensional vector with two

components.

The cost function considered in this case is the squared difference between the

predicted data and the real data. This is called the least squares method.

𝐿(𝛩) =
1

𝑁
∑(�̂�(𝛩, 𝒙𝑖) − 𝑦𝑖)

2

𝑁

𝑖=1

The optimization of the model parameters in order to have the best fit between

predicted and real value is obtained minimizing the cost function: �̂� = 𝑎𝑟𝑔min. 𝐿(𝛩)

The minimization of the cost function is done by taking the derivative of the function with

respect to the variables. This operation allows us to obtain the optimal values of the

parameters of the function (the vector 𝛩).

𝛿𝐿

𝛿𝜃0
= 2∑(𝜃0 + 𝜃1𝑥𝑖 − 𝑦𝑖) = 0

𝑁

𝑖=1

𝛿𝐿

𝛿𝜃1
= 2∑(𝜃0 + 𝜃1𝑥𝑖 − 𝑦𝑖)𝑥𝑖 = 0

𝑁

𝑖=1

The system is composed of 2 equations and we have 2 unknowns.

𝜃0𝑁 + 𝜃1∑𝑥𝑖 =

𝑁

𝑖=1

∑𝑦𝑖

𝑁

𝑖=1

𝜃0∑𝑥𝑖

𝑁

𝑖=1

+ 𝜃1∑𝑥𝑖
2 =

𝑁

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑁

𝑖=1

The solution of this system is the following:

𝜃1 =
𝜎(𝑥, 𝑦)

𝜎2(𝑥)

𝜃0 = �̅� − 𝜃1�̅�

where 𝜎 and 𝜎2 are respectively the covariance of (𝑥, 𝑦) and the variance of (𝑥) and �̅�

and �̅� are the average values.

𝜎(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑁

𝑖=1

𝜎2(𝑥) =
1

𝑁
∑(𝑥𝑖 − �̅�)

2

𝑁

𝑖=1

�̅� =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

; �̅� =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

1.3.1 Gradient descent

In a general case, each data is described by 𝑘 features. Because of this the training

data is represented by a matrix composed of 𝑁 rows, where 𝑁 is the number of data in

the database, and 𝑘 columns. The parameters vector is composed by 𝑘 elements. The

loss function is the following.

𝐿(𝛩) =
1

𝑁
∑(�̂�(𝛩, 𝒙𝑖) − 𝑦𝑖)

2

𝑁

𝑖=1

In this case the optimization of the parameters is done using the gradient descent (30).

It is a first-order iterative optimization algorithm for finding a local minimum of a

differentiable function. The principle is to take repeated steps in the opposite direction of

the gradient of the function at the current point, because this is the direction of steepest

descent.

Consider a function 𝐹(𝑥) for which the minimum has to be found. One starts with a

guess 𝑥 for a local minimum of 𝐹 and considers the sequence 𝑥0, 𝑥1, 𝑥2, … such that

𝑥𝑛+1 = 𝑥𝑛 − 𝜂∇𝐹(𝑥𝑛), 𝑛 ≥ 0

Here, 𝜂 is a real parameter called learning rate. The result is a monotonic sequence

𝐹(𝑥0) ≥ 𝐹(𝑥1) ≥ 𝐹(𝑥2) ≥ ⋯

Hopefully, the sequence {𝑥𝑛} converges to the desired absolute minimum. The value of

the step size indicated by 𝜂 is the learning rate of the algorithm. A graphic explanation

of the gradient descent can be found in Figure 1.5.

Figure 1.5 Graphic explanation of the gradient descent algorithm

When the gradient descent is applied to the loss function of linear regression, you

obtain:

𝛿𝐿

𝛿𝜃0
=
2

𝑁𝑡
∑(𝑋𝑖 ∙

𝑁𝑡

𝑖=1

𝛩 − 𝑦𝑖)

𝛿𝐿

𝛿𝜃𝑗
=
2

𝑁𝑡
∑(𝑋𝑖 ∙

𝑁𝑡

𝑖=1

𝛩 − 𝑦𝑖)𝑥𝑖,𝑗 for 𝑗 = 1,… 𝑘

Where 𝑥𝑖,𝑗 is the 𝑗𝑡ℎ element of the feature vector 𝒙𝑖 that represent the 𝑖𝑡ℎ instance. In

order to possibly achieve the global minimum, you start with a random value for 𝜃𝑗 for

𝑗 = 0, . . . , 𝑘. Next value of 𝜃𝑗, 𝜃𝑗
′, is obtained with the following operation:

𝜃𝑗
′ = 𝜃𝑗 − 𝜂

𝛿

𝛿𝜃𝑗
𝐿(𝛩).

In the case the number of data are numerous (typically 𝑁𝑡 ≈ 104−5) the stochastic

gradient descent can be used to avoid calculation too expensive in terms of resources.

Instead of computing the gradient using all 𝑁𝑡 instances of the training set, it consist in

using mini-batches randomly chosen of 10 to 100 or more instances, depending on the

database size, for which the gradient is computed. The computed gradient points on

average in the right direction, with a stochastic noise that helps escaping local minima.

1.3.2 Gradients computation in artificial neural networks:

backpropagation algorithm

In the case an artificial neural network, with many neurons and layers and a standard

size database, is used, it is possible to have 104 or even 105 parameters, to be

computed, for every instance of the mini-batch. In such cases the backpropagation

algorithm is used for evaluating the gradient of the loss function (31).

The aim is to evaluate
𝛿𝐿(𝑊)

𝛿𝑤𝑛𝑚
(𝑗) for any instance 𝑖, considering that the loss function,

without regularization, is additive.

The weighted input of neuron 𝑛 at layer 𝑗 is:

𝑧𝑛
(𝑗)
= ∑ 𝑤𝑛𝑚

(𝑗−1)
𝑎𝑚
(𝑗−1)

𝑠𝑗−1

𝑚=0

The relative activation is:

𝑎𝑛
(𝑗)
= ℎ(𝑧𝑛

(𝑗)
) (vector notation: 𝑎(𝑗) = ℎ(𝑧(𝑗)).

It is possible to define the “error” of neuron 𝑛 at layer 𝑗 as:

𝛿𝑛
(𝑗)
=

𝛿𝐿

𝛿𝑧𝑛
(𝑗) (vector notation: 𝛿(𝑗) =

(

 𝛿1

(𝑗)

𝛿2
(𝑗)

⋮

𝛿𝑠𝑗
(𝑗)

)

).

Instead, in the last layer, the error is:

𝛿1
(𝐿)
=

𝛿𝐿

𝛿𝑎1
(𝐿) ℎ

∗′(𝑧1
(𝐿)) (1 exit neuron); 𝛿𝐿 = ∇a(L)L⊗ h∗

′
(z(L)) (many exit neurons).

In the latter case ⊗ indicates the Hadamard product (elementwise).

Starting from these assumptions, according to the backpropagation algorithm, the error

at layer 𝑗, given error at layer 𝑗 + 1, is:

𝛿(𝑗) = ((𝑤(𝑗))
𝑇
𝛿(𝑗+1)) ⊗ h′(z(j)) for 𝑗 = 𝐿 − 1, . . . ,2.

The partial derivatives with respect to weights and biases are respectively:

𝛿𝐿

𝛿𝑤𝑚𝑛
(𝑗)
= 𝑎𝑛

(𝑗)
𝛿𝑚
𝑗+1
;
𝛿𝐿

𝛿𝑏𝑚
(𝑗)
= 𝛿𝑚

𝑗+1

Layer 1 adds the term due to regularization:
𝛿𝐿

𝛿𝑤𝑚𝑛
(𝑗) →

𝛿𝐿

𝛿𝑤𝑚𝑛
(𝑗) + 𝜆𝑤𝑚𝑛

(𝑗)

An alternative notation can be used:

𝛿𝐿

𝛿𝑤
= 𝑎𝑖𝑛𝛿𝑜𝑢𝑡

where 𝑎𝑖𝑛 is the activation of the neuron input to 𝑤, 𝛿𝑜𝑢𝑡 is the error on the output

neuron.

1.3.3 Overfitting and underfitting

The function learned by the artificial neural network can reproduce the data distribution

more or less accurately (32). In particular the following situation can be encountered.

Figure 1.6 Underfitting, right fitting and overfitting training

The red crosses represent the data distribution. They follow a parabolic distribution. The

blue line is the function that approximates the distribution. It can be considered the

function learned by the artificial neural network. The expression under the plot is the

mathematical expression of the function. In the first case the function is underfitting the

data distribution. It means the model is too simplistic to accurately represent the data. In

fact, the model is a line. The result of the model is that it inaccurately represent the data

points and thus is not able to predict future data results as shown in Figure 1.7.

The underfitting problem can be avoided using a more complex model(e.g., a deeper

neural network), improving the optimization algorithm or reducing the regularization (33)

(if used).

Figure 1.7 Underfitting phenomenon

The correct model is the one represented in the second case of the Figure 1.6. It is a

parabolic model like the one used for the data distribution.

In the last case of the Figure1.6, the function is overfitting the data distribution. The

overfitting is the result of an analysis that corresponds too closely to the training data

and may therefore fail to fit to additional data like the validation or test data. Because of

this the model may fail to predict future observations reliably. Generally, when a

learning algorithm is more accurate in fitting known data (hindsight) but less accurate in

predicting new data (foresight), it is said to be an overfitting algorithm (see Figure 1.8).

Usually it happens when a more complicated approach than is ultimately optimal, is

used. In the last case represented in the figure, a 4th degree equation is used to

represent a 2nd degree distribution of data.

Figure 1.8 Overfitting phenomenon

Overfitting is especially likely in cases where learning was performed too long or where

training examples are rare. This causes the learner to adjust to very specific random

features of the training data that have no causal relation to the target function. In this

process of overfitting, like already said, the performance of predicting training examples

still increases while the performance on unseen data becomes worse, as schematically

represented in Figure 1.8.

Figure 1.9 Overfitting phenomenon birth with the increase of model complexity

The overfitting problem can be avoided using more data for the training. Usually the size

of the data set for the training process is about 104−5. In the case the data available are

few and cannot be expanded, the overfitting can be avoided using a simpler model

(Figure 1.9) or using fewer features. In the case none of these solutions can be

adopted, or they are not effective, it is possible to add the regularization to the model

(Figure 1.10). The regularization modifies the cost function adding a term that penalizes

models with large values of parameters. It is added to the output signal considering the

absolute value (L1) or the squared value (L2). In this study a L2 regularization is used.

The L1 regularization is analog to the L2 one. In the following expression an L2

regularization is added for multivariate linear regression.

𝐿(𝛩) =
1

𝑁
∑(�̂�(𝛩, 𝒙𝑖) − 𝑦𝑖)

2 +
𝜆

2𝑁
∑𝜃𝑗

2

𝑘

𝑗=1

𝑁

𝑖=1

.

Note that the constant 𝜃0 (bias term) is not regularized. The regularization parameter is

usually varied in log scale: 10−6, 10−5, … , 10−2, 10−1. If the regularization parameter is

too small, it is like not having regularization. So, if the overfitting phenomenon is

present, it will be maintained. If the regularization parameter is too high, the underfitting

phenomenon is present. The overfitting phenomenon implies high variance. On the

contrary, the underfitting phenomenon implies high bias.

Figure 1.10 Overfitting phenomenon neutralization with the use of regularization parameter

1.3.4 Stopping criterion

The training process can be stopped mainly according to two criteria (34). The first

criterion is based on a loss function. The monitoring of the loss function permits to

check the trend of this function and to stop the training when it does not decrease any

more. As anticipated, the loss function used in this study is the mean squared error.

Usually a tolerance on the stopping criterion is applied, in order to avoid the training

stopping for a momentaneous increase of the loss function. With the aim of avoiding

overfitting, the stopping criterion is usually applied on a set of data not used for the

training process. This is called the validation set.

The other stop criterion is simply the number of iterations. When the maximum number

of iterations set is reached, the training stops

1.4 Neural network training strengthening:

transfer learning

The transfer learning technique is a method thought to increase the network capability

of learning training data, but also to minimize the resources used to train an artificial

neural network (35) (36).

The term transfer learning is used to indicate an advanced machine learning method in

which a model pre-developed to perform a generic activity, is used as a starting point for

developing another one, aimed to perform a different activity. This method is often used

in image classification.

The first article in which the transfer learning is explicitly treated was published in 1976

by the scientist Stevo Bozinovski e Ante Fulgosi. The research on transfer learning is

continuing and now Andrew Ng, associate professor at Stanford University, co-founder

and head of Google Brain, believes that the transfer learning will be the next driver for

commercial success of machine learning.

As anticipated, the transfer learning consists in the training of an artificial neural network

in which a pre-train on a big database has been already performed. The pre-trained

model can be used as it is or can be used as a base for a personalization on other data

and, so, to perform another activity. The idea behind the transfer learning is that if a

model is trained on a sufficiently large and general database, the general maps of

functionality learned can be used in analog tasks. This method permits to achieve

functionalities without the necessity of training from scratch a new artificial neural

network on a database sufficiently large to guarantee a good result.

There are 2 main models to use transfer learning.

The first model is used to extract further functionality from the behaviour of an artificial

neural network already trained and to apply it on new data. With this aim it is sufficient

to add to the already trained model, a new classifier, which is trained from scratch. This

method allows the reuse of the conceptual maps already developed in the first model

without the necessity of training from zero a whole artificial neural network. This model

of using transfer learning is applicable for solving similar problems.

The second model is the fine-tuning. It is used to limit the training to a sensible inferior

number of data. In this model the more external layers of neurons of the pre-trained

artificial neural network can be unlocked. These layers are further trained in a specific

way for the final task. The fine-tuning allows the refinement of the basic model, obtained

with the pre-training, in order to have a more performing model for the specific final task.

In this way the training is faster and the resources requested are less ingent with

respect to training of an artificial neural network from scratch.

Summarizing, the transfer learning allows the reuse of the largest part of the weights of

an artificial neural network already trained for solving a similar problem. It limits the

training to the layers dedicated to the classification or regression of the features already

obtained in the previous layers. In this study we use this method to strengthen the

model built, especially in the case of fine-tuning.

1.5 Neural network performance descriptors

The performance of an artificial neural network can be measured using many

parameters, depending on the type of problem. In particular, for the regression problem,

the performance are mainly measured using the parameters hereafter. In the following

expressions, 𝑦𝑖 is the 𝑖𝑡ℎ real data and �̂�(𝛩, 𝒙𝑖) is the 𝑖𝑡ℎ predicted data. 𝑁 is the total

number of data. 𝒙 is the features matrix. 𝛩 is the weight matrix.

 Mean squared error:

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�(𝛩, 𝒙𝑖))2
𝑁

𝑖=1

.

The mean squared error measures the average of the squares of the errors, that

is, the average squared difference between the estimated values and the actual

value.

 Mean absolute error:

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�(𝛩, 𝒙𝑖)|𝑁
𝑖=1

𝑁
.

The mean absolute error is a measure the average of the absolute value of the

errors between the estimated values and the actual value.

 Coefficient of determination:

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�(𝛩, 𝒙𝑖))2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

.

 �̅� is the mean value of the real values 𝑦𝑖.

The coefficient of determination is the proportion of the variation in the dependent

variable that is predictable from the independent variables. If the model fit is

perfect with real data, 𝑅2 = 1. A baseline model, which always predicts �̅� will

have 𝑅2 = 0. Models that have worse predictions than this baseline will have a

negative 𝑅2.

 Pearson’s correlation coefficient:

𝑅𝑝 =
∑ (𝑦𝑖 − �̅�)(�̂�(𝛩, 𝒙𝑖) − �̂�(𝛩, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑁
𝑖=1

√∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

√∑ (�̂�(𝛩, 𝒙𝑖) − �̂�(𝛩, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑁

𝑖=1

.

�̂�(𝛩, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean value of the predicted data.

Pearson’s correlation (𝑅𝑝) is defined as the ratio between the covariance of the

data and the product between the standard deviation of the 2 variables. When

applied to a sample, it is possible to obtain the shown formula by substituting the

covariances and variances based on a sample. The correlation coefficient ranges

from −1 to 1. An absolute value of exactly 1 implies that a linear equation

describes perfectly the relationship between predicted and real data, with all data

points lying on a line. The correlation sign is determined by the regression slope.

A positive value implies positive gradient for the line and viceversa for negative

values. A value of 0 implies that there is no linear dependency between the

variables. An absolute value of 𝑅𝑝 inferior of 0.3 indicates a weak correlation

between predicted and real data. An absolute value of 𝑅𝑝 between 0.3 and 0.7

indicates a moderate correlation. An absolute value of over 0.7 indicates a

strong correlation.

Many other performance descriptors for regression problem exist, but these are the

most important for the present work.

For classification problems the measures of a test’s accuracy mostly used are F-score,

confusion matrix, receiver operating characteristic (ROC) and others.

2 Database

2.1 Database description

As discussed in the previous chapter 1.1.2, machine learning allows the machine to

learn from experience. Experience, in machine learning, is synonymous with data. In

fact, the machine makes its experience through the input data. The machine learning

algorithms use computational methods to learn information directly from the data,

without using a priori mathematical models or pre-determined equations.

The database is a fundamental element for machine learning. Without a sufficiently

large database, the machine learning process cannot take place. For sure, the recent

strong increase of machine learning applications in any possible field is due to the

increased capability of collecting and storing an enormous quantity of data. The

enormous quantity of data is contemporarily a cause, but also a consequence of

machine learning development. In fact, modern hardware permits to collect large

quantity of data in a small device. This fact encourages data storing also in common

applications. The increasing collection of data determines the birth of the big data

phenomenon. Big data refers to data sets that are too large or complex to be dealt with

by traditional data-processing application software. As already seen, some applications

of artificial intelligence are used in the analysis of big data (37) (38).

On the other hand, the promising results obtained in recent years by artificial

intelligence applications, like machine learning, push the scientific community to create

new large database containing any kind of data which can be used as starting point for

machine learning applications.

This is the case of this study. In fact, in the next chapter we will discuss the difficulty in

trusting the results coming from classic scoring functions. For this reason, a possible

solution is found in applying the machine learning techniques to the field of scoring

functions. With this aim, the process of measuring more and more binding structures

and creating shared database containing data on chemical complexes has significantly

increased in recent years. Anyway, we will further explore this aspect in the next

paragraphs. For this moment, we consider how the database is used in machine

learning. In particular we consider supervised machine learning applications because in

this study we are dealing with these types of applications.

Typically the database is subdivided into two or three subsets in order to complete the

training and testing processes for the artificial neural network. The subset are used for

training the model, for testing it and possibly for validating the model during the training

for early stopping or for hyper parameter selection. In supervised machine learning, the

input data consist in data that describe instances and in a label/target-value:

{(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑁 .

The data which describe instances belonging to the training set are used as input data

for the artificial neural network. The label/target-values are the desired output for the

related input and are used in the machine learning process. The training set is normally

the largest subset. Typically a percentage of about 80% of the entire database is used.

In our study a percentage of the entire database which varies between the 80% and the

93% is used for the training set. The variation depends on the type of database

considered.

The test set is normally composed of about 20% of the data base. In our study it uses a

percentage which varies between 20% and 7% of the entire database. The data which

describe instances belonging to the test set are used as input in the test procedure of

the model. The label/target-values are used as term of comparison with respect to the

predicted values to measure the performance of the model. Data present in the training

set are not present in the test set. Consequently the two subset do not overlap.

The validation set is a possible partition of the database which can be used in the

monitoring process to determine the ending of the training phase. The dimension of the

validation set is similar to one used for the test set, so it can vary between the 10% and

the 7% of the entire database. If a validation set is introduced, the part of the database

used in the training is reduced and it consists in the remaining database excluding test

set and validation set. The validation set contains a number of complexes used to

monitor the training process. For this reason, also the validation set do not overlap with

the other subsets. In particular, the validation set is used to calculate the loss function

during training. Different functions can be used as loss function. In this study, the mean

squared error (MSE) is used as loss function. The stopping criterion considers the

variation of the loss function. Once the loss function is no longer decreasing for a fixed

number of consecutively iterations, the training is stopped. It is useful to monitor the loss

function on a validation set and not on the training set, because its measure must be an

index of readiness of the model and not of the learning process on the training data.

The schematic subdivision of the database is represented in Figure 2.1.

Figure 2.1 Schematical representation of the database and its subdivision in subsets

The data used in this research are ligand-protein atomic structures, associated to the

corresponding affinity value or docking score.

2.1.1 Proteins

Proteins are polymers of 20 different amino acids (39). Proteins, in addition to some

inorganic elements (for example, calcium and phosphorus, necessary for calcification

bone), and some essential fatty acids (for example, linoleic acid, a part of cell

membranes) carry out the plastic function of nutrients or rather that which allows the

construction of new living matter. Proteins are the building blocks of living organisms.

This peculiar function, called plastic, however, is not the only one. In fact, proteins are

also involved in the synthesis of hormones, enzymes, and tissues (especially muscle).

In conditions of low energy intake, proteins, derived from food or muscle catabolism,

can be used by the liver to provide energy to the organism.

As anticipated, from a chemical point of view, proteins are macromolecules made up of

20 fundamental units called amino acids, which, like many rings, join together to form a

long chain (40). Proteins are composed of one or more polypeptides chains, i.e. linear

compounds formed by amino acids linked one after the other (41). There are hundreds

of amino acids, but only twenty of them are part of proteins. Anyway, they are a

sufficient number to form more than 50,000 different proteins which are the ones

present in the human body. Proteins are composed of as little as 50 amino acids to a

maximum of a few thousands. The shorter chains are called oligopeptides (number of

amino acids less than or equal to 10) and peptides (from 10 to 50 amino acids).

Eight of these amino acids are essential because the body does not manage to

synthesize them fast enough to meet the metabolic demands. These amino acids are

leucine, isoleucine, lysine, methionine, valine, threonine, phenylalanine, tryptophan.

They must, therefore, be introduced with food, in order to avoid specific nutritional

deficiencies. In the first two years of life two other amino acids become essential. They

are called arginine and histidine respectively. For all the other amino acids there are

enzymatic systems that make their endogenous biosynthesis possible.

Many foods are rich in proteins: meat, fish, but also the plant world offers a good

sustenance: rice, wheat, maize, and sorghum are rich in these elements.

Each protein performs one or more functions in the body, generally through specific

interaction with other molecules. The conformation (three-dimensional structure) of each

protein determines the type of possible interactions and therefore the specific function. It

depends on the sequence of amino acid residues contained in the protein. The abolition

(denaturation) of the protein conformation determines the loss of function.

Among the most important functions exercised by proteins in organisms, there are:

structural function (collagen); transport function (hemoglobin, apolipoproteins, albumin);

defence and protection function (immunoglobulins, fibrinogen); control and regulation

function (hormones, receptors of different hormones, transcription factors); catalytic

function (all enzymes); movement function (actin, myosin).

The proteins can be classified according to their chemical composition in simple

(composed of only amino acids) and complex (composed of amino acids and other

substances different from them like lipoproteins, glycoproteins, nucleoproteins,

phosphoproteins.

Figure 2.2 Amino acid basic structure

What essentially determines the role of an amino acid in a protein is the nature of the

side chain indicated with the following symbol: -R (Figure 2.2). These functional groups

are responsible for the structure, functions and electrical charge of proteins. Amino

acids can be classified according to the properties of their side chains (-R), considering

their polarity or non-polarity at the physiological pH and therefore the tendency to

interact with water. Amino acids with charged, hydrophilic side chains are generally

exposed on the surface of proteins. Non-polar hydrophobic residues are generally found

within proteins, protected from contact with water.

The structural feature common to all proteins is that they are polymers of amino acids.

For this reason amino acids are the structural elements of proteins. The protein

molecule is a polymer consisting of amino acid monomers linked by the peptide bond

(42). Amino acids are joined by the peptide bond in which the carboxyl group of one

amino acid reacts with the amino group of another amino acid with elimination of a

water molecule. More amino acids can join to form linear chains, in which both

functional groups, basic and acid, of each amino acid residue are involved in peptide

bonds. The formation of peptides results from the concatenation of multiple amino acids

through amide (or peptide) bonds (see Figure 2.3). The peptide bond is rigid and planar.

The binding energy is very high and the bond can be broken by boiling and prolonged

action of strong acids or bases. Proteolytic enzymes can selectively break these bonds.

Figure 2.3 Formation of peptides results from the concatenation of multiple amino acids through

amide (or peptide) bonds

The functional variety of proteins is determined by several factors: the number of amino

acids; the type of amino acids; the way in which they are linked; the spatial

arrangement; the shape of the polypeptide chains.

The levels of organization of proteins are the following (43):

• Primary structure: describes the amino acid sequence and is always linear.

• Secondary structure: describes the shape of the chain and can be helical or pleated.

• Tertiary structure: describes the three-dimensionality of the chain with attention to the

local or remote relationships of the R groups and to the globular and fibrous proteins

(collagen).

• Quaternary structure: describes the interactions between several protein chains.

The primary structure is given by the amino acid sequence in the polypeptide chain.

In the secondary helical structure, an H bridge is created for every 3.6 amino acids. The

H bond is established between the H of the amide nitrogen and the O of the carbonyl

group. There are no hydrogen bonds with the outside. The R groups project out

orthogonally. The propeller is always right-handed.

In the folded secondary structure, different segments of the polypeptide chain, which

have an extended arrangement, are parallel to each other (with an antiparallel course).

The structure is stabilized by hydrogen bonds between the NH and CO groups of

adjacent segments. The juxtaposition of different segments of the polypeptide chain

gives rise to structures referred to as wavy beta sheets due to the bond angles.

Figure 2.4 Helical and beta sheet regions

The tertiary structure is given by the combination of several helical and/or beta sheet

regions connected to each other by segments that form loops. The looped regions

generally constitute the functional site of the protein. The tertiary structure is stabilized

by secondary bonds that are established between the side chains of the amino acids. In

some proteins we have a covalent bond, the disulfide bridge, which is established

between two cysteine side chains. The tertiary structure is stabilized by hydrogen bonds

between groups peptides, such as in the helix structure and in the beta sheets,

hydrogen bonds between R groups, hydrophobic interactions between non-polar R

groups, electrostatic bonds between R groups, R positively and negatively charged and

disulfide bridges.

The quaternary structure foresees that the protein, formed by several polypeptide

chains (subunits), is united with the same type of bonds that stabilize the tertiary

structure.

2.1.2 Ligand

In chemistry a ligand represents an atom, ion or molecule that forms a coordination

bond, generally donating its electrons. This bond is a type chemical bond in which two

atoms jointly use one or more electrons, which was made available by a single atom,

while the other makes use of the electrons shared by the first atom (44).

The molecule resulting from the union of one or more ligands is defined as a complex.

The main factors that characterize ligands are represented by their size, charge, and

chemical nature. In a complex, ligands can both stabilize the host molecule and

condition its chemical and structural properties.

In biochemistry, a ligand is defined as a molecule capable of binding with a biomolecule

and forming a complex capable of performing or inducing a biological function.

Furthermore, the interaction between ligand and receptor alters the conformation (the

three-dimensional structure) of the receptor itself.

In practice, the ligand in biochemistry is usually a molecule capable of binding, through

a weak interaction, to a target protein. This interaction can be an ionic bond, a hydrogen

bond, or a Van der Waals interaction. The implementation of a covalent bond, therefore

irreversible bond, between the ligand and the target biomolecule is very rare in

biological systems. Substrates, inhibitors, activators and neurotransmitters can be

considered ligands. A receptor is a protein, transmembrane or intracellular, which binds

with a specific factor, defined as a ligand, causing a conformational change in the

receptor which results in the onset of a cellular response or a biological effect.

For this reason the study of medicines is based on the interactions between ligands and

proteins. In that case the ligands are the active principle of the drugs.

2.1.3 Ligand-protein complex

As anticipated, the functions of many proteins require reversible binding with other

molecules, commonly called ligands (45). A ligand can be of a different nature, even

another protein. The result of this binding is a ligand-protein complex. In this field, the

term docking is used to indicate the association of the ligand to the target biomolecule.

Docking is usually reversible. The strength of the bond that is established between the

ligand and the target biomolecule is called affinity. The transient nature of ligand-protein

interactions is essential for life because it allows the body to respond quickly and

reversibly to environmental and metabolic changes. A ligand binds to a region of the

protein (binding site) that is complementary to the ligand in terms of size, charge, and

hydrophobic character. The interaction is specific and is able to discriminate between

thousands of molecules present in the vicinity of the binding site. A protein can have

different binding sites for as many ligands. The ligand-protein binding is often

accompanied by a conformational modification of the protein which makes the binding

site more complementary to the ligand with a consequent strengthening of the binding

(induced adaptation).

The ligand-protein interactions can be regulated by binding with other specific ligands

that can cause structural alterations in the protein that modify the affinity and therefore

the bond strength with the first ligand.

The conformational changes can be subtle (molecular vibrations and small movements)

or more evident (displacements of parts of the molecule structure of several

nanometers). As previously said, conformational changes are most often essential for

protein function.

2.1.4 Ligand-protein complex structure

Ligand-protein complexes are held together by shared electrons or, less frequently, by

covalent bonds. Such bonds are directional. It means that the atoms adopt specific

positions relative to one another, to maximize the bond strengths and to minimize their

energy. In addition, the binding with other specific ligands can cause structural

alterations due to the variation in the bond energy . As a result, each complex has a

definite spatial distribution of its atom which determines its structure. This topic is

studied in structural chemistry. It deals with determining how atoms combine in definite

ratios and how this is related to the bond directions and bond lengths. The properties of

molecules are related to their structures. For example, the water molecule is bent

structurally and therefore has a dipole moment.

Theoretically, the structure of a molecule is determined by solving the quantum

mechanical equation for the motion of the electrons in the field of the nuclei (called the

Schrödinger equation). In fact, in a molecular structure the bond lengths and bond

angles are those for which the molecular energy is the least. The determination of

structures by numerical solution of the Schrödinger equation is highly resource

consuming. For this reason other methods are preferred. In recent years the use of

supercomputers and the increasing power in standard computers cause an increase in

the use of Schrödinger equations.

Structural information in a molecule can be obtained using many experimental

techniques. Microwave vibration-rotation spectra or neutron diffraction can determine

the nuclear positions in a molecule. X-ray diffraction experiments are used for studying

the electron cloud surrounding the nucleus in a molecule. X-ray crystallography is a

technique of crystallography in which the image, produced by the diffraction of X-rays

through the space of the atomic lattice in a crystal, is recorded and then analyzed to

reveal the nature of the lattice. Typically, this leads to determining the material and

molecular structure of a substance. In an X-ray diffraction measurement a crystal is

mounted on a protractor and gradually rotated as it is bombarded with X-rays which

produce a diffraction pattern of regularly spaced points. In addition, further information

can be obtained by nuclear magnetic resonance techniques (NMR) or electron spin

resonance. Eventually visual images of individual molecules and atoms can be

produced thanks to the advances in electron microscopy performed in recent years.

Nowadays many projects of sharing on line ligand- protein structures and relative proper

features exist. As anticipated, the aim of these projects is to join forces in order to

collect as many data as possible. They are helpful for various computational and

statistical studies, among which there are many artificial intelligence applications, on

molecular recognition, drug discovery, and many more. Some examples of shared

databases are Protein Data Bank, PDBbind, and CSAR (46) (47) (48) (49) (50) (51)

(52).

2.1.5 Ligand-protein complex affinity and docking score

The label/target-values used in this study are the ligand-protein affinity and the docking

score (53). Proteins work by interacting with other molecules. Molecules that interact

reversibly with proteins, without been altered by interaction, are called ligands. Ligand-

protein interactions are the basis of a very large number of biochemical processes. The

quantitative description of these interactions represents one of the most relevant

research topics of biochemistry. The key parameter used to describe these interactions

is the dissociation constant, 𝐾𝑑. The 𝐾𝑑 expresses the relationship that exists between

the concentration of the ligand and the fraction of the binding sites of the protein that are

occupied by the ligand. A ligand that has a high affinity for a protein has a very low 𝐾𝑑

value. If the ligand binds the protein tightly, the ligand concentration required to occupy

half of the binding sites is low and the value of 𝐾𝑑 is also low. A ligand with a low affinity

for a protein has a high 𝐾𝑑 value.

There are many parameters which are used to measure the ligand-protein affinity. In our

study we chose two similar parameters, one for experimental and one for synthetic data.

They will be described in the next paragraphs.

The docking score is related to the molecular docking. Molecular docking, in the field of

molecular modelling, is a method that predicts the preferred orientation of a molecule

towards a second one when they bind together to form a stable complex. Knowledge of

the preferred orientation can be used to predict the strength of a ligand-protein

association or bond between two molecules using for example a scoring function. In

particular, docking is frequently used to predict the binding orientation of a

pharmacologically active small molecule to its target protein, so that the affinity and

activity of this molecule can be predicted. In this case, the protein has its binding task

and the best binding orientation of the small molecule must be found. This is the case

we are dealing with in this research. The purpose of molecular docking is to simulate

the molecular recognition process by a computer. The aim is, therefore, to obtain an

optimized conformation simultaneously for the protein, the ligand, and their relative

orientation such that the free energy of the system is minimized. Two approaches are

particularly popular in the molecular docking community. One approach uses a

technique that describes the protein and the ligand as complementary surfaces. The

second approach simulates the docking process in which the interaction energies of the

ligand-protein complex are calculated. The surface complementarity methods describe

a series of properties that make binding between protein and ligand possible. These

properties include molecular surface or complementary surface descriptors. In this case

the molecular surface of the receptor is described in terms of the surface area

accessible to the solvent and the molecular surface of the ligand is described in terms of

its binding surface. The complementarity between the two surfaces results from the

description of the shape correspondence which can help to find the complementary

docking position between the receptor and ligand molecules. Further approaches are

the description of the hydrophobic properties of the protein observing the cyclical

presence in the atoms of the main chain and Fourier shape descriptor technique.

Approaches based on complementarity of form are typically fast and robust. However

they cannot usually accurately model movements or dynamic changes in the ligand-

protein conformation, although recent developments allow these methods to investigate

ligand flexibility.

Simulating the docking process is a much more complicated process. In this approach,

the protein and the ligand are separated by a physical distance. The ligand finds its

position in the active site of the protein after a certain number of movements in its

conformational space. Movements mean rigid body transformations such as translations

and rotations, but also internal changes in the ligand structure such as internal rotation

and torsion. Each move in the conformational space of the ligand induces a total energy

chage of the system and therefore after each move the total energy of the system is

recalculated.

The first requirement for docking is the structure of the protein. As anticipated, normally

the structure has been determined by techniques like X-ray crystallography or, more

rarely, NMR of proteins. The structure of the protein and a database of potential ligands

serve as input to the program.

Successful docking depends on the search algorithm and on the scoring function. The

research space in theory consists of every possible orientation and conformation of the

protein coupled to the ligand. However, in practice, with current computational

resources, it is very difficult to exhaustively explore all the research space comprising all

the possible distortions of a molecule (molecules are dynamic, they can have a set of

conformational states) and all the possible orientations of the ligand relative to the

protein, in a given level of granularity. Most docking programs in use involve a flexible

ligand and some attempts to attach to a flexible receptor in the protein. Each position of

the pair is called a pose.

The scoring function takes a pose as input and returns a number indicating the

possibility that the pose represents a favorable binding interaction. Most of the scoring

functions are based on the estimation of the energy of a pose. Less is the energy, more

favorable is the pose.

Docking is commonly used in the field of drug design for hit identification, lead

optimization, and bioremediation. Hit identification is simply the use of docking

combined with a scoring function for quickly monitoring large databases of potential

drugs in silico, to identify the molecules most likely to bind to the target of interest. Lead

optimization means the use of docking to predict where and in what relative orientation

a ligand binds to a protein for creating more reactive and selective analogs. In the

bioremediation, the ligand-protein docked can be used to predict pollutants that can be

degraded by enzymes.

2.2 Experimental data

The experimental data are used to create a very accurate database, and, consequently,

a scoring function which can better learn binding proprieties.

The experimental database contains ligand-protein complexes whose structures were

obtained through X-Ray crystallography and deposited into the Protein Data Bank

(http://www.rcsb.org).

The Protein Data Bank (PDB) is an open access digital data resource for biological

experimental data central to scientific discovery. It was established as the 1st one in all

of biology and medicine. The PDB archive was first announced in 1971 in Nature New

Biology. The PDB provides access to 3D structure data for large biological molecules

(proteins, DNA, and RNA). PDB stores an enormous wealth of 3D structure data. It has

underpinned significant advances in understanding of protein architecture, culminating

in recent breakthroughs in protein structure prediction. In fact, the PDB was created with

the aim of helping in accumulating knowledge of 3D structure, function, and evolution of

biological macromolecules, expanding the frontiers of fundamental biology, biomedicine,

and biotechnology. The team who works on the PDB is called RCSB PDB (Research

Collaborator for Structural Bioinformatics PDB) and it is served also by recognized

experts in fields as advisors, including but not limited to, structural biology, cell and

molecular biology, computational biology, information technology and education.

We selected a set of structures whose ligand-target interaction information is available

from the PDBbind database (http://www.pdbbind.org.cn/). The PDBbind database

provides a comprehensive collection of experimentally measured binding affinity data

for biomolecular complexes deposited in the Protein Data Bank (PDB). It provides an

essential linkage between the energetic and structural information of those complexes,

which is helpful for various computational and statistical studies on molecular

recognition, drug discovery, and many more. The PDBbind database was originally

developed by Prof. Shaomeng Wang's group at the University of Michigan in USA, and

was first released to the public in May, 2004. This database is now maintained and

further developed by Prof. Renxiao Wang's group at College of Pharmacy, Fudan

University in China. The PDBbind database is updated on an annual basis to keep up

with the growth of the Protein Data Bank.

The PDBbind has some subsets inside it. The PDBbind core set, one of these, aims at

providing a relatively small set of high-quality ligand-protein complexes for validating

docking/scoring methods. In particular, this data set has served as the primary test set

in the popular Comparative Assessment of Scoring Functions (CASF) benchmark

developed by the same group developing PDBbind.

2.2.1 Experimental data preparation

Among the complexes present in the database, we selected a set of structures with a

resolution degree lower than 3Å and with a measured dissociation constant. The

dissociation constant 𝐾𝑑 is defined as:

𝐾𝑑 =
[𝑃][𝐿]

[𝐶]

where [𝑃][𝐿] and [𝐶] represent the concentration of the protein, of the ligand, and of the

complex, respectively.

In this study we use the 𝑝𝐾𝑑 value. The 𝑝𝐾𝑑 value is defined as:

𝑝𝐾𝑑 = −log10(𝐾𝑑)

It means we use only extremely detailed structures, in order to allow our model learning

as many binding details as possible. This is an important condition we apply and not

present in other studies on the subject. In fact, most of the studies do not apply

particular conditions on the complexes used for building the model, apart from the

nature of the data (experimental or synthetic).

Each structure was added of the hydrogen atoms with the help of molecular modeling

and simulation software Molecular Operating Environment (MOE) (54) . MOE is a drug

discovery software platform that integrates visualization, modelling, and simulations, as

well as methodology development, in one package. Main application areas in MOE

include structure-based design, pharmacophore discovery, fragment-based design,

medicinal chemistry and biologics applications, molecular modeling and simulations,

protein and antibody modeling, cheminformatics & QSAR. Eventually, a manual

analysis is conducted on the complexes to check the rightness of the protein

preparation.

For this reason, the experimental data are accurate, but not numerous. In fact, the

process necessary to create an experimental datum is time and resources consuming.

The total number of experimental data used in this study is 2400. In Table 2.1 the main

characteristic of experimental data are resumed.

Type of data
Number of
complexes

Meanligand-
protein affinity

Experimental 2400 5.98

Table 2.1 Resuming table of experimental data

2.3 Synthetic data

For the synthetic database, we download a series of ligands for various targets which

have the experimental 3D structure available, in the Protein Data Bank. The series of

ligands were downloaded from the BindingDB online database (https://bindingdb.org).

BindingDB is a public, web-accessible database of measured binding affinities, focusing

chiefly on the interactions of proteins considered to be candidate drug-targets with

ligands that are small, drug-like molecules. BindingDB supports medicinal chemistry

and drug discovery in different ways: through literature awareness and development of

structure-activity relations (SAR and QSAR). Through validation of computational

chemistry and molecular modeling approaches such as docking, scoring, and free

energy methods; through basic studies of the physical chemistry of molecular

recognition. BindingDB also includes a small collection of host-guest binding data of

interest to chemists studying supramolecular systems. The data collection derives from

a variety of measurement techniques, including enzyme inhibition and kinetics,

isothermal titration calorimetry, NMR and radioligand and competition assays.

BindingDB includes data extracted from the literature by the BindingDB project, selected

PubChem confirmatory BioAssays and ChEMBL, for which a well defined protein target

is provided. Data extracted by BindingDB typically includes more details regarding

experimental conditions. BindingDB currently contains 2.096.653 binding data for 8.185

proteins and over 920.703 drug-like molecules (55).

2.3.1 Synthetic data preparation

In particular, we select compounds with an experimentally assessed data of affinity for

the target, where the affinity is a 𝐾𝑖 data. The 𝐾𝑖 (inhibition constant) measures the

affinity between a ligand and a protein using a reference radioligand. The parameter is

very similar to 𝐾𝑑. We chose to use 𝐾𝑖 for the synthetic data because the complexes

available with this parameter measured are more numerous than the ones with 𝐾𝑑 and

because of the similarity between the two parameters. As for experimental data, we use

𝑝𝐾𝑖 = −log10(𝐾𝑖). Also for the synthetic data, we maintain a coherence in the affinity

value used in the study. This is an important factor with respect to other studies on the

subject where the type of the affinity value considered is not often specified. These

series of ligands are then subjected to docking simulations at the respective target. The

docking work is done with the help of GOLD docking engine through Molecular

Operating Environment (MOE) software interface. GOLD stands for “Genetic

Optimisation for Ligand Docking”. It is one of the most widely used docking programs

and available as part of the CSD-Discovery and CSD-Enterprise Suites. GOLD’s

evolutionary algorithm modifies the position, orientation, and conformation of a ligand to

fit into one or more low energy states of the protein active site. It maps ligand geometry

parameters onto populations of chromosomes and then runs evolutionary rounds of

mutation, crossover, scoring, and selection to optimise ligand-protein interactions. The

ligand structures are docked into the target binding site simulating a mean of 5 different

poses and, for each ligand, the effective docking conformation is chosen as the one with

the best score, according to MOE.

In the study, 17 different types of proteins are used as targets for the synthetic

database. In the end, more than 100000 data are created by the docking software and

the ones selected for the synthetic database are 28200. The proteins used are reported

in the following table, where the quantity of respective complexes present in the

database is also indicated. With this method it is much easier to create a big database

because the process is completely automatic. However, the synthetic complex structure

is not as reliable as the experimental one. In fact, the complex structure of synthetic

data is, in general, created using docking software. As described in detail in the next

chapter, in our study we use the MOE docking engine. A docking software uses a

proper scoring function to determine the best configuration among different protein-

ligand relative positions. The choice is based on the best score provided by the scoring

function. However, as discussed in Chapter 3, the available scoring functions cannot

produce accurate results, for various reasons carefully explained in that chapter. On

the other hand, the experimental data include structures obtained via crystallographic

radiography. The measured complex structure is assumed to correspond to the actual

structure in their natural environment. This subject will be further discussed in Chapter

3. The database of synthetic data, for each ligand-target complex, contains not only the

experimental affinity data 𝐾𝑖, but also the docking score produced by MOE software is

registered. In Table 2.2 the main characteristic of synthetic data are resumed. In Table

2.3 the total number of complexes for each protein present in the synthetic database are

reported.

Type of data
Number of
complexes

Mean ligand-
protein affinity

Mean docking
score

Synthetic 28200 7.48 11.43

Table 2.2 Resuming table of experimental data

Protein 5HT2A A2A BACE1 DOP FAAH GR H1 JAK1 PI3K

Complexes 2763 2914 1413 1243 508 843 1070 1213 1064

Protein PIM2 ACE KOP M1 MCL1 JAK2 OX2 D2

Complexes 384 488 2431 1056 688 1394 2160 6568

Table 2.3 Complexes for each protein in the synthetic database

2.4 Data distribution

In the present paragraph, the characteristic of each database used in the research are

discussed. In fact, each database used is different from the other. Synthetic data and

experimental data consider different variables for target values, even if the ligand-

protein affinity is considered in both cases, as previously explained. From the synthetic

data, two database are extracted. They are using the same features, but they consider

different target values: ligand-protein affinity and docking score. In this case the values

have different physical meaning, but they are both supposed to measure the binding

strength.

As discussed the experimental database is thought to be the principal database of this

study. It is composed of 2400 data. The distribution of the target values considered is

shown in Figure 2.5.

Figure 2.5. Experimental database, target values distribution

The mean of the ligand-protein affinity value in the whole dataset is 5.98. No outliers

data are present in the set. An outlayer is a datum which is far from the mean value of

the considered data distribution, This is a consequence of the data creation process,

which involves checking the data one by one before inserting it in the database.

The synthetic database contains 28200 data, when the ligand-protein affinity is

considered, the data distribution of the target values is the one shown in Figure 2.6. The

mean of the ligand-protein affinity value in this whole dataset is 7.48. The difference

between the mean value of ligand-protein affinity in experimental and synthetic data can

be justified by the difference in the physical value considered between the two sets of

data. In fact 𝐾𝑑and 𝐾𝑖 are similar, but not exactly the same parameter, as already

discussed. The comparison between the target values of these two set of data is shown

in Figure 2.10.

Figure 2.6. Synthetic database, target values distribution considering ligand-protein affinity

Eventually, also the docking score can be considered as target value for the synthetic

data. The docking score considered is a negative value. The more negative the docking

score is, the higher is the probability to have that pose for the complex. For the present

study, the docking score is taken positively in order to have a distribution similar to the

other target values. It means the original docking score is multiplied by -1. In this

configuration, the higher the docking score is, the higher is the probability to have that

pose for the complex. This is similar to the other target values, for which the higher the

value is, the higher is the probability to find that configuration. The target value

distribution of synthetic data with the docking score is shown in Figure 2.7. The mean of

the docking scores converted for the data present in the database is 11.43. In the

synthetic database, both when ligand-protein affinity or docking score are considered as

target value, some outliers are present. They are excluded from the data in the training

and test phase of the scoring function.

Figure 2.7. Synthetic database, target values distribution considering docking score

The difference of target values distribution when docking score or ligand-protein affinity,

both if synthetic or experimental, are considered is more sensible. Actually, as

anticipated in this paragraph, the total amount of synthetic data is more than 100000.

Only the pose with the best score is considered in the synthetic database. Even if the

docking score and ligand-protein affinity are different data, a comparison between the

two, for each complex, is made to discover if some relation between the two target

values is present (Figure 2.8). It is possible to see, in particular from Figure 2.9, that the

two data have no evident relation. Only a similar trend can be observed. In particular,

when the affinity decrease, also the mean value of the docking score has a decreasing

trend.

Figure 2.8. Synthetic database, target values distribution considering ligand-protein affinity and

docking score contemporary. Different group of data are related to different targets

Figure 2.9. Synthetic database, target values distribution considering ligand-protein affinity and

docking score contemporary for protein A2A

Figure 2.10. Database comparison according to the target values considered. The straight lines

represent the mean value of each group of data

Figure 2.11. Comparison between ligand-protein affinity and docking score for the synthetic data.

The Pearson correlation coefficient between these two target data is 𝐑𝐩 = 0.17

2.5 Database creation result

The result of the database construction procedure both for experimental and synthetic

data, is a list of .pdb file and a .xlsx file. The .pdb files contain the 3D structures of each

complex. The .xlsx files contain the ligand-protein affinity and docking score (when

present) of each complex. The .xlsx is a standard Excel file in which the name and the

identification code of the complex are reported in two distinct columns and the relative

targets values are reported in the adjacent columns.

Figure 2.12. Content of a .pdb file

In Figure 2.12 a part of a typical .pdb file is shown. Each atom belonging to the complex

is described by a line of the .pdb file. For this reason, the .pdb file contains a number of

lines equal to the number of atoms composing the complex described. The following

informations relative to each element are present in the file:

 Column 1: Membership molecule.

The elements are divided in two groups, elements belonging to the protein

(ATOM) and elements belonging to the ligands (HETATM).

 Column 2: Sequential number of atoms considered.

 Column 3: Atomic role.

 Column 4-5: Membership amino-acid.

 Column 6: Sequential number of amino-acid considered.

 Column 7-8-9: Cartesian coordinates.

The x, y, z coordinates are reported in column 7, 8, 9, respectively. The

coordinates are in units of Ångströms [Å].

 Column 10-11: Occupancy and temperature factor.

 Column 12: Atomic species.

The .pdb file contains some additional information at the beginning and at the end of the

file which are not useful for this research.

3 State of the art

3.1 Machine learning scoring function

In this chapter the argument of scoring functions is introduced and an excursus on the

subject of machine learning scoring functions, starting from the origin until the present

day, is made.

In medicinal chemistry and in pharmacology, scoring functions are used to accurately

rank molecules based on their predicted affinity for a target of interest after they have

been docked. Usually, one of the molecules is a small organic compound, such as a

drug, and the second is the drug's biological target, such as a protein receptor. Anyway,

the two molecules involved can also be two proteins or a protein and DNA. In this study,

we will focus on the binding between a protein and a small organic compound.

The scoring function aims at describing the electrostatic, hydrophobic, solvation and

hydrogen bonding interactions between the two molecules. The first goal is to

discriminate between binders and non-binders. In fact, for example, the success rate of

the initial phases of drug discovery depends on the prediction of the affinity of a

candidate ligand for a therapeutic target (e.g., protein) of interest. The number of

synthetically accessible small molecules is extremely vast. This combinatorial explosion

underscores a core challenge in drug discovery: testing the affinity of as many small

molecules as possible while maintaining a sufficient degree of accuracy. In fact,

computationally exploring this entire space is currently intractable . There is, actually, a

significant trade-off in both experimental and computational drug screening approaches

between speed, cost, and accuracy (56) (57) (58). Chemists often use scoring functions

also to rank poses of a ligand in a task (after they have been docked using a docking

tool) and to predict the binding affinity of candidate ligands to a target protein (scoring

power). This latter remains one of the most important and difficult incompletely solved

problems in computational biomolecular science, and it is the one we are dealing with in

this study.

Popular docking tools include a proper scoring function belonging to the classical type.

Some examples are, e.g., GOLD (59), SurFlex Dock (60), or AutoDock Vina (56).

Classical scoring functions can be created using different types of approaches:

empirical, force field, or knowledge based.

The empirical scoring functions are based on counting the number of various types of

interactions between the two binding partners (61). They calculate the free energy of

binding as a sum of contributing terms. Each term consists in a physicochemically

distinct contribution to the binding free energy, such as: hydrogen bonding, van der

Waals interactions, hydrophobic interactions, and the ligand’s conformational entropy.

Each of these terms is multiplied by a coefficient and the resulting parameters are used

for estimating the binding affinities.

The force field scoring functions consider the strength of intermolecular van der Waals

and electrostatic interactions between all atoms of the two molecules in the complex

and, sometimes, also the strain and the desolvation energy. They parameterize the

potential energy of a complex as a sum of energy terms arising both from bonded and

both from non-bonded interactions (62). Each of these terms has a functional form

characteristic of the particular force field. On the other hand, each force field contains a

number of parameters that are estimated from experimental and simulated data.

However, these force fields do not account for entropy because they were just designed

to model intermolecular potential energies (63).

The knowledge based scoring functions are based on the following assumption. If a

certain type of interaction between functional groups or atoms are encountered more

often than expected by a random distribution, they should be energetically favorable,

namely, they contribute favorably to binding affinity (64). They are called knowledge-

based scoring functions because they use the 3D coordinates of a large set of ligand-

protein complexes as a knowledge base. In this way, a ligand-protein complex model

can be created on the basis of how similar its features are to those in the knowledge

base. The features used are often the distributions of atom–atom distances between

ligand and protein in the complex. Recurrent features in the knowledge base means

favorable conditions, whereas less frequently observed features score unfavorably. The

resulting score, deriving from the sum of these contributions over all pairs of atoms in

the complex, is converted into a pseudo-energy function, typically through a reverse

Boltzmann procedure, in order to provide an estimate of the binding affinity (65) (66)

(67). Some knowledge based scoring functions nowadays include parameters that are

fitted to experimental binding affinities (68) or introduce Information Theory-driven

improvements as well as explicit solvent models (69).

In addition to scoring functions, there are other computational technique that provide a

more accurate prediction of binding affinity, such as those based on molecular

dynamics simulations. However, these techniques imply expensive calculations. For this

reason they remain impractical for the evaluation of large database of proteins or

ligands and they are currently typically limited to family-specific simulations (62) (70).

Classic scoring functions can sometimes obtain good results in virtual screening

experiments (57) (71) (72) (73). However, researchers working in medicinal chemistry

need more consistent and reliable predictions, meaning that novel approaches are

required. In fact, scoring functions do not fully account for a number of physical

processes that are important for molecular recognition, which in turn limits their ability to

select and rank small molecules by computed binding affinities. It is known that, among

other drawbacks, classic scoring functions do not account well for solvation energy

contributions or conformational entropy (74). Furthermore, it is generally believed (70)

that two of the major sources of error in scoring functions are the implicit treatment of

solvent and their limited description of protein flexibility. In addition to these enabling

simplifications, there is an important issue that is often neglected, whatever type of

scoring function is considered. The scoring function assumes a predetermined theory-

inspired model for the relationship between the features that characterize the complex

and its predicted binding affinity. However, the types of complexes present in nature can

be extremely numerous and all of these do not conform to the rigid approach assumed

in classic scoring functions. This inherent problem leads the scoring functions to poor

predictivity in those complexes that do not conform to the modelling assumptions. For

instance, the van der Waals potential energy of non-bonded interactions in a complex is

often modelled by a Lennard-Jones 12-6 function with parameters calibrated with

experimental data. In fact, the model for the relationship between the features that

characterize the complex and its predicted binding affinity is often built based on

experimental and simulated data. However, there could be many cases for which this

particular functional form is not sufficiently accurate. Furthermore, while the r−6

attractive term can be shown to arise as a result of dispersion interactions between two

isolated atoms, this does not include the significant higher order contributions to the

dispersion energy, as well as the many-body effects that are present in ligand-protein

interactions (75).

To rank or evaluate ligands from chemical libraries, the use of more than a single

scoring function is a standard procedure. This guarantees a cross validation in the

virtual screening performance. Often, before ranking a ligand-protein complex, an

empirical or a knowledge-based or a force field function is used to generate an

ensemble of possible docking poses. Each docking pose is further evaluated by an

knowledge based scoring function. The results are used to correct the rank of the ligand

poses. However, resampling strategies, such as cross-validation or bootstrapping, are

still not systematically used to guard against the overfitting of calibration data in

parameter estimation for scoring functions (76).

In addition, a single classic scoring function can perform well or not depending on the

target protein being addressed. This is a factor of uncertainty in classic scoring function

results since the predictive accuracy of those functions varies between protein families.

For this reason, scoring functions calibrated for the target under study are sometimes

preferred to universal ones (77) (78). Importantly, the underlying often linear regression

model employed by classical SFs has been shown to be unable to assimilate large

amounts of structural and binding data (79). Still, it is worth mentioning that a number of

control parameters can be adjusted to tailor the scoring function to a particular target

and to select the major interaction type to be taken into account. However, most classic

scoring functions cannot be trained on a particular target and are provided in a way that

does not permit changing the regression model.

It is clear that the use of classic scoring functions can be laborious and not reliable, as

just described, and it limits their use in large libraries of compounds.

In recent years, machine learning techniques are being applied in multiple research

fields obtaining very promising results, in particular when the study has access to a very

large number of data to learn from. This is often the case in the docking and in the

virtual screening researching areas. Following this trend, the machine learning

methodology has made its appearance in the docking and in the virtual screening

pipelines.

It is necessary specifying that machine learning models appeared in virtual screening

and chemoinformatics in recent years, not earlier than 20 years ago. Because of this,

the present study and all the cited ones are pioneristic studies.

Here we focus mainly on algorithms posed as a regression problems for predicting

ligand-protein binding affinities, even if they already appear in many other applications.

Machine-learning scoring functions provide clear advantages over classic ones (80) (81)

(82) (83). They are sometimes several orders of magnitude faster than classic scoring

functions. However, their performance can significantly vary depending on the model

used and consequently on the chosen featurization (80).

These functions are created using different types of regression models, like random

forests, logistic regression, support vector machines (SVM), or deep learning algorithms

trained on shared databases. A shared database is a database created by one or more

research teams and shared on the web to have an amount of validated and reliable data

available for any kind of research purpose. The binding affinity prediction with machine-

learning scoring function interests many fields. Various outstanding open issues are

being investigated by researchers. Which machine learning method could generate

more predictive scoring functions (84)? How can one build machine-learning versions of

classic scoring functions (85)? What is the impact of structure-based feature selection

on predictive performance (86)? How does target diversity affect predictive performance

(87)? How does predictive performance increase with the size of the training data, in

both classic and machine learning types of scoring functions (79)? How does the quality

of structural and binding data influence predictive performance (88)? How could one

correct the impact of docking pose generation error on predictive performance and how

does the implementation of web servers and stand-alone software make these tools

freely available (89) (90) (91)?

One of the first appearance of machine learning in the field was in the role of an

alternative to modelling assumptions in scoring functions. One of the first study of this

kind was conducted by Deng et al. (92). They thought that non-parametric machine

learning can be used to implicitly capture binding effects that are hard to model

explicitly. In principle any possible kind of interaction can be directly inferred from

experimental data by not imposing any particular functional form for the scoring

function. In the previous mentioned study they used the distance-dependent interaction

frequencies between a set of determined atom types, observed in two separate small

datasets, as elements to model binding effects. This model was validated against

several small external test sets (6 or 10 compounds). This study can be considered a

valuable proof-of-concept that machine learning can produce useful scoring functions,

besides of opening the way to the research on scoring functions based on machine

learning. In the following years, support vector regression (SVR) was applied to produce

family-specific scoring functions for five different ligand-protein systems using datasets

with less than 100 complexes. The tests on the cross-validation data partitions

produced excellent correlation coefficients. SVR was used also in combination with

Inductive Logic Programming in order to obtain a set of quantitative rules that can be

used in drug lead optimization for hypothesis generation (93).

In the very first years of study in the field of machine learning-based scoring functions,

there has been much more research on machine learning approaches to Quantitative

Structure–Activity Relationships (QSAR) bioactivity predictions. However, this type of

research is exclusively based on ligand molecule properties without taking into

consideration the information from the protein structure. In fact, the model used is less

complex with respect to a machine learning-based scoring functions. Indeed the results

could be not reliable because the information on the protein is lacking.

Some early studies on machine learning scoring function (94) (95) used classic

statistical approaches, such as linear models. The feature considered are hydrogen

bonds, hydrophobicity, or van der Waals surface. The coefficient used in the training

model are extracted from these latter features. Very soon it was clear that this simple

approach cannot efficiently approximate free energies due to the nonflexible and simple

nature of their linear modelling relationship (80).

The first scoring function based on machine learning to achieve high performance on a

well-known benchmark was created by Ballester et al. (96) and is called RF-Score. The

aim of their study is to create a function based on Random Forest (RF) (97) to predict

ligand-protein binding affinity which can perform better than classic scoring functions.

The descriptive model used for the ligand-protein complex is a structure based model. It

consists in counting the number of a specific atomic pair, in which one atom belongs to

the protein and the other atom belongs to the ligand. The atomic species considered by

Ballester et al. (96) are C, N, O, F, P, S, Cl, Br, I. The space area in which the number

of atomic couples considered are counted is a sphere of radius equal to 12 Å.

Consequently, the total number of features which describe each ligand-protein complex

is 81. Because of the composition of the proteins chosen for training and testing in the

RF-Score model, 45 of the 81 features are composed by zeros. Therefore, each

complex is characterized by a vector with 36 features. RF-Score is created using a

Random Forest model with a number of trees equal to 500.

Wójcikowski et al. (98) further developed the idea proposed by Ballester et al.

(96) creating a new scoring function, named RF-Score-VS. In this work the aim is to

investigate the influence of including inactive molecules docked to targets in the training

procedure. The analysis is conducted evaluating the screening power and the scoring

power of the function and comparing them to the ones of classical scoring functions.

The scoring power consists in simply predicting the ligand-protein affinity. The screening

power consist in recognizing active ligands in a certain set. In fact, when a large

database of compounds is screened, one then takes the best scored compounds for

further evaluation. The screening power is measured with the enrichment test. The

enrichment test tries to reproduce this screening operation counting how many active

compounds are among the best scored compounds. In particular the enrichment factor

considered in this study is the top 1% (EF1%).

They use an analogue regression model with respect to Ballester et al. (96), based on

random forest with the same number of trees. In this case the database used is

composed by ligand-protein complexes created using different docking tools. They

propose three different descriptive models trying to improve the structure based ligand-

protein complex representation. The first model (v1) is exactly the same used by

Ballester et al. (96). It uses a combination of ligand-protein atom-type pair counts on the

binding site neighborhood in a single area of radius 12 Å. The atomic species

considered are the same proposed by Ballester et al. (96). Because of this the total

number of features considered for the ligand-protein complex description is 81. The RF-

Score-VS v2 scoring function considers an additional feature for each complex: the

Autodock Vina (56) partial score. In fact, this study used data coming from a docking

procedure in the training and testing phase. The Autodock Vina (56) partial score is the

docking score obtained by the particular docking software used in the data base

creation. In this case the number of features for each complex is 82. The last version of

scoring function proposed by Wójcikowski et al (98) is called RF-Score-VS v3. The

descriptive model , instead of 1 interval of 12 Å, consider 6 intervals of 2 Å amplitude

without considering the Autodock Vina partial score. In this case the number of features

for each complex is 486.

More recently, deep learning has demonstrated the potential to exceed the capability of

extracting information from the features used to describe such a complex situation, as

the ligand-protein binding is. The flexibility of deep neural networks allows models, in

principle, to learn successively higher orders of features from the simplest possible

representations of the data at hand. In computer vision, for example, convolutional

neural networks (99) applied to images can learn how to progressively detect edges,

eyes, ears,... and finally faces, starting from early layers in the network, through

intermediate network layers, to terminal layers of the network. While such advanced

artificial neural network frameworks have led to immense advances in the fields of

computer vision and natural language processing, they have only recently penetrated

other areas, like the scoring function pipeline. In fact, the first machine learning scoring

functions using convolutional neural network appeared not earlier than five years ago.

This particular type of network and its structure, consisting in subsequent blocks with

different functions, perform well with tri-dimensional databases, like the ligand-protein

complex structure is. The aim of using convolutional neural network, with the tri-

dimensional complex structure as feature, is to learn more complex chemical features

by optimizing both the model and featurization simultaneously.

One of the first studies in which a scoring function was created with a convolutional

neural network, was performed by by Gomes et al. (100). They used two primitive

convolutional operations: atom type convolution and radial pooling. The atom type

convolution extracts features encoding local chemical environments from an input

representation (Cartesian atomic coordinates) into a neighbor-listed distance matrix.

Radial pooling consists in the dimensionality reduction of the output of the atom type

convolution. This dimensionality reduction is done, both to prevent over-fitting through

feature binning, and for reducing the number of parameters learned. Radial pooling

takes as input the output by the atom type convolution.

Other important studies on machine learning scoring functions based on convolutional

neural networks were published by Seo et al. (101) and Stepniewska et al. (102).

Seo et al. (101) proposed a scoring function called BAPA (Binding Affinity Prediction

with Attention) using three kinds of neural network layers (convolutional, attention, and

dense) for binding affinity prediction. Because machine learning scoring functions

originally tend to have limitations, mainly resulting from a lack of sufficient interactions

energy terms, the proposed model has two important features: a descriptor

embeddings, that contains embedded information about the local structures of a ligand-

protein complex, and an attention mechanism for highlighting important descriptors to

binding affinity prediction, through the use of a weights vector.

Stepniewska et al. (102) have developed Pafnucy a scoring function based on a deep

neural network. The model consists of two parts: the convolutional and the dense parts.

The first uses three convolutional layers and the second three dense layers. In their

approach, they consider the complex into a defined size of 20 Å cubic box focused at

the geometric center of a ligand. Then the positions of heavy atoms are discretized

using a 3D grid with 1 A° resolution. This approach allowed for the representation of the

input as a 4D tensor in which each point is defined by Cartesian coordinates (the first 3

dimensions of the tensor) and a vector of features (the last dimension). In Pafnucy, 19

features were used to describe an atom: the atom types (species considered are B, C,

N, O, P, S, Se, halogen and metal), hybridization, numbers of bonds with other heavy

atoms, numbers of bonds with other hetero atoms, properties (hydrophobic, aromatic,

acceptor, donor and ring), partial charge and molecules belonging (ligand or protein).

According to the authors, this approach serves as a regularization technique as it forces

the network to discover general properties of interactions between proteins and ligands.

Driven by deep learning-based approaches, which have rapidly emerged to provide

state-of-the-art performances in different fields, and to find out how this class of models

performs in molecular scoring tasks, also Jose Jimenez et al. (103) proposed an end-to-

end framework, named KDEEP, based on 3D-convolutional neural networks for

predicting ligand-protein absolute affinities.

They used a 3D voxel representation of both proteins and ligand using a van der Waals

radius for each atom type, which in turns gets assigned to a particular property channel

(hydrophobic, hydrogen-bond donor or acceptor, aromatic, positive or negative

ionizable, metallic and total excluded volume), according to its rule. The contribution of

each atom to each grid point depends on their Euclidean distance. The number of

properties are duplicated to account for both protein and ligand, by using the

same ones in each, up to a total of 16 different channels. These descriptors are

computed on a fixed 24 Å3 sub-grid centered on the geometric center of the ligand, in

practice capturing a neighborhood of the binding site. The architecture network used by

Jose Jimenez et al. (103) is adapted from the one proven successful in computer vision

applications, such as SqueezeNet (104).

It is evident how strong and how recent the interest in applying machine learning to

virtual screening and chemoinformatics is. Furthermore we are just focusing on a small

piece of this wide field of study, such as ligand-protein binding affinity prediction,

considering that we just focus on machine learning applied to ligand-protein binding

affinity prediction.

3.2 Database

In the retrospective studies, the performance of scoring functions was evaluated on

several public available benchmarking datasets. Here the principal databases used in

the subject are presented, i.e. the Community Structure-Activity Resource (CSAR)

(105), the PDBbind (106), the Directory of Useful Decoys (DUD) (107), and the

Directory of Useful Decoys - Enhanced (DUD-E) (108).

Each study generated various classes of non-overlapping training and testing sets using

the mentioned databases, intended to simulate possible application scenarios. In fact, it

is important to consider that in any case, the complexes present in the training set are

never present in the test set (or validation set, if used).

The reason for which shared datasets were created is facilitating the prediction of the

binding affinities based on experimental complex structures. In fact, they are composed

of 3D complex structures coming from experiments. The availability of experimental

ligand-protein complex structures allows the structure-based featurization to correlate

with the ligand-protein binding affinities with the precise binding interactions.

The most important database in docking and virtual screening pipeline is the PDBbind

database, which has already been presented.

The CSAR database disseminated experimental datasets of crystal structures and

binding affinities for diverse ligand-protein complexes. The acronym stands for

Community Structure-Activity Resource. The repository is hosted by University of

Michigan. Some data were generated in house at the University of Michigan, while

others were collected from the literature or deposited by academic labs, national

centers, and the pharmaceutical industry. As anticipated, also for this project the original

aim was to create better datasets to train scoring functions and develop new docking

algorithms. The DUD and DUD-E datasets are composed of data created by docking

tools. DUD stands for directory of useful decoys. They were originally designed to

assess docking enrichment performance by distinguishing the actives ligands among a

large database of computationally generated non-binding decoy molecules.

DUD is designed to help test docking algorithms by providing challenging decoys. It

contains a total of 2950 active compounds against a total of 40 targets. For each active,

36 "decoys" with similar physical properties, but dissimilar topology, are contained. DUD

is provided by the Irwin and Shoichet labs in the Department of Pharmaceutical

Chemistry at the University of California, San Francisco (UCSF) (109).

DUD-E is an enhanced and rebuilt version of DUD. It contains 22886 active compounds

and their affinities against 102 targets, an average of 224 ligands per target. In addition,

it contains 50 decoys for each active having similar physico-chemical properties but

dissimilar 2-D topology.

In one of the first study on the topic of machine learning scoring function, Ballester et al.

(96) used the 2007 PDBbind release. In order to generate a refined set suitable for

validating scoring functions, the authors of the study applied a series of conditions for

the data. Only complex structures with a resolution of 2.5 Å or better were considered.

Only complexes with known dissociation constants (𝐾𝑑) or inhibition constants (𝐾𝑖) were

considered. They left those complexes with assay-dependent 𝐼𝐶50 measurements out of

the refined set. Still there is no unique affinity value considered as univoque ligand-

protein affinity. In addition, because not all molecular modelling software can handle

ligands with uncommon elements, only complexes with ligand molecules containing just

the common heavy atoms (C, N, O, F, P, S, Cl, Br, I) were considered. This process led

to a refined set of 1300 ligand-protein complexes with their corresponding binding

affinities. The predictions of scoring functions were tested on the core set, which

comprised 195 diverse complexes with measured binding affinities.

In the study by Wójcikowski et al. (98) the database was composed of the complexes

deriving from the combination of 102 protein targets with a group of active molecules for

each target (224 ligands on average) and decoys (50 decoys per active ligand). The

decoys were obtained from the DUD-E (108). The total database is composed by

92750946 data. The structure of the complexes was generated with three docking

programs: AutoDock Vina (the Smina implementation, [http://smina.sf.net/]) (56) (110),

Dock 3.6 (111), and Dock 6.6 (112) (113). Only one best scoring ligand pose according

to the docking tools was chosen for the scoring function model building.

Gomes et al. (100) used two subsets of the PDBBind 2015 dataset: core (195

structures) and refined (3706 structures). The crystal structures present in the core and

refined datasets were obtained at a higher resolution and cleaned more thoroughly than

the full dataset, considering more stringent requirements on the quality of the complex

structure, quality of the binding data, and the nature of the complex. They used the two

databases separately. All train/test splits follow the 80/20 ratio.

 Seo et al. (101) also used PDBbind database, but in version 2016 and 2018, for

training the model. The training set is composed of 3689 complexes. They mainly used,

as test dataset for model performance evaluation, CASF-2016 dataset (285 complexes)

and CASF-2013 dataset (195 complexes). The corresponding binding affinities are

expressed with 𝑝𝐾𝑎, which can be defined using −log(𝐾𝑑) or −log(𝐾𝑖).

Also Stepniewska et al. (102) used PDBbind 2016 as principal database. The general

and refined sets were used to train the model and to select the hyperparameters (11906

data). While the core set (290), CASF-2013 (129), and Astex Diverse Set (114)

database was used as an external test set. The Astex database is an independent

source with respect to PDBbind project. Like for Seo et al. (101), their corresponding

binding affinities is expressed with 𝑝𝐾𝑎, which can be −log(𝐾𝑑) or −log(𝐾𝑖).

For training the model, commonly to previous studies, Jose Jimenez et al. [26] used the

refined set of the PDBbind database, without including the complexes belonging to the

core subset of the same database, for a total number of 3767 complexes. This latter

subset is used as the principal test set. It is composed of 290 complexes. In addition,

they perform secondary tests on other databases like CSAR NRC-HiQ set 1 and set 2,

CSAR 2012 and 2014. As in the previous mentioned studies, they do not use an

univoque measure for the binding affinity. In fact, there is no distinction between 𝐾𝑑 and

𝐾𝑖, that is dissociation and inhibition constants. They consider 𝑝𝐾𝑎, which can be either

−log(𝐾𝑑) or −log(𝐾𝑖).

3.3 Test types

Several studies underlined how machine-learning scoring functions have outperformed

classical ones in binding affinity prediction. More recent studies, besides comparing

their machine learning performances with classic scoring functions ones, try to

outperform the already existing machine learning scoring function, for a sort of

performance escalation.

In order to determine the scoring functions performance, a series of different tests were

performed. In this paragraph, the principal types of tests used to describe a machine

learning scoring functions performance and the corresponding results in the most

important studies on the subject are described.

Basically, there are two main type of tests: vertical test and horizontal test. Normally, a

database is composed of complexes coming from a relative circumscripted number of

proteins. Each protein is bounded with many ligands. It is possible to consider the

complexes coming from the same protein as a subgroup inside the database. In this

case, the entire database is represented by an ensemble of subgroups representing the

complexes of each protein, as schematically shown in the Figure 3.1.

Figure 3.1 Schematical representation of the database

Figure 3.2 Schematical representation of the database subdivision in the horizontal test

A horizontal test consists in subdividing the database, represented in the way of Figure

3.2, horizontally into the training and test set, according to a determined percentage. In

this explanation we just consider a subdivision of the database in these two groups, but

in the case the validation set is used, another subset is created for this latter set. The

subdivision is still horizontal. Each subgroup, represented by the complexes deriving

from a single protein, is divided into complexes belonging to the training and test set.

For this reason we can find complexes coming from the same protein in both the

training and test subsets. The scheme in Figure 3.2 is not representing exactly the

database because the subset of complexes coming from each protein could have

different sizes. In addition, the subdivision is not equally broken down among the

subgroups. In fact, it is done considering the entire database. For this reason it can

happen that the complexes of a particular protein are included for the 85% in the

training set and for the 15% in the test set and the complexes of another protein are

subdivided according to the percentage 75-25. Anyway, Figure 3.2 shows the average

subdivision of the database into training and test set for a horizontal test.

Figure 3.3 Schematical representation of the database subdivision in the vertical test

The vertical test is schematically represented in Figure 3.3. It consists in subdividing the

database as represented in Figure 3.1, vertically. In this case, the training set is

composed of complexes of proteins not present in the test set and vice versa. Because

of this, when you use a vertical test, you build your model using some proteins and then

you test it on proteins never seen by the model.

As anticipated, the tests are done to compare the performance of the scoring functions

in pratical applications. The vertical test can describe a real-case scenario. In chemical

and pharmacological laboratories, scientists often aim at discovering new drugs or

studying the effects of some active principles on a certain protein. A typical situation is

that the affinity between some ligands and a protein (never addressed before) must be

predicted. The usual scientist’s instruments are the scoring functions, classical or based

on machine learning. In addition, in his/her domain, he/she has a number of data,

experimental or synthetic, of which the affinity and a precise or less precise molecular

structure are known. These data could be the ones used to train the machine learning

scoring function. But, probably, any data on the protein under study are known because

the process is acted to discover something new. This could describe the case in which

the world is entangled now. That is the Corona virus epidemic. A vertical test can well

reproduce this scenario. In fact, in a vertical test, the network is trained on complexes

deriving from some specific proteins. The consequent test is performed on a pool of

data which are not deriving from any protein present in the train set. In the present case,

the test is called vertical test.

A variation of the vertical test is the per-target vertical test, schematically shown in

Figure 3.4.

Figure 3.4 Schematical representation of the database subdivision in the per-target vertical test

The scoring function is trained on the entire database except on the complexes deriving

from one protein. These are used as test set. Using this type of test the typical scenario

of medicine discovery, where the target is previously selected but never studied before,

is described. Following the example of the Corona virus, this test could describe the

case where you have selected the Spike protein to be the target protein of your study

and the research of effective ligands begins.

On the other hand, a horizontal test does not describe the situation well, because the

machine learning scoring function is tested on complexes similar to others already seen.

In particular, the protein in your test is already experimentally measured in the reactions

with many other ligands. This is in contrast with the situation described above. This

approach can mimics experiments where docking is performed on targets for which

there are already known active ligands and virtual screening is done to find new ones. It

is a real, but less interesting scenario.

Ballester et al. (96) created the first machine learning scoring function to achieve high

performance on a well-known benchmark. That performance was measured using a

standard horizontal test. The performance parameter taken in consideration is the

Pearson Correlation Coefficient, 𝑅𝑝. A value of 𝑅𝑝= 0.78 was obtained. The question of

how much of the predictive ability of machine learning scoring function is due to learning

the true relationship between the atomic-level description of structures and their binding

affinities is open since this pioneristic study. The authors tried to answer this question

mixing the database. In particular they assigned a wrong affinity value to the ligand-

protein complexes present in the test set. The aim is to verify if the RF-Score is able to

reach similar level of 𝑅𝑝 using a correct or incorrect test set. If the 𝑅𝑝 reached is the

same in both cases, probably the machine learning scoring function is not learning the

binding properties of the complexes. Otherwise, probably, it is learning the binding

properties of the complex. The mean 𝑅𝑝 obtained with this test has an absolute value of

0.18, which is considered a proof of the correct functionality of RF-score.

Wójcikowski et al. (98) made a precise distinction in the tests they performed. When the

screening power is evaluated, they perform three types of test for each of the three

scoring functions: horizontal, vertical, and per target vertical test. The results in

horizontal test show a dramatic increase of EF1% performance between the best

classic scoring functions compared to machine-learning scoring functions: around two

to, even, 15 times increase depending on the docking engine and scoring function. The

vertical test shows that there is a drop in EF1% performance with respect to the

horizontal one. Nevertheless, this result is still better than the one obtained from a

classical approach, even if the difference is very small. Eventually, they trained a

separate SF for each of the DUD-E targets (per-target scoring functions) tested on per-

target test in order to verify if tailored functions perform significantly better than a

generic function. Most of the per-target functions evaluated in the Wójcikowski et al.

(98) study tend to perform only slightly better than the generic, unique, function (trained

on all available data). This slight improvement can be observed in particular if the data

on the target chosen are numerous. Because the enrichment test do not show if these

top 1% molecules are actually the most active ones, Wójcikowski et al. (98) check if

machine-learning methodology predicts binding affinity better than a classical SF, using

version 2 (v2) of RF-score VS. The test is conducted measuring the 𝑅𝑝 in the horizontal

and vertical tests and obtaining respectively a value of 𝑅𝑝 = 0.56 and 𝑅𝑝 = 0.20. The

test confirm the difficulty of the actual machine learning scoring function in vertical test.

Gomes et al. (100) consider four methods of splitting PDBBind core and refined sets

into subsets for train/test evaluations. These are employed for four different types of

tests. The tests are called random, stratified, scaffold, and temporal. The random split

consist in a usual horizontal test. In fact, they randomly split samples into train/test

subsets. The stratified split sorts examples in order of increasing inhibition constant 𝐾𝑖,

and then it chooses 10 samples at a time and randomly splits these samples into

train/test subsets to ensure that each set contains the full range of inhibition constant

present in the parent dataset. It can be considered a horizontal test because the same

protein can be present both in train and test set. Scaffold splitting considers ligand

molecules scaffold (the structure obtained removing side chain atoms). Common

scaffolds are placed in the train set and uncommon scaffolds are placed in the test set.

This split attempts to separate structurally distinct molecules into train and test sets. For

this reason it represents a kind of vertical test, even if the ligand structure is considered

and the separation criteria are based on common and uncommon structures. Temporal

splitting was performed based on the year that the ligand-protein complex was entered

in the Protein Data Bank. This split tests the ability of the learning algorithm to use prior

historical data to predict results of future experiments, similar to typical use in

prospective drug discovery. Based on the definition reported at the beginning of this

paragraph, this is an horizontal test too. To determine the train and test set

performance, the squared Pearson Correlation Coefficient (𝑅𝑝
2 of log 𝐾𝑖 were evaluated).

The results obtained in the 4 types of test are the following. In the random test, the

scores 𝑅𝑝
2 = 0.448 and 𝑅𝑝

2 = 0.508 are obtained, respectively, using the PDBbind core

set and the PDBbind refined set. In the stratified test the scores 𝑅𝑝
2= 0.116 and 𝑅𝑝

2 =

0.491 are obtained, respectively, using the PDBbind core set and the PDBbind refined

set. In the scaffold test the scores 𝑅𝑝
2= 0.043 and 𝑅𝑝

2= 0.267 are obtained, respectively,

using the PDBbind core set and the PDBbind refined set. In the temporal test the

scores 𝑅𝑝
2 = 0.251 and 𝑅𝑝

2 = 0.529 are obtained, respectively, using the PDBbind core

set and the PDBbind refined set for training and testing the model. It is possible to

observe that the performance obtained in the horizontal test are sensibly higher than the

one obtained in the scaffold test, which can be considered as a vertical test, even if

facilitated. In addition, the performance of Gomes et al. (100) scoring function (ACNN) is

compared with other machine learning scoring functions based on models already

proposed in literature, also much simpler with respect to the one proposed by Gomes et

al. (100). The performance obtained are comparable.

Seo et al. (101) evaluated the performance of binding affinity prediction models via

different metrics. In particular, we point the reader’s attention to the Pearson’s

Correlation Coefficient (𝑅𝑝). The conducted test is a horizontal test. In the main test

sets chosen, that are based on the CASF-2013 and CASF-2016 databases, the scores

obatined are respectively, 𝑅𝑝 = 0.77 and 𝑅𝑝 = 0.82. In addition, they perform a kind of

vertical test to evaluate the performance of the model according to protein structure

similarity or ligand structure similarity. The structure similarity is evaluated based on Li

et al. (115) study. It is not possible to define these test as a proper vertical test, because

the criterion of avoiding same protein, both in training and test set, is not respected.

Nevertheless, in this latter test there is a flexion of the BAPA (101) performance, with

respect to the horizontal test, of less than 0.1, considering the 𝑅𝑝 parameter. Eventually,

they compare BAPA with four existing popular prediction models including RF-Score v3

(79), Pafnucy (102), PLEC-linear (116), and Onionnet (117). All the just mentioned

models are trained and tested using the same datasets of this study and the results are

comparable.

In Stepniewska et al. (102) the correlation between the scores and experimentally

measured binding constants is assessed mainly with the Pearson’s correlation

coefficient 𝑅𝑝. They perform horizontal tests in order to measure the performance of

Pafnucy scoring function using the PDBbind core set, CASF-2013, and Astex database.

They obtain respectively 𝑅𝑝 = 0.78, 𝑅𝑝 = 0.70, and 𝑅𝑝 = 0.57. The performance of

Pafnucy scoring function are similar to the ones of other machine learning scoring

functions in horizontal test, as already presented.

As in previous studies, Jose Jimenez et al. (103) use the usual horizontal test and

measure the scoring function performances with Pearson’s correlation coefficient 𝑅𝑝 as

the main performance parameter. KDEEP shows better performance in the horizontal

test if the PDBBind core set is used (𝑅𝑝 = 0.82). Instead, if other databases are

considered, the performance is reduced (𝑅𝑝 = 0.72 and 0.65 respectively on CSAR

NRC-HiQ set 1 and CSAR NRC-HiQ set 2, and 𝑅𝑝 = 0.37 and 0.61 respectively on

CSAR 2012 and CSAR 2014). Also in this case the mean KDEEP performances are

comparable with the ones of other mentioned machine learning scoring functions on

horizontal test. Besides of comparing the scoring function performances to other

machine learning scoring functions, in our study a comparison is also made with basic

scoring function, like molecular weights scoring function. This latter is a scoring function

which simply attribute a ligand-protein binding affinity assuming a linear dependence as

a function of the molecular weights of the molecule. KDEEP highlight clear better

performance in the horizontal test with respect to a molecular weights scoring function.

Eventually, they perform a secondary test in which KDEEP is tested on a set of data

composed only of complexes of one protein, not present in the train set, that is, a per-

protein vertical test. In this case, the performances are significantly lower than the ones

of the horizontal test and do not overtake the performance of classic scoring function,

on the contrary, they are comparable. The weighted average 𝑅𝑝 measured by Jose

Jimenez et al. (103) in the described case is 𝑅𝑝 = 0.34.

Basically, all machine learning scoring functions created in recent years overperform the

classic scoring functions. In fact, as discussed, most of the studies compare the results

obtained by machine learning scoring functions with respect to classic scoring functions

in a particular test, obtaining a positive feedback. In Table 3.1, the performances of the

most important machine learning scoring functions introduced in this chapter are

reported. The aim of the Table 3.1 is to furnish a clear description of the performance

state of the art of this type of scoring function and to compare each other based on the

same performance parameter and class of test. In fact, as presented, different research

groups can use different type of performance descriptors. In this situation, it is difficult to

have a clear picture of the state of the art. In Table 3.1 the Pearson correlation

coefficient is used to compare all the scoring functions because every research use it in

addition to other different parameters. The scoring functions are listed according to their

authors. The test considered are the horizontal, vertical, and per-target vertical test. The

definition of these tests has been reported previously in the present paragraph. An

additional column is added to record the results obtained in tests similar to the vertical

test. These tests are called “ Vertical test “Kind of””. In this category the tests that avoid

the contemporary presence in training and test set of similar complexes, for any type of

criteria (protein sequence-based similarity, ligand scaffold similarity,...), are reported.

These tests are not exactly vertical test according to definition reported, but they try to

reproduce similar conditions of vertical tests. In the table, between round brackets the

test set used in a certain test is reported. Always in the table, between squared

brackets, the name of the test performed according to the author of the research is

reported.

The best performing benchmark for machine learning scoring function is, for sure, the

horizontal test. In fact, it is the test in which the best performances are recorded.

However, we observe that machine learning scoring function encounter some difficulties

in vertical tests, or in similar benchmarks. The teams that perform vertical tests always

recorded a general decrease of the machine learning scoring function performances

with respect to what was measured in the horizontal test. If the test is strictly vertical,

the performance decrease is sensible, but also in the cases where a kind of vertical test

is adopted, a performance decrease is already present.

On the other hand, vertical and horizontal test for classic scoring functions have no

meaning because they do not sustain a training procedure. When machine learning and

classic scoring functions are compared in any kind of test, it is the testing pool to be the

same. In fact, the performance of classic scoring functions are stable between a

horizontal and vertical test. The gap that appeared between these latter and machine

learning scoring functions in horizontal tests, usually disappear in vertical test.

Study Performance: 𝑅𝑝(database used)[Test type used in original study]

Horizontal test Vertical test Per-target

vertical test

Vertical test

“Kind of”

Ballester et

al.

0.78(PDB core) / / /

Wójcikowski

et al.

0.56(DUD-E) 0.20(DUD-

E)

/ /

Gomes et al. 0.67(PDB core);

0.71(PDB ref.) [Random].

0.34(PDB core)

0.70(PDB ref.) [Stratified].

0.50(PDB core)

0.73(PDB ref.)

[Temporal].

/ / 0.21(PDB

core)

0.52(PDB ref.)

[Scaffold]

Seo et al. 0.77(CASF-2013)

0.82(CASF-2016)

/ / 0.74(CASF-

2013)

Stepniewska

et al.

0.78(PDBcore),

0.70(CASF-2013)

0.57(Astex)

/ / /

Jose

Jimenez et

al.

0.82(PDBcore)

0.37(CSAR 2012)

0.61(CSAR 2014)

/ 0.34(PDBco

re)

/

Jincai Yang

et al.

0.84(PDB ref.) 0.73(PDB

gen.)

0.71(PDB ref.) 0.60(PDB

gen.)

/ / 0.63(PDB ref.)

0.54(PDB

gen.)

[sequence-

based

splitting].

0.48(PDB ref.)

0.42(PDB

gen.) [ligand

scaffold

similarity]

Table 3.1 Comparison among most important machine learning scoring functions performances

3.4 Performance doping factor

Of course, machine learning scoring functions can be an innovative solution in the field

of virtual screening and chemoinformatics. However, not all the researchers agree on

the incredible performances of these functions. In this paragraph we deal with some

possible bias that influences the performances presented above.

Jincai Yang et al. (118) go into details of Josph Gomes et al. (100) study and their

scoring function, called ACNN, to demonstrate that often machine learning scoring

function performances are doped by the chosen database and testing method. In their

study, they demonstrate that same levels of performance are obtained considering the

whole complex structure or only the protein or the ligand structure singularly. ACNN

models did not require learning the essential ligand-protein interactions in complex

structures and achieved similar performance even on datasets containing only ligand

structures or only protein structures. This means that machine learning scoring

functions simply recognize similar proteins or ligands, but do not learn the propriety of

the binding mechanism. In addition, the authors performed data splitting based on

similarity clustering (protein sequence or ligand scaffold), significantly reduced the

model performance. In fact, already Li et al. reported that the protein similarity impacts

the performance of artificial intelligence models (115). They obtained a general

reduction of 0.2 in the 𝑅𝑝
2 both if the clustering is based on protein sequence or ligand

scaffold with respect to a classic horizontal test. Jincai Yang et al. (118) concluded that

biases are widely present in the two database under study, PDBbind and DUD-E, and

the performance of scoring functions using these database arguably suffers from the

data redundancy caused by the protein and ligand similarity. For this reason they

propose to use sufficiently large and unbiased datasets for training robust artificial

intelligence models to accurately predict ligand-protein interactions. This implies

verifying that the database does not present redundancy of similar structures in train

and test set since this can lead to overestimate the scoring function performance. It is

easy to understand that, according to Jincai Yang et al. (118), the horizontal test

identifies the conditions that should be avoided because it can overestimate the

performance of the function.

4 MLP Scoring function

As anticipated in the Introduction, the objective of this thesis is pursued through the

creation of a new machine learning scoring function. As regression model, it is used a

multilayer perceptron. For this reason, the scoring function is called MLP scoring

function. In this chapter, we start presenting the creation of ligand-protein complex

descriptive model and the features matrix and target vector. Then, we analyze the

regression model.

4.1 Ligand-protein complex descriptive model

The machine learning scoring function faces the problem of complex description, with

particular reference to the binding zone, in terms of a matrix. As already discussed, in

previous studies, Pedro j. Ballester et al. (96) proposed the model where it counts the

number of a certain atomic couples in the area of the binding pocket. Woljacowsky et al.

(98) considered the same model proposed by Pedro j. Ballester et al. (96). In addition

to this model, they proposed two more versions of the descriptive model. Other studies

in the field of machine learning scoring functions use convolutional neural networks. For

the particular configuration of this networks, a tri-dimensional description of the complex

is needed. In our case, the regression model chosen is a multilayer perceptron, and a

bi-dimensional descriptive matrix is used as input.

The archetype proposed by Ballester et al. (96) and then Wójcikowski et al. (98) is

resumed in the present research. This model involves counting the number of particular

atomic couples in a certain range of distance around the pocket. The atomic couple is

composed by an atom belonging to the protein and an atom belonging to the ligand.

The list of protein atomic species considered is reduced with respect to the previous

studies just because some of the atoms considered there are never present in

complexes we considered. However we consider the hydrogen among the atomic

species taken into consideration. The atoms considered for the ligand and for the

protein are reported hereafter, respectively:

[H, C, N, O, F, P, S, Cl, Br, I];

[H, C, N, O, P, S].

All the possible couples created combining the atoms belonging to the ligand list with

the ones to the protein list are considered.

Consequently, the number of different possible couples of atomic species is 60.

The atoms belonging to the ligand list are all the possible atoms present in the ligand

except for metals, because it is unusual to find ligands with metals. In fact in the

databases used in this study, ligands with metals are not present. Therefore, if metals

had been included in the ligand list, the result would be a training matrix with larger size

in which the columns dedicated to the couples with metals are filled by zeros.

In particular, we are inspired by the Wójcikowski et al. (98) descriptive model because

we consider more than one interval in which the number of atomic couples are counted,

as in version 2 of their RF-Score VS. A study is conducted on what the best descriptive

model is in terms of interval amplitude and radius area of the pocket (Figure 4.1). The

different amplitude considered are 1.5 Å, 2 Å, and 3 Å. It means that the counting of the

number of couples happens in each interval of the specified amplitude until the pocket

area is covered. The network is trained using these different descriptive models,

growing the area radius from time to time. A scoring function is created using each

different descriptive model. The regression model used is the multilayer perceptron

trained with experimental data. The score used to evaluate the best descriptive model is

𝑅𝑝 . The type of regression model used and the reasons why we are using it are

discussed later in this chapter. The results show that the best descriptive model in

terms of amplitude is 2 Å, as in the model employed by Wójcikowski et al. (98). The

effective binding information seem to be in the area of 6-8 Å. In fact, every interval

amplitude used in the description model produces the best performance in terms of 𝑅𝑝 ,

when an area of radius equal to 6-8 Å is considered . In our study a maximum distance

of 8 Å is considered.

Four ranges of intermediate distances are considered between 0 and 8 Å, in particular,

0-2 Å, 2-4 Å, 4-6 Å, and 6-8 Å. The compiling of the matrix is made calculating the

absolute distance between the element of the ligand and the element of the protein for

all the considered ligand-protein couples. The distance is simply evaluated using the

Cartesian coordinates of the two atoms. Once the distance is calculated, the counter of

a particular couple and of the intermediate range in which the distance is included

increases by one.

The matrix used to train the neural network is composed by a number of rows equal to

the ligand-protein complexes considered and a number of columns equal to 240. The

number of columns is the product between the considered couples and the distance

ranges for each couple. As an example, the first column of the matrix contains the

number of couple H-H in the distance range 0-2 Å, the second one contains the number

of couple H-H in the distance range 2-4 Å and so on until the seventh column which

contains the number of couple H-C in the distance range 0-2 Å.

Figure 4.1 Ligand-protein descriptive models comparison

The target matrix is simply a vector in which the target value considered (ligand-protein

affinity or docking score) is reported. Each line of the training matrix and the relative

component of the vector are the data used to describe a particular ligand-protein

complex in this study.

4.1.1 Database normalization

The database is composed of a training matrix and a target vector. The components of

the training matrix can assume values between 0 and numbers of the order of 105. The

target vector can have different distributions according to which database or target

value is considered. In this paragraph, we treat the process performed to standardize

the database, both for training matrix and target vector.

In the training matrix the presence of large values among the components of the matrix

can compromise the learning process. For this reason a normalization operation is

needed. Different types of normalization can be applied to the training matrix:

A. No normalization.

B. Normalization using overall maximum.

Each component is subdivided by the maximum value present in the matrix.

C. Normalization using log(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒).

The component of the training matrix is done by the logarithm of the original

component.

D. Normalization using the average value of each column.

Each component is divided by the mean value of the column to which the

component belongs.

E. Normalization using the maximum of each column.

Each component is divided by the maximum value of the column to which the

component belongs.

A test is conducted to verify what the best normalization is for the model built in this

study. In order to do this, as for choosing the best description model, a scoring function

is created using each normalization model. The regression model used is the multilayer

perceptron trained with synthetic data. The score used to evaluate the best descriptive

model is 𝑅𝑝 . The type of regression model used and the reasons why using it are

presented later in this chapter. The results of the test are shown in Figure 4.2. The

normalization model B is applied in the rest of this study.

Figure 4.2. Features normalization method

In the target vector, we want a normalization procedure which guarantees a similar

distribution for each type of data and target value. In particular we want distributions of

target data with a mean value of 0 and a standard deviation equal to 1. In this way the

training of a same neural network with two different sets of data, as done when the

transfer learning technique is used, is homogeneous and produces reliable results.

Hereafter, the operation used to normalize the target values is reported:

𝑑′ =
𝑑 − 𝜇

𝜎

where 𝑑′ is the normalized target value, 𝑑 is the original target value, 𝜇 is the mean

value in the considered database and 𝜎 is the standard deviation in the same database.

The result obtained is a database where the target data distribution has mean value

equal to zero and standard deviation equal to 1.

4.1.2 Database construction: code analysis

Following the previous qualitative description, now we deep on the training matrix and

target vector creation process starting from the .pdb files.

All the procedures are implemented with Python.

Python is a "high-level" object-oriented programming language suitable, among other

uses, for developing distributed applications, scripting, numerical computing and system

testing. It was designed by Guido van Rossum in the early nineties. It is a multi-

paradigm language that has among its main objectives: dynamism, simplicity and

flexibility. It supports the object oriented paradigm, structured programming, and many

functional and reflection programming features. It is often studied among the first

languages for its similarity to a pseudo-code. It is frequently used to reproduce the

creation of software thanks to the experimentation flexibility, which allows the

programmer to organize ideas during development (119).

TRAINING MATRIX

Considering the .pdb files subdivided in various folders inside the same upper folder,

the first step is to open sequentially each folder and, then, the files inside the folder. The

environment os and the command os.listdir() allow to open the upper folder and to have

a list of the files contained in each folder. In order to proceed in the process a series of

ad hoc functions are created. The following paragraphs describe each function.

Subsequently, we will describe how to apply the functions to create the training matrix.

Function “openf()”.

Input: name of file .pdb.

Output: selection of the text contained in the .pdb file formatted as a list in which each

item is a text line.

The function puts the input in an address in order to open that .pdb file. Once the file is

opened in reading mode, the function readlines() transforms the file in a list in which

each line of the file is an item of the list. Subsequently, the openf() function determines

the beginning and the end of the part of the file which contains interesting information

for the research. In order to achieve this, it looks for the word “ATOM” in the characters

0:4 of each line and the word “CONECT” in the characters 0:6 of each line. The word

“ATOM” at the beginning of the line means that the list with the information about each

element of the complex ligand-protein is started. The word “CONECT” is used in the last

part of the .pdb file to describe the various connections present in that molecule. This

kind of information is useless in the research conducted in this thesis, it means that the

part of text containing useful information for the research is over. The function openf()

selects the index of the first line containing “ATOM” and the index of the first line

containing “CONECT”. It selects the text between these 2 index, and it returns it.

Function “DistanzaDaTuttiHETATM()”.

Input: output of function openf()

Output: List of three elements vector composed by all possible ligand-protein couples in

which the first element is the atom of the ligand, the second one is the atom of the

protein, and the third one is the Cartesian distance between the first two.

The function “DistanzaDaTuttiHETATM()” creates a list with all the possible ligand-

protein couple and the associated Cartesian distance. Each element of the list is a

vector with three components: the atom of the ligand, the atom of the protein and the

distance between the two. The function reads all the lines of the input list with a for

cycle. Because the ligand-protein couples are considered in this order, the code first

selects the element belonging to the ligand. It does not consider the water molecule

present in the ligand because in the .pdb tracking mode they are assigned to the ligand,

but they are not real part of this. They are only necessary to complete the connections

between the protein and the ligand. When the if logic, used to find elements of the

ligand, is verified, the line of the considered text is subdivided using the command

.split(). Each element of the line separated by a space character from the next one

becomes an element of a list. The list is composed by all the elements of the line. For

each ligand components, another for cycle and a if logic is used to determine all the

possible couples between that element of the ligand and all the elements of the protein.

With the for cycle all the lines of the starting list are scrolled. The if logic considers only

the elements belonging to the protein. When this last if logic is verified, one element is

added to the output list. The element is composed by a vector of three elements, the

first is the atomic specie of the considered ligand atom, the second is the atomic

species of the considered protein atom and the third is the distance between these two

elements. The distance is calculated using the math environment and the math.sqrt()

function. This function calculates the square root among the sum of the squared

difference of the ligand-protein relative coordinates.

During the study of the function DistanzaDaTuttiHETATM(), some small bugs were

discovered in the .pdb files. The Cartesian coordinates of the atoms can be composed

by 8 digits (the minus sign, 3 digits, the comma and 3 decimals, encountered in order

from right to left in the .pdb file). When all the digits are used in y and z coordinates, no

space is supposed to be present between these and the previous coordinates. For this

reason, the function cannot recognize that two coordinates are present instead of one,

and some unexpected crashes are encountered while the program is running. In order

to solve this problem, a substitution is made when the combination “-1” is encountered.

The substitution is made adding a space character before the combination “-1” and so “

-1”. In fact, the hundreds digit in the Cartesian coordinates never takes a value different

from 1. The same problem is encountered in the columns which precede the Cartesian

coordinates in the .pdb files. These columns contain information about the type of

amino-acid in which the considered atom is included, the type of molecule in which the

atom is include and some other information useless for the research conducted in this

study. For these reasons, it is chosen to cut a part of each line, until the 28th character.

The 28th character of each line of the .pdb file coincides with the beginning of the

coordinates for each atom.

Function “Statisticizza()”.

Input: output of function DistanzaDaTuttiHETATM()

Output: Dictionary containing as keys all the considered ligand-protein couples and as

key-values an numpy array composed of 6 elements corresponding to the considered

distance ranges. Each element of the array indicates how many couples of the key

couple are present in that range.

The function Statisticizza() creates a dictionary starting from the output list of function

DistanzaDaTuttiHETATM(). As input value, in addition to the output of function

DistanzaDaTuttiHETATM(), it takes two more lists, one containing all the ligand-protein

couple taken into account and the other containing the range of considered distance.

For each component of the ligand-protein couple list, Statisticizza() creates a numpy

vector composed of 6 zeros and scrolls all the lines of the output list of function

DistanzaDaTuttiHETATM() looking for the corresponding couples. Once the considered

couple and the couple of the list coincide, the function compares the Cartesian distance

with the distance range. Using an If cycle it adds 1 to the numpy vector in the position of

the range in which the Cartesian distance is included. The smallest distance range is

the element with index 0 of the numpy vector and the largest one is the element with

index 5. When all the lines of the output list of function DistanzaDaTuttiHETATM() are

read, Statisticizza() writes the numpy vector in the dictionary using as dictionary key, the

atomic symbol of the two element composing the couple.

Function “ModifMatrice()”.

Input: output of function Statisticizza(), numpy matrix with dimensions 𝐿 𝑥 𝐷, (𝐿 is the

number of .pdb files. 𝐷 is the number of considered ligand-protein couples multiplied by

the range of considered distances); matrix line index in which modifying the matrix.

Output: /

ModifMatrice takes as input a matrix (composed by zeros) and substitutes each line with

information deriving from the output of function Statisticizza. It considers the matrix line

index passed through the input to the function. In that line it substitutes to the original

line, the numpy arrays corresponding to the considered .pdb file. Precisely, the function

scrolls the list of couples considered with a for cycle. It uses each couple as the key to

read the dictionary produced with the function Statisticizza(). It copies the 6-

dimensioned numpy array corresponding to the considered dictionary key, in the column

index of the selected line. The column index are 6 range indexes, starting from 0 and

increasing by 6 for each cycle of the for cycle. The array corresponding to the first

couple of the couple list goes in the matrix column index 0-5, the array corresponding to

the second one in the matrix column index 6-11, …

The function ModifMatrice() has no output. It just modifies the content of a matrix given

as input, using the information coming from the function Statisticizza(). The function

summarizes the information included in a whole .pdb file in only one matrix line,

composed by a number of columns equal to the considered features.

Using the functions introduced above and some other input information, it is possible to

create the first version of the training matrix. The necessary input information are the list

of considered ligand-protein couples, the considered distance ranges, the starting

matrix to be modified.

The list of couples is created starting from the lists of ligand and protein taken into

account. The list of atoms belonging to ligand and protein considered in this study, as

anticipated, are, respectively:

['H', 'C', 'N', 'O', 'F', 'P', 'S', 'Cl', 'Br', 'I'];

['H', 'C', 'N', 'O', 'P', 'S'].

The atoms belonging to the ligand and to the protein list are all the possible atoms

present in ligand and proteins considered in this study . The list of couples is created

using a double for cycle. The first cycle scrolls the list of considered ligand atoms and

the second associates all the atoms of the protein to each ligand atom.

The distance range between the 2 atoms of the couple considered, as anticipated, is a

distance of 12 Å, divided in 6 intervals of 2 Å each. Of course it is possible to use

different interval amplitude and total distance. Here we are describing the best

descriptive model.

In order to determine the exact dimension of the starting matrix, an initial index is fixed

(Nist) equal to zero. Then, all the folders containing the .pdb files are opened using a for

cycle and the command os.listdir() creates a list of the files inserted in each folder. The

matrix dimension in terms of lines is determined by the sum of the length of each list of

files. The initial training matrix composed by the number of lines just found and

360columns, is created.

The process of scrolling the folders containing the .pdb files with a for cycle and of

creating a list of the files contained in each folder is repeated. Another for cycle is used

to select one by one the files of the list in order to select the .pdb file to be analyzed and

its index. The index is used to select which line of the training matrix has to be modified.

Once the file is selected the previously described functions are applied, according to

this sequence, to all the .pdb files contained in the folders:

ModifMatrice(Statisticizza(DistanzaDaTuttiHETATM(openf()))).

The first version of the training matrix is created.

TARGET VECTOR

The target vector contains the affinity values or the docking scores (if present) of each

ligand-protein complex corresponding to the .pdb files used to create the training matrix.

The target values are collected in Excel files, as anticipated. The Excel file

corresponding to the complexes deriving from a particular protein is contained in folders

nominate as the folder containing the corresponding .pdb files. The sheet of the Excel

file is named “Foglio1”. The structure of the Excel file is constant. The 1st column

contains the .pdb file name, the 2nd column contains the ligand-protein complex code,

the 3rd column contains the ligand-protein affinity, the 4th column (if present) contains

the docking score in negative value. In order to create the affinity vector, a list of the

Excel files is produced with the command os.listdir(). With a double for cycle the folders

containing the .pdb files are scrolled, and for each one, the corresponding Excel folder,

according to the folder name, is selected. The Excel file is opened and the sheet

“Foglio1” is selected. Using another double for cycle the .pdb files and the rows of the

Excel file are scrolled. The for cycle scrolling the Excel files is based on the row index

number. The list of row index number is created using the range command and starting

from index 2 until index equal to the number of .pdb files contained in the originally

selected folder plus one. It starts from index 2 because the first row of the Excel

contains the content title for each column. It is possible that the row index are more than

the .pdb files because the Excel file contains more data than expected. In this case an

error will occur running the routine and a manual check of the dimension of the Excel

file is requested. When the file name reported in the first column of the Excel coincides

with the .pdb file name selected, the corresponding target value is added to the queue

of the target vector (changing the sign for docking scores). The last for cycle, the one

scrolling the rows of the Excel file, is stopped. The for cycle to read the .pdb files is used

in the same way as done in reading the files in the matrix creation process. This

guarantees that the corresponding rows of the training matrix and of the affinity vector

are related to the same .pdb file.

As anticipated, the case when the Excel file does not include the same ligand-protein

complexes present in the folder of the .pdb files can happen. The mismatch can be

caused by oversight in compiling the Excel file. For this reason a function is created that

checks the correspondence of the analyzed .pdb files with the ones that have the target

value in the Excel file.

Function “trovacopia()”.

Input: the address of the folder containing the analyzed .pdb files and a list in which

writing the mismatch files.

Output: the list of mismatching file.

The function trovacopia() uses the double for cycle to scroll first the list of .pdb file

obtained using the command os.listdir() applied to the address given as input, and then

the rows of the Excel file in the column containing the file name. Trovacopia() introduces

a list nominated “vettoreConta” which will be used as counter. When the .pdb file

selected by the first for cycle and the .pdb file name corresponding to the row selected

by the second for cycle coincide, the file name is added to the counter list. The second

for cycle is broken and an if logic verifies if the counter list is empty or not. When the list

is empty it means that the selected .pdb file with the first for cycle has no corresponding

target value in the Excel. The function trovacopia() adds the name of this kind of file to

the output list. The rows of the training matrix corresponding to the files contained in the

output list has to be deleted from the training matrix

In order to apply the function trovacopia(), the previously described procedure to select

the folder containing a certain type of .pdb files and the corresponding Excel file is

applied. The address for the folder selected is created and the Excel file is opened in

the sheet “Foglio1”. trovacopia() is applied to the selected address and to an empty list.

If the output of the function remains an empty list, no action is taken. This means that all

the .pdb files in the considered folder have a corresponding target value in the Excel. In

the case the list contains some .pdb files a double for cycle is used. The first scrolls the

list and, for each element of the list, the second scrolls a range of index equal to the

number of files in the folder initially considered. The indexes are used to consider, one

by one, all the .pdb files belonging to the considered folder. They represents the

position of the files in the list. Using an if logic, when the file name considered, coming

from the output list of trovacopia(), coincides with the name of a file of the list, the

corresponding index is appended to a list called “posizioneErr”. At the end of the cycle

analyzing a single folder, the list “posizioneErr” contains the indexes of the .pdb files

with no corresponding target values. The list “posizioneErr” is used to delete the

corresponding lines from the training matrix. The same procedure is repeated for each

folder containing .pdb files, as in the training matrix creation. Of course, before deleting

the line from the training matrix, the indexes obtained from the operation just described

in a single folder, are summed to the number of the files in the folders previously

analyzed minus the number of files already deleted. Once the checking process of the

target vector is completed, this latter is saved as a numpy array.

NORMALIZATION PROCESS

The training process uses the matrix created starting from the .pdb files. As already

explained, it produces better results if the elements of the matrix are normalized,. The

normalization process of the training matrix is done dividing each of the originally 360

features by the maximum value present in the matrix. A numpy array called “Max” is

created using the function np.amax(). The function is applied to the training matrix with

respect to the columns (axes = 0). The output of the function is a numpy array

containing the maximum value relative to the matrix for each column, so it is a vector

1x360. The function np.amax() is applied another time and in the same way to the

previously resulting vector 1x360. The result is called “MaxMax” and it is the maximum

value present in the matrix. Each element of the matrix is substituted by the same

element divided by the “MaxMax” value. The results is a normalized training matrix, in

which all the components are included in the interval 0:1.

The target vector is normalized using the functions numpy.std() and numpy.mean() for

calculating, respectively, the standard deviation and the mean value of the considered

data set. Once the standard deviation and the mean value are evaluated, each target

value is subtracted by the mean value and then divided by the standard deviation, as

described by the formula reported in paragraph 4.1.1.

The normalized training matrix and the affinity vector are saved as numpy arrays.

The described process illustrates the creation of the training matrix and of the target

vector which will be used in the neural network training process.

4.2 MLP scoring function neural network and

training protocol choice

In the following paragraph the used regression model is presented. The choice of using

a multilayer perceptron, is motivated by the ability to provide approximate solutions for

extremely complex problems, as predicting binding affinities is.

A multilayer perceptron is an artificial neural network model that maps sets of incoming

data into an appropriate set of outgoing data. It is made up of multiple layers of nodes in

a directed graph, with each layer completely connected to the next. It consists of at least

three layers of nodes: an input layer, a hidden layer, and an output layer . Except for

incoming nodes, each node is a neuron (processing element) with a linear activation

function (120). The multilayer perceptron is a modification of the standard linear

perceiver, described in the first chapter, and can distinguish data that are not linearly

separable (121).

A study is conducted to determine the structure of the network which can guarantee the

best results.

The study is conducted using experimental data, which is considered the principal

database. The structure and training protocol which emerge to be the best are used

also with synthetic data. In fact, it is necessary considering that this research was

originally envisioned for using a very refined database composed of experimental data.

The synthetic data are originally intended as additional data and the scoring function

deriving from this pool is initially taken into account as a term of comparison.

The first step to determine the best neural network structure and training protocol is to

verify what the best structure is in terms of number of neurons for each layer using a

standard training procedure. It means that a basic subdivision of the database into

training and test set according to percentage 87.5-12.5 is used. A standard number of

1500 training iterations are performed and only the best 𝑅𝑝 measured on the test set is

recorded. The training process uses a batch size of 50 and 200 for experimental and

synthetic data, respectively. The regularization is constant in each layer and equal to

10−6. The optimization algorithm is ADAM (122).

In order to determine the best structure, considering the total amount of experimental

complexes is 2400, layers composed of different number of neurons, even if limited,

are tested. In particular, networks with numbers of neurons equal to 10, 20, 30, or 40

are tested. Because of the restricted number of data, a network with limited dimension

is expected to be the best. For this reason, networks composed of 2 layers are

considered. From this preliminary study, a layer dimension of 20 neurons demostrates

to guarantee best results. In fact a network with a layer of ten neurons does not learn

accurately the information of the training matrix. In the opposite case, a layer of 30

neurons is not able to generalize the information acquired in the training (reference to

Figure 4.3).

Different structures and training protocols are tested and the corresponding results, in

terms of Pearson’s correlation coefficient, are reported in Figure 4.3:

A. standard network 1x20.

B. Standard network 2x20.

C. Standard network 3x20.

D. Network 2x20 with transfer learning using synthetic data and ligand-protein

affinity as target value.

E. Network 2x20 with transfer learning using synthetic data and docking score as

target value.

F. Network 4x40 on synthetic data using ligand-protein affinity as target value

(phase I) + 1x 20 (phase II).

G. Network 2x20 with transfer learning using synthetic data and ligand-protein

affinity as target value, adding a further feature only in the second layer, i.e., the

docking score.

The structures and training procedures listed above consider the same attributes

specified at the beginning of this paragraph, if not differently specified.

In case A, B and C the standard network is a multilayer perceptron, as previously

introduced, composed of an input layer and an exit layer, plus some hidden layers. In

the considered networks the number of the hidden layers present are equal to the

number reported in the list. The standard network undergoes a single training using the

experimental data. The difference among the standard networks ((cases A, B, C) is the

structure.

In case D and E the transfer learning technique is applied. The aim is to strengthen the

scoring power of the machine learning function even if the training set is small . As

anticipated in the first chapter, it consists in performing a pre-training of the network

using a database with similar characteristics to the original one. The pre-training has the

purpose of modulating the neuron coefficients, to make the final train, with the real data,

more effective. In fact, in this case the training of a neural network with a small

database, like the experimental database is, risks to produce a function which can

predict extremely well the training data. However, the function might not have the

capability of extracting general information from the database and making good

predictions for new data. Clearly the transfer learning is more effective the more similar

the data of the pre-train database are with respect to the real data and if the database

utilized in the pre-train is sufficiently larger than the real database. In fact, the synthetic

data are used for this purpose. They are more than one order of magnitude more

numerous and they are the same type of data with respect to the experimental data. In

the case D, the multilayer perceptron is previously trained on synthetic data considering

the ligand-protein affinity as target value. The pre-train lasts until the mean squared

error calculated on the validation pool stop decreasing for ten iterations consecutively.

The coefficients of the network obtained up to that moment are used as initial

parameters to start the final training on experimental data.

In case E, the same training procedure of case D is applied. The only difference is that

the target value used in the pre-train, for synthetic data, is the docking score.

The network described at point F is built in two phases. In the first phase it consists of a

multilayer perceptron composed by 4 layers of 40 neurons. Here the network is trained

on synthetic data considering the affinity between proteins and ligands as target value.

In the first phase, the training ends when the loss function measured on the validation

set does not decrease for 10 iterations consecutively. In the second and last phase a

further layer composed of 20 neurons is added to the network. Here the effective

training on experimental data is performed keeping locked the coefficient obtained in the

pre-train for the first 4 hidden layers.

In case G another technique, again based on transfer learning, to possibly increase the

performance of the machine learning scoring function is applied. It consists in using the

standard network 2x20 adding a further feature to the training matrix only for the last

layer in the pre-train. The additional feature is the docking score. As in previous cases,

the pre-training phase lasts until the cost function does not decrease for 10 iterations

consecutively. Then, the final training, on experimental data, is performed.

The plot in Figure 4.3 represents the difference performances of the MLP scoring

function, in terms of 𝑅𝑝, for the network structures and training protocols just described.

In the end, the strategies used to increase the scoring power of the machine learning

scoring function do not produce promising results. Because of this, the simplest solution

is chosen, namely a standard multilayer perceptron of size 2x20 for the experimental

data. While a deeper network of size 4x40 is used for the synthetic data.

Figure 4.3 Neural network structures and training protocols tested using the different protocols

described on Paragraph 4.2

4.2.1 MLP scoring function: code analysis

In the following paragraph the process of creating the MLP scoring function is presented

through the code analysis. This latter is analyzed for each network type we consider,

merging the similar parts in a single analysis. All the procedures are implemented with

Python.

Training matrix and target vectors loading

The creation of the MLP scoring function starts with the training process. In order to do

it the training matrix and the target vector, already created, as previously described, are

loaded with the command np.load(). In the case the transfer learning technique is

applied, both the synthetic and experimental matrix, with relative target values, are

loaded.

Superfluous features elimination

The descriptive model used in this study, as anticipated, considers a total area of radius

8 Å in which the atomic couples are counted. The considered intervals measures 2 Å.

This training matrix is originally created considering a total area of radius 12 Å. Because

of this, after loading the training matrix, the code expects the elimination of the features

in the ranges 8- 10 Å and 10 - 12 Å. For doing this, the indexes of columns containing

data of the intervals 8-10 Å and 10-12 Å are included in a list. The indexes are created

using a for cycle. Then the columns are deleted from the training matrix using the

command np.delete(). The function is applied to the original matrix. The indexes of the

columns to be removed are in the just created list. The axis chosen for applied this

command is axis 0 (vertical).

Training matrix normalization

After this preliminary operation, the maximum of all the features considered is

calculated. If the transfer learning technique is applied, the maximum of the features is

calculated both for the synthetic and the experimental matrix. The function used for

finding the maximum of the features is np.amax(). This function is applied along the axis

= 0, namely the vertical axis. The function np.amax() is applied twice. The first time it is

applied to the training matrix and the maximum for each feature is found. Then the

function is applied to the deriving one dimensional vertical vector, in order to find the

overall maximum.

The absolute maximum is used to normalize the training matrices. Each element of the

matrix is divided by the just obtained relative maximum. In this way the training matrix is

composed of 240 features, the relative value is in the interval [0, 1].

PRE-TRAINING PHASE

Training matrix and target vector permutation

In the cases the transfer learning technique is applied, the single cycle of training is

started using a simple for cycle. In fact we will see in the next paragraph that in this

research each result is calculated as an average value on 10 different trainings. The

code analysis conducted from this point is inside this cycle.

After the beginning of the training cycle, a permutation of the pre-training matrix and of

the relative target vector is performed. The permutation is performed in the following

way. An index list from 0 to the total number of rows present in the pre-training matrix is

created. The index list is permuted using the command random.sample() applied to the

index list. The command is applied in a way that each index can appear only one time in

the list. The resulting permuted index list is used to reorder the matrix and the target

vector in the same way. The aim is to maintain the correspondence between the matrix

row and the relative target value.

Outliers elimination

The next action is the elimination of the outliers, in terms of ligand-protein affinity. In

fact, the synthetic data are numerous in quantity and checking each complex is not

efficient. However some errors can appear in the database creation, as previously

presented. In particular some molecules can have a negative or out of range ligand-

protein affinity or docking score because of some errors in the transcription of the

values. For this reason the target values out from the interval 2-22 are considered

outliers. This range of intervals is considered because 99% of the complexes are within

the interval. The index of these complexes is identified and the corresponding row of the

pre-training matrix and of the target vector is deleted.

Target vector normalization

The code analysis continues with the normalization of the target values for the pre-

training data. The target values distribution must have the mean equal to 0 and the

standard deviation equal to 1, as previously described. The reason for this choice is to

have homogeneous distribution if different databases are used in the training of the

same network, like in the case when the transfer learning technique is applied. For this

reason the mean and the standard deviation of the target values for the pre-training

data is calculated. Then each target value is subtracted by the mean of the target

values just obtained. Eventually the result is divided by the standard deviation of the just

obtained target values. In this way the new target values distribution has a mean equal

to 0 and a standard deviation equal to 1.

Training, validation and testing pool

At this point, the data inside the database are ready to be used in the pre-training

phase. The data needs to be subdivided into different ensembles to correctly complete

the network training. In particular, a training, a validation, and a testing pool need to be

created. The training pool contains the data used to train the network. For this reason

this is the larger ensemble among the 3. The validation pool contains a little amount of

data used to check the training procedure. In particular, these data are used apply the

early-stop criterion. The early-stop criterion indicates the condition that, if verified,

implies the strop of the training procedure. In this case the pre-training phase is stopped

by the EarlyStopping() function. The early-stop option is a callbacks function. It is

initialized just after the creation of the pool by the callbacks() function. In this function,

the parameter to be monitored for the early stopping and the patience rate have to be

specified. The parameter indicates what function is monitored. In particular, the

decreasing of this parameter is monitored. The patience rate indicates the number of

continuous iterations for which the parameter selected can increase before stopping the

training. In this study the parameter used for applying the early-stop function of the pre-

training phase is the mean squared error measured on the validation data. The patience

rate is 10.

callback = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10).

The testing pool contains the data used to test the obtained function. These data are the

ones used to measure the final performances of the created function. In the analyzed

case, namely the pre-training phase, the testing data are just used to evaluate the pre-

training effectiveness. The size of each pool can depend on the particular type of

training. In the pre-training phase the synthetic data are used. The testing data are 1500

complexes, the validation data are 1000 complexes and the remaining complexes are

used as training data.

Neural network structure

The following phase of the neural network training is the creation of the neural network

structure. The structure is different according to which type of network is analyzed.

Considering that, in this subsection, we are presenting the pre-training phase, in this

paragraph only the structures of the network that use the transfer learning technique are

analyzed. In particular we are referring to network types D, E, F, and G.

First of all the model of the network (sequential, API,..) is specified, together with the

proper name we assigned to the network. A Sequential model is appropriate for a plain

stack of layers where each layer has exactly one input tensor and one output tensor.

Otherwise, the Keras functional API is a way to create models that are more flexible

than the Sequential model. The functional API can handle models with non-linear

topology, shared layers, and even multiple inputs or outputs. In cases D, E, and F the

sequential model is used. In these cases the network is created with the add() method.

Therefore it is possible to add as many layers as needed. In case D and E, 2 layers are

added. In case F, 4 layers are added. Each layer is accessible via the layers attribute.

The layers used in the network are Dense. Dense layers implement the operation:

𝑜𝑢𝑡𝑝𝑢𝑡 = activation(dot(𝑖𝑛𝑝𝑢𝑡, 𝑘𝑒𝑟𝑛𝑒𝑙) + 𝑏𝑖𝑎𝑠).

where 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is the element-wise activation function passed as the activation

argument; 𝑘𝑒𝑟𝑛𝑒𝑙 is a weights matrix created by the layer. 𝑏𝑖𝑎𝑠 is a bias vector created

by the layer; dot() indicates the dot product. The activation function used is the

hyperbolic tangent (tanh). Each layer uses an exit regularization

(kernel_regularizer=regularizers.l2) equal to 0.000001. Also the regularization is an

attribute of the layer. The number of neurons present in each layer is specified in the

attribute too. The numbers used in the different cases presented during the pre-training

are:

D: 2 layers of 20 neurons each.

E: 2 layers of 20 neurons each.

F: 4 layers of 40 neurons each.

The first dense layer has the input dimension (input_dim) of the training matrix as a

further attribute. The matrix dimension consists in the number of columns, namely the

total number of features which describe an instance. For this reason, as already

specified, the input dimension is 240. The exit neuron has to be specified too. It is

treated like the previous layers, just avoiding the specification of the activation function.

In the case G, a model with non-linear topology with multiple inputs is created. The first

action is the specification of the various inputs. In case G the specified inputs are called

feature_input and dk_input. The first input represents the standard 240 features chosen

to describe the molecules. The second one is the docking score which is used as an

additional feature, directly connected to the last layer of the pre-training. In each of

these inputs, the dimension of the matrix in terms of columns must be specified in the

attribute shape. After this phase the neural network structure is built in terms of layers

and the relative inputs are specified. Here 2 dense layers of 20 neurons are used. The

first layer is inserted with the command layers.Dense() and called feature_features. The

number of neurons and the activation function are specified like its attributes in this way:

feature_features = layers.Dense(20, activation="tanh"). The number of neurons is 20

and the activation function is tanh. The input of the layer is specified successively to the

layer attributes inside round brackets. In the case of the first layer, the input is

feature_input. Then the output of the first layer is concatenated to the dk_input with the

command layers.concatenate and is called x: x = layers.concatenate([feature_features,

dk_input]). The second layer has the same attributes of the first and its input is the

vector x. Eventually the exit layer is created with the command layers.Dense too and

called priority_pred. The number of neurons is 1 and the activation function is tanh. The

input of this last layer is the output of the previous layer, called x again. Here is the

structure.

#Input

feature_input = keras.Input(shape=(240,), name="features")

dk_input = keras.Input(shape=(1,), name="dock")

#Layer 1

feature_features = layers.Dense(20, activation="tanh")(feature_input)

#Additional feature

x = layers.concatenate([feature_features, dk_input])

#Layers 2

x = layers.Dense(20, activation="tanh")(x)

priority_pred = layers.Dense(1, activation="tanh", name="priority")(x).

The model just built is created with command keras.Model(). The network is called

NNbypass. Inside this command the inputs and the outputs of the model must be

specified as attributes. In our case:

NNbypass = keras.Model(inputs=[feature_input, dk_input], outputs=priority_pred).

Network pre-training

Whatever is the model created, it is configured for the pre-training with the command

compile(). This command expects some attributes which enable the configuration of

some training settings. In the case of MLP scoring function the attributes specified are

the following: (loss='mean_squared_error', optimizer='adam')

loss indicated the loss function. It is the value minimized by the model. In our model we

choose the mean squared error. It is calculated between the real and the predicted

value.

optimizer indicates the optimization algorithm. (It permits us to find the weight values for

which the cost function is minimized). Adam optimization is a stochastic gradient

descent method that is based on adaptive estimation of first-order and second-order

moments.

The pre-training starts a built-in training loop (the fit() method). The function fit()

receives the following attributes.

 The input and the target data for the training.

They are the training pool previously created.

 The number of epochs.

The quantity used in this study is 1500 (epochs = 1500). The total number of

1500 epochs is reached only if the early-stop criterion is never realized before.

 The batch size.

It is the number of samples per gradient update. In the case synthetic data are

used, like in the pre-training phase, analyzed here, the batch size is 200

(batch_size = 200).

 The callbacks.

It is a list of callbacks to apply during training. In this case the previously

presented callbacks, called callback, are applied. They are just used for the early

stopping option application (callbacks=[callback]).

 The validation data.

The validation set in terms of input and target data are indicated. This set is used

to apply the early-stop criterion. In this case the validation pool previously

created is furnished (validation_data=(x_val, y_val)).

End of pre-training phase

Once the pre-training phase ends, either because the early-stop criterion is reached or

because the total number of epochs are performed, the final training can start. The final

network in the cases presented in this study, is built with the Sequential model. A name

is chosen for the network. The structure is created, like described before, with the add()

method. In case D, E and G, 2 dense layers of 20 neurons are added. In case F, 4

dense layers of 40 neurons plus 1 of 10 neurons are added. The attributes of each layer

are the same used in the pre-training phase. The activation function used is the

hyperbolic tangent and the exit regularization is 0.000001. The first layer has the input

dimension as a further attribute and the exit layer does not have the activation function

attribute. Only a further attribute is used in case F. In fact, in this case the weights

obtained by the pre-training in the first 4 layers are copied and kept locked in the final

training. For this reason, in the final network, the first 4 layers have the additional

attribute of being not trainable (trainable=False). The weights of the first 4 layers are

copied from the ones obtained in the pre-train phase. Then they are set up in the first 4

layers of the final network. The commands used to do it are set_weights() and

get_weights(). They are applied to respective layers using the index notation.

FINAL TRAINING

Training and testing pool

In the final training the database is divided into training and testing sets. The validation

set is usually not present because the training completes all the epochs specified in the

fit() function. We are not using EarlyStopping() in the final training In each epoch the

performance parameters are recorded. In this way, the trend of the performance

parameters is recorded along the entire training process. In the final training the

experimental data are used. The testing data are 300. The remaining data are used as

the training set.

Neural network structure

As already specified, the network used in the final training is built with the Sequential

model in the way previously described also for case A, B and C. In case A, B and C, 1,

2 and 3 dense layers of 20 neurons are added respectively. In the remaining cases the

network structure used is previously specified.

Network final training

The final training starts with the use of the function compile() applied to the final

network. Like in the pre-training phase, the loss function and the optimizer is specified.

They are the same used in the pre-training phase. Then the function fit() is applied to

the final network, as in the pre-training phase. In this case, the input and the target data,

for the training, are experimental data. The quantity of data used is previously specified.

The batch size in this case is 50. The rest of the attributes are identical to the ones used

in the pre-training corresponding phase. The entire number of epochs specified in the

attributes of the fit() function is completed in the final training and the performance

parameters for each epoch are recorded, as already said. In this way the maximum of

the performance parameters used are certainly recorded. In fact, the best performing

MLP scoring function, on test data, is always obtained before the 1500th epoch. On the

other hand, if the early-stop function is used, the training process is more efficient, but

sometimes it can stop the training before the best performance of the function is

reached.

Target data prediction

The prediction of the target data is done using the function predict() applied to the

testing input data in the final network. Usually, in addition to the testing data, the

prediction is applied also to the training input data to verify the effectiveness of the

training process.

Network performance parameters

Once the prediction vector is created, the performance parameters for evaluating the

scoring function created, are calculated. In our study, as already specified, the

performance parameters taken into account are: 𝑅𝑝 on the train set, 𝑅𝑝 on the test set,

𝑅2 on the train set, 𝑅2 on the test set, Mean Absolute Error (𝑀𝐴𝐸) on the test set, and

mean squared error (𝑀𝑆𝐸) on the test set. The mathematical meaning and properties of

these parameters are already treated. In the code, the parameters are evaluated using

the following expression:

𝑅2 in the train set (Rsqtrain):

msqetrain = mean_squared_error(enmytrain, y_pred_train)

vartrain = np.var(enmytrain,ddof=1)

Rsqtrain = 1-msqetrain/vartrain

enmytrain is the real target vector for the train set.

y_pred_train is the predicted target vector for the train set.

The function mean_squared_error() belongs to the sklearn.metrics. It calculates the

mean squared error between 2 vectors using the mathematical expression already

reported in the text.

The function np.var() computes the variance along the vector enmytrain. ddof indicates

the “Delta Degrees of Freedom”. The divisor in the mean calculation is the total number

of elements of the array minus the ddof. In standard statistical practice, ddof=1 provides

an unbiased estimator of the variance of a hypothetical infinite population.

𝑅2 in the test set (Rsqtest):

msqetest = mean_squared_error(enmytest, y_pred_test)

vartest = np.var(enmytestEXP,ddof=1)

Rsqtest = 1-msqetest/vartest

enmytest is the real target vector for the test set.

y_pred_test is the predicted target vector for the test set.

The procedure is analog to the calculation of the R^2 in the train set.

Pearson Correlation Coefficient in the training set (𝑅𝑝):

𝑅𝑝 = pearsonr(enmytrain, y_pred_train)

The function pearsonr() is a function of the module scipy.stats which calculates the

Pearson Correlation Coefficient between 2 vectors automatically according to the

mathematical expression already reported in the text. This module contains a large

number of probability distributions, summary and frequency statistics, correlation

functions and statistical tests.

Pearson Correlation Coefficient in the test set (𝑅𝑝):

𝑅𝑝 = pearsonr(enmytest, y_pred_test).

Mean absolute error in the test set (𝑀𝐴𝐸):

maetest = mean_absolute_error(enmytest, y_pred_test)

The function mean_absolute_error() belongs to the sklearn.metrics. It calculates the

mean absolute error between 2 vectors using the mathematical expression already

reported in the text.

Mean squared error in the test set (𝑀𝑆𝐸):

msqetest = mean_squared_error(enmytest, y_pred_test).

All the performance parameters calculated after each epoch are recorded in a list, till

the training is ended at the 1500th epoch. The performance parameters are recorded as

a row-element of a list. The row-elements are recorded using the command append().

Because of this they are recorded sequentially, from the first to the last element. Each

row-element contains six elements which correspond to the 6 performance parameters

just described. At the end of the training process the list is transformed into a numpy

array (np.array()) in order to better manage the file and its values. The training

procedure ends with the save of the array obtained in which the performance of the

function created is reported. Then the maximum or the minimum, as needed, can be

calculated for each parameter, using the function np.amax() or np.amin().

4.3 Test set choice

To guarantee reliable results in the MLP scoring function performance test, it is

important to choose a method that guarantees equal conditions for each test. In this

paragraph we present the way used in this study to measure the performance.

The performance of the MLP scoring function is measured on the test set. This latter is

a subset of the database not used for the training and validation operations. As already

presented, the database, in particular the synthetic one, is created considering

sequentially complexes coming protein by protein. Choosing an interval of the database,

especially for the horizontal test, means performing a test that is not reliable. In fact, the

chosen subset can contain complexes derived by a single protein or few proteins,

possibly never seen in the training. In this case a horizontal test can become a vertical

test. Another possible case is that the MLP scoring function can predict very well the

complexes deriving by some specific proteins and in the test set are selected

complexes deriving by these proteins. The presented cases produce unreliable

performance results. In order to avoid these situations the permutations of the training

matrix and target vectors is performed, as previously described, before subdividing the

database into the subsets. The use of the permutation for the database cannot prevent

all performance measurement mistakes. In fact, if a single test is used to measure the

performance of MLP scoring function, even if the database is permuted, it can

encounter particular favorable or unfavorable conditions. These conditions are simply

due to the subdivision encountered in the subsets creation. In order to avoid this

situation, in this study, for each performance parameter, we consider the mean value on

10 different tests. A different test corresponds to a different permutations of the

database. In addition to the mean performance value, also the standard error is

calculated for each parameter according to the following expression:

𝑆𝑇𝐷. 𝐸𝑅𝑅𝑂𝑅 =
𝜎(𝑅𝑝)

√10 − 1
,

where 𝜎(𝑅𝑝) is the standard deviation of the 𝑅𝑝 calculated in the 10 different tests.

5 MLP scoring function performance

In this chapter we describe the performance of the scoring function created for this

study, namely the MLP scoring function. The value of 𝑅𝑝 considered here is computed

as the mean value on 10 different attempts. In fact, as discussed before, in each

attempt a random permutation of the matrix and the corresponding target vector is

applied before the training.

5.1 Horizontal test

In Figure 5.1 the performance of the MLP scoring function for a horizontal test is

reported. We consider 3 different scoring functions, according to the database and the

target values used to train the network. The test set is composed by 300 and 2000

complexes, respectively, for experimental and synthetic data. These numbers represent

the 12.5 % and the 7% of the corresponding databases. As discussed above, in the

present study, two different scoring functions are analyzed, one trained on synthetic and

one on experimental data. In particular, for synthetic data we consider two scoring

functions, one for predicting the binding affinity and one for predicting the docking score.

The function used to forecast the docking score is used to check the goodness of the

model proposed by this study in terms of complex descriptive model and training

procedure. In this last case, a maximum of 𝑅𝑝 0.85 is reached. According to the

correlation ranges described in Chapter 1, it means that a strong correlation occurs

between real and predicted scores. This is a proof that the model used in this study is

reliable. The descriptors used are sufficiently complete to guarantee, at least, the

performance of a classic scoring function, such as GOLD (59). Generalizing, it seems

that the scoring power of commercial scoring functions can be easily emulated by

machine learning scoring functions, but this is another subject that will not be treated in

this study.

In the case of the MLP scoring function built with experimental data, we obtain 𝑅𝑝 =

0.55 in the horizontal test. In this case, only a moderate correlation is obtained between

real and predicted ligand-protein affinity. In fact, this type of correlation occurs when the

𝑅𝑝 is in the interval between 0.3 and 0.7. Also when the synthetic data are used a

moderate correlation is present, in fact we obtain 𝑅𝑝 0.60. The performance of MLP

scoring function is similar to the one of other machine learning scoring function, as

presented at the beginning of this study. The MLP scoring function created using

synthetic data can reach higher performance than the one with experimental data. Even

if the synthetic data are about one order of magnitude more numerous with respect to

experimental data, and this is an important factor when you use deep learning, they

have less reliable3D structure in the binding site. The descriptive model used in this

research, as already presented, is based on the 3D molecular structure. For this reason,

the result can be surprising. However, we consider the hypothesis that a machine

learning scoring function is able to recognize similar proteins instead of complex binding

proprieties, as discussed by Jincai Yang et al (118). In this case, it is easier to find

similar proteins in a pool where the variance of the proteins is sensibly inferior. This

happens in the synthetic database, which has a smaller variance than the experimental

database. In fact, the MLP scoring function, in the case of synthetic data, receives a

train on 17 proteins complexes. Indeed, each group is composed of a number of

complexes almost of the same order of magnitude of the entire experimental database.

In the case of experimental data, the proteins taken into account are sensibly more

numerous, considering that each protein is present in about ten complexes. For this

reason, the difference between the 𝑅𝑝 obtained with experimental and synthetic data is

not surprising. It confirms the theory that a machine learning scoring function learns to

recognize the proteins and not the molecular binding mechanisms.

The gradient of the curves of experimental and synthetic data as a function of the

training set size are different, as one can see in Figure 5.1. There, the 𝑅𝑝 on the y axis

is plotted as a function to the training set size on the horizontal axis. This could be

explained with the argumentations presented before. The experimental data have a big

variance in its domain. Because of this, when you train the network on a small train set,

it is probable that train and test set have a small overlap in terms of protein types. As

already discussed, similar complexes present contemporary in train and test set

increase the performance of the scoring function in terms of 𝑅𝑝. Increasing the train set

dimension, the overlap phenomenon increases and consequently the 𝑅𝑝 score

improves.

5.1.1 How the percentage of database used in training influenced

the horizontal test

In Figure 5.2, we plot 𝑅𝑝 reached by the MLP scoring function as a function of the

percentage of the training set compared to the whole database. Differently from the

previous figure, the behaviors of the functions built with the different types of data are

similar in terms of slopes. In addition, the qualitative behavior is reasonably well

approximated by a straight line.

As a consequence of all the observations proposed, it is clear that what matters in the

𝑅𝑝 increase for a machine learning scoring function, whether built with experimental or

synthetic data, is the percentage of the entire database on which the network is trained

and not the binding site refinement.

The maximum 𝑅𝑝 obtained in a scoring function horizontal test prediction is influenced

by the overlap of proteins present in train and test sets. Generalizing, the similarity

between complexes in train and test set increases performance measurement in

horizontal test. Considering Figure 5.2, one understands that the higher the overlap is,

the larger the vertical shift of the straight line is.

This is a confirmation of Jincai Yang et al (118) thesis. They sustain that a machine

learning scoring functions learn to recognize the different proteins and not the complex

bounding features. Moreover, similar databases used in train and test are a doping

factor in the 𝑅𝑝 measurement.

Figure 5.1. MLP scoring function performance for trainset dimension on horizontal test using the

three different databases for relative training and test

Figure 5.2. MLP scoring function performance as a function of the trainset percentage with

respect to the complete database on horizontal test. The database used are the experimental and

synthetic one. The target value considered is the ligand-protein affinity.

5.2 Vertical test

In order to verify the real performance of the MLP scoring function, we perform more

stringent tests, which can describe a real-case scenario. In particular in chemical and

pharmacological laboratories, the typical challenge is to predict the affinity between a

protein, which was never addressed before, and some ligands.

With these premises, a horizontal test does not describe the situation well, because the

machine learning scoring function is tested on complexes similar to others already seen.

In particular, the protein in your test is already experimentally measured in the reactions

with many other ligands. A vertical test is the one we are looking for in this scenario. In

fact, in a vertical test, the network is trained on complexes deriving by some specific

proteins. The consequent test is performed on a pool of data which are not deriving

from any protein present in the train set. This is the vertical test. In Figure 5.3 it is

possible to observe that a vertical test, using the MLP scoring function trained on

synthetic data, produces a performance in terms of 𝑅𝑝 sensibly inferior to the one

measured in the horizontal test. In addition, a constant value of 𝑅𝑝 is measured when

the dimension of the training pool is increased. In the case described here, the test set

is composed of 2068 complexes made from 4 different proteins. The protein considered

in this test are: FAAH, PIM2, ACE, and MCL1. Each protein counts, respectively, 508,

384, 488, and 688 complexes. The complexes of these specific proteins are chosen

because they are the less numerous pools among the ones present in our database.

The intention is to maximize the variety of proteins, minimizing the dimension of the test

set. The remaining database is used for training the scoring function. The training set

contain complexes deriving from the 13 proteins not used in the test set. For this test,

the data considered are synthetic, because of the possibility of easily dividing the

training and test set among different protein pools.

The results obtained by MLP scoring function in a vertical test, even if sensibly lower

than the one in the horizontal test, still show a moderate positive correlation. The result

is better than the one obtained by Wójcikowski et al (98), which is the other team that

performs a similar test. They obtain 𝑅𝑝 = 0.2.

It is important to notice that the scoring power of the function measured in term of 𝑅𝑝 do

not increase with the train set size. This confirms the thesis, already presented, that

machine learning scoring function have good performance if the affinity prediction is

made for complexes similar to the ones used in the training phase. In fact, in a vertical

test, by definition, similar complexes deriving from the same proteins are not

contemporary present both in train and test set. A machine learning scoring function

develops the ability to recognize similar complexes in terms of proteins or ligands.

When the affinity prediction is done on complexes totally different from the ones used in

the training, the result is degraded.

Figure 5.3 MLP scoring function performance for trainset size on vertical test. The database used

is the synthetic one. The target value considered is the ligand-protein affinity.

5.3 Per-target vertical test

In Figure 5.4 another type of vertical test is performed, namely, what we refer to as the

per-protein vertical test. The MLP scoring function is trained on the entire database

except the complexes deriving by one protein. These are used as test set. Using this

type of test a typical scenario of a new medicine discovery, where by the target is

previously selected, but never studied before, is described. In this plot, the protein

names reported in the abscissa are the protein complexes used as test set. The train

set is the remaining database excluding the complexes of the test set. The dimension of

the test set and, consequently, of the train set, varies depending on which protein

complexes are considered. As in the previous case, the data considered are synthetic.

The performance of the function is similar to the one described in Figure 5.4, providing a

confirmation of the argument presented above. In fact, the mean 𝑅𝑝 is degraded with

respect to the horizontal test. Considering each protein vertical test, an average

behavior describes a very moderate correlation between the data predicted and the real

one (𝑅𝑝 = 0.35). The exception is made by the complexes of the proteins JAK1 and

JAK2. Indeed, their affinities are predicted in a way that guarantees an almost strong

correlation with real data. The explanation can be found in the high sensibility to the

ligand molecular weight of these two proteins. Most part of the scoring functions are

sensible to the molecular weight. It means that a scoring function tends to predict a

higher affinity with the increase of the weight of the ligand. In fact, this trend can be

really observed. However, it is normally verified only for a restricted range of values and

it is not a rigorous law. The MLP scoring function can learn this simple trend and just

apply it in the case of proteins JAK1 and JAK2, as shown in Figure 5.4. In fact, in the

case of these proteins, the bounding task is large and the just described simple

approximation, has a higher range of validity. This is the reason why the sensibility to

the molecular weight of JAK1 and JAK2 is higher.

Figure 5.4 MLP scoring function performance on per target vertical test. The database used is the

synthetic one. The target value is the ligand-protein affinity.

5.4 Performance comparison

The results obtained from the vertical and per-target vertical test confirm that the use of

a machine learning scoring function, which guarantees good performances in horizontal

test at the point that the correlation between real and predicted data is moderately

strong, seems to be mildly useful in chemical and pharmacological applications. The

reason is that chemical and pharmacological typical scoring functions applications

contexts are reproduced by the vertical tests. In this scenario, the use of machine

learning scoring function shows a degraded performance with respect to the results

obtained by the same in a horizontal test. In the case of MPL scoring function the 𝑅𝑝

score decreases by at least 0.2. The correlation between real and predicted data,

reached by the machine learning scoring function downgrades from moderate strong to

moderately weak or weak. The degradation of performances is confirmed by further

studies on the subject (118) (98) (103).

6 A possible solution: per-target

scoring function

The intention of making a step forward in terms of machine learning scoring function

leads us to explore the field of per-target scoring functions.

There are some factors that push the team toward the idea that the creation of

individual scoring function for each target can be a suitable solution in the field of

scoring function based of machine learning techniques. One factor is the difference

measured among the 𝑅𝑝 in each protein, in the per-target vertical test. The other factor

is the awareness that a single scoring function can perform well or not depending on the

target protein considered, as already emerged by the study of classic scoring functions.

Besides, the following reasons encourage us in developing all the potential of synthetic

data: the easiness in creating synthetic data; the large quantity of synthetic available

data; the performance of the MLP scoring function obtained using synthetic data. A

machine learning per-target scoring function is a scoring function created using a neural

network for which the training and testing data come from an individual target. This

solution can be effective because it avoids the machine learning scoring functions

tendency of learning to recognize similar proteins when the training is performed in a

database with many different of them. For this reason, the machine learning per-target

scoring function strengthens the function capability of learning the propriety of the

complex binding mechanism.

The neural network used in this study is a multilayer perceptron, as for the MLP scoring

function considered above. This scoring function is called MLP per-target scoring

function, where the word "target" is substituted by the target considered. In the cases

shown in Figure 6.1, all the per-target scoring functions use a network structure of 2x20

except for the one created for protein D2. In fact, these protein pools have a number of

data that vary from 1200, for protein JAK2, to 3000, for protein A2A. The dimension of

the datasets is close to the one of the experimental data. Therefore the structure 2x20 is

used. The MLP per-D2 scoring function uses a 3x20 structure considering the number

of data available for this protein is 6500.

The data used to train the function, as anticipated, are synthetic. The molecular

structure is created by the docking software MOE (54) starting from the original 3D

structures of the protein and the ligand. The ligand-protein affinity is experimentally

measured. The process of measuring it is simpler and quicker than a crystallographic

radiography measurement of the 3D complex structure. In addition, the real ligand-

protein affinity is available in shared databases for a very larger number of complexes

with respect to the quantity of available experimental crystallographic structures.

The MLP per-target scoring functions reported in Figure 6.1 use a test set of 300 data.

The choice of the 6 proteins considered in the ensemble of 17 available is simply due to

the fact that they are the more numerous pools deriving from a single protein. The plot

of 𝑅𝑝 for the MLP per-D2 scoring function is not completely visible in Figure 6.1. The

reason is that it has a larger database with respect to the others. The final 𝑅𝑝 obtained

for a training set of 6200 data is 𝑅𝑝= 0.41. As it is possible to observe in Figure 6.1, the

performances, in terms of 𝑅𝑝 , of the MLP per-target scoring functions considered, are

all better than the MLP scoring function in a vertical test and in the corresponding per-

protein vertical tests. This is noticeable by making comparison with the performances

shown in Figure 5.3 and 5.4.

Figure 6.1. MLP per-target scoring function performance as a function of the training set size

considering different proteins. The database used is the synthetic one. The target value

considered is the ligand-protein affinity.

6.1 Comparison among different types of scoring

functions on the same test set

In Figure 6.2, one can see a homogeneous comparison between scoring functions. In

fact, here the employed test set, in terms of size and in terms of target used for the

complexes, is the same for each group of functions: the MLP per-target scoring

function, the MLP scoring function in a per-protein vertical test and a simple molecular

weight scoring function. A molecular weight scoring function, as previously described,

is a simple linear fit of the ligand-protein affinity as a function of the ligand molecular

weight, using a least-squares regression. Two data pools are considered as test set,

one composed by protein OX2 complexes and the other by protein JAK2 complexes. In

both cases the comparison shows better performance of the per-target scoring function.

The 𝑅𝑝 trend in the horizontal test is reported as a function of train set dimension, for

the MLP scoring function created using experimental and synthetic data. As already

said, the horizontal test presents an overestimation of the scoring function performance.

However, the MLP per-target scoring function in the case of OX2 and JAK2 is similar or

better in terms of 𝑅𝑝 score than the performance of MLP scoring function in the

horizontal test.

As a further consideration, all the per-target scoring functions show an 𝑅𝑝 score

increasing with the train set dimension. It seems that this increasing trend would be

maintained if the database was increased even further. This suggests that the

performance of the per-target scoring function can improve with larger databases.

Figure 6.2 Comparison among the MLP per-target scoring function, the MLP scoring function in a

per-protein vertical test, and a simple molecular weight scoring function The Pearson correlation

coefficient 𝑹𝒑is plotted as a function of the training set size (x axes). The test set used in the

comparison is homogeneous in terms of size and in terms of target. The considered target value

is the ligand-protein. The horizontal line represents the mean Pearson correlation coefficient

𝑹𝒑obtained by the MLP scoring function in the per-target vertical test.

7 Conclusions

7.1 Research summary

As initially specified, the objective of the present study is to verify the real efficiency and

the effective performances of the recently developed machine learning scoring

functions. Here we investigated the circumstances in which a machine learning scoring

function produces overestimated performances and why this happens. As a possible

solution we proposed a tests protocol to be followed in order to guarantee a real

performance description of machine learning scoring functions. Eventually an effective

and innovative solution in the field of machine learning scoring functions was proposed.

In order to reach the aims of this research we moved toward the target through many

steps. We collected experimental and synthetic 3D ligand-protein structures and we

adjusted and corrected them in order to be suitable for training a machine learning

scoring function. We studied different types of training protocols and network structures

in order to increase as much as possible the scoring power of our scoring function. We

proposed different types of data representation and we conducted an in-depth study on

which is the most effective descriptive model to extract information from the data. We

considered various types of possible tests to measure the performances of a machine

learning scoring function, including, in particular, horizontal and vertical tests. We tried

to give a clear picture of them related to the test type performed and to the possible real

scenario reproduced with the particular test type. In addition we correlated the

performances to the ones of types of scoring function previously developed in the field

(both classic and machine learning)

7.2 Conclusions

The present research confirms that optimal results can be obtained in ligand-protein

affinity prediction if horizontal tests are performed with machine learning scoring

function, as previous studies have already suggested (96) (100) (103) (102) (98). The

correlation between predicted and real data is moderately strong to strong in all the

scoring function presented in this thesis. As reported in previous studies (96) (100)

(102) (101) (98), classic scoring functions reach lower level of correlation than those.

However, horizontal tests describe a particular utilizing case of a scoring function and

are not indicative of its general performance. Indeed, a horizontal test puts a machine

learning scoring function in a favorable situation respect to its effective capability of

predicting binding affinity. In fact, as already discussed (118), machine learning scoring

functions are able to distinguish different proteins if they undergo a training with a

dataset including the same proteins used in test set. We confirm that machine learning

scoring function learn to recognize similar proteins and their performance can depend

on the percentage of database seen in the training phase, if the same proteins are

present in the test set too. In particular, fixing the size of the database, the higher is the

variance of the proteins in the database, the lower the performance of the machine

learning scoring function is, if a horizontal test is performed. According to this

observation, the comparison between classic scoring functions and machine learning

scoring function using a horizontal test is not appropriate.

In addition, in the field of chemistry and pharmacy, the typical use of a scoring function

is to help the discovery of active ligands for protein not yet studied, or for which a poor

quantity of data is present. This scenario is described by a vertical test.

In this type of test, the MLP scoring function shows a degradation of performance in

terms of 𝑅𝑝 of 0.2. The performance degradation is confirmed also by other researchers

who performed this type of test (98), or tests where the similarity between complexes

present in train and test is avoided (100) (101). Also Jincai Yang et al (118) highlighted

this situation in their research. Considering a vertical test, as underlined by Jose

Jimenez et al. study (103), the degradation of the machine learning scoring power

closes the gap between machine learning scoring functions performances and classic

ones. Even the simple molecular weight scoring functions can guarantee a correlation

between real and predicted data comparable to machine learning scoring function in this

situation.

Because of this the performance of new machine learning scoring function should

always be described by both horizontal and vertical tests. Only the contemporary

presence of these tests can provide an exhaustive picture of the performance of the

function. In the vertical test the training of the machine learning scoring function should

be done on complexes different from the ones used for testing. To clearly establish what

avoiding similar complexes in train and test set means, the instruction of our study is to

avoid the presence of same proteins contemporarily in test and train set. This is an

objective and recognizable indication.

Eventually, the innovative solution proposed by this study in the field of machine

learning scoring function is the use of machine learning per-target scoring function. This

type of function requires (if not present yet) a small amount of previous work for

experimentally measuring ligand-protein affinity for thousands of complexes of the

interested protein. The data are used as training set in the recursive scheme presented

with MPL per-protein scoring function. In the end, one obtains a scoring function which

is expected to be more reliable and to guarantee at least a moderate correlation

between real and predicted data. As presented, a similar level of performance is not

guaranteed in vertical test by all the functions who performed it. To verify exactly the

scoring power of a per-target scoring function, one can always use the small database

created for training it, letting a small portion of data to test the function. In this way one

achieves the awareness that the performance obtained are realistic or underestimated,

if you own more data to increase your training database. In fact, one of the most

interesting aspect of the machine learning per-target scoring function is the data used to

create it. Synthetic data are used. This type of data are relative fast to be produced. In

fact the complex structure is created using popular docking software and only the

ligand-protein affinity is experimental measured. This is a relative fast procedure. For

sure it is very quicker than producing a complete experimental data for which a 3D

crystallography is necessary. This is why many more synthetic data are now available

with respect to experimental data. The easiness in collecting synthetic data permits the

availability of large synthetic database in which are more probable to find interesting

target. On the other hand the per-target scoring function demonstrate to have

improvable performance if larger database would be used, as the performance plot

maintain a positive and constant gradient. Eventually the per-target scoring functions

are now able to guarantee at least a moderate correlation between real and predicted

data also with target of interest and this level of performance can be increased using

larger database. Moreover, a per-target scoring function can be easily created also with

descriptive models and neural network types presented by previous studies on the

subject, just modifying the data used for training the machine learning scoring function.

Acknowledgements

I would like to thank all the team who participate in this work. First of all professor

Sebastiano Pilati, since he drove my research activities and supervised all my work,

professor Andrea Perali, the coordinator of the team, and professor Diego Dal Ben.

I would like to thank the department of Physics of Università di Camerino which host my

research activity and the School of Advanced Studies of Università di Camerino and the

whole Università di Camerino for the opportunity of attending the PhD course.

Bibliography

1. MITCHELL, Tom M. Machine learning. s.l. : McGraw-hill, 1997.

2. MITCHELL, Tom, et al. Machine learning. s.l. : Annual review of computer science, 1990. 4.1: 417-433.

3. WANG, H., et al. Machine learning basics. s.l. : Deep learning, 2016. 98-164.

4. BARR, Avron, FEIGENBAUM, Edward A. and COHEN, Paul R. The handbook of artificial intelligence.

s.l. : William Kaufmann, 1981.

5. WINSTON, Patrick Henry. Artificial intelligence. s.l. : Addison-Wesley Longman Publishing Co., 1984.

6. BUZKO, I., et al. Artificial Intelligence technologies in human resource development. s.l. : Computer

modelling and new technologies, 2016. 20.2: 26-29.

7. EVANS, Guy-Warwick. Artificial intelligence: where we came from, where we are now, and where we

are going. 2017.

8. PIAS, Claus. Analog, digital, and the cybernetic illusion. s.l. : Kybernetes, 2005.

9. STEELE, Guy. Common LISP: the language. s.l. : Elsevier, 1990.

10. CLOCKSIN, William F. and MELLISH, Christopher S. Programming in PROLOG. s.l. : Springer Science &

Business Media, 2003.

11. ROSENBLATT, Frank. The perceptron: a probabilistic model for information storage and organization

in the brain. s.l. : Psychological review, 1958. 65.6: 386.

12. MINSKY, Marvin and PAPERT, Seymour A. Perceptrons, Reissue of the 1988 Expanded Edition with a

new foreword by Léon Bottou: An Introduction to Computational Geometry. s.l. : MIT press, 2017.

13. BRODTKORB, André R., HAGEN, Trond R. and SÆTRA, Martin L. Graphics processing unit (GPU)

programming strategies and trends in GPU computing. s.l. : Journal of Parallel and Distributed

Computing, 2013. 73.1: 4-13.

14. MARKOVIĆ, Danijela, et al. Physics for neuromorphic computing. s.l. : Nature Reviews Physics, 2020.

2.9: 499-510.

15. WEISS, Eric A. Biographies: Eloge: Arthur Lee Samuel (1901-90). s.l. : IEEE Annals of the History of

Computing, 1992. 14.3: 55-69.

16. JORDAN, Michael I. and MITCHELL, Tom M. Machine learning: Trends, perspectives, and prospects.

s.l. : Science, 2015. 349.6245: 255-260.

17. MAHESH, Batta. Machine learning algorithms-a review. s.l. : International Journal of Science and

Research (IJSR), 2020. 9: 381-386.

18. AYODELE, Taiwo Oladipupo. AYODELE, Taiwo Oladipupo. s.l. : New advances in machine learning,

2010. 3: 19-48.

19. GENTLEMAN, Robert and CAREY, Vincent J. Unsupervised machine learning. s.l. : Springer, 2008.

20. SINGH, Amanpreet, THAKUR, Narina and SHARMA, Aakanksha. A review of supervised machine

learning algorithms. s.l. : Ieee, 2016.

21. KAELBLING, Leslie Pack, LITTMAN, Michael L. and MOORE, Andrew W. Reinforcement learning: A

survey. s.l. : Journal of artificial intelligence research, 1996. 4: 237-285.

22. PUTERMAN, Martin L. Markov decision processes. s.l. : Handbooks in operations research and

management science, 1990. 2: 331-434.

23. MAĆKIEWICZ, Andrzej and RATAJCZAK, Waldemar. Principal components analysis (PCA). s.l. :

Computers & Geosciences, 1993. 19.3: 303-342.

24. MADHULATHA, T. Soni. An overview on clustering methods. s.l. : arXiv preprint arXiv, 2012.

1205.1117,.

25. BIAU, Gérard and SCORNET, Erwan. A random forest guided tour. s.l. : Test, 2016. 25.2: 197-227.

26. DRAPER, Norman R. and SMITH, Harry. Applied regression analysis. s.l. : John Wiley & Sons, 1998.

27. NOBLE, William S. What is a support vector machine? s.l. : Nature biotechnology, 2006. 24.12: 1565-

1567.

28. WANG, Sun-Chong. Artificial neural network. s.l. : Interdisciplinary computing in java programming,

2003.

29. SHARMA, Sagar, SHARMA, Simone and ATHAIYA, Anidhya. Activation functions in neural networks.

s.l. : towards data science, 2017. 6.12: 310-316.

30. RUDER, Sebastian. An overview of gradient descent optimization algorithms. s.l. : arXiv preprint

arXiv, 2016. 1609.04747.

31. CILIMKOVIC, Mirza. Neural networks and back propagation algorithm. s.l. : Institute of Technology

Blanchardstown, 2015. 15.1.

32. JABBAR, H. and KHAN, Rafiqul Zaman. Methods to avoid over-fitting and under-fitting in supervised

machine learning (comparative study). s.l. : Computer Science, Communication and Instrumentation

Devices, 2015. 70.

33. GIROSI, Federico, JONES, Michael and POGGIO, Tomaso. Regularization theory and neural networks

architectures. 1995. Vol. Neural computation. 7.2: 219-269.

34. VLACHOS, Andreas. A stopping criterion for active learning. s.l. : Computer Speech & Language,

2008. 22.3: 295-312.

35. TORREY, Lisa and SHAVLIK, Jude. Transfer learning. s.l. : Handbook of research on machine learning

applications and trends: algorithms, methods, and techniques. IGI global, 2010. p. 242-264.

36. ZHUANG, Fuzhen, et al. A comprehensive survey on transfer learning. s.l. : Proceedings of the IEEE,

2020. 109.1: 43-76.

37. AGRAWAL, Divyakant, et al. Challenges and opportunities with Big Data. 2011. 2011-1..

38. RUSSOM, Philip, et al. Big data analytics. 2011. Vols. TDWI best practices report, fourth quarter.

19.4: 1-34..

39. WHITFORD, David. Proteins: structure and function. s.l. : John Wiley & Sons, 2013.

40. MEISTER, Alton. Biochemistry of the amino acids. s.l. : Elsevier, 2012.

41. TALLAWI, Marwa, et al. Strategies for the chemical and biological functionalization of scaffolds for

cardiac tissue engineering: a review. s.l. : Journal of the Royal Society Interface, 2015. 12.108: 20150254.

42. HANSEN, Jeffrey L., et al. Structural insights into peptide bond formation. s.l. : Proceedings of the

National Academy of Sciences, 2002. 99.18: 11670-11675.

43. EISENHABER, Frank, PERSSON, Bengt and ARGOS, Patrick. Protein structure prediction: recognition

of primary, secondary, and tertiary structural features from amino acid sequence. s.l. : Critical reviews in

biochemistry and molecular biology, 1995. 30.1: 1-94.

44. REYNOLDS, Charles H., TOUNGE, Brett A. and BEMBENEK, Scott D. Ligand binding efficiency: trends,

physical basis, and implications. 2008. Vol. Journal of medicinal chemistry. 51.8: 2432-2438.

45. HOMANS, S. W. Dynamics and thermodynamics of ligand–protein interactions. s.l. : Bioactive

Conformation I, 2006. 51-82.

46. BERMAN, Helen M. The protein data bank: a historical perspective. s.l. : Acta Crystallographica

Section A, 2008. 64.1: 88-95.

47. LASKOWSKI, Roman A., et al. PDBsum: a Web-based database of summaries and analyses of all PDB

structures. s.l. : Trends in biochemical sciences, 1997. 22.12: 488-490.

48. MEYER, Edgar F. The first years of the Protein Data Bank. s.l. : Protein science: a publication of the

Protein Society, 1997. 6.7: 1591.

49. WANG, R. Fang. X., et al., et al. The PDBbind Database: Methodologies and Updates. s.l. : J. Med.

Chem, 2005. 48: 4111-4119.

50. WANG, Renxiao, et al. The PDBbind database: Collection of binding affinities for protein− ligand

complexes with known three-dimensional structures. s.l. : Journal of medicinal chemistry, 2004. 47.12:

2977-2980.

51. DUNBAR JR, James B., et al. CSAR data set release 2012: ligands, affinities, complexes, and docking

decoys. s.l. : Journal of chemical information and modeling, 2013. 53.8: 1842-1852.

52. GESTWICKI, Jason, et al. CSAR data set release 2012: Ligands, affinities, complexes, and docking

decoys. 2013.

53. GILSON, Michael K. and ZHOU, Huan-Xiang. Calculation of protein-ligand binding affinities. s.l. :

Annual review of biophysics and biomolecular structure, 2007. 36.1: 21-42.

54. MERZ JR, Kenneth M., RINGE, Dagmar and REYNOLDS, Charles H. Drug design: structure-and ligand-

based approaches. s.l. : Cambridge University Press, 2010.

55. GILSON, Michael K., et al. BindingDB in 2015: a public database for medicinal chemistry,

computational chemistry and systems pharmacology. s.l. : Nucleic acids research, 2016. 44.D1: D1045-

D1053.

56. TROTT, Oleg and OLSON, Arthur J. AutoDock Vina: improving the speed and accuracy of docking

with a new scoring function, efficient optimization, and multithreading. s.l. : Journal of computational

chemistry, 2010. 31.2: 455-461.

57. WANG, Lingle, et al. Accurate and reliable prediction of relative ligand binding potency in

prospective drug discovery by way of a modern free-energy calculation protocol and force field. s.l. :

Journal of the American Chemical Society, 2015. 137.7: 2695-2703.

58. DRAGIEV, Plamen, NADON, Robert and MAKARENKOV, Vladimir. Systematic error detection in

experimental high-throughput screening. s.l. : BMC bioinformatics, 2011. 12.1: 1-14..

59. JONES, Gareth, et al. Development and validation of a genetic algorithm for flexible docking. s.l. :

Journal of molecular biology, 1997. 267.3: 727-748.

60. JAIN, Ajay N. Surflex: fully automatic flexible molecular docking using a molecular similarity-based

search engine. s.l. : ournal of medicinal chemistry, 2003. 46.4: 499-511.

61. BÖHM, Hans-Joachim. Prediction of binding constants of protein ligands: a fast method for the

prioritization of hits obtained from de novo design or 3D database search programs. s.l. : Journal of

computer-aided molecular design, 1998. 12.4: 309-309.

62. HUANG, Niu, et al. Molecular mechanics methods for predicting protein–ligand binding. s.l. : Physical

Chemistry Chemical Physics, 2006. 8.44: 5166-5177.

63. KITCHEN, Douglas B., et al. Docking and scoring in virtual screening for drug discovery: methods and

applications. s.l. : Nature reviews Drug discovery, 2004. 3.11: 935-949..

64. MUEGGE, Ingo. PMF scoring revisited. s.l. : Journal of medicinal chemistry, 2006. 49.20: 5895-5902.

65. KIRTAY, Chrysi Konstantinou, MITCHELL, John BO and LUMLEY, James A. Knowledge based

potentials: The reverse Boltzmann methodology, virtual screening and molecular weight dependence.

s.l. : QSAR & Combinatorial Science, 2005. 24.4: 527-536.

66. MUEGGE, Ingo and MARTIN, Yvonne C. A general and fast scoring function for protein− ligand

interactions: a simplified potential approach. s.l. : Journal of medicinal chemistry, 1999. 42.5: 791-804.

67. GOHLKE, Holger, HENDLICH, Manfred and KLEBE, Gerhard. Knowledge-based scoring function to

predict protein-ligand interactions. s.l. : Journal of molecular biology, 2000. 295.2: 337-356.

68. VELEC, Hans FG, GOHLKE, Holger and KLEBE, Gerhard. DrugScoreCSD knowledge-based scoring

function derived from small molecule crystal data with superior recognition rate of near-native ligand

poses and better affinity prediction. s.l. : Journal of medicinal chemistry, 2005. 48.20: 6296-6303.

69. KULHARIA, Mahesh, GOODY, Roger S. and JACKSON, Richard M. Information Theory-Based Scoring

Function for the Structure-Based Prediction of Protein− Ligand Binding Affinity. s.l. : Journal of chemical

information and modeling, 2008. 48.10: 1990-1998.

70. GUVENCH, Olgun and MACKERELL JR, Alexander D. Computational fragment-based binding site

identification by ligand competitive saturation. s.l. : PLoS computational biology, 2009. 5.7: e1000435..

71. WAN, Shunzhou, et al. Evaluation and characterization of Trk kinase inhibitors for the treatment of

pain: reliable binding affinity predictions from theory and computation. s.l. : Journal of Chemical

Information and Modeling, 2017. 57.4: 897-909.

72. CIORDIA, Myriam, et al. Application of free energy perturbation for the design of BACE1 inhibitors.

s.l. : Journal of Chemical information and modeling, 2016. 56.9: 1856-1871.

73. KERANEN, Henrik, et al. Acylguanidine beta secretase 1 inhibitors: a combined experimental and free

energy perturbation study. s.l. : Journal of chemical theory and computation, 2017. 13.3: 1439-1453.

74. GILSON, Michael K. and ZHOU, Huan-Xiang. Calculation of protein-ligand binding affinities. s.l. :

Annual review of biophysics and biomolecular structure, 2007. 36.1: 21-42.

75. LEACH, Andrew R. Molecular modelling: principles and applications. s.l. : Pearson education, 2001.

76. IRWIN, John J. Community benchmarks for virtual screening. s.l. : Journal of computer-aided

molecular design, 2008. 22.3: 193-199.

77. SCHNEIDER, Gisbert. Virtual screening: an endless staircase? s.l. : Nature Reviews Drug Discovery,

2010. 9.4: 273-276.

78. SPYRAKIS, Francesca, et al. The consequences of scoring docked ligand conformations using free

energy correlations. s.l. : European journal of medicinal chemistry, 2007. 42.7: 921-933.

79. LI, Hongjian, et al. Improving AutoDock Vina using random forest: the growing accuracy of binding

affinity prediction by the effective exploitation of larger data sets. s.l. : Molecular informatics, 2015.

34.2‐3: 115-126.

80. AIN, Qurrat Ul, et al. Machine‐learning scoring functions to improve structure‐based binding affinity

prediction and virtual screening. s.l. : Wiley Interdisciplinary Reviews: Computational Molecular Science,

2015. 5.6: 405-424.

81. CHENG, Tiejun, et al. Structure-based virtual screening for drug discovery: a problem-centric review.

s.l. : The AAPS journal, 2012. 14.1: 133-141.

82. HUANG, Sheng-You, GRINTER, Sam Z. and ZOU, Xiaoqin. Scoring functions and their evaluation

methods for protein–ligand docking: recent advances and future directions. s.l. : Physical Chemistry

Chemical Physics, 2010. 12.40: 12899-12908.

83. MA, Dik-Lung, CHAN, Daniel Shiu-Hin and LEUNG, Chung-Hang. Drug repositioning by structure-

based virtual screening. s.l. : Chemical Society Reviews, 2013. 42.5: 2130-2141.

84. ASHTAWY, Hossam M. and MAHAPATRA, Nihar R. A comparative assessment of predictive

accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity

prediction. s.l. : EEE/ACM transactions on computational biology and bioinformatics, 2014. 12.2: 335-

347.

85. LI, Hongjian, et al. Substituting random forest for multiple linear regression improves binding affinity

prediction of scoring functions: Cyscore as a case study. s.l. : BMC bioinformatics, 2014. 15.1: 1-12.

86. BALLESTER, Pedro J., SCHREYER, Adrian and BLUNDELL, Tom L. Does a more precise chemical

description of protein–ligand complexes lead to more accurate prediction of binding affinity? s.l. : Journal

of chemical information and modeling, Journal of chemical information and modeling. 54.3: 944-955.

87. BALLESTER, Pedro J. and MITCHELL, John BO. Comments on “leave-cluster-out cross-validation is

appropriate for scoring functions derived from diverse protein data sets”: Significance for the validation

of scoring functions. s.l. : Journal of chemical information and modeling, 2011. 51.8: 1739-1741.

88. LI, Hongjian, et al. Low-quality structural and interaction data improves binding affinity prediction

via random forest. s.l. : Molecules, 2015. 20.6: 10947-10962.

89. —. Correcting the impact of docking pose generation error on binding affinity prediction. s.l. : BMC

bioinformatics, 2016. 17.11: 13-25.

90. PIRES, Douglas EV and ASCHER, David B. CSM-lig: a web server for assessing and comparing

protein–small molecule affinities. s.l. : Nucleic acids research, 2016. 44.W1: W557-W561.

91. WÓJCIKOWSKI, Maciej, ZIELENKIEWICZ, Piotr and SIEDLECKI, Pawel. Open Drug Discovery Toolkit

(ODDT): a new open-source player in the drug discovery field. . s.l. : Journal of cheminformatics, 2015.

7.1: 1-6.

92. DENG, Wei, BRENEMAN, Curt and EMBRECHTS, Mark J. Predicting protein− ligand binding affinities

using novel geometrical descriptors and machine-learning methods. s.l. : Journal of chemical information

and computer sciences, 2004. 4.2: 699-703.

93. AMINI, Ata, et al. A general approach for developing system‐specific functions to score protein–

ligand docked complexes using support vector inductive logic programming. s.l. : roteins: Structure,

Function, and Bioinformatics, 2007. 69.4: 823-831.

94. WANG, Renxiao, LU, Yipin and WANG, Shaomeng. Comparative evaluation of 11 scoring functions

for molecular docking. s.l. : Journal of medicinal chemistry, 2003. 46.12: 2287-2303.

95. SOTRIFFER, Christoph A., et al. SFCscore: scoring functions for affinity prediction of protein–ligand

complexes. s.l. : Proteins: Structure, Function, and Bioinformatics, 2008. 73.2: 395-419.

96. BALLESTER, Pedro J. and MITCHELL, John BO. A machine learning approach to predicting protein–

ligand binding affinity with applications to molecular docking. s.l. : Bioinformatics, 2010. 26.9: 1169-

1175.

97. BREIMAN, Leo. Random forests. s.l. : Machine learning, 2001. 45.1: 5-32.

98. WÓJCIKOWSKI, Maciej, BALLESTER, Pedro J. and SIEDLECKI, Pawel. Performance of machine-

learning scoring functions in structure-based virtual screening. s.l. : Scientific Reports, 2017. 7.1: 1-10.

99. KRIZHEVSKY, Alex, SUTSKEVER, Ilya and HINTON, Geoffrey E. Imagenet classification with deep

convolutional neural networks. s.l. : Advances in neural information processing systems, 2012. 25.

100. GOMES, Joseph, et al. Atomic convolutional networks for predicting protein-ligand binding affinity.

s.l. : rXiv preprint arXiv, 2017. 1703.10603.

101. SEO, Sangmin, et al. Binding affinity prediction for protein–ligand complex using deep attention

mechanism based on intermolecular interactions. s.l. : BMC bioinformatics, 2021. 22.1: 1-15.

102. STEPNIEWSKA-DZIUBINSKA, Marta M., ZIELENKIEWICZ, Piotr and SIEDLECKI, Pawel. Development

and evaluation of a deep learning model for protein–ligand binding affinity prediction. . s.l. :

Bioinformatics, 2018. 34.21: 3666-3674.

103. JIMÉNEZ, José, et al. K deep: protein–ligand absolute binding affinity prediction via 3d-

convolutional neural networks. s.l. : Journal of chemical information and modeling, 2018. 58.2: 287-296.

104. IANDOLA, Forrest N., et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<

0.5 MB model size. s.l. : arXiv preprint arXiv, 2016. 1602.07360.

105. DUNBAR JR, James B., et al. DUNBAR JR, James B., et al. CSAR benchmark exercise of 2010:

selection of the protein–ligand complexes. s.l. : Journal of chemical information and modeling, 2011.

51.9: 2036-2046.

106. LIU, Zhihai, et al. Forging the basis for developing protein–ligand interaction scoring functions. s.l. :

Accounts of chemical research, 2017. 50.2: 302-309.

107. HUANG, Niu, SHOICHET, Brian K. and IRWIN, John J. Benchmarking sets for molecular docking. s.l. :

Journal of medicinal chemistry, 2006. 49.23: 6789-6801.

108. MYSINGER, Michael M., et al. Directory of useful decoys, enhanced (DUD-E): better ligands and

decoys for better benchmarking. s.l. : Journal of medicinal chemistry, 2012. 55.14: 6582-6594.

109. HUANG, Niu, SHOICHET, Brian K. and IRWIN, John J. Benchmarking sets for molecular docking. s.l. :

Journal of medicinal chemistry, 2006. 49.23: 6789-6801.

110. KOES, David Ryan, BAUMGARTNER, Matthew P. and CAMACHO, Carlos J. Lessons learned in

empirical scoring with smina from the CSAR 2011 benchmarking exercise. s.l. : Journal of chemical

information and modeling, 2013. 53.8: 1893-1904.

111. MYSINGER, Michael M. and SHOICHET, Brian K. Rapid context-dependent ligand desolvation in

molecular docking. s.l. : Journal of chemical information and modeling, 2010. 50.9: 1561-1573.

112. KUNTZ, Irwin D., et al. A geometric approach to macromolecule-ligand interactions. s.l. : Journal of

molecular biology, 1982. 161.2: 269-288.

113. LANG, P. Therese, et al. DOCK 6: Combining techniques to model RNA–small molecule complexes.

s.l. : Rna, 2009. 15.6: 1219-1230.

114. HARTSHORN, Michael J., et al. Diverse, high-quality test set for the validation of protein− ligand

docking performance. s.l. : Journal of medicinal chemistry, 2007. 50.4: 726-741.

115. LI, Yang and YANG, Jianyi. Structural and sequence similarity makes a significant impact on

machine-learning-based scoring functions for protein–ligand interactions. s.l. : Journal of chemical

information and modeling, 2017. 57.4: 1007-1012.

116. WÓJCIKOWSKI, M. Kukie lka, M., Stepniewska-Dziubinska, MM and Siedlecki, P. Development of a

protein–ligand extended connectivity (PLEC) fingerprint and its application for binding affinity

predictions. s.l. : Bioinformatics, 2018.

117. ZHENG, Liangzhen, FAN, Jingrong and MU, Yuguang. Onionnet: a multiple-layer intermolecular-

contact-based convolutional neural network for protein–ligand binding affinity prediction. s.l. : ACS

omega, 2019. 4.14: 15956-15965.

118. YANG, Jincai, SHEN, Cheng and HUANG, Niu. Predicting or pretending: artificial intelligence for

protein-ligand interactions lack of sufficiently large and unbiased datasets. s.l. : Frontiers in

pharmacology, 2020. 11: 69.

119. John Goerzen, Brandon Rhodes. Foundations of Python Network Programming: The

Comprehensive Guide to Building Network Applications with Python. 2010. 978-1-4302-3003-8.

120. ROSENBLATT, Frank. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.

s.l. : Cornell Aeronautical Lab Inc Buffalo NY, 1961.

121. CYBENKO, George. Approximation by superpositions of a sigmoidal function. s.l. : Mathematics of

control, signals and systems, 1989. 2.4: 303-314.

122. KINGMA, Diederik P. and BA, Jimmy. Adam: A method for stochastic optimization. s.l. : arXiv

preprint arXiv, 2014. 1412.6980.

123. Dragiev, P., Nadon, R., & Makarenkov, V. Systematic error detection in experimental high-

throughput screening. s.l. : BMC bioinformatics, 2011.

